modul 03 siskom2 signal space

17
Modul #03 TE3223 TE3223 SISTEM KOMUNIKASI SISTEM KOMUNIKASI 2 SIGNAL SPACE ANALYSIS Program Studi S1 Teknik Telekomunikasi Departemen Teknik Elektro - Sekolah Tinggi Teknologi Telkom Bandung – 2008

Upload: rizky-wahyudi

Post on 06-Jul-2016

8 views

Category:

Documents


3 download

DESCRIPTION

signal space

TRANSCRIPT

Page 1: Modul 03 Siskom2 Signal Space

Modul #03

TE3223 TE3223 SISTEM KOMUNIKASI SISTEM KOMUNIKASI 22

SIGNAL SPACE ANALYSIS

Program Studi S1 Teknik TelekomunikasiDepartemen Teknik Elektro - Sekolah Tinggi Teknologi Telkomp gg g

Bandung – 2008

Page 2: Modul 03 Siskom2 Signal Space

Signal space?What is a signal space?

Vector representations of signals in an N-dimensional orthogonal spaceorthogonal space

Why do we need a signal space?It is a means to convert signals to vectors and vice versa.It is a means to calculate signals energy and Euclidean distances between signals.

Why are we interested in Euclidean distancesWhy are we interested in Euclidean distances between signals?

For detection purposes: The received signal is p p gtransformed to a received vectors. The signal which has the minimum distance to the received signal is estimated as the transmitted signal.

2

g

Modul 3 - Siskom 2 - Signal Space

Page 3: Modul 03 Siskom2 Signal Space

Schematic example of a signal space)(2 tψ

),( 12111 aa=s

)(1 tψ),( 21 zz=z

)(s

),( 32313 aa=s

),( 21

)()()()(),()()()( 121112121111

aatatatsaatatats

⇔+=⇔+=

ss

ψψψψ

),( 22212 aa=s

Transmitted signal

),()()()(),()()()(),()()()(

212211

323132321313

222122221212

zztztztzaatatatsaatatats

=⇔+==⇔+==⇔+=

zss

ψψψψψψg

alternatives

Received signal at t h d filt t t 212211matched filter output

3Modul 3 - Siskom 2 - Signal Space

Page 4: Modul 03 Siskom2 Signal Space

Signal spaceTo form a signal space, first we need to know the inner product between two signals (functions):

Inner (scalar) product:

∫∞

∞−

>=< dttytxtytx )()()(),( *

= cross correlation between x(t) and y(t)

Properties of inner product:= cross-correlation between x(t) and y(t)

><>=< )(),()(),( tytxatytax ><>< )(),()(),( tytxatytax

><>=< )(),()(),( * tytxataytx

)()()()()()()( ttttttt ><+>>=<+< )(),()(),()(),()( tztytztxtztytx

4Modul 3 - Siskom 2 - Signal Space

Page 5: Modul 03 Siskom2 Signal Space

Signal space – cont’dThe distance in signal space is measure by calculating the norm.What is norm?What is norm?

Norm of a signal:

Edttxtxtxtx >< ∫∞ 2)()()()( xEdttxtxtxtx ==><= ∫ ∞−

)()(),()(

)()( txatax == “length” of x(t)

Norm between two signals:

)()(

)()( tytxd −=

We refer to the norm between two signals as the E clidean distance bet een t o signals

)()(, tytxd yx =

Euclidean distance between two signals.5Modul 3 - Siskom 2 - Signal Space

Page 6: Modul 03 Siskom2 Signal Space

Example of distances in signal space

)(2 tψ),( 12111 aa=s

)(tψzsd ,1

1E

)(1 tψ),( 21 zz=z

dzsd ,3

3E

2E

),( 22212 aa=s

),( 32313 aa=s zsd ,2zs ,3 2

The Euclidean distance between signals z(t) and s(t):

)()()()( 222

211, −+−=−= zazatztsd iiizsi

3,2,1=i

6Modul 3 - Siskom 2 - Signal Space

Page 7: Modul 03 Siskom2 Signal Space

Signal space - cont’dN di i l th l i l iN-dimensional orthogonal signal space is characterized by N linearly independent functions

called basis functions. The basis functions{ }Nj t)(ψ called basis functions. The basis functions

must satisfy the orthogonality condition{ }

jj t1

)(=

ψ

T Tt ≤≤0

h

jiijiji Kdttttt δψψψψ =>=< ∫ )()()(),( *

0

Tt ≤≤0Nij ,...,1, =

where

⎩⎨⎧

≠→=→

=jiji

ij 01

δ ∫Ψ==T

iii dttEK0

2 ).(

If all the signal space is orthonormal

⎩ ≠→ ji0 0

1=KIf all , the signal space is orthonormal.

