module 6 introduction to power flow studies

Upload: sadeq

Post on 07-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    1/49

    BEE 3243Electric Power Systems

    BEE 3243BEE 3243Electric Power SystemsElectric Power Systems

    Module 5

    Introduction to Power Flow Studies

    Module 5Module 5

    Introduction to Power Flow StudiesIntroduction to Power Flow Studies

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    2/49

    BEE 3243 Electric Power Systems Module 5 22

    OutlinesOutlines

    IntroductionIntroduction

    Basic Techniques for Power Flow StudiesBasic Techniques for Power Flow Studies

    The Bus Admittance MatrixThe Bus Admittance Matrix Power Flow EquationsPower Flow Equations GaussGauss--Seidel MethodSeidel Method GaussGauss--SeidalSeidal Power Flow SolutionPower Flow Solution

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    3/49

    BEE 3243 Electric Power Systems Module 5 33

    IntroductionIntroduction

    Power flow study is also known asPower flow study is also known as load flowload flow study.study.

    It is an analysis duringIt is an analysis during steadysteady--statestate

    conditions.conditions.

    It is used forIt is used forplanningplanning andand controllingcontrolling a system.a system. Assumptions:Assumptions: balancedbalanced conditions andconditions and singlesinglephasephase

    analysis.analysis.

    Problems:Problems:

    determine thedetermine the voltage magnitudevoltage magnitude

    andand phase anglephase angle

    atat

    each bus.each bus.

    determine the active and reactive (determine the active and reactive (P & QP & Q) power flow in) power flow ineach lineeach line

    each bus haseach bus has fourfour

    state variables:state variables: voltage magnitude,voltage magnitude,

    voltage phase angle, real power injection, and reactivevoltage phase angle, real power injection, and reactivepower injectionpower injection

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    4/49

    BEE 3243 Electric Power Systems Module 5 44

    IntroductionIntroduction

    Each bus hasEach bus has twotwo of the four state variablesof the four state variablesdefined or given.defined or given. Text book:Text book: HadiHadi SaadatSaadat Power System AnalysisPower System Analysis((Chapter 6Chapter 6).).

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    5/49

    BEE 3243 Electric Power Systems Module 5 55

    Types of Buses in Power SystemsTypes of Buses in Power Systems

    Types of network buses:Types of network buses: Load BusLoad Bus

    ororPQ BusPQ Bus

    known real (P) and reactive (Q) power injections.known real (P) and reactive (Q) power injections.

    No generator attach to load bus.No generator attach to load bus.

    Generator BusGenerator Bus

    ororPV BusPV Bus

    known real (P) power injection and the voltageknown real (P) power injection and the voltage

    magnitude (V).magnitude (V).

    Slack BusSlack Bus

    ororSwing BusSwing Bus

    known voltage magnitude (V) and voltage angle (known voltage magnitude (V) and voltage angle (),),

    often it is taken to beoften it is taken to be 1100

    p.up.u..

    must have one generator as the slack bus.must have one generator as the slack bus. takes up the power slack due to losses in the network.takes up the power slack due to losses in the network.

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    6/49BEE 3243 Electric Power Systems Module 566

    Basic Techniques for Power Flow StudiesBasic Techniques for Power Flow Studies

    Power flow analysis is anPower flow analysis is an iterativeiterative problem.problem.StepsSteps

    to be taken in power flow analysis:to be taken in power flow analysis:

    1)1) One line diagram orOne line diagram orload flow dataload flow data of a power systemof a power system2)2)

    Construct Bus Admittance Matrix (Construct Bus Admittance Matrix (YbusYbus))

    3)3)

    Calculate theCalculate the power flowpower flow

    analysis equationsanalysis equations

    Power flow is aPower flow is a nonlinearnonlinear problem and it isproblem and it iscommonly solved by the iterative solution ofcommonly solved by the iterative solution ofnonlinear algebraic equationsnonlinear algebraic equations::

    GaussGauss--SeidalSeidal

    NewtonNewton--RaphsonRaphson

    Fast DecoupledFast Decoupled

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    7/49BEE 3243 Electric Power Systems Module 577

    Basic Techniques for Power Flow StudiesBasic Techniques for Power Flow Studies

    Example ofExample ofload flow input dataload flow input data:: Bus dataBus data

    Line dataLine data

    Bus no Bus

    code

    Voltage Load Generator

    Magnitude

    (p.u.)

