modélisation électromagnétique des interactions ondes

41
Research & Development March 2006 Modélisation électromagnétique des interactions ondes personnes Man-Faï Wong, Joe Wiart France Télécom Recherche & Développement [email protected]

Upload: others

Post on 01-Aug-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Modélisationélectromagnétique des interactions ondes personnes

Man-Faï Wong, Joe WiartFrance Télécom Recherche & Dé[email protected]

Page 2: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Context

Tremendous development of mobile communicationsPublic concerns about health impactAuthorities have established guidelines and

recommendationsGuidelines exist (ICNIRP, IEEE)In 1999 EU council has output recommendationsState of the art dosimetry basis for the standards

No evidence of health effects below the limitsWorldwide Research goes on

High quality dosimetry needed

Page 3: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Outline

The objectives of DosimetryMethodologySamples of dosimetry applied to

Mobile phonesBase station antennas

Challenges of future radio systems

Page 4: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Estimate the field levels induced by a mobile phone and a base station in operational mode

Know the field levels in the tissues to allow biologists to conclude

The objectives of Dosimetry

Estimate the fields or theabsorbed power to analyse the complianceto standards

SAR < 2 Watts/kg ?

Page 5: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Methodology

Characterisation of the sources

Physical Quantities

Methods

E field, H field, Power density, SAR

Distribution, Absolute Value

Frequency, Modulation, time-

varying characteristics

Near field/Far field

Huygens principle

Simulation tools : what if scenarios,

extrapolation, cost effective

Measurement tools : real, asked for

by the public

Complementary

Page 6: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Mobile numerical dosimetry

MRI segmentation for head tissue modellingPhone modelling

FDTD (Finite Difference Time Domain, Yee 1966), method of choice

E field SAR averagedover 10g of tissue

²2ESA R σρ

=

Page 7: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Dosimetry and Children exposure

Page 8: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

SAR in children head

RNRT RNRT

ADONIS ADONIS

The questionsIs child exposure comparable to adult exposure?Is SAM conservative for children?

To answer we need children head models to compare to adult and SAM

- heads derived from adult?- heads coming from MRI?

Page 9: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Child Head model based on adult

Morphing based on external shape is possible

Nevertheless organs have specific growth and analysis

using morphing approach has to be handled

carefully.

Page 10: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Phone positioning and ear shape influence

The positioning of the phone inducesuncertainties

Ear dimensions

Length auricle (mm)

Width auricle (mm)

Depth ear (mm)

Case 1 56 33 2 Case 2 58 35 4 Case 3 60 37 6 Case 4 63 38 8 Case 5 59 33 10

E ar L en g th o f th e au ric le

W id th o f th e au ric le

D ep th o f th e ear

1 2 y . o ld C h ild h ead

5 9 m m 3 3 m m 1 0 m m

1 2 yea rs a g e c la ss

5 9 ,6 ± 3 ,6 (m m )

3 5 ,3 ± 2 ,3 (m m )

6 ± 4 (m m )

T A B L E I: E A R D IM E N S IO N S O F C H IL D H E A D O F 1 2 Y E A R S O L D

The ear shape inducesuncertainties

Page 11: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Handset model

PATCHPATCH

Monopole + boxMonopole + box

Page 12: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Child like versus SAM

Normalized Max SAR over 10 g at 1900 MHz

00,20,40,6

0,81

1,2

Sam cheek Sam Tilt Child cheek Child tilt

Normalized Max SAR over 10 g at 835 MHz

00,20,40,6

0,81

1,2

Sam cheek Sam Tilt Child cheek Child tilt

Study carried out with the international intercomparison

SAM can be considered as conservative

The IEEE Child like head is coming from Japan (Nagoya Institute of Technology)

Page 13: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Children Head models based on MRI

December 2004 model developped- 4 years old- 5 years old- 9 years old- 12 years old

4 yearsold

5 yearsold

12 yearsold

Page 14: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Comparisons

Modèle tête

Freq. (MHz)

Tête Adulte

CL 12 ans

Child 12 ans

CL 4ans

Child 4 ans

900 58 % 59 % 53 % 55 % 58 % 1800 32 % 34 % 32 % 28 % 36 % 2100 42 % 45 % 40 % 42 % 46 % 835 55 % 51 % 60 % 53 % 60 % 1900 35 % 37 % 44 % 30 % 50 %

adulte 12 ans 4 ans CL 12 ans CL 4 ans

Page 15: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Comparisons

0

0,5

1

1,5

2

900 1800 2100 835 1900Frequency "MHz"

Peak

SA

R o

ver

10g

(W/k

g) Adult head CL 12 years old 12 years oldCL 4 years old 4 years old

0,0

0,2

0,4

0,6

0,8

1,0

1,2

Adult head CL 12 y.o 12 y.o CL 4 y.o 4 y.o

Peak

SA

R ov

er 1

g (W

/kg)

Skin Muscle Bone CSF Brain

900 MHz

Page 16: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Whole body exposure ofworkers

Page 17: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Hybrid MoM/FDTD

Two stepsSource modeling with MoM or

other technique or measurementFDTD calculation of SAR with

incident field on Huygens box

One-way coupling

Page 18: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Exposure to UMTS antenna

177 cm

"Zubal"• 3.6 mm x 3.6 mm x 3.6 mm• 78 kg• 31 tissues

56.6 cm

12.6 cm

14 cm

4.2 cm

5.6 cm

UMTS (2140 MHz)• FEKO •7 cm dipoles (4)• Quarter wavelength fromreflector

Page 19: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Antenna modeling comparison

FDTD FEKO + FDTD Différence S (W/m2)

Page 20: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Electric field strength distribution comparison

Antenna in free space Antenna with the body

Observation plane

Observation plane

30cm

Page 21: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

SAR distribution comparison

FDTD FEKO + FDTD

Page 22: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Comparisons FDTD vs FEKO+FDTD

0 20 40 60 80 1002

2.5

3

3.5

4

4.5

5

5.5

who

le b

ody

SA

R (

mW

/Kg)

Distance (cm)

FDTDFDTD + FEKO

0 20 40 60 80 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SA

R10

g with

in th

e tr

unc

(W/K

g)

Distance (cm)

FDTDFDTD + FEKO

Page 23: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Dosimetry and new usage

Page 24: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Dosimetry and body worn

Body Worn: Is the "head" liquid applicable to body worn estimation?

Page 25: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Multilayer model : plane waves

Layers thickