module1 c - rajesh sir

93
Structural Analysis - II Indeterminate structures; Indeterminate structures; Force method of analysis Dr. Rajesh K. N. Assistant Professor in Civil Engineering Assistant Professor in Civil Engineering Govt. College of Engineering, Kannur Dept. of CE, GCE Kannur Dr.RajeshKN 1

Upload: shamjith-km

Post on 19-Jan-2015

184 views

Category:

Engineering


7 download

DESCRIPTION

GCE Kannur

TRANSCRIPT

Page 1: Module1 c - rajesh sir

Structural Analysis - II

Indeterminate structures;Indeterminate structures;Force method of analysis

Dr. Rajesh K. N.Assistant Professor in Civil EngineeringAssistant Professor in Civil EngineeringGovt. College of Engineering, Kannur

Dept. of CE, GCE Kannur Dr.RajeshKN

1

Page 2: Module1 c - rajesh sir

Module IModule IStatically and kinematically indeterminate structures

• Degree of static indeterminacy, Degree of kinematic indeterminacy, Force and displacement method of analysis

Force method of analysis

• Method of consistent deformation-Analysis of fixed and i b

Force method of analysis

continuous beams

• Clapeyron’s theorem of three moments-Analysis of fixed and continuous beams

• Principle of minimum strain energy-Castigliano’s second theorem-

Dept. of CE, GCE Kannur Dr.RajeshKN

2

p gy gAnalysis of beams, plane trusses and plane frames.

Page 3: Module1 c - rajesh sir

Types of Framed Structures• a. Beams: may support bending moment, shear force and axial force

yp

• b. Plane trusses: hinge joints; In addition to axial forces, a member CAN have bending moments and shear forces if it has

Dept. of CE, GCE Kannur Dr.RajeshKN

3

loads directly acting on them, in addition to joint loads

Page 4: Module1 c - rajesh sir

• c. Space trusses: hinge joints; any couple acting on a member should have moment vector perpendicular to the axis of the member, since a truss member is incapable of supporting a twisting momentg

• d. Plane frames: Joints are rigid; all forces in the plane of the frame, all couples normal to the plane of the frame

Dept. of CE, GCE Kannur Dr.RajeshKN

4

Page 5: Module1 c - rajesh sir

• e Grids: all forces normal to the plane of the grid all couples • e. Grids: all forces normal to the plane of the grid, all couples in the plane of the grid (includes bending and torsion)

• f. Space frames: most general framed structure; may support bending moment, shear force, axial force and torsion

Dept. of CE, GCE Kannur Dr.RajeshKN

5

g , ,

Page 6: Module1 c - rajesh sir

Deformations in Framed Structures

, ,x y zT M MThree couples: , ,x y zN V VThree forces:

•Significant deformations in framed structures:•Significant deformations in framed structures:

Structure Significant deformationsStructure Significant deformationsBeams flexuralPlane trusses axialSpace trusses axialPlane frames flexural and axialGrids flexural and torsionalSpace frames axial, flexural and torsional

Dept. of CE, GCE Kannur Dr.RajeshKN

6

Page 7: Module1 c - rajesh sir

Types of deformations in framed structures b) axial c) shearing d) flexural e) torsional

Dept. of CE, GCE Kannur Dr.RajeshKN

7

b) axial c) shearing d) flexural e) torsional

Page 8: Module1 c - rajesh sir

Equilibrium•Resultant of all actions (a force, a couple or both) must vanish for static equilibrium

q

0F∑ 0F∑ ∑

•Resultant force vector must be zero; resultant moment vector must be zero

0xF =∑ 0yF =∑ 0zF =∑0xM =∑ 0yM =∑ 0zM =∑∑ y∑ ∑

•For 2 dimensional problems (forces are in one plane and

0F =∑ 0F =∑ 0M =∑

•For 2-dimensional problems (forces are in one plane and couples have vectors normal to the plane),

0xF =∑ 0yF =∑ 0zM =∑

Dept. of CE, GCE Kannur Dr.RajeshKN

8

Page 9: Module1 c - rajesh sir

Compatibility

•Compatibility conditions: Conditions of continuity of p y ydisplacements throughout the structure

•Eg: at a rigid connection between two members, the g g ,displacements (translations and rotations) of both members must be the same

Dept. of CE, GCE Kannur Dr.RajeshKN

9

Page 10: Module1 c - rajesh sir

Indeterminate Structures

Force method and Displacement method

• Force method (Flexibility method)

• Actions are the primary unknowns

St ti i d t i f k ti th • Static indeterminacy: excess of unknown actions than the available number of equations of static equilibrium

• Displacement method (Stiffness method)

• Displacements of the joints are the primary unknowns

• Kinematic indeterminacy: number of independent

Dept. of CE, GCE Kannur Dr.RajeshKN

Kinematic indeterminacy: number of independent translations and rotations

Page 11: Module1 c - rajesh sir

Static indeterminacy

• Beam:

• Static indeterminacy = Reaction components number of eqns • Static indeterminacy = Reaction components - number of eqns available 3E R= −

• Examples: • Examples:

• Single span beam with both ends hinged with inclined l d loads • Continuous beam• Propped cantilever• Fixed beam

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 12: Module1 c - rajesh sir

Degree of Static Structure Degree of Static Indeterminacy

Structure

0

1

3

Dept. of CE, GCE Kannur Dr.RajeshKN

12

Page 13: Module1 c - rajesh sir

Degree of Static I d t iStructure

0

Indeterminacy

0

1

55

2

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 14: Module1 c - rajesh sir

• Rigid frame (Plane): g ( )

• External indeterminacy = Reaction components - number of eqns available 3E R= −available

• Internal indeterminacy = 3 × closed frames

3E R

3I a=• Internal indeterminacy = 3 × closed frames 3I a=

• Total indeterminacy = External indeterminacy + Internal indeterminacy

( )3 3T E I R a= + = − +

• Note: An internal hinge will provide an additional eqn

Dept. of CE, GCE Kannur Dr.RajeshKN

14

Page 15: Module1 c - rajesh sir

Example 1 Example 2p p

( )3 3T E I R a= + = − +( )3 3T E I R a= + = − + ( )( )3 3 3 3 2 12= × − + × =( )2 2 3 3 0 1= × − + × =

Example 3 Example 4

( )( )

3 3T E I R a= + = − + ( )( )

3 3T E I R a= + = − +

Dept. of CE, GCE Kannur Dr.RajeshKN

( )3 2 3 3 3 12= × − + × = ( )4 3 3 3 4 21= × − + × =

Page 16: Module1 c - rajesh sir

Degree of Static I d t iStructure Indeterminacy

3

63

Dept. of CE, GCE Kannur Dr.RajeshKN

16

Page 17: Module1 c - rajesh sir

Degree of Static I d t iStructure Indeterminacy

2

1

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 18: Module1 c - rajesh sir

• Rigid frame (Space): g ( p )

• External indeterminacy = Reaction components - number of eqns available 6E R= −available

• Internal indeterminacy = 6 × closed frames

6E R

Example 1

( )( )

6 6T E I R a= + = − +

( )4 6 6 6 1 24= × − + × =

If i l d f ti l t d t ti i d t i i t If axial deformations are neglected, static indeterminacy is not affected since the same number of actions still exist in the structure

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 19: Module1 c - rajesh sir

Plane truss (general):

External indeterminacy = Reaction components - number of eqns available 3E R= −

Minimum 3 members and 3 joints. A dditi l j i t i 2 dditi l b

( )3 2 3 2 3m j j= + − = −Hence, number of members for stability,

Any additional joint requires 2 additional members.

( )2 3I m j= − −Hence, internal indeterminacy,

Total (Internal and external) indeterminacyTotal (Internal and external) indeterminacy

( )3 2 32

T E I R m jm R j

= + = − + − −

= + − 2m R j+

• m: number of members• R : number of reaction components

Dept. of CE, GCE Kannur Dr.RajeshKN

• j : number of joints• Note: Internal hinge will provide additional eqn

Page 20: Module1 c - rajesh sir

E l 1Example 1

2 9 3 2 6 0T m R j= + − = + − × =

3 3 3 0E R= − = − =

0I T E= − =

Example 22 15 4 2 8 3T R

p2 15 4 2 8 3T m R j= + − = + − × =

3 4 3 1E R= − = − =

2I T E= − =

Example 3 2 6 4 2 5 0T m R j= + − = + − × =

( ) 3 1 4 4 Hinge at 0 AE R= − + = − =

Dept. of CE, GCE Kannur Dr.RajeshKN

( )0I T E= − =

Page 21: Module1 c - rajesh sir

Example 4 2 7 3 2 5 0T m R j= + − = + − × =Example 4 2 7 3 2 5 0T m R j+ +

3 3 3 0E R= − = − =

0I T E 0I T E= − =

2 6 4 2 4 2T m R j= + − = + − × =

3 4 3 1E R= = =

Example 5

3 4 3 1E R= − = − =

1I T E= − =

2 11 3 2 6 2T m R j= + − = + − × =Example 6

3 3 3 0E R= − = − =

2I T E= − =

Dept. of CE, GCE Kannur Dr.RajeshKN

2I T E= =

Page 22: Module1 c - rajesh sir

• Wall or roof attached pin jointed plane truss (Exception to the • Wall or roof attached pin jointed plane truss (Exception to the above general case):

• Internal indeterminacy 2I m j= −

• External indeterminacy = 0 (Since, once the member forces are determined, reactions are determinable)

Example 1 Example 3Example 2Example 1 Example 3p

26 2 3 0

T I m j= = −= − × =

25 2 1 3

T I m j= = −= − × =2

7 2 3 1T I m j= = −= × =

Dept. of CE, GCE Kannur Dr.RajeshKN

22

7 2 3 1= − × =

Page 23: Module1 c - rajesh sir

• Space Truss:

External indeterminacy = Reaction components - number of eqns available

Minimum 6 members and 4 joints

6E R= −

( )6 3 4 3 6m j j= + − = −Hence, number of members for stability,

Minimum 6 members and 4 joints. Any additional joint requires 3 additional members.

( )6 3 4 3 6m j j+Hence, number of members for stability,

( )3 6I m j= − −Hence, internal indeterminacy,

Total (Internal and external) indeterminacy

( )6 3 6T E I R m j= + = − + − −

3m R j= + −

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 24: Module1 c - rajesh sir

Example

3T m R j= +Total (Internal and external) indeterminacy 3T m R j= + −Total (Internal and external) indeterminacy

12 9 3 6 3T∴ = + − × =

6 9 6 3E R= − = − =

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 25: Module1 c - rajesh sir

Kinematic indeterminacyKinematic indeterminacy

• joints: where members meet, supports, free ends• joints undergo translations or rotations

•in some cases joint displacements will be known, from the restraint conditions•the unknown joint displacements are the kinematically •the unknown joint displacements are the kinematically indeterminate quantities

odegree of kinematic indeterminacy: number of degrees of f dfreedom

Two types of DOF

• Nodal type DOFJ i DOF

Two types of DOF

Dept. of CE, GCE Kannur Dr.RajeshKN

25

• Joint type DOF

Page 26: Module1 c - rajesh sir

• degree of kinematic indeterminacy (degrees of freedom) is d fi d defined as:

• the number of independent translations and rotations in a structure.

DOF = 1DOF = 2

Dept. of CE, GCE Kannur Dr.RajeshKN

DOF 2

Page 27: Module1 c - rajesh sir

• in a truss the joint rotation is not regarded as a degree of • in a truss, the joint rotation is not regarded as a degree of freedom. joint rotations do not have any physical significance as they have no effects in the members of the truss

• in a frame, degrees of freedom due to axial deformations can be neglected

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 28: Module1 c - rajesh sir

Kinematic Degree f F dStructure of Freedom

2

11

22

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 29: Module1 c - rajesh sir

Kinematic Degree f F dStructure of Freedom

4

If the effect of the cantilever portion is considered as a joint load at If the effect of the cantilever portion is considered as a joint load at the roller support on the far right, kinematic indeterminacy can be taken as 2.

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 30: Module1 c - rajesh sir

Kinematic Degree f F dStructure of Freedom

2

3

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 31: Module1 c - rajesh sir

Kinematic Degree f F dStructure of Freedom

6

2

5

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 32: Module1 c - rajesh sir

Method of Consistent DeformationIllustration of the method

Problem

Released structure

Dept. of CE, GCE Kannur Dr.RajeshKN

32

Released structure

Page 33: Module1 c - rajesh sir

D fl ti f l d

45wLΔ

Deflection of released structure due to actual loads

384B EIΔ =

C Deflection of released structure due to redundant applied as a ppload

Dept. of CE, GCE Kannur Dr.RajeshKN

33

Page 34: Module1 c - rajesh sir

3BR LDeflection due o

48t B

BR L

IR

E=

3BR L

Δ48

BB EI

Δ =

4 35 BwL R L

Compatibility condition (or equation of superposition or equation of geometry) 5

384 48BwL R L

EI EI=

5B

wLR∴ =8B

Dept. of CE, GCE Kannur Dr.RajeshKN

34

Page 35: Module1 c - rajesh sir

•A general approach (applying consistent sign convention for loads and displacements):

RA l it l d di t BR•Apply unit load corresponding to

3

48BLEI

δ =Let the displacement due to unit load be

BR B BR δDisplacement due to is

Dept. of CE, GCE Kannur Dr.RajeshKN

35

Page 36: Module1 c - rajesh sir

445384B

wLEI

Δ = − (Negative, since deflection is downward)

0B B BR δΔ + = (Compatibility condition)

BB

B

RδΔ

= − 58BwLR∴ =

Bδ 8

Dept. of CE, GCE Kannur Dr.RajeshKN

36

Page 37: Module1 c - rajesh sir

Example 1: Propped cantilever

AM

PP

A

2l 2l2l 2lA B

AV BVChoose VB as the redundant

P

AM

2l 2l

AV

Dept. of CE, GCE Kannur Dr.RajeshKN

37Released structure

Page 38: Module1 c - rajesh sir

Find deflection at B of the released structure

31 2 5PL l l l Pl− −⎛ ⎞Δ = + =⎜ ⎟Pl− . . .2 2 2 2 3 2 48B EI EI

Δ = + =⎜ ⎟⎝ ⎠2

PlEI

M diagramEIEI

Apply unit load on released structure corresponding to VApply unit load on released structure corresponding to VBand find deflection at B

3

3BlEI

δ =

1l

3EI

Dept. of CE, GCE Kannur Dr.RajeshKN

38

Page 39: Module1 c - rajesh sir

0R δΔ35 3 5B Pl EI PR −Δ

= = =0B B BR δΔ + = 3.48 16B

B

REI lδ

= = =

+ve sign indicates that VB is in the same direction of the unit load.i.e., in the upward direction.

P

2l 2l

5 32 16 16APl Pl PlM = − =Other reactions

2l 2l

516P11

16P

16

532Pl

Bending moment diagram

3Pl

Dept. of CE, GCE Kannur Dr.RajeshKN

3916

Page 40: Module1 c - rajesh sir

Example 2: Continuous beam10kN

A2m 2m

A B 4m C

10kN

A B C

V VVAV CVBV

Choose VB as the redundant

Dept. of CE, GCE Kannur Dr.RajeshKN

40

Page 41: Module1 c - rajesh sir

10kN2 6

ABΔ C

2m 6mB

Released structure2.5 kN7.5 kN

15EI

10EI

1 251 358 6+⎛ ⎞

A B CEI EI

4 m

Conjugate beam of the released structure (to find ∆ )

( )1 25

0.5 15 8 35EI EI=× × −

1 358 6 80.5 15 83EI EI+⎛ ⎞ ÷ =× × ×⎜ ⎟

⎝ ⎠

Conjugate beam of the released structure (to find ∆B)

1 73.333425 4 0 5 10 4⎛ ⎞∴Δ ⎜ ⎟ (numerically)

Dept. of CE, GCE Kannur Dr.RajeshKN41

25 4 0.5 10 43B EI EI

⎛ ⎞∴Δ = =× − × × ×⎜ ⎟⎝ ⎠

(numerically)

Page 42: Module1 c - rajesh sir

1kN1kN

4mA B 4m C4m 4m

Released structure with unit load corresponding to V (to find δ )Released structure with unit load corresponding to VB (to find δB)

3 38 10.667B

lδ = = = (numerically) (di i i ∆ i d d )48 48B EI EI EI

δ

0R δΔ + 73.333 6 875B EIR kN−Δ −

(direction is same as ∆B i.e., downwards)

0B B BR δΔ + = . 6.87510.667

BB

B

R kNmEIδ

= = = −

i i di t th t V i i th it di ti f th it l d-ve sign indicates that VB is in the opposite direction of the unit load.i.e., in the upward direction.

Dept. of CE, GCE Kannur Dr.RajeshKN

42

Page 43: Module1 c - rajesh sir

10kNOther reactions

10kN

A B CB C

4.063AV kN= 0.938CV kN=6.875 kNA

Bending moment diagramg g

AB

C

8.122 kNm

A C3.752 kNm−

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 44: Module1 c - rajesh sir

Example 3A:

2m3mCD

30kNBEI is constant

2m

DMD

A

2m6mC

DHD

30kNB

VD

2mB

HA Choose H as the redundant

Dept. of CE, GCE Kannur Dr.RajeshKN

44A

Choose HA as the redundant

Page 45: Module1 c - rajesh sir

D CD

To find ∆HA and δHA (using unit load method)

10kN2m3m

CD 2m6m

B

C

2mA

B 2mA

B1kNE=2x105N/mm2

I= 2x108mm4

Portion Origin Limits M m Mm m2

AB A 0-2 0 x 0 x2AB A 0 2 0 x 0 xBC A 2-4 -10(x-2) x -10x2+20x x2

CD A 0 3 20 4 80 16

( ) ( )4 3

21 110 20 80Mmdx x x dx dxΔ = = + +∫ ∫ ∫

CD A 0-3 -20 4 -80 16

( ) ( )2 0

10 20 80HA x x dx dxEI EI EI

Δ = = − + + −∫ ∫ ∫

[ ]43

321 1x⎡ ⎤ 306 67−

Dept. of CE, GCE Kannur Dr.RajeshKN

[ ]320

2

1 110 10 803HAx x x

EI EI⎡ ⎤

Δ = − + + −⎢ ⎥⎣ ⎦

306.67EI

−=

Page 46: Module1 c - rajesh sir

4 32 2 4 33 69 3316⎡ ⎤ ⎡ ⎤4 32 2

0 0

16HA

m dx x dx dxEI EI EI

δ = = +∫ ∫ ∫33

00

69.33163

xxEIEIEI

⎡ ⎤ ⎡ ⎤= + =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

0HA A HAH δΔ + =306.67 4.4.

69 33

32B

AEIH

EIkN

δ−Δ

= = =HA A HA 69.33B EIδ

Dept. of CE, GCE Kannur Dr.RajeshKN

46

Page 47: Module1 c - rajesh sir

Example 3B: 2ICD

2m6mCD

30kN

2m

IB

M

2m

A

26m

2IC

DHD

MD A

30kN

2m6m

IVD

Choose H as the redundant2m

B

H

Dept. of CE, GCE Kannur Dr.RajeshKN

Choose HA as the redundant

A

HA

Page 48: Module1 c - rajesh sir

2ID

2ICD

To find ∆HA and δHA (using unit load method)

30kN2m6m

I

CD 2m6m

I B

C

2mA

B 2mA

B1kNE=2x105N/mm2

I= 2x108mm4

Portion Origin Limits M m Mm m2

AB A 0-2 0 x 0 x2

BC A 2-4 -30(x-2) x -30x2+60x x2

CD A 0-6 -60 4 -240 16

( ) ( )4 6

21 130 60 240Mmdx x x dx dxΔ = = + +∫ ∫ ∫

CD A 0 6 60 4 240 16

( ) ( )2 0

30 60 2402HA x x dx dx

EI EI EIΔ = = − + + −∫ ∫ ∫

[ ]4 63 21 110 30 240⎡ ⎤Δ 920−

Dept. of CE, GCE Kannur Dr.RajeshKN

[ ]63 202

1 110 30 2402HA x x x

EI EI⎡ ⎤Δ = − + + −⎣ ⎦

920EI−

=

Page 49: Module1 c - rajesh sir

4 62 2 16d4 63 69 3338x⎡ ⎤ ⎡ ⎤2 2

0 0

162HA

m dx x dx dxEI EI EI

δ = = +∫ ∫ ∫3

00

69.33383

xxEIEIEI

⎡ ⎤ ⎡ ⎤= + =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

0H δΔ + =920. 13.269

69 333HA

AEIH kN

EIδ−Δ

= = =0HA A HAH δΔ + = 69.333AHA EIδ

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 50: Module1 c - rajesh sir

Example 4: Two or more redundants

60kN

A B C

80kN 50kND

3m 3mA B C

3m 3m 3m 3m

60kN 80kN 50kN

3m 3mA B C D

3m 3m 3m 3m

Choose VB and Vc as the redundant

Dept. of CE, GCE Kannur Dr.RajeshKN

50

Page 51: Module1 c - rajesh sir

60kN 80kN 50kN

A B C D

BΔ CΔB C

1kN

A B Dδ

C

BBδ CBδ

1kN

A B D

δ

C

BCδCCδ

Dept. of CE, GCE Kannur Dr.RajeshKN

0B B BB C BCV Vδ δΔ + + = 0C B CB C CCV Vδ δΔ + + =

Page 52: Module1 c - rajesh sir

60kN

A B C

80kN 50kNDA B

3m 3m 3m 3m 3m 3m

A B C D150kNm

15

120kNm 60kNm

3m 15m525kN825kN

240kNm 240kNm

A B C D360kNm

9 9

240kNm 240kNm

9 m 9m1620kN1620kN

A B C D125kNm100kNm

50kNm

Dept. of CE, GCE Kannur Dr.RajeshKN

15m 3m687.5kN437.5kN

Page 53: Module1 c - rajesh sir

3420 8280 2325 14025BEIΔ = + + = 2790 8280 2850 13920CEIΔ = + + =

D2kNm4kNmA

B CD

12 m6m16kN20kN

2kNm

16kN20kN

96BBEIδ = 84CBEIδ =

A D2kNm 4kNmA

B CD

12m6m

20kN16kN

2kNm

Dept. of CE, GCE Kannur Dr.RajeshKN

84BCEIδ =96CCEIδ =

Page 54: Module1 c - rajesh sir

0V Vδ δΔ + + = 14025 96 84 0B CV V⇒ + + =0B B BB C BCV Vδ δΔ + + =

0C B CB C CCV Vδ δΔ + + =

14025 96 84 0B CV V⇒ + +

13920 84 96 0B CV V⇒ + + =C B CB C CC B C

82BV kN= − 73.25CV kN= −

( )82BV kN= ↑ ( )73.25CV kN= ↑

( )19.25AV kN= ↑ ( )15.5DV kN= ↑

( )B ( )C

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 55: Module1 c - rajesh sir

Clapeyron’s theorem of three moments1. Uniform loading

w kN m w kN m1w kN m

1 1l IA B C

2w kN m

2 2l I

M

1 1,l I 2 2,l I

1

AMEI

B C

1

BMEI

2

BMEI

2

CMEI

A B CM/EI diagram for joint moments

+

B C

21 1

18w lEI

22 2

28w lEI

Dept. of CE, GCE Kannur Dr.RajeshKN

A B C

M/EI diagram for simple beam moments

Page 56: Module1 c - rajesh sir

To find slopes at B using Conjugate Beam Method:

21 1 2 2M l l M l l w l l⎡ ⎤⎡ ⎤

From span AB:

1 1 1 1 1 1 111 1

1 1 1

1 1 2 2. . . . . . .2 3 2 3 3 8 2

A BB

M l l M l l w l llV lEI EI EI

⎡ ⎤⎡ ⎤+= + ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

31 1 1 1

11 1 16 3 24

A BB BA

M l M l w lVEI EI EI

θ⇒ = + + =

From span BC:

22 2 2 2 2 2 2

22 22 2 2

1 1 2 2. . . . . . .2 3 2 3 3 8 2

B CB

M l l M l l w l llV lEI EI EI

⎡ ⎤⎡ ⎤+= + ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

32 2 2 2

2 3 6 24B C

B BCM l M l w lV

EI EI EIθ⇒ = + + =

Dept. of CE, GCE Kannur Dr.RajeshKN

2 2 23 6 24EI EI EI

Page 57: Module1 c - rajesh sir

BAθ

A B C

BA

BCθ

Deflected shape

0BA BC BA BCθ θ θ θ+ = ⇒ = −

332 2 2 21 1 1 1

3 6 246 3 24B CA B M l M l w lM l M l w l

EI EI EIEI EI EI⎛ ⎞

+ +⇒ + + = − ⎜ ⎟⎝ ⎠2 2 21 1 1 3 6 246 3 24 EI EI EIEI EI EI ⎝ ⎠

3 31 2l lM l M l w l w l⎛ ⎞1 21 2 1 1 2 2

1 21 2 1 2

24 4

A CB

l lM l M l w l w lMEI EIEI EI EI EI

⎛ ⎞+⇒ + + = − −⎜ ⎟⎝ ⎠

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 58: Module1 c - rajesh sir

2. General loadingg1a

2a

AB

C

x x1x 2x

1 1 1 1

1 1 1 16 3A B

BAM l M l a x

EI EI EI lθ = + +

2 2 2 2

2 2 2 23 6B C

BCM l M l a x

EI EI EI lθ = + +

2 2 2 2

1 21 2 1 1 2 26 62A Cl lM l M l a x a xM ⎛ ⎞+⇒ + + = − −⎜ ⎟BA BCθ θ= −

Dept. of CE, GCE Kannur Dr.RajeshKN

1 21 2 1 1 2 2

2 BMEI EIEI EI EI l EI l

+⇒ + + = − −⎜ ⎟⎝ ⎠

BA BCθ θ

Page 59: Module1 c - rajesh sir

2. General loading with support settlement1a

2a ;A B

B C

δ δδ δ

><

AB

C

x x1x 2x

M l M l δ δ1 1 1 1

1 1 1 1 16 3A B A B

BAM l M l a x

EI EI EI l lδ δθ −

= + + +2 2 2 2

2 2 2 2 23 6B C C B

BCM l M l a x

EI EI EI l lδ δθ −

= + + +

BA BCθ θ= −

( ) ( )1 21 2 1 1 2 2

1 21 2 1 1 2 2 1 2

6 66 62 A B C BA CB

l lM l M l a x a xMEI EIEI EI EI l EI l l l

δ δ δ δ− −⎛ ⎞+⇒ + + = − − − −⎜ ⎟⎝ ⎠

Dept. of CE, GCE Kannur Dr.RajeshKN

1 21 2 1 1 2 2 1 2l l l l⎝ ⎠

Page 60: Module1 c - rajesh sir

Example 1:

20kN m 20kN m

4 mA B C

4 m

EI is constant

3 3l lM l M l l l⎛ ⎞

1 2l l=

3 31 21 2 1 1 2 2

1 21 2 1 2

24 4

A CB

l lM l M l w l w lMEI EIEI EI EI EI

⎛ ⎞++ + = − −⎜ ⎟⎝ ⎠

1 2w w=2244BwlM = −

0A CM M= = 0A CM M

2

8BwlM∴ = −

220 4 408

kNm×= − = −

Dept. of CE, GCE Kannur Dr.RajeshKN

8 8

Page 61: Module1 c - rajesh sir

Example 2:W

lA B Cl l D

EI is constant

EI EI

Span ABC0M =

EI is constant

3 3l lM l M l l l⎛ ⎞

1 2l l= 1 2EI EI= 0AM =

3 31 21 2 1 1 2 2

1 21 2 1 2

24 4

A CB

l lM l M l w l w lMEI EIEI EI EI EI

⎛ ⎞++ + = − −⎜ ⎟⎝ ⎠

4 0A B CM M M⇒ + + =

4 0M M⇒ + = ( )1

Dept. of CE, GCE Kannur Dr.RajeshKN

4 0B CM M⇒ + = ( )1

Page 62: Module1 c - rajesh sir

Wl1 Wla l=

lA B Cl l D

Span BCD4WlEI

2

2

. .2 4

2

a l

lx

=

=0M

( ) 1 1 2 26 64 a x a xl M M M+ +

2 20DM =

( )2 14 6 lWll M M l⎛ ⎞⎜ ⎟

( ) 1 1 2 24B C Dl M M Ml l

+ + = − −

( )2 4 6 . .22 4B Cl M M l⎛ ⎞+ = − ⎜ ⎟

⎝ ⎠

34 WlM M ( )248B CM M+ = − ( )2

Wl− WlM

Dept. of CE, GCE Kannur Dr.RajeshKN

10CWlM = 40BM =( ) ( )&1 2

Page 63: Module1 c - rajesh sir

40Wl

5Wl

A B C40

10Wl−

D5

10

Bending moment diagram

Dept. of CE, GCE Kannur Dr.RajeshKN

63

Page 64: Module1 c - rajesh sir

Example 3: 20kN m 20kN mp

6mA B C8mEI is constant

20kN m 20kN m

6mA B C8mImaginary

span A’Aspan A A

Span A’AB1

2

020

ww kN m

== ' 0AM = 1 2EI EI=

Span A AB

3 31 2' 1 2 1 1 2 22A B

A

l lM l M l w l w lMEI EI

⎛ ⎞++ + = − −⎜ ⎟⎝ ⎠

Dept. of CE, GCE Kannur Dr.RajeshKN

1 21 2 1 24 4A EI EIEI EI EI EI⎜ ⎟⎝ ⎠

Page 65: Module1 c - rajesh sir

320 6×20 62 6 64A BM M ×

× + × = −

2 180M M+ ( )12 180A BM M+ = −

Span ABC

( )1

1 2 20w w kN m= =3 31 21 2 1 1 2 2

1 21 2 1 2

24 4

A CB

l lM l M l w l w lMEI EIEI EI EI EI

⎛ ⎞++ + = − −⎜ ⎟⎝ ⎠

0CM =1 21 2 1 2⎝ ⎠

3 320 6 20 86 2 144 4A BM M × ×

+ × = − −4 4

3 14 1820A BM M+ = − ( )2

( ) ( )&1 2 28AM kNm= − 124BM kNm= −

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 66: Module1 c - rajesh sir

Example 4 (Support settlement):

226320EI kN 87δ δEI is constant

20kN m 20kN m20kN m

226320EI kNm= 87B C mmδ δ= =EI is constant

6mA DC 3mB3m

EI EI EI= =0MSpan ABC

1 2EI EI EI= =0AM =

( ) ( )3 31 21 2 1 1 2 2 66 C BA BA Cl lM l M l w l w l δ δδ δ −−⎛ ⎞ ( ) ( )1 21 2 1 1 2 2

1 21 2 1 2 1 2

662

4 4C BA BA C

B

l lM l M l w l w lMEI EIEI EI EI EI l l

δ δδ δ⎛ ⎞++ + = − − − −⎜ ⎟⎝ ⎠

( ) ( )3 31 20 3 20 6 6 6 00.08718 626320 4 26320 4 26320 3 6B CM M × × ×−+ = − − − −

× ×

Dept. of CE, GCE Kannur Dr.RajeshKN

3 560.78B CM M+ = ( )1

Page 67: Module1 c - rajesh sir

Span BCD0DM =

( ) ( )3 31 21 2 1 1 2 2 6 6

24 4

B C D CB DC

l lM l M l w l w lMEI EIEI EI EI EI l l

δ δ δ δ− −⎛ ⎞++ + = − − − −⎜ ⎟⎝ ⎠

D

1 21 2 1 2 1 24 4EI EIEI EI EI EI l l⎜ ⎟⎝ ⎠

( ) ( )3 31 20 6 20 3 6 0 6 0.0876 18M M × × × −+( )6 1826320 4 26320 4 26320 6 3B CM M+ = − − − −

× ×

3 560.78B CM M+ = ( )2

140.195BM kNm= 140.195CM kNm=

Alternatively, from symmetry, B CM M=

Dept. of CE, GCE Kannur Dr.RajeshKN

673 560.78B CM M+ = 4 560.78 140.195B BM M kNm⇒ = ⇒ =

Page 68: Module1 c - rajesh sir

Examples 5 (Fixed Beam) xa p es 5 ( xed ea )

P

A BC

lA

P

A BC

A′ B′lAA′ B

Imaginary span A’A

Imaginary span BB’span A A span BB

1 21 2 1 1 2 26 62A Cl lM l M l a x a xM ⎛ ⎞++ +⎜ ⎟

Dept. of CE, GCE Kannur Dr.RajeshKN

68

1 21 2 1 1 2 2

1 21 2 1 1 2 2

2A CBM

EI EIEI EI EI l EI l++ + = − −⎜ ⎟

⎝ ⎠

Page 69: Module1 c - rajesh sir

Span A’AB1 l

' 0AM =4PlEI

21 . .2 4

Pla l

l

=

1 2EI EI=4EI

2 2lx =A B

6Pl6216A BPlM M⇒ + = −

S ABB’

( )1

' 0BM = 1 2EI EI=

Span ABB’2

1 1,8 2

Pl la x= =8 2

6216A BPlM M⇒ + = − ( )2

16

( ) ( )&1 2 A BPlM M= = −

Dept. of CE, GCE Kannur Dr.RajeshKN

69

( ) ( )&1 2 8A BM M

Page 70: Module1 c - rajesh sir

Examples 6 (Fixed Beam)

w

xa p es 6 ( xed ea )

lA B

CC

Dept. of CE, GCE Kannur Dr.RajeshKN

70

Page 71: Module1 c - rajesh sir

ENERGY PRINCIPLES BASED ON DISPLACEMENT FIELDENERGY PRINCIPLES BASED ON DISPLACEMENT FIELD

Principle of Minimum Total Potential

Castigliano’sTheorem (Part I)Total Potential

Energy (PMTPE)Theorem (Part I)

alternative forms ofalternative forms of

Principle of Stationary TotalPrinciple of Stationary TotalPotential Energy (PSTPE)

Dept. of CE, GCE Kannur Dr.RajeshKN

71

Page 72: Module1 c - rajesh sir

Principle of Stationary Total Potential Energy (PSTPE)p y gy ( )

When the displacement field in a loaded elastic structure is given all d bit t b ti i t i i tibilit dsmall and arbitrary perturbation, maintaining compatibility and

without disturbing the associated force field, then the first variationof the total potential energy is equal to zero, if the forces are in astate of static equilibrium.

Dept. of CE, GCE Kannur Dr.RajeshKN

72

Page 73: Module1 c - rajesh sir

Alternative form of Principle of Stationary Total Potential EnergyAlternative form of Principle of Stationary Total Potential Energy(PSTPE)

The total potential energy π in a loaded elastic structure expressed as afunction of n independent displacements D1, D2, … Dn in acompatible displacement field must be rendered stationary with thecompatible displacement field must be rendered stationary, with thepartial derivative of π with respect to every Dj being equal to zero, ifthe associated force field is to be in a state of static equilibrium.

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 74: Module1 c - rajesh sir

Principle of Minimum Total Potential Energy (PMTPE)Principle of Minimum Total Potential Energy (PMTPE)

When the displacement field in a loaded linear elastic structure is givena small and arbitrary perturbation, maintaining compatibility andwithout disturbing the associated force field, then the first variationof the total potential energy is equal to zero, if the forces are in ap gy q ,state of static equilibrium.

Castigliano’s Theorem (Part I)

If the strain energy, U, in an elastic structure, subject to a system ofexternal forces in static equilibrium, can be expressed as a functionq , pof n independent displacements D1, D2, … Dn satisfyingcompatibility, then the partial derivative of U with respect to everyDj will be equal to the value of the conjugate force, Fj.

Dept. of CE, GCE Kannur Dr.RajeshKN

74

Dj will be equal to the value of the conjugate force, Fj.

Page 75: Module1 c - rajesh sir

ENERGY PRINCIPLES BASED ON FORCE FIELDENERGY PRINCIPLES BASED ON FORCE FIELD

Principle of Minimum Total Complementary Potential

Castigliano’sTheorem (Part II)

Complementary Potential Energy (PMTCPE)

Theorem of LeastWork

alternative forms of

Principle of StationaryPrinciple of StationaryComplementary Total PotentialEnergy (PSCTPE)

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 76: Module1 c - rajesh sir

Principle of Stationary Total Complementary Potential EnergyPrinciple of Stationary Total Complementary Potential Energy(PSTCPE)

When the force field in a loaded elastic structure is given a small andarbitrary perturbation, maintaining equilibrium compatibility andwithout disturbing the associated displacement field, then the firstg p ,variation of the total complementary potential energy is equal tozero, if the displacements satisfy compatibility.

