moeller proteomics course

36
1 Practical Aspects of Quantitation with Triple- Quadrupole Mass Spectrometers Ben Moeller, PhD Candidate University of California – Davis K.L. Maddy Equine Analytical Chemistry Laboratory

Upload: university-of-california-davis

Post on 21-Jan-2015

447 views

Category:

Education


3 download

DESCRIPTION

Quantitative Proteomics presentation from our quantitative proteomics short courses at the UC Davis Genome Center Proteomics Core Facility

TRANSCRIPT

Page 1: Moeller proteomics course

1

Practical Aspects of Quantitation with Triple-Quadrupole Mass

SpectrometersBen Moeller, PhD Candidate

University of California – DavisK.L. Maddy Equine Analytical Chemistry Laboratory

Page 2: Moeller proteomics course

2

Triple Quadrupole use in Quantitation

Absolute Quantitation of Analyte in Matrix

Testosterone 500 pg/ml

RT: 0.00 - 2.51 SM: 11G

0.0 0.5 1.0 1.5 2.0 2.5Time (min)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e A

bu

nd

an

ce

RT: 1.59AA: 1222176

NL: 1.20E5m/z= 96.50-97.50 F: + c ESI sid=5.00 SRM ms2 289.234 [77.056-77.066, 79.097-79.107, 81.089-81.099, 97.043-97.053, 109.079-109.089] MS ICIS C7_003

C7_003 #379-403 RT: 1.55-1.64 AV: 5 NL: 1.31E5F: + c ESI sid=5.00 SRM ms2 289.234 [77.056-77.066, 79.097-79.107, 81.089-81.099, 97.043-97.053, 109.079-109.089]

77.06m/z

79.10m/z

81.09m/z

97.05m/z

109.08m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e A

bu

nd

an

ce

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e A

bu

nd

an

ce

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e A

bu

nd

an

ce

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e A

bu

nd

an

ce

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e A

bu

nd

an

ce

77.06

79.10

81.09

97.05

109.08

TestosteroneY = 0.0222582+0.00197076*X R^2 = 0.9982 W: 1/X

0 2000 4000 6000 8000 10000pg/ml

0

2

4

6

8

10

12

14

16

18

20

Are

a R

atio

Page 3: Moeller proteomics course

3

Quantitative Method Development

1. Know what you are looking for and a rough idea of the concentration range.

2. Obtain reference material (drug, protein, peptide, etc)

3. Develop method. Determine sample extraction/cleanup, and what

instrumentation to useEx) Immuno-depletion, SPE, tryptic digestion, LC-MS.

4. Validate method with real samples.5. Run samples, calibrators and quality control

samples identically. This includes sample clean up, extraction, LC-MS

analysis, peak integration, and quantitation.

Page 4: Moeller proteomics course

4

Sample Analysis

• An absolute quantitation method requires:• Unknown samples (what you trying to analyze)

• Processed matrix + analytes• Known samples – containing known amounts of

targeted analytes in matrix• Calibration standards – generate calibration curve• Quality control samples (QCs) – evaluate method

performance• Standards spiked in solvent without matrix

• Blanks – samples without the analytes• Matrix blanks – matrix without analytes• Solvent blanks – solvent without analytes

Page 5: Moeller proteomics course

5

Quantitative Analysis – Calibration Curves

External Standard Method Construct calibration curve with increasing amounts of analyte. Match unknown samples instrument response to curve

Method of Standard Addition Increasing amounts of analyte spiked into unknown sample. Response is measured before and after addition of analyte to give a

curve using linear regression. The x-intercept gives concentration sample concentration

Internal Standard (IS) Method A known, constant amount of internal standard is added to every

sample including calibrators Use the ratio of Analyte to IS to construct calibration curve and use

for determination of unknown sample concentration Preferred method because it corrects for sample losses in

processing and variations in instrument performance

Page 6: Moeller proteomics course

6

Ideal MS Quantitative Method

Isotope Dilution Mass Spectrometry (IDMS) – use of a isotopically labeled internal standard.

Sample

Internal standard (IS)

1. Take aliquot

2. Add IS

3. Process Sample

4. Analyze by LC-MS/MS

5. Integrate and calculate areas of IS and analyte peaks – Quantitate using analyte/IS area ratio

IS

Analyte

Page 7: Moeller proteomics course

7

Internal Standard Selection

SIS – Surrogate Internal Standard Stable isotope labeled version of analyte is

preferable – 13C, 2H, 15N Minimize isotopic overlap of SIS and analyte SIS co-elution with analyte preferable

Small molecule – synthesize or purchaseProteomics

Purchase heavy peptides from vendors Express protein in culture with heavy media

Page 8: Moeller proteomics course

8

Analyte to SIS Area Count Ratio

Calibrator 6 500 pg/ml nominal

Analyte/SIS ratio = 1.07 533 pg/ml based on

calibration curve

C6_001 #384-414 RT: 1.58-1.70 AV: 7 NL: 8.38E4F: + c ESI sid=5.00 SRM ms2 289.234 [77.056-77.066, 79.097-79.107, 81.089-81.099, 97.043-97.053, 109.079-109.089]

77.06m/z

79.10m/z

81.09m/z

97.05m/z

109.08m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e A

bu

nd

an

ce

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e A

bu

nd

an

ce

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e A

bu

nd

an

ce

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e A

bu

nd

an

ce

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e A

bu

nd

an

ce

77.06

79.10

81.09

97.05

109.08

C6_001 #384-404 RT: 1.58-1.65 AV: 4 NL: 6.06E4F: + c ESI sid=5.00 SRM ms2 292.260 [97.071-97.081]

97.072 97.074 97.076 97.078 97.080m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e A

bu

nd

an

ce

97.08

RT: 1.00 - 2.47 SM: 7G

1.2 1.4 1.6 1.8 2.0 2.2 2.4Time (min)

0

10

20

30

40

50

60

70

80

90

100

Rela

tive

Abun

danc

e

0

10

20

30

40

50

60

70

80

90

100

Rela

tive

Abun

danc

e

RT: 1.63AA: 606660

RT: 1.62AA: 603473

NL: 8.82E4m/z= 96.50-97.50 F: + c ESI sid=5.00 SRM ms2 289.234 [77.056-77.066, 79.097-79.107, 81.089-81.099, 97.043-97.053, 109.079-109.089] MS ICIS C6_001

NL: 8.45E4m/z= 96.50-97.50 F: + c ESI sid=5.00 SRM ms2 292.260 [97.071-97.081] MS ICIS C6_001

TestosteroneY = 0.0194483+0.00197195*X R^2 = 0.9982 W: 1/X

0 2000 4000 6000 8000 10000pg/ml

0

2

4

6

8

10

12

14

16

18

20A

rea

Ra

tio

TestosteroneY = 0.0194483+0.00197195*X R^2 = 0.9982 W: 1/X

0 200 400 600 800 1000pg/ml

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Are

a R

atio

Testosterone289.2 -> 97.1

SISD3-Testosterone292.2 -> 97.1

Extracted Ion ChromatogramMoeller et al (2009)

Page 9: Moeller proteomics course

9

Types of MS scan in Quantitation

Four MS scan types used in quantitative analysisFull scan MSSelect ion monitoring (SIM)Product ion MS/MSSelect reaction monitoring (SRM)

Page 10: Moeller proteomics course

10

Quantitation using MS

Types of MS commonly used in quantitationSingle QuadIon Traps (2D and 3D)TOF, QqTOFOrbitrap type MSMagnetic SectorsTriple Quadrupole – the “gold standard”

Page 11: Moeller proteomics course

11

Advantages Targeted Analyte

Monitoring High Duty Cycle “Simultaneous”

Monitoring of Multiple Transitions

Disadvantage No “advanced”

structural information

Fixed m/zFragmentFixed m/z

Q1 Q2 Q3

Why use Select Reaction Monitoring (SRM)?

