molecular characterization of firework-related urban ...€¦ · s1 supporting information for...

12
S1 Supporting Information for Molecular Characterization of Firework-Related Urban Aerosols using FT-ICR Mass Spectrometry 5 Qiaorong Xie 1,8 , Sihui Su 2 , Shuang Chen 2 , Yisheng Xu 3 , Dong Cao 4 , Jing Chen 5 , Lujie Ren 2 , Siyao Yue 1,6,8 , Wanyu Zhao 1,8 , Yele Sun 1 , Zifa Wang 1 , Haijie Tong 6 , Hang Su 6 , Yafang Cheng 6 , Kimitaka Kawamura 7 , Guibin Jiang 4 , Cong-Qiang Liu 2 , and Pingqing Fu 2 1 State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China 10 2 Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China 3 State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China 4 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China 15 5 School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China 6 Max Planck Institute for Chemistry, Multiphase Chemistry Department, Hahn-Meitner-Weg 1, 55128 Mainz, Germany 7 Chubu Institute for Advanced Studies, Chubu University, Kasugai 487-8501, Japan 8 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China Correspondence to: Pingqing Fu ([email protected]) 20 This supplementary information document contains 12 pages including 3 tables, 7 figures and references.

Upload: others

Post on 20-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Molecular Characterization of Firework-Related Urban ...€¦ · S1 Supporting Information for Molecular Characterization of Firework-Related Urban Aerosols using FT-ICR Mass Spectrometry

S1

Supporting Information for Molecular Characterization of Firework-Related Urban Aerosols using FT-ICR Mass Spectrometry 5

Qiaorong Xie1,8, Sihui Su2, Shuang Chen2, Yisheng Xu3, Dong Cao4, Jing Chen5, Lujie Ren2, Siyao Yue1,6,8, Wanyu Zhao1,8, Yele Sun1, Zifa Wang1, Haijie Tong6, Hang Su6, Yafang Cheng6, Kimitaka Kawamura7, Guibin Jiang4, Cong-Qiang Liu2, and Pingqing Fu2 1State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China 10 2Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China 3State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China 4State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China 15 5School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China 6Max Planck Institute for Chemistry, Multiphase Chemistry Department, Hahn-Meitner-Weg 1, 55128 Mainz, Germany 7Chubu Institute for Advanced Studies, Chubu University, Kasugai 487-8501, Japan 8College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China Correspondence to: Pingqing Fu ([email protected]) 20

This supplementary information document contains 12 pages including 3 tables, 7 figures and references.

Page 2: Molecular Characterization of Firework-Related Urban ...€¦ · S1 Supporting Information for Molecular Characterization of Firework-Related Urban Aerosols using FT-ICR Mass Spectrometry

S2

Table S1. Number of compounds in each subgroup and arithmetic and weighted mean elemental ratio for each subgroup in LNY D and LNY N samples.

All CHO CHNO CHOS

LNY D Number frequency 9511 3120 3604 1249

Molecular weight (Da) 448±97 456±120 472±112 402±82

O/C 0.35±0.14 0.31±0.12 0.33±0.11 0.40±0.13

O/Cw 0.36 0.31 0.33 0.39

H/C 1.18±0.36 1.14±0.37 1.08±0.29 1.37±0.43

H/Cw 1.18 1.10 1.05 1.46

OM/OC 1.65±0.22 1.50±0.17 1.60±0.16 1.80±0.21

OM/OCw 1.66 1.50 1.60 1.79

DBE 11.2±4.98 12.2±5.95 13.2±4.97 7.21±4.65

DBEw 10.8 11.8 13.1 6.05

DBE/C 0.47±0.17 0.47±0.18 0.53±0.14 0.37±0.21

DBE/Cw 0.48 0.50 0.55 0.33

LNY N Number frequency 8426 2618 2515 1626

Molecular weight (Da) 413±85 420±100 415±86 402±78

O/C 0.34±0.13 0.28±0.12 0.34±0.11 0.34±0.16

O/Cw 0.35 0.28 0.34 0.31

H/C 1.28±0.38 1.24±0.40 1.14±0.34 1.42±0.42

H/Cw 1.28 1.24 1.08 1.50

OM/OC 1.66±0.20 1.47±0.16 1.61±0.17 1.71±0.25

OM/OCw 1.67 1.48 1.61 1.68

DBE 9.19±4.8 9.98±5.23 11.0±4.50 6.80±4.30

DBEw 8.71 9.38 11.3 5.81

DBE/C 0.43±0.20 0.42±0.20 0.51±0.17 0.34±0.21

DBE/Cw 0.43 0.43 0.54 0.31

Page 3: Molecular Characterization of Firework-Related Urban ...€¦ · S1 Supporting Information for Molecular Characterization of Firework-Related Urban Aerosols using FT-ICR Mass Spectrometry