Dept. of CE, GCE Kannur Dr.RajeshKN76

Page 77: Module1 c - rajesh sir

Alternative form of Principle of Stationary Total ComplementaryPotential Energy (PSTCPE)Potential Energy (PSTCPE)

The total complementary potential energy π* in a loaded elasticp y p gystructure expressed as a function of n independent forces F1, F2, …Fn in a statically admissible force field must be rendered stationary,with the partial derivative of π* with respect to every Fj being equalw t t e pa t a de vat ve o w t espect to eve y j be g equato zero, if the associated displacement field is to satisfycompatibility.

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 78: Module1 c - rajesh sir

Principle of Minimum Total Complementary Potential EnergyPrinciple of Minimum Total Complementary Potential Energy(PMTCPE)

When the force field in a loaded linear elastic structure is given a smalland arbitrary perturbation, maintaining equilibrium compatibilityand without disturbing the associated displacement field, then theg p ,first variation of the total complementary potential energy is equalto zero, if the displacement satisfy compatibility.

Dept. of CE, GCE Kannur Dr.RajeshKN

78

Page 79: Module1 c - rajesh sir

Castigliano’s Theorem (Part II)Castigliano s Theorem (Part II)

If the complementary strain energy, U*, in an elastic structure, with akinematically admissible displacement field, is expressed as afunction of n independent external forces F1, F2, … Fn satisfyingequilibrium, then the partial derivative of U* with respect to every Fjq , p p y jwill be equal to the value of the conjugate displacement, Dj.

If the behaviour is linear elastic, U* can be replaced by U.

Thus, Castigliano’s Theorem (Part II) can otherwise be stated as:

“If U is the total strain energy in a linear elastic structure due toapplication of external forces F1 F2 F3 F at points A1 A2 A3 Aapplication of external forces F1, F2, F3, … Fn at points A1, A2, A3,…, Anrespectively in the directions AX1, AX2, AX3,…, AXn then thedisplacements at points A1, A2, A3,…, An respectively in the directionsAX AX AX AX ∂U/∂F ∂U/∂F ∂U/∂F ∂U/∂F

Dept. of CE, GCE Kannur Dr.RajeshKN79

AX1, AX2, AX3,…, AXn are ∂U/∂F1, ∂U/∂F2, ∂U/∂F3,…, ∂U/∂Fnrespectively.”

Page 80: Module1 c - rajesh sir

Proof for Castigliano’s theorem (Part II)Proof for Castigliano s theorem (Part II)

Let x1, x2, x3,… xn be deflections at points A1, A2, A3,… An

due to F F F Fdue to F1, F2, F3,… Fn

Total strain energy, 1 1 2 2 3 31 1 1 12 2 2 2 n nU F x F x F x F x= + + + +… (1)

Let the load F1 alone be increased by 1Fδ

Let 1 2 3, , , nx x x xδ δ δ δ… be the additional deflections at points A1, A2, A3,… An

I i t iIncrease in strain energy,

1 1 1 2 2 3 312 n nU F F x F x F x F xδ δ δ δ δ δ⎛ ⎞= + + + + +⎜ ⎟

⎝ ⎠…

2⎝ ⎠

1 1 2 2 3 3 n nU F x F x F x F xδ δ δ δ δ= + + + +… , neglecting small quantities.

Dept. of CE, GCE Kannur Dr.RajeshKN

80

(2)

Page 81: Module1 c - rajesh sir

( )1 1 2 3, , , nF F F F Fδ+ …Let are acting on the original structure

( ) ( ) ( ) ( ) ( )1 1 1 1U U F F F F Fδ δ δ δ δ δ

Total strain energy,

( ) ( ) ( ) ( ) ( )1 1 1 1 2 2 2 3 3 31 1 1 12 2 2 2 n n nU+ U F F x x F x x F x x F x xδ δ δ δ δ δ= + + + + + + + + +…

(3)1 1 1 1U F F F F+ + + +(1) 1 1 2 2 3 32 2 2 2 n nU F x F x F x F x= + + + +…(1)

1 1 1 1U F F F Fδ δ δ δ δ⎛ ⎞⎜ ⎟(3) (1) 1 1 1 1 2 22 2 2 2 n nU x F F x F x F xδ δ δ δ δ⎛ ⎞= + + + +⎜ ⎟⎝ ⎠

…(3)-(1)

( )2 U x F F x F x F xδ δ δ δ δ= + + + + (4)

1 1 2 2 3 3 n nU F x F x F x F xδ δ δ δ δ= + + + +…(2)

( )1 1 1 1 2 22 n nU x F F x F x F xδ δ δ δ δ= + + + +… (4)

Dept. of CE, GCE Kannur Dr.RajeshKN

811 1U x Fδ δ=(4)-(2)

Page 82: Module1 c - rajesh sir

Uδ U∂1

1

U xF

δδ

=1 1

1

0, UWhen F xF

δ ∂→ =

2 22 3

, , nn

U U USimilarly, x x xF F F∂ ∂ ∂

= = =∂ ∂ ∂

For example, in the case of bending,

2

2MU dxEI

⎛ ⎞= ⎜ ⎟

⎝ ⎠∫⎝ ⎠

U M M dxF EI F

δ ∂ ∂⎛ ⎞∴ = = ⎜ ⎟∂ ∂⎝ ⎠∫F EI F∂ ∂⎝ ⎠

Dept. of CE, GCE Kannur Dr.RajeshKN

82

Page 83: Module1 c - rajesh sir

Example 1: Using Castigliano’s Theorem, analyse the continuous

w kN/m

p g g , ybeam shown in figure.

AB C

/

LLL

w kN/m

AB C

/

LLRB

L

2BRwL −

2BRwL −

Let RB be the redundant.

Dept. of CE, GCE Kannur Dr.RajeshKN

83

B

Page 84: Module1 c - rajesh sir

2wxR⎛ ⎞22

Bx

wxRM xwL⎛ ⎞= −−⎜ ⎟⎝ ⎠

From A to B,

0Bδ = 0B B

U M M dxR EI R∂ ∂⎛ ⎞⇒ = =⎜ ⎟∂ ∂⎝ ⎠∫

2M xR∂ −

=∂ F th ti AC2BR∂

22M M∂ ⎛ ⎞⎛ ⎞

For the entire span AC

220 022 2

B

B

M M xR x wxdx dxwLxEI R EI

∂ −⎛ ⎞⎛ ⎞∴ = ⇒ =− −⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠∫ ∫

5B

wLR⇒ =

Dept. of CE, GCE Kannur Dr.RajeshKN

4BR⇒

Page 85: Module1 c - rajesh sir

Example 2: Using Castigliano’s Theorem analyse the frame shown Example 2: Using Castigliano s Theorem, analyse the frame shown in figure.

3 kN/3 kN/m

2mB C

3 kN/m

2mB C

2m1m

D2m

1m

D

A

D

A VD

HD

VD

V

HA

VA

Let HA be the redundant.

Dept. of CE, GCE Kannur Dr.RajeshKN

Let HA be the redundant.

Page 86: Module1 c - rajesh sir

3 kN/m

2m

1

B CFrom A to B,

x AM H x= −

2m1m

D

AH A

M xH∂

= −∂

A3 AHV = −

AH

From B to C,23⎛ ⎞HA

32DV

3 AHV +

232322

Ax A

xHM x H⎛ ⎞= − −+⎜ ⎟⎝ ⎠

32

AAV = +

22A

M xH∂

= −∂

F D t C M H x= M x∂

Dept. of CE, GCE Kannur Dr.RajeshKN

From D to C, x AM H x= −A

xH

= −∂

Page 87: Module1 c - rajesh sir

0M M dx∂⎛ ⎞∴ ⎜ ⎟∫ 0A

dxEI H

∴ =⎜ ⎟ ∂⎝ ⎠∫

2 2 1⎧ ⎫⎛ ⎞⎛ ⎞( )( ) ( ) ( )2 2 12

0 0 0

1 3 023 222 2

AA AA

xH x xdx dx dxH x H xx Hx xEI⎧ ⎫⎛ ⎞⎛ ⎞⇒ + + =− −−+ − −− −⎨ ⎬⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎩ ⎭∫ ∫ ∫

2 2 13 3 3 2 4 2 32 33 03 4A A A A A

AH x x H x H x x H x H xx H x x⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + =+ − − − − + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦0 0 03 2 12 2 16 2 3A⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

8 8 8 4A AA AH HH H⎡ ⎤8 8 8 4 03 12 2 8 83 32 12 2

A AA AA A

H HH H H H⎡ ⎤+ + =+ − − − − + +⎢ ⎥⎣ ⎦

3 3.192

AA

HV kN= + =0.39AH kN=

H

Dept. of CE, GCE Kannur Dr.RajeshKN

3 2.82

AD

HV kN= − =

Page 88: Module1 c - rajesh sir

Example 4: Using Castigliano’s Theorem, analyse the truss shown p g g , yin figure. AE is constant.

CD CD10kN

CD

T10kNCD

3m 3m

T

4mA B

4mA B

T

m

. . 0P LPT AE∂

=∂∑ 6.25T kN=

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 89: Module1 c - rajesh sir

Example 4: Do the above problem using the method of consistent Example 4: Do the above problem using the method of consistent deformation.

P kL′

10kN 2

P kLAETk L

= −∑

CD

3m

k LAE∑

A B4m B

P P kT′= +

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 90: Module1 c - rajesh sir

Note 1: If there are two internal redundants in a truss in method of Note 1: If there are two internal redundants in a truss, in method of consistent deformation,

2P k L k L k k L′ 21 1 1 2

1 2 0P k L k L k k LT TAE AE AE′

+ + =∑ ∑ ∑

22 1 2 2

1 2 0P k L k k L k LT TAE AE AE′

+ + =∑ ∑ ∑AE AE AE

Note 2: If there are both internal redundants external redundants in a truss, in method of consistent deformation,

21 1 1 0BP k L k L k k LT V

′+ + =∑ ∑ ∑1 0BT V

AE AE AE+ + =∑ ∑ ∑

2P k L k k L k L′

Dept. of CE, GCE Kannur Dr.RajeshKN

21

1 0B B BB

P k L k k L k LT VAE AE AE′

+ + =∑ ∑ ∑

Page 91: Module1 c - rajesh sir

Example 3: Using Castigliano’s Theorem, analyse the pin-jointed h i fi

3m 4m

truss shown in figure.

A B C3m 4m

400A =

A

3m 500A = 400A =

D

80kN

Internally indeterminate to degree 1.

Take force in BD as redundant.

y g

0P LP ∂∑Dept. of CE, GCE Kannur Dr.RajeshKN

91Assume force in BD is T . . 0P

T AE=

∂∑

Page 92: Module1 c - rajesh sir

cos45 sin 53.13AD CDF F=cos45 sin 53.13AD CDF F

cos45 cos53.13 80AD CDF F T+ + =T

57.14 0.714T−

64.64 0.808T−

sin 53.13 cos53.13 80CD CDF F T+ + =80kN

57.14 0.714CDF T= −

i 53 13( ) sin 53.1357.14 0.714 64.64 0.808cos45ADF T T= − = −

. . 0P LPT AE∂

=∂∑

( ) ( ) ( ) ( )4.243 57.14 0.714 5 64.64 0.80830.714 3 0.808 0500 400 400

T TTE E E− −⎛ ⎞ ⎛ ⎞⎛ ⎞× − + × + × − =⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠

Dept. of CE, GCE Kannur Dr.RajeshKN

9249.09T kN∴ =

Page 93: Module1 c - rajesh sir

SummarySummaryStatically and kinematically indeterminate structures

• Degree of static indeterminacy, Degree of kinematic indeterminacy, Force and displacement method of analysis

Force method of analysis

• Method of consistent deformation-Analysis of fixed and continuous beams

• Clapeyron’s theorem of three moments-Analysis of fixed and continuous beams

• Principle of minimum strain energy-Castigliano’s second theorem-Analysis of beams, plane trusses and plane frames.

Dept. of CE, GCE Kannur Dr.RajeshKN

93