Also known as multiple reaction monitoring (MRM)

Page 12: Moeller proteomics course

12

Select Reaction Monitoring

Quadrupole 1 (Q1) selects the ion of interest (precursor ion) by its m/z ratio

Quadrupole 2 (Q2) fragments precursor ion by collision induced dissociation (CID)

Fixed m/zFragmentFixed m/z

Q1 Q2 Q3Quadrupole 3 (Q3) selects specific

fragmentation ions (product ions) which are counted in the detector

Page 13: Moeller proteomics course

13

Why use MS/MS in Quantitation?

MS/MS provides additional specificity which increases signal to baseline (S/B) and sensitivity allowing for: Less intense sample preparation.Shorter chromatographic run times Decreased Limits of Detection (LOD).

Page 14: Moeller proteomics course

14

Determining SRM transitions

Infusion of pure substance – Preferably commercially obtained with certificates of analysis (traceability).

In Silico - predicted product ions from software (Proteomics).

Optimization of SRM Transitions Optimize precursor ion formation in Q1

Source conditions, tube lens, etc Optimize several SRM transitions (5 if

possible) and run standards in matrix to check for interferences

Progesterone #1-38 RT: 0.00-0.32 AV: 38 NL: 3.11E6F: + c APCI Q1MS [170.000-400.000]

180 200 220 240 260 280 300 320 340 360 380 400m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e A

bu

nd

an

ce

315.22

356.25

211.13

225.12

181.11214.11 313.21

297.20193.11311.21271.19202.13 338.33 353.28255.20 279.18245.17 326.22 381.97370.62 394.25

Precursor Ion OptimizationProgesterone –APCI

SRM Optimization

Page 15: Moeller proteomics course

15

Common SRM Settings

Number of SRM Transitions• 3 minimum per analyte, 5 recommended.• 20% deviation in relative intensities allowed

SS_QC3_003 #384-403 RT: 1.59-1.65 AV: 4 NL: 2.59E5F: + c ESI sid=5.00 SRM ms2 289.234 [77.056-77.066, 79.097-79.107, 81.089-81.099, 97.043-97.053, 109.079-109.089]

77.06m/z

79.10m/z

81.09m/z

97.05m/z

109.08m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e A

bu

nd

an

ce

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e A

bu

nd

an

ce

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e A

bu

nd

an

ce

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e A

bu

nd

an

ce

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e A

bu

nd

an

ce

77.06

79.10

81.09

97.05

109.08

RT: 0.00 - 2.50 SM: 5G

0.0 0.5 1.0 1.5 2.0 2.5Time (min)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Rela

tive

Abun

danc

e

NL: 7.02E5TIC F: + c ESI sid=5.00 SRM ms2 289.234 [77.056-77.066, 79.097-79.107, 81.089-81.099, 97.043-97.053, 109.079-109.089] MS SS_QC3_003

Precursor ProductCollision Energy

Relative Abundanc

e289.2 77.05 52 18289.2 79.1 39 29289.2 81.09 35 17289.2 97.05 21 100289.2 109.08 23 91

Testosterone SRM

Moeller et al (2009)

Page 16: Moeller proteomics course

16

Selectivity of SRM

RT: 0.00 - 2.50 SM: 5G

0.0 0.5 1.0 1.5 2.0 2.5Time (min)

0

20

40

60

80

1000

20

40

60

80

1000

20

40

60

80

1000

20

40

60

80

1000

20

40

60

80

100 NL: 4.81E4m/z= 76.54-77.54 F: + c ESI sid=5.00 SRM ms2 287.213 [77.043-77.053, 91.061-91.071, 93.077-93.087, 121.060-121.070, 269.175-269.185] MS ICIS C7_003

NL: 5.03E4m/z= 90.57-91.57 F: + c ESI sid=5.00 SRM ms2 287.213 [77.043-77.053, 91.061-91.071, 93.077-93.087, 121.060-121.070, 269.175-269.185] MS ICIS C7_003

NL: 2.09E4m/z= 92.58-93.58 F: + c ESI sid=5.00 SRM ms2 287.213 [77.043-77.053, 91.061-91.071, 93.077-93.087, 121.060-121.070, 269.175-269.185] MS ICIS C7_003

NL: 1.07E5m/z= 120.50-121.50 F: + c ESI sid=5.00 SRM ms2 287.213 [77.043-77.053, 91.061-91.071, 93.077-93.087, 121.060-121.070, 269.175-269.185] MS ICIS C7_003

NL: 3.52E5m/z= 268.50-269.50 F: + c ESI sid=5.00 SRM ms2 287.213 [77.043-77.053, 91.061-91.071, 93.077-93.087, 121.060-121.070, 269.175-269.185] MS ICIS C7_003

C7_003 #269-291 RT: 1.13-1.19 AV: 4 NL: 1.10E5F: + c ESI sid=5.00 SRM ms2 287.213 [77.043-77.053, 91.061-91.071, 93.077-93.087, 121.060-121.070, 269.175-269.185]

77.05m/z

91.07m/z

93.08m/z

121.07m/z

269.18m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Rel

ativ

e A

bund

ance

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Rel

ativ

e A

bund

ance

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Rel

ativ

e A

bund

ance

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Rel

ativ

e A

bund

ance

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Rel

ativ

e A

bund

ance

77.0591.07

93.08

121.07

269.18

• Choosing the right SRM transition is key for quantitative analysis

• Look at EIC to determine optimal quantitation ion

• Use samples spiked in matrix to evaluate interferences.

EIC used for quantitation

Extracted Ion Chromatograms (EIC)

Page 17: Moeller proteomics course

17

Common SRM Settings

Scan Time/Dwell Time• 0.01 – 0.2 seconds• Need > 9 scans per peak

RT: 1.40 - 1.90 SM: 5G

1.4 1.5 1.6 1.7 1.8Time (min)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Rela

tive

Abun

danc

e

NL: 2.82E5m/z= 96.50-97.50 F: + c ESI sid=5.00 SRM ms2 289.234 [77.056-77.066, 79.097-79.107, 81.089-81.099, 97.043-97.053, 109.079-109.089] MS SS_QC3_003

RT: 1.40 - 1.90 SM: 5G

1.4 1.5 1.6 1.7 1.8Time (min)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Rela

tive

Abun

danc

e

NL: 7.02E5TIC F: + c ESI sid=5.00 SRM ms2 289.234 [77.056-77.066, 79.097-79.107, 81.089-81.099, 97.043-97.053, 109.079-109.089] MS SS_QC3_003• 15 scans per peak

• 50 msec dwell time• 21 SRM transitions

monitored for 6 analytes

Page 18: Moeller proteomics course

18

SRM Method Setup

• Segments for Multiple Analytes

• Scan Width• 1 dalton

• Peak Width• 0.7 daltons• Enhanced

Resolution QqQ 0.1 – 0.2 daltons35 analytes using

Thermo TSQ Vantage using Xcalibur software

Page 19: Moeller proteomics course

19

Method Development and Validation

Limit of Detection (LOD)

Limit of Quantitation (LOQ)

Linearity of CalibrationCalibration RangePrecisionAccuracySelectivityRobustness and

Reproducibility

Page 20: Moeller proteomics course

20

Limit of Detection

RT: 0.00 - 2.51 SM: 7G

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4Time (min)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e A

bu

nd

an

ce

RT: 2.28MA: 17172

1.84 1.95

1.101.28

1.63

0.281.390.19 0.480.43

0.090.65

0.84

NL: 2.39E3m/z= 80.50-81.50 F: + c ESI SRM ms2 329.281 [81.066-81.076, 95.057-95.067, 121.042-121.052] MS C25

LOD of Stanozolol - 25 pg/ml with S/B = 3:1

Smallest response that is able to differentiate between background noise and your analyte

Usually defined as a signal to background (S/B) = 3

Determined by 1:1 dilutions from a concentration with a S/B= 50:1

Boyd R, Basic C, Bethem R (2008) Trace Quantitative Analysis by Mass Spectrometry.

Signal

Background

Page 21: Moeller proteomics course

21

Limits of Quantitation

Lower and upper concentrations that can be accurately quantitated.

Lower limit of quantitation (LLOQ) usually defined as a signal to background (S/B) = 10

The upper limit of quantitation (ULOQ) is usually the highest calibrator giving a linear response Boyd R, Basic C, Bethem R (2008) Trace

Quantitative Analysis by Mass Spectrometry.

RT: 0.00 - 2.51 SM: 5G

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4Time (min)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Rel

ativ

e A

bund

ance

RT: 2.27MA: 51558

1.47

0.58

1.95

0.37 1.78

1.651.211.100.30

0.21 0.47 1.02 1.360.870.69 0.76

NL: 9.49E3m/z= 80.50-81.50 F: + c ESI SRM ms2 329.281 [81.066-81.076, 95.057-95.067, 121.042-121.052] MS C1_001

LOQ of Stanozolol-150 pg/ml

B=665 counts

S = 9,500 counts

Page 22: Moeller proteomics course

22

Generation of Calibration Curve

Optimize for an expected concentration range (if known)

Develop method around that range

RosiglitazoneY = 0.0313243+0.00277886*X R^2 = 0.9949 W: Equal

0 200 400 600 800 1000ng/mL

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Are

a R

atio

Detector saturation

ULOQ

Y = mx + b

Page 23: Moeller proteomics course

23

Generation of Calibration Curveand Quality Control Samples

Sample

C11 ng/mlLOQ

C25 ng/ml

C310 ng/ml

C425 ng/ml

C550 ng/ml

C675 ng/ml

C7100 ng/mlULOQ

Internal Standard

QC13 ng/ml

QC215 ng/ml

QC360 ng/ml

n=6 n=6 n=6

Quality Control Samples

Calibrators

Page 24: Moeller proteomics course

24

Generation of Calibration Curve

6 to 9 calibrators prepared in matrix blanks

Must include LLOQ and ULOQ

Linear regression commonly used – R2 ≥ 0.98

Be aware of deviations from linearity at higher conc.

Avoid forcing through zero Internal Calibration

Ratio of analyte area to SIS area

Page 25: Moeller proteomics course

25

Quality Control (QC) Samples

QC samples: Blank matrix containing a known amount of analyte Run dispersed thorough out the assay

At least 3 different levels (n=6) One near LLOQ One in the middle of linear range One at the high end of the linear range

Determine accuracy and precision of method during validation and monitor performance during sample runs

Use QC’s for determination of both inter-assay (between runs) and intra-assay (same run) precision and accuracy

Page 26: Moeller proteomics course

26

Quality Control Samples – Accuracy and Precision

Accuracy: Trueness % expected = (Conc of Peak)/(Expected Conc)*100 mean within 15% of nominal

Precision: Reproducibility % Coefficient of Variation = (Standard Dev)/(Mean)*100 % CV ≤ 15% Also expressed as relative standard deviation (RSD)

Page 27: Moeller proteomics course

27

TestosteroneY = 0.010179+0.00178017*X R^2 = 0.9991 W: 1/X

0 2000 4000 6000 8000 10000pg/ml

0

2

4

6

8

10

12

14

16

18

Are

a R

atio

Testosterone (n=6 per level) Average

StandardDeviation %CV % of expected

QC1 – 75 pg/ml 74.1 2.21 2.98 98.7

QC2 - 750 pg/ml 742.7 29.32 3.94 99.0

QC3 - 3000 pg/ml 2798.6 57.31 2.05 93.3

RT: 0.00 - 2.50 SM: 5G

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4Time (min)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e A

bu

nd

an

ce

RT: 1.62AA: 1018291

RT: 2.04AA: 26482

NL: 1.64E5m/z= 96.50-97.50 F: + c ESI sid=5.00 SRM ms2 289.234 [77.056-77.066, 79.097-79.107, 81.089-81.099, 97.043-97.053, 109.079-109.089] MS ICIS Inter_QC2_001

RT: 0.00 - 2.52 SM: 5G

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4Time (min)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Rel

ativ

e A

bund

ance

RT: 1.62MA: 37906

2.03

1.89

0.98 1.10

1.190.92 1.29

0.77 2.220.551.45 2.35 2.47

0.22 0.630.470.41

0.10

NL: 7.71E3m/z= 96.50-97.50 F: + c ESI sid=5.00 SRM ms2 289.234 [77.056-77.066, 79.097-79.107, 81.089-81.099, 97.043-97.053, 109.079-109.089] MS C1_002

Accuracy and Precision

210 injections over 19 hours

LOQ – 25 pg/ml

QC2 – 750 pg/ml

Moeller et al (2009)

Page 28: Moeller proteomics course

28

Quantitation Software

Peak IntegrationDetermine settings in validation

and use throughout study Integration must be consistent for

Calibrators, QC’s, and samplesAvoid manual integration

Set up Calibrator and QC levelsFail runs that fall outside expected

concentration and % CVFail runs with calibration curves R2

<0.98

Thermo Quan Browser

Page 29: Moeller proteomics course

29

Review

Quantitation Methodology – IDMS preferred MS used – Triple Quad is the “Gold

Standard” SRM collecting multiple transitions Internal standard selection is important Defined LOD, LLOQ, ULOQ Generation of calibration curve Accuracy and precision using QCs Integration software

Page 30: Moeller proteomics course

30

RT: 0.00 - 2.51 SM: 7G

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4Time (min)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e A

bu

nd

an

ce

RT: 2.28MA: 17172

1.84 1.95

1.101.28

1.63

0.281.390.19 0.480.43

0.090.65

0.84

NL: 2.39E3m/z= 80.50-81.50 F: + c ESI SRM ms2 329.281 [81.066-81.076, 95.057-95.067, 121.042-121.052] MS C25

Validated Quantitative Multiple Analyte Method

Analyte LOD (pg/mL) LOQ (pg/mL)Stanozolol 25 150Testosterone 20 150Boldenone 50 250Nandrolone 150 250Trenbolone 150 250

Stanozolol25 pg/ml

Stanozolol150 pg/ml

NC Serum

RT: 0.00 - 2.51 SM: 5G

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4Time (min)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e A

bu

nd

an

ce

RT: 2.27MA: 51558

1.47

0.58

1.95

0.37 1.78

1.651.211.100.30

0.21 0.47 1.02 1.360.870.69 0.76

NL: 9.49E3m/z= 80.50-81.50 F: + c ESI SRM ms2 329.281 [81.066-81.076, 95.057-95.067, 121.042-121.052] MS C1_001

RT: 0.00 - 2.51 SM: 5G

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4Time (min)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e A

bu

nd

an

ce

2.04

2.21

2.27

2.121.87

1.82

2.381.11

1.561.52

1.691.360.61 0.91

0.220.19

0.560.340.850.670.11

NL: 2.39E3m/z= 80.50-81.50 F: + c ESI SRM ms2 329.281 [81.066-81.076, 95.057-95.067, 121.042-121.052] MS NC_a_01

LOD LOQ

Page 31: Moeller proteomics course

31

Calibration Curves

Calibrator Concentrations C1 - 150 pg/ml C2 - 250 pg/ml C3 - 500 pg/ml C4 - 750 pg/ml C5 – 1,000 pg/ml C6 – 2,500 pg/ml C7 – 5,000 pg/ml C8 – 10,000 pg/ml

StanozololY = 0.113603+0.00136788*X R^2 = 0.9976 W: Equal

0 2000 4000 6000 8000 10000pg/ml

0

2

4

6

8

10

12

14

Are

a R

atio

TestosteroneY = -0.0183096+0.00114189*X R^2 = 0.9987 W: Equal

0 2000 4000 6000 8000 10000pg/ml

0

2

4

6

8

10

12

Are

a R

atio

SIS used: D3-Testosterone

Page 32: Moeller proteomics course

32

Assay Precision

Inter assay (n=36) Testosterone Stanozolol Nandrolone Trenbolone Boldenone

QC level 1 Average (pg/mL) 609.7 601.0 662.1 594.5 588.0

(600 pg/mL) %CV 6.8 6.3 13.4 14.2 9.5

QC level 2 Average (pg/mL) 1176.2 1196.8 1170.2 1160.0 1179.3

(1200 pg/mL) %CV 6.8 5.1 12.8 8.0 6.0

QC level 3 Average (pg/mL) 4184.7 4234.6 4417.7 3958.7 4185.1

(4000 pg/mL) %CV 8.3 8.5 10.5 10.9 7.8

Intra assay (n=12) Testosterone Stanozolol Nandrolone Trenbolone Boldenone

QC level 1 Average (pg/mL) 621.1 611.5 662.1 529.2 583.4

(600 pg/mL) %CV 4.6 6.8 11.8 12.5 7.1

QC level 2 Average (pg/mL) 1251.0 1225.5 1086.6 1106.5 1219.9

(1200 pg/mL) %CV 3.2 4.6 10.7 6.5 3.2

QC level 3 Average (pg/mL) 4472.1 4369.8 4250.1 3576.3 4332.8

(4000 pg/mL) %CV 9.7 12.9 7.6 8.6 8.9

Page 33: Moeller proteomics course

33

Assay Accuracy

Inter assay (n=36) Testosterone Stanozolol Nandrolone Trenbolone Boldenone

QC level 1 Average (pg/mL) 609.7 601.0 622.7 594.5 588.0

(600 pg/mL) %of nominal 101.6 % 100.2 % 103.8 % 99.1 % 98.0 %

QC level 2 Average (pg/mL) 1176.2 1196.8 1170.2 1160.0 1179.3

(1200 pg/mL) %of nominal 98.0 % 99.7 % 97.5 % 96.7 % 98.3 %

QC level 3 Average (pg/mL) 4184.7 4234.6 4417.7 3958.7 4185.1

(4000 pg/mL) %of nominal 104.6 % 105.9 % 110.4 % 99.0 % 104.6 %

Intra assay (n=12) Testosterone Stanozolol Nandrolone Trenbolone Boldenone

QC level 1 Average (pg/mL) 621.1 611.5 662.1 529.2 583.4

(600 pg/mL) %of nominal 103.5 % 101.9 % 110.3% 88.2 % 97.2 %

QC level 2 Average (pg/mL) 1251.0 1225.5 1086.6 1106.5 1219.9

(1200 pg/mL) %of nominal 104.3 % 102.1 % 90.5% 92.2 % 101.7 %

QC level 3 Average (pg/mL) 4472.1 4369.8 4250.1 3576.3 4332.8

(4000 pg/mL) %of nominal 111.8 % 109.2 % 106.2% 89.4 % 108.3 %

Page 34: Moeller proteomics course

34

Summary

Validation is key Reproducibility Defined quantitation limits (LLOQ/ULOQ) Selectivity – Qualitative ID (3 or more SRM) Accuracy and Precision

Need Quality Control samples Inter- and Intra-Day

Robustness

Page 35: Moeller proteomics course

35

Acknowledgements

University of California, Davis Scott Stanley, PhD Heather Knych, DVM PhD EACL Staff

Page 36: Moeller proteomics course

36

Questions?

References1) Lee JM et al. (2006) Fit-for-Purpose Method Development and

Validation for Successful Biomarker Measurement. Pharmaceutical Research. 23(2) 312-328.

2) US Food and Drug Administration (2001) Guidance for Industry: Bioanalytical Method Validation. http://www.fda.gov/cder/guidance/index.htm

3) Boyd R, Basic C, Bethem R (2008) Trace Quantitative Analysis by Mass Spectrometry. West Sussex: John Wiley & Sons.

4) Krull I, Kissinger PT, Swartz M (2008) Analytical Method Validation in Proteomics and Peptidomics Studies. LCGC 26 (11)

5) Moeller BC, Stanley SD (2009) Quantitative Analysis of Testosterone, Nandrolone, Boldenone and Stanozolol using Liquid Chromatography –Tandem Mass Spectrometry by Highly Selective Reaction Monitoring. Manuscript in preparation.