    Angle

    (degree)

    P

    (MW)

    Q

    (Mvar)

    P

    (MW)

    Q

    (Mvar)

    1 1 1.06 0 0.0 0.0 0.0 0.0

    2 2 1.043 0 21.70 12.7 40.0 0.03 0 1.0 0 2.4 1.2 0.0 0.0

    Line bus no

    (From)

    Line bus no

    (To)

    Lineresistance

    R (p.u.)

    Linereactance

    X (p.u.)

    linesusceptance

    B (p.u.)

    Transfor-mer tapsetting

    1 2 0.0192 0.0575 0.02640 0.978

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    8/49BEE 3243 Electric Power Systems Module 588

    The Bus Admittance MatrixThe Bus Admittance Matrix

    The matrix equation for relating theThe matrix equation for relating the nodal voltagesnodal voltages to theto the currentscurrents

    that flow into and out of a networkthat flow into and out of a network

    using theusing the admittanceadmittance values of circuit branches.values of circuit branches.V1

    Vi

    Ii

    yi1

    yi2

    yin

    yi0

    V2

    Vn

    Iinj = YbusVnodeIinj = YbusVnode

    ijijij

    ijjxrz

    y

    11

    nnnnn

    n

    n

    n V

    V

    V

    YYY

    YYY

    YYY

    I

    I

    I

    2

    1

    21

    22221

    11211

    2

    1

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    9/49BEE 3243 Electric Power Systems Module 5 99

    The Bus Admittance MatrixThe Bus Admittance Matrix

    One line diagram of a power system

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    10/49BEE 3243 Electric Power Systems Module 5 1010

    The Bus Admittance MatrixThe Bus Admittance Matrix

    Impedance Diagram

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    11/49BEE 3243 Electric Power Systems Module 5 1111

    The Bus Admittance MatrixThe Bus Admittance Matrix

    Admittance Diagram

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    12/49BEE 3243 Electric Power Systems Module 5 1212

    The Bus Admittance MatrixThe Bus Admittance Matrix

    Kirchhoffs current law:

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    13/49BEE 3243 Electric Power Systems Module 5 1313

    The Bus Admittance MatrixThe Bus Admittance Matrix

    Rearranging the KCL Equations:Rearranging the KCL Equations:

    Matrix Formation of the EquationsMatrix Formation of the Equations::

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    14/49

    BEE 3243 Electric Power Systems Module 5 1414

    The Bus Admittance MatrixThe Bus Admittance Matrix

    Completed Matrix Equation:Completed Matrix Equation:

    nnnnn

    nn

    n V

    V

    V

    YYY

    YYY

    YYY

    I

    I

    I

    21

    21

    2222111211

    21

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    15/49

    BEE 3243 Electric Power Systems Module 5 1515

    YY--Bus Matrix Building RulesBus Matrix Building Rules

    Square matrixSquare matrix with dimensions equal to thewith dimensions equal to thenumber of buses.number of buses. Convert all network impedances intoConvert all network impedances into admittancesadmittances.. DiagonalDiagonal elements:elements:

    OffOff--diagonaldiagonal

    elements:elements:

    Matrix isMatrix is symmetricalsymmetrical along the leading diagonal.along the leading diagonal.

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    16/49

    BEE 3243 Electric Power Systems Module 5 1616

    Power Flow EquationsPower Flow Equations

    V1Vi

    Ii

    yi1

    yi2

    yin

    yi0

    V2

    V3

    KCL Equations:KCL Equations:

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    17/49

    BEE 3243 Electric Power Systems Module 5 1717

    Power Flow EquationsPower Flow Equations

    Power flow equation:Power flow equation:

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    18/49

    BEE 3243 Electric Power Systems Module 5 1818

    GaussGauss--Seidel MethodSeidel Method

    GaussGauss--SeidalSeidal is ais a nonlinearnonlinear algebraic equationalgebraic equationsolver. It is a method of successive displacements.solver. It is a method of successive displacements. ItsIts iterative stepsiterative steps::

    take a function and rearrange it into the formtake a function and rearrange it into the form x =x = g(xg(x))

    make an initial estimate of the variable x:make an initial estimate of the variable x: xx[0][0]

    = initial value= initial value

    find an iterative improvement offind an iterative improvement ofxx[k[k]]

    , that is:, that is: xx[k+1][k+1]

    == g(xg(x[k[k]]