S3

Table S2. Number of compounds in each subgroup and arithmetic and weighted mean elemental ratio for each subgroup in Normal D and Normal N samples.

All CHO CHNO CHOS

Normal D Number frequency 5945 2168 2378 1399

Molecular weight (Da) 405±80 400±90 406±79 405±83

O/C 0.36±0.15 0.31±0.12 0.34±0.10 0.38±0.15

O/Cw 0.36 0.31 0.34 0.36

H/C 1.26±0.38 1.14±0.38 1.10±0.34 1.44±0.40

H/Cw 1.29 1.12 1.11 1.54

OM/OC 1.69±0.22 1.51±0.15 1.62±0.16 1.77±0.24

OM/OCw 1.69 1.51 1.62 1.76

DBE 9.01±4.25 10.6±4.95 11.0±4.26 6.49±4.06

DBEw 8.59 10.6 10.9 5.38

DBE/C 0.44±0.19 0.47±0.19 0.53±0.17 0.34±0.20

DBE/Cw 0.42 0.49 0.52 0.29

Normal N Number frequency 5454 2071 2140 1243

Molecular weight (Da) 416±88 408±99 414±89 395±81

O/C 0.37±0.14 0.31±0.11 0.34±0.11 0.41±0.14

O/Cw 0.38 0.31 0.34 0.41

H/C 1.24±0.36 1.19±0.37 1.11±0.30 1.36±0.42

H/Cw 1.23 1.16 1.09 1.40

OM/OC 1.70±0.19 1.51±0.15 1.61±0.17 1.81±0.22

OM/OCw 1.72

1.51 1.61 1.82

DBE 9.71±4.47 10.2±4.77 11.6±4.20 7.17±4.48

DBEw 9.20 10.0 11.4 6.49

DBE/C 0.46±0.18 0.45±0.18 0.52±0.15 0.38±0.20

DBE/Cw 0.46 0.47 0.53 0.36

Page 4: Molecular Characterization of Firework-Related Urban ...€¦ · S1 Supporting Information for Molecular Characterization of Firework-Related Urban Aerosols using FT-ICR Mass Spectrometry

S4

Table S3. Comparison of chemical characterization of water-soluble organic compounds in aerosol samples.

Sampling site Compounds O/C H/C DBE DBE/C Ref.

Non-firework All 0.37±0.14 1.24±0.37 9.36±4.42 0.45±0.18 This study

Firework All 0.37±0.13 1.23±0.37 10.1±4.82 0.45±0.18 This study

Free tropospheric All 0.53±0.2 1.48±0.3 6.18±3.0 NA (Mazzoleni et al., 2012)

Free tropospheric All 0.46±0.13 1.17±0.26 10.7±4.0 0.47±0.14 (Dzepina et al., 2015)

Rural All 0.46 ± 0.23 1.34 ± 0.39 5.3 ± 2.6 0.45 ± 0.21 (Lin et al., 2012)

Rural All 0.28–0.32 1.37–1.46 6.30–7.45 0.33–0.38 (Wozniak et al., 2008)

Marin boundary layer All 0.36–0.42 1.49–1.56 5.88–6.76 0.28–0.32 (Wozniak et al., 2014)

Remote All 0.39–0.42 1.30–1.34 7.71–8.38 0.41–0.42 (An et al., 2019)

Free tropospheric CHO 0.47 ± 0.2 0.47 ± 0.2 0.47 ± 0.2 NA (Mazzoleni et al., 2012)

Free tropospheric CHO 0.47 ± 0.14 1.19 ± 0.27 10.8 ± 4.3 0.46 ± 0.14 (Dzepina et al., 2015)

Rural CHO 0.40 ± 0.21 1.29 ± 0.35 5.6 ± 2.4 0.44 ± 0.18 (Lin et al., 2012)

Urban (hazy) CHO 0.41 ± 0.19 1.19 ± 0.38 8.0 ± 3.9 0.47 ± 0.19 (Jiang et al., 2016)

Free tropospheric CHNO 0.57 ± 0.2 0.57 ± 0.2 6.72 ± 2 NA (Mazzoleni et al., 2012)

Free tropospheric CHNO 0.45±0.10 1.14±0.22 10.3±2.9 0.51±0.12 (Dzepina et al., 2015)

Rural CHNO 0.41 ± 0.19 1.15 ± 0.31 6.4 ± 2.1 0.59 ± 0.16 (Lin et al., 2012)

Urban (hazy) CHNO 0.45 ± 0.22 1.13 ± 0.38 8.8 ± 4.0 0.55 ± 0.19 (Jiang et al., 2016)

Free tropospheric CHOS 0.56 ± 0.2 1.64 ± 0.3 1.64 ± 0.3 NA (Mazzoleni et al., 2012)

Free tropospheric CHOS 0.50±0.11 1.75±0.31 3.5±2.6 0.2±0.14 (Dzepina et al., 2015)

Rural CHOS 0.55 ± 0.17 1.67 ± 0.31 3.0 ± 1.9 0.25 ± 0.16 (Lin et al., 2012)

Urban (hazy) CHOS 0.65 ± 0.28 1.64 ± 0.37 3.4 ± 2.4 0.26 ± 0.18 (Jiang et al., 2016)

Page 5: Molecular Characterization of Firework-Related Urban ...€¦ · S1 Supporting Information for Molecular Characterization of Firework-Related Urban Aerosols using FT-ICR Mass Spectrometry

S5

Figure S1: The clustering air mass two-day backward trajectories.

98 100 102 104 106 108 110 112 114 116 118

38

40

42

44

46

48

500 1000 1500 2000 2500

500

06 0001/23

18 12 06 0001/22

18 12 06

NOAA HYSPLIT MODEL Backward trajectories ending at 1200 UTC 23 Jan 12

GHDA Meteorological Data

Sour

ceat

39

.97

N 1

16.3

7 E

Met

ers

AGL

Job ID: 1980 Job Start: Wed Mar 6 14:28:19 UTC 2019 Source 1 lat.: 39.974444 lon.: 116.370278 height: 500 m AGL Trajectory Direction: Backward Duration: 48 hrs Vertical Motion Calculation Method: Model Vertical Velocity Meteorology: 0000Z 23 Jan 2012 - GDAS0p5

100 105 110 115 120

40

45

50

500 1000 1500

500

18 12 06 0001/22

18 12 06 0001/21

18

NOAA HYSPLIT MODEL Backward trajectories ending at 0000 UTC 23 Jan 12

GHDA Meteorological Data

Sour

ceat

39

.97

N 1

16.3

7 E

Met

ers

AGL

Job ID: 1895 Job Start: Wed Mar 6 14:26:34 UTC 2019 Source 1 lat.: 39.974444 lon.: 116.370278 height: 500 m AGL Trajectory Direction: Backward Duration: 48 hrs Vertical Motion Calculation Method: Model Vertical Velocity Meteorology: 0000Z 23 Jan 2012 - GDAS0p5

100 105 110 115 120

40

45

50

500 1000 1500 2000

500

06 0001/22

18 12 06 0001/21

18 12 06

NOAA HYSPLIT MODEL Backward trajectories ending at 1200 UTC 22 Jan 12

GHDA Meteorological Data

Sour

ceat

39

.97

N 1

16.3

7 E

Met

ers

AGL

Job ID: 1703 Job Start: Wed Mar 6 14:22:49 UTC 2019 Source 1 lat.: 39.974444 lon.: 116.370278 height: 500 m AGL Trajectory Direction: Backward Duration: 48 hrs Vertical Motion Calculation Method: Model Vertical Velocity Meteorology: 0000Z 22 Jan 2012 - GDAS0p5

102 104 106 108 110 112 114 116 118 120

38

40

42

44

46

48

500 1000 1500

500

18 12 06 0001/21

18 12 06 0001/20

18

NOAA HYSPLIT MODEL Backward trajectories ending at 0000 UTC 22 Jan 12

GHDA Meteorological Data

Sour

ceat

39

.97

N 1

16.3

7 E

Met

ers

AGL

Job ID: 1590 Job Start: Wed Mar 6 14:21:04 UTC 2019 Source 1 lat.: 39.974444 lon.: 116.370278 height: 500 m AGL Trajectory Direction: Backward Duration: 48 hrs Vertical Motion Calculation Method: Model Vertical Velocity Meteorology: 0000Z 22 Jan 2012 - GDAS0p5

95 100 105 110 115 120 125

40

45

50

55

1000 2000 3000 4000

50018 12 06 00

01/2018 12 06 00

01/1918

NOAA HYSPLIT MODEL Backward trajectories ending at 0000 UTC 21 Jan 12

GHDA Meteorological Data

Sour

ceat

39

.97

N 1

16.3

7 E

Met

ers

AGL

Job ID: 199957 Job Start: Wed Mar 6 14:10:19 UTC 2019Source 1 lat.: 39.974444 lon.: 116.370278 height: 500 m AGL Trajectory Direction: Backward Duration: 48 hrs Vertical Motion Calculation Method: Model Vertical Velocity Meteorology: 0000Z 21 Jan 2012 - GDAS0p5

100 105 110 115 120 125

40

45

50

500 1000 1500 2000 2500 3000

50006 00

01/2118 12 06 00

01/2018 12 06

NOAA HYSPLIT MODEL Backward trajectories ending at 1200 UTC 21 Jan 12

GHDA Meteorological Data

Sour

ceat

39

.97

N 1

16.3

7 E

Met

ers

AGL

Job ID: 182 Job Start: Wed Mar 6 14:12:24 UTC 2019 Source 1 lat.: 39.974444 lon.: 116.370278 height: 500 m AGL Trajectory Direction: Backward Duration: 48 hrs Vertical Motion Calculation Method: Model Vertical Velocity Meteorology: 0000Z 21 Jan 2012 - GDAS0p5

Daytime Nighttime

Normal

NYE

LNY

Page 6: Molecular Characterization of Firework-Related Urban ...€¦ · S1 Supporting Information for Molecular Characterization of Firework-Related Urban Aerosols using FT-ICR Mass Spectrometry

S6

Figure S2: Intensity of CHO species of subgroups according to the number of O atoms in their molecules.

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15

NYE DNYE NLNY DLNY NNormal DNormal N

FW EventAfter FW Event

Page 7: Molecular Characterization of Firework-Related Urban ...€¦ · S1 Supporting Information for Molecular Characterization of Firework-Related Urban Aerosols using FT-ICR Mass Spectrometry

S7

Figure S3: The H/C (a, b, c) and O/C (d, e, f) ratios of CHO formulae are shown as a function of their neutral mass from NYE D (a, d), NYE N (b, e) and LNY D (c, f) samples with their Xc values color-coded. Grey data points indicate non-aromatic compounds (Xc<2.5), blue to green data (2.5<Xc<2.71) are mono-aromatic compounds and pink to black data (Xc>2.71) includes PAHs. The size of the symbols reflects the relative peak intensities of molecular formulae on a logarithmic scale. 5

NYE D NYE N LNY D

(a) (b) (c)

(d) (e) (f)

Page 8: Molecular Characterization of Firework-Related Urban ...€¦ · S1 Supporting Information for Molecular Characterization of Firework-Related Urban Aerosols using FT-ICR Mass Spectrometry

S8

Figure S4: Van Krevelen diagrams (the H/C via O/C ratios) for the CHNO compounds with various aromatic index (AI) values ranges. The dashes lines separate the different AI regions. The size of the symbols reflects the relative peak intensities of compounds on a logarithmic scale.

5

(a) NYE D (b) NYE N

AI < 0.15

AI = 0.15-0.5

AI > 0.5

(d) LNY N(c) LNY D

Page 9: Molecular Characterization of Firework-Related Urban ...€¦ · S1 Supporting Information for Molecular Characterization of Firework-Related Urban Aerosols using FT-ICR Mass Spectrometry

S9

Figure S5: Intensity of CHNO species of subgroups according to the number of N and O atoms in their molecules.