7Modul 3 - Siskom 2 - Signal Space

1=iK

Page 8: Modul 03 Siskom2 Signal Space

Example of an orthonormal basis functionsExample: 2-dimensional orthonormal signalExample: 2 dimensional orthonormal signal space

0)/2cos(2)(1⎪⎪⎧

<≤= TtTtT

t πψ )(2 tψ

0)/2sin(2)(2⎪⎪⎩

⎪⎨

<≤= TtTtT

t

T

πψ)(tψ

0)()()(),( 20

121 =>=< ∫ dtttttT

ψψψψ

)(1 tψ0

Example: 1-dimensional orthonornal signal space

1)()( 21 == tt ψψ

)(1 tψ

T1 1)(1 =tψ

)(1 tψ0

T t08Modul 3 - Siskom 2 - Signal Space

Page 9: Modul 03 Siskom2 Signal Space

Signal space – cont’dAn arbitrar finite set of a eforms { }Mts )(Any arbitrary finite set of waveforms where each member of the set is of duration T, can be expressed as a linear combination of N

{ }ii ts 1)( =

can be expressed as a linear combination of N orthonogal waveforms where .{ }N

jj t1

)(=

ψ MN ≤N

where

∑=

=N

jjiji tats

1

)()( ψ Mi ,...,1=MN ≤

where

dtttsK

ttsK

aT

jij

jij

ij )()(1)(),(1

0

*∫>=<= ψψ Tt ≤≤0Mi ,...,1=Nj ,...,1=

jj 0

),...,,( 21 iNiii aaa=s2

1ij

N

jji aKE ∑

=

=Vector representation of waveformVector representation of waveform Waveform energy

9Modul 3 - Siskom 2 - Signal Space

Page 10: Modul 03 Siskom2 Signal Space

Signal space - cont’dN

∑=

=N

jjiji tats

1

)()( ψ ),...,,( 21 iNiii aaa=s

)(1 tψ)(1 tψ

Waveform to vector conversion Vector to waveform conversion

⎥⎥⎤

⎢⎢⎡ iaM1

1ia

)(tsi

∫T

0⎥⎤

⎢⎡ iaM1

s)(tsi

1ia

ms

⎥⎥⎦⎢

⎢⎣ iNaM )(tNψ

a

)(i

∫T

)(tNψ

⎥⎥⎥

⎦⎢⎢⎢

⎣ iNaM ms=

a iNa∫0 iNa

10Modul 3 - Siskom 2 - Signal Space

Page 11: Modul 03 Siskom2 Signal Space

Example of projecting signals to an orthonormalsignal space

)(2 tψ )(2 tψ),( 12111 aa=s

)(1 tψ

),( 32313 aa=s

),()()()( 121112121111 aatatats =⇔+= sψψ

),( 22212 aa=s

Transmitted signal

),()()()(),()()()(

),()()()(

323132321313

222122221212

121112121111

aatatatsaatatats

=⇔+==⇔+=

ss

ψψψψψψTransmitted signal

alternatives

T

dtttsaT

jiij )()(0∫= ψ Tt ≤≤0Mi ,...,1=Nj ,...,1=

11Modul 3 - Siskom 2 - Signal Space

Page 12: Modul 03 Siskom2 Signal Space

Signal space – cont’dTo find an orthonormal basis f nctions for a gi enTo find an orthonormal basis functions for a given set of signals, Gram-Schmidt procedure can be used.Gram-Schmidt procedure:

Given a signal set , compute an orthonormalb i

{ }Mii ts 1)( =

{ }basis1. Define2. For compute

{ }Njj t

1)(

)(/)(/)()( 11111 tstsEtst ==ψMi ,...,2= ∑

><−=1

)()(),()()(i

jjiii tttststd ψψIf letIf , do not assign any basis function.

3. Renumber the basis functions such that basis is

=1j0)( ≠tdi)(/)()( tdtdt iii =ψ

0)( =tdi

This is only necessary if for any i in step 2.

{ })(),...,(),( 21 ttt Nψψψ

0)( =tdiy y y pNote that

)(i

MN ≤

12Modul 3 - Siskom 2 - Signal Space

Page 13: Modul 03 Siskom2 Signal Space

Example of Gram-Schmidt procedure

Find the basis functions and plot the signal space for the following transmitted signals:

)(1 ts )(2 ts

T t

)(1

T t

)(2 ts

TA

A−0

0

Using Gram-Schmidt procedure:

T t T0

)( )()()(

)()(

21

12

11

AAtAts

tAts

−==−=

=

ssψ

ψ)(1 tψ

T1

/)(/)()(

)(

1111

0

2211

==

== ∫AtsEtst

AdttsET

ψ

1

)()( 21

)(tψ1s2sT t0

0)()()()(

)()()(),(

)()()(

122

0 1212

1111

=−−=

−=>=< ∫tAtstd

AdtttsttsT

ψ

ψψ

ψ

2

)(1 tψ-A A0

0)()()()( 122 tAtstd ψ

13Modul 3 - Siskom 2 - Signal Space

Page 14: Modul 03 Siskom2 Signal Space

Implementation of matched filter receiver

)(1 Tz

Bank of N matched filters

)(1 tz

)(tr

)(1 Tz)(1 tT −∗ψ Observation

vector

⎥⎥⎤

⎢⎢⎡z1

z= z

1

)( tTN −∗ψ)(TzN

⎥⎥⎦⎢

⎢⎣ Nz

)(tzN

∑=N

tats )()( ψ Mi 1

)(N

N1

),...,,( 21 Nzzz=z∑=

=j

jiji tats1

)()( ψ

MN ≤Mi ,...,1=

)()( tTtrz jj −∗= ψ Nj ,...,1=

14Modul 3 - Siskom 2 - Signal Space

Page 15: Modul 03 Siskom2 Signal Space

Implementation of correlator receiver

T

)(1 tψz

Bank of N correlators

∫T

0

)( ⎥⎥⎤

⎢⎢⎡zM1

z=)(tr

1z

z Observationvector

∫T

0

)(tNψ

⎥⎥⎦⎢

⎢⎣ NzM

Nz

vector

∫0 N

∑=

=N

jjiji tats

1

)()( ψ Mi ,...,1=

),...,,( 21 Nzzz=z

Nj 1=dtttrzT

)()( ψ∫=

=j 1

MN ≤

Nj ,...,1=dtttrz jj )()(0

ψ∫=15Modul 3 - Siskom 2 - Signal Space

Page 16: Modul 03 Siskom2 Signal Space

Example of matched filter receivers using basic functions

)(1 ts )(2 ts )(1 tψ

T1

TA

T tT t

T t0TA−0

0

1 matched filter)()( 11 ttT ψψ =−

1 )(1 Tz)(tz[ ]1z z=)(tr z

T t

T1

0

)(1z)(1 tz

Number of matched filters (or correlators) is reduced by 1 compared to i t h d filt ( l t ) t th t itt d i lusing matched filters (correlators) to the transmitted signal.

16Modul 3 - Siskom 2 - Signal Space

Page 17: Modul 03 Siskom2 Signal Space

White noise in orthonormal signal space

AWGN n(t) can be expressed as)(~)(ˆ)( )(~)(ˆ)( tntntn +=

Noise projected on the signal space Noise outside on the signal spacep j g pwhich impacts the detection process.

Noise outside on the signal space

)()(ˆ tntnN

jj∑= ψ )(ˆ

>=< )(),( ttnn jj ψ

)()(~

)()(1

tntnj

jj∑=

ψ

Nj ,...,1=Nj 1

Vector representation of

),...,,( 21 Nnnn=n)(ˆ tn

{ }Nn0)(),(~ >=< ttn jψ Nj ,...,1= independent zero-mean

Gaussain random variables with

variance

{ }jjn

1=

2/)var( 0Nnj =variance 2/)var( 0Nnj

17Modul 3 - Siskom 2 - Signal Space