    ))

    a solution is reached when the difference between twoa solution is reached when the difference between two

    iterations is less than a specified accuracy:iterations is less than a specified accuracy: |x|x[k+1][k+1]

    xx[k[k]]||

    AccelerationAcceleration factors (factors ())::

    can improve the rate of convergence:can improve the rate of convergence:

    > 1> 1

    modified step: the improvement is found asmodified step: the improvement is found as

    xx[k+1][k+1]

    = x= x[k][k]

    ++

    [[g( xg( x[k][k]

    ))

    xx[k][k]]]

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    19/49

    BEE 3243 Electric Power Systems Module 5 1919

    GaussGauss--Seidel MethodSeidel Method

    Example of the GaussExample of the Gauss--Seidel method:Seidel method:Find x of the equation:Find x of the equation: f(xf(x) = x) = x33--6x6x22+9x+9x--4 = 0.4 = 0.

    9x =9x = --xx33+6x+6x22+4+4

    Start withStart with initialinitial

    guess xguess x[0][0]

    = 2,= 2,

    )(9

    4

    9

    6

    9

    123 xgxxx

    5173.29

    4)2222.2(

    9

    6)2222.2(

    9

    1)2222.2(

    2222.29

    4)2(

    9

    6)2(

    9

    1)2(

    23]1[]2[

    23]0[]1[

    xgx

    xgx

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    20/49

    BEE 3243 Electric Power Systems Module 5 2020

    GaussGauss--Seidel MethodSeidel Method

    0000.4

    9988.3

    9568.39

    4)7398.3(

    9

    6)7398.3(

    9

    1)7398.3(

    7398.39

    4)3376.3(

    9

    6)3376.3(

    9

    1)3376.3(

    3376.394)8966.2(

    96)8966.2(

    91)8966.2(

    8966.29

    4)5173.2(

    9

    6)5173.2(

    9

    1)5173.2(

    ]8[

    ]7[

    23]5[]6[

    23]4[]5[

    23]3[]4[

    23]2[]3[

    x

    x

    xgx

    xgx

    xgx

    xgx

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    21/49

    BEE 3243 Electric Power Systems Module 5 2121

    GaussGauss--Seidel MethodSeidel Method

    MatlabMatlab Results of all iterations:Results of all iterations:Iter g dx x1 2.2222 0.2222 2.2222

    2 2.5173 0.2951 2.5173

    3 2.8966 0.3793 2.8966

    4 3.3376 0.4410 3.3376

    5 3.7398 0.4022 3.7398

    6 3.9568 0.2170 3.9568

    7 3.9988 0.0420 3.9988

    8 4.0000 0.0012 4.0000

    9 4.0000 0.0000 4.0000

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    22/49

    BEE 3243 Electric Power Systems Module 5 2222

    GaussGauss--Seidel MethodSeidel Method

    Graphical illustration:Graphical illustration:

    Iterations

    x = g(x)

    Initial value

    Solution points

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    23/49

    BEE 3243 Electric Power Systems Module 5 2323

    GaussGauss--Seidel Method withSeidel Method with

    Find the root of the equation:Find the root of the equation: f(xf(x) = x) = x33

    -- 6x6x

    22

    + 9x+ 9x -- 44= 0 with an= 0 with an acceleration factoracceleration factor

    of 1.25.of 1.25.

    Starting with anStarting with an initialinitial guess of xguess of x[0][0] = 2.= 2.

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    24/49

    BEE 3243 Electric Power Systems Module 5 2424

    GaussGauss--Seidel Method withSeidel Method with

    MatlabMatlab results of all iterations:results of all iterations:Iter g dx x

    1 2.2222 0.2222 2.2778

    2 2.5902 0.3124 2.6683

    3 3.0801 0.4118 3.1831

    4 3.6157 0.4326 3.7238

    5 3.9515 0.2277 4.0084

    6 4.0000 -0.0085 3.9978

    7 4.0000 0.0022 4.0005

    8 4.0000 -0.0005 3.9999

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    25/49

    BEE 3243 Electric Power Systems Module 5 2525

    GaussGauss--Seidel Method withSeidel Method with

    Graphical illustration:Graphical illustration:

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    26/49

    BEE 3243 Electric Power Systems Module 5 2626

    GaussGauss--Seidel Method withSeidel Method with

    Do not use aDo not use a very largevery large number ofnumber of as the largeras the largerstep sizestep size

    may result in an overshoot.may result in an overshoot.