NYE DNYE NLNY DLNY NNormal DNormal N

N1O3

FW EventAfter FW Event

N1O4

N1O5

N1O6

N1O7

N1O8

N1O9

N1O10

N1O11

N1O12

N1O13

N1O14

N2O3

N2O4

N2O5

N2O6

N2O7

N2O8

N2O9

N2O10

N2O11

N2O12

N2O13

(a) N1On

(b) N2On

Com

poun

ds In

tens

ity

Page 10: Molecular Characterization of Firework-Related Urban ...€¦ · S1 Supporting Information for Molecular Characterization of Firework-Related Urban Aerosols using FT-ICR Mass Spectrometry

S10

Figure S6: Intensity of CHOS species of subgroups according to the number of O and S atoms in their molecules.

O3S1

NYE DNYE NLNY DLNY NNormal DNormal N

FW EventAfter FW Event

O4S1

O5S1

O6S1

O7S1

O8S1

O9S1

O10S1

O11S1

O12S1

O13S1

Page 11: Molecular Characterization of Firework-Related Urban ...€¦ · S1 Supporting Information for Molecular Characterization of Firework-Related Urban Aerosols using FT-ICR Mass Spectrometry

S11

Figure S7: Van Krevelen diagrams (the H/C via O/C ratios) for the CHOS compounds with various aromatic index (AI) values ranges. The dashes lines separate the different AI regions. The size of the symbols reflects the relative peak intensities of compounds on a logarithmic scale. 5

(a) NYE D (b) NYE N

AI < 0.15

AI = 0.15-0.5

AI > 0.5

(d) LNY N(c) LNY D

Page 12: Molecular Characterization of Firework-Related Urban ...€¦ · S1 Supporting Information for Molecular Characterization of Firework-Related Urban Aerosols using FT-ICR Mass Spectrometry

S12

References

An, Y. Q., Xu, J. Z., Feng, L., Zhang, X. H., Liu, Y. M., Kang, S. C., Jiang, B., and Liao, Y. H.: Molecular characterization of organic aerosol in the Himalayas: insight from ultra-high-resolution mass spectrometry, Atmos. Chem. Phys., 19, 1115-1128, 10.5194/acp-19-1115-2019, 2019. Dzepina, K., Mazzoleni, C., Fialho, P., China, S., Zhang, B., Owen, R. C., Helmig, D., Hueber, J., Kumar, S., Perlinger, J. A., Kramer, L. 5 J., Dziobak, M. P., Ampadu, M. T., Olsen, S., Wuebbles, D. J., and Mazzoleni, L. R.: Molecular characterization of free tropospheric aerosol collected at the Pico Mountain Observatory: a case study with a long-range transported biomass burning plume, Atmos. Chem. Phys., 15, 5047-5068, 10.5194/acp-15-5047-2015, 2015. Jiang, B., Kuang, B. Y., Liang, Y., Zhang, J., Huang, X. H., Xu, C., Yu, J. Z., and Shi, Q.: Molecular composition of urban organic aerosols on clear and hazy days in Beijing: a comparative study using FT-ICR MS, Environ. Chem., 13, 888-901, 2016. 10 Lin, P., Rincon, A. G., Kalberer, M., and Yu, J. Z.: Elemental composition of HULIS in the Pearl River Delta Region, China: Results inferred from positive and negative electrospray high resolution mass spectrometric data, Environ. Sci. Technol., 46, 7454-7462, 2012. Mazzoleni, L. R., Saranjampour, P., Dalbec, M. M., Samburova, V., Hallar, A. G., Zielinska, B., Lowenthal, D. H., and Kohl, S.: Identification of water-soluble organic carbon in non-urban aerosols using ultrahigh-resolution FT-ICR mass spectrometry: Organic anions, Environ. Chem., 9, 285-297, 2012. 15 Wozniak, A. S., Bauer, J. E., Sleighter, R. L., Dickhut, R. M., and Hatcher, P. G.: Technical Note: Molecular characterization of aerosol-derived water soluble organic carbon using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, Atmos. Chem. Phys., 8, 5099-5111, 10.5194/acp-8-5099-2008, 2008. Wozniak, A. S., Willoughby, A. S., Gurganus, S. C., and Hatcher, P. G.: Distinguishing molecular characteristics of aerosol water soluble organic matter from the 2011 trans-North Atlantic US GEOTRACES cruise, Atmos. Chem. Phys., 14, 8419-8434, 2014. 20