    If we take the previous example withIf we take the previous example with = 1.8= 1.8, we, wewill needwill need more iterationsmore iterations to obtain the answer:to obtain the answer:Iter g dx x1 2.2222 0.2222 2.4000

    2 2.7484 0.3484 3.0272

    3 3.4714 0.4442 3.8268

    4 3.9806 0.1538 4.1036

    5 3.9927 -0.1109 3.9040

    Iter g dx x6 3.9940 0.0900 4.0659

    7 3.9971 -0.0688 3.9420

    8 3.9978 0.0558 4.0424

    9 3.9988 -0.0436 3.9639

    10 3.9991 0.0352 4.0273Overshoot

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    27/49

    BEE 3243 Electric Power Systems Module 5 2727

    GaussGauss--Seidel Method withSeidel Method with

    Iter g dx x11 3.9995 -0.0278 3.9772

    12 3.9997 0.0224 4.0176

    13 3.9998 -0.0178 3.9856

    14 3.9999 0.0143 4.0113

    15 3.9999 -0.0114 3.9908

    16 3.9999 0.0091 4.0073

    17 4.0000 -0.0073 3.9941

    18 4.0000 0.0058 4.0047

    Iter g dx x19 4.0000 -0.0047 3.9963

    20 4.0000 0.0037 4.0030

    21 4.0000 -0.0030 3.9976

    22 4.0000 0.0024 4.0019

    23 4.0000 -0.0019 3.9985

    24 4.0000 0.0015 4.0012

    25 4.0000 -0.0012 3.9990

    26 4.0000 0.0010 4.0008

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    28/49

    BEE 3243 Electric Power Systems Module 5 2828

    GaussGauss--Seidel Method withSeidel Method with

    Graphical illustration:Graphical illustration:

    OVERSHOOT

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    29/49

    BEE 3243 Electric Power Systems Module 5 2929

    GaussGauss--SeidalSeidal for a System of n Equationsfor a System of n Equations Consider a system ofConsider a system ofn equationsn equations::

    Rearrange each equation for each of the variables:Rearrange each equation for each of the variables:

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    30/49

    BEE 3243 Electric Power Systems Module 5 3030

    GaussGauss--SeidalSeidal for a System of n Equationsfor a System of n Equations Steps:Steps:Assume anAssume an approximate solutionapproximate solution

    for the independentfor the independent

    variables,variables,

    Find the results in aFind the results in a new approximatenew approximate solutionsolution

    In theIn the

    GaussGauss--SeidelSeidel

    method, the updated values of themethod, the updated values of the

    variables calculated in the preceding equations are usedvariables calculated in the preceding equations are used

    immediately in the solution of the subsequent equations.immediately in the solution of the subsequent equations.

    The rate ofThe rate ofconvergenceconvergence can be increased by suitablecan be increased by suitable ..

    G S id l P Fl S l i

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    31/49

    BEE 3243 Electric Power Systems Module 5 3131

    GaussGauss--SeidalSeidal Power Flow SolutionPower Flow Solution Previously derivedPreviously derived power flow equationpower flow equation,,

    GaussGauss--SeidalSeidal form,form,

    G S id l P Fl S l ti

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    32/49

    BEE 3243 Electric Power Systems Module 5 3232

    GaussGauss--SeidalSeidal Power Flow SolutionPower Flow Solution Rewriting the power equation to findRewriting the power equation to find P and QP and Q

    thethe real and reactive powersreal and reactive powers

    are scheduled for theare scheduled for the loadload

    busesbuses

    that is, they remain fixedthat is, they remain fixed

    the currents and powers are expressed as going into thethe currents and powers are expressed as going into thebusbus

    forforgenerationgeneration the powers arethe powers are positivepositive

    forforloadsloads

    the powers arethe powers are negativenegative

    thethe scheduled powerscheduled power is theis the sumsum of the generation and loadof the generation and loadpowerspowers

    GG S id lS id l P Fl S l iP Fl S l ti

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    33/49

    BEE 3243 Electric Power Systems Module 5 3333

    GaussGauss--SeidalSeidal Power Flow SolutionPower Flow Solution TheThe complete setcomplete set of equations become:of equations become:

    GG S id lS id l P Fl S l tiP Fl S l ti

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    34/49

    BEE 3243 Electric Power Systems Module 5 3434

    GaussGauss--SeidalSeidal Power Flow SolutionPower Flow Solution Since theSince the offoff--diagonaldiagonal elements ofelements ofYYbusbus

    ,, YYijij

    == --yyijij

    and theand the diagonaldiagonal

    elements,elements, YYiiii

    == yyijij

    ,,

    ii

    n

    ijj

    kjijk

    i

    schi

    schi

    ki

    Y

    VYV

    jQP

    V

    ,1

    ][

    ][*]1[

    n

    ijj

    kjijii

    ki

    ki

    ki

    n

    ijj

    kjijii

    ki

    ki

    ki

    VYYVVQ

    VYYVVP

    ,1

    ][][][*]1[

    ,1

    ][][][*]1[

    GG S id lS id l P Fl S l tiP Fl S l ti

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    35/49

    BEE 3243 Electric Power Systems Module 5 3535

    GaussGauss--SeidalSeidal Power Flow SolutionPower Flow Solution System characteristics:System characteristics:Since both components (V &Since both components (V & ) are specified for the) are specified for the

    slack busslack bus, there are 2(n, there are 2(n -- 1) equations which must be1) equations which must besolved iterativelysolved iterativelyFor theFor the load busesload buses, the real and reactive powers are, the real and reactive powers are

    known/ scheduled:known/ scheduled:

    the voltage magnitude and angle must be estimatedthe voltage magnitude and angle must be estimated

    in per unit, the nominal voltage magnitude is 1in per unit, the nominal voltage magnitude is 1 pupu

    the angles are generally close together, so an initial value ofthe angles are generally close together, so an initial value of00

    degrees is appropriatedegrees is appropriate

    GG S id lS id l P Fl S l tiP Fl S l ti

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    36/49

    BEE 3243 Electric Power Systems Module 5 3636

    GaussGauss--SeidalSeidal Power Flow SolutionPower Flow SolutionFor theFor the generator busesgenerator buses, the real power and voltage, the real power and voltage

    magnitude are known,magnitude are known,

    the real power is scheduledthe real power is scheduled

    the reactive power is computed based on the estimated voltagethe reactive power is computed based on the estimated voltage

    valuesvalues

    the voltage is computed by Gaussthe voltage is computed by Gauss--Seidel, only the imaginarySeidel, only the imaginary

    part is keptpart is kept

    the complex voltage is found from the magnitude and thethe complex voltage is found from the magnitude and the

    iterative imaginary partiterative imaginary part

    Li Fl d LLi Fl d L

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    37/49

    BEE 3243 Electric Power Systems Module 5 3737

    Line Flows and LossesLine Flows and Losses

    After solving for bus voltages and angles,After solving for bus voltages and angles, powerpowerflowsflows

    andand losseslosses

    on the network branches areon the network branches are

    calculated.calculated.Transmission lines and transformers are networkTransmission lines and transformers are network

    branchesbranches

    The direction of positive current flow are defined asThe direction of positive current flow are defined asfollows for a branch element (demonstrated on afollows for a branch element (demonstrated on a

    medium length line)medium length line)

    Power flow is defined for each end of the branchPower flow is defined for each end of the branch

    Li Fl d LLi Fl d L

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    38/49

    BEE 3243 Electric Power Systems Module 5 3838

    Line Flows and LossesLine Flows and Losses

    ExampleExample: the power leaving: the power leaving bus ibus i and flowing toand flowing tobus jbus j::

    Li Fl d LLi Fl d L

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    39/49

    BEE 3243 Electric Power Systems Module 5 3939

    Line Flows and LossesLine Flows and Losses

    Current and power flowsCurrent and power flows::

    Power lossesPower losses

    E lE ample

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    40/49

    BEE 3243 Electric Power Systems Module 5 4040

    ExampleExample

    a)a) Using theUsing the GaussGauss--Seidel methodSeidel method, determine the, determine the phasorphasor values of thevalues of the voltagevoltage at the load buses 2 and 3, accurateat the load buses 2 and 3, accurate

    to 4 decimal places.to 4 decimal places.

    b)b) Find the slack busFind the slack bus PP andand QQ..c)c)

    Determine theDetermine the line flowsline flows

    andand line lossesline losses. Construct a. Construct a

    power flow diagrampower flow diagram

    showing the direction of the line flow.showing the direction of the line flow.

    1

    2

    3

    E lExample

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    41/49

    BEE 3243 Electric Power Systems Module 5 4141

    ExampleExample

    Line admittances:Line admittances:

    AtAt PP--Q busesQ buses, the complex loads in, the complex loads in p.up.u.:.:3216

    025.00125.0

    1

    301003.001.0

    1

    2010

    04.002.0

    1

    23

    13

    12

    jj

    y

    jj

    y

    j

    j

    y

    p.u.452.0386.1

    p.u.102.1566.2

    3

    2

    jS

    jS

    sch

    sch

    a)

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    42/49

    ExampleExample

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    43/49

    BEE 3243 Electric Power Systems Module 5 4343

    ExampleExample

    For 2For 2ndnd

    iteration,iteration,

    0353.00011.1

    )6226(

    )031.09825.0)(3216()005.1)(3010(00.1

    452.0386.1

    2313

    )1(223113)0(*

    3

    33

    )1(3

    j

    j

    jjjjjj

    yy

    VyVyV

    jQP

    V

    schsch

    052.09816.0

    )5226(

    )0353.00011.1)(3216()005.1)(2010(031.09825.0

    102.1566.2

    )2(2

    j

    j

    jjjjj

    j

    V

    ExampleExample

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    44/49

    BEE 3243 Electric Power Systems Module 5 4444

    ExampleExample

    The remaining iterations until the solution isThe remaining iterations until the solution isconverged with an accuracy of 5 x 10converged with an accuracy of 5 x 10--55

    p.up.u.:.:

    0459.00008.1

    )6226(

    )052.09816.0)(3216()005.1)(3010(0353.00011.1452.0386.1

    )1(3

    j

    j

    jjjjjj

    V

    0500.00000.10600.09800.0

    0500.00000.10599.09801.0

    0499.00001.10598.09801.0

    0497.00002.10594.09803.0

    0488.00004.10578.09808.0

    )7(3

    )7(2

    )6(3

    )6(2

    )5(3

    )5(2

    )4(3

    )4(2

    )3(3

    )3(2

    jVjV

    jVjV

    jVjV

    jVjV

    jVjV

    Final solution

    ExampleExample

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    45/49

    BEE 3243 Electric Power Systems Module 5 4545

    ExampleExample

    The slack bus power:The slack bus power:b)

    Mvar189MW5.409

    p.u.890.1095.4

    )]05.00.1)(3010()06.098.0)(2010()5020(05.1[05.1

    )]()([ 31321213121*

    111

    j

    j

    jjjjj

    VyVyyyVVjQP

    ExampleExample

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    46/49

    BEE 3243 Electric Power Systems Module 5 4646

    ExampleExample

    Line currents:Line currents:c)

    48.064.0

    48.064.0)]05.00.1()06.098.0)[(3216()(

    0.10.2

    0.10.2)]05.00.1()005.1)[(3010()(8.09.1

    8.09.1)]06.098.0()005.1)[(2010()(

    2332

    322323

    1331

    311313

    1221

    211212

    jII

    jjjjVVyI

    jII

    jjjjVVyIjII

    jjjjVVyI

    ExampleExample

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    47/49

    BEE 3243 Electric Power Systems Module 5 4747

    ExampleExample

    The line flows are:The line flows are:

    Mvar8.44MW4.66

    p.u.448.0664.0)48.064.0)(05.00.1(

    Mvar243MW6.65

    p.u.432.0656.0)48.0656.0)(06.098.0(

    Mvar0.90MW0.205

    p.u.90.005.2)0.10.2)(05.00.1(

    Mvar0.105MW0.210

    p.u.05.11.2)0.10.2)(0.005.1(

    Mvar0.67MW0.191p.u.67.091.1)8.09.1)(06.098.0(

    Mvar0.84MW5.199

    p.u.84.0995.1)8.09.1)(0.005.1(

    *

    32332

    *23223

    *31331

    *13113

    *

    21221

    *12112

    j

    jjjIVS

    .j

    jjjIVS

    j

    jjjIVS

    j

    jjjIVS

    jjjjIVS

    j

    jjjIVS

    ExampleExample

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    48/49

    BEE 3243 Electric Power Systems Module 5 4848

    ExampleExample

    Line losses are:Line losses are:

    Mvar60.1MW8.0Mvar0.15MW0.5

    Mvar0.17MW5.8

    322323

    311313

    211212

    jSSS

    jSSS

    jSSS

    L

    L

    L

    ExampleExample

  • 8/3/2019 Module 6 Introduction to Power Flow Studies

    49/49

    ExampleExample

    409.5

    191

    65.6

    66.4

    44.8

    67.0

    43.2

    205

    90.0

    199.5

    84.0

    210.0

    105.0

    189

    256.6

    138.6

    110.2

    45.2

    (8.5)

    (17.0)

    (5)

    (15)

    (0.8)(1.6)

    The power flow diagram:The power flow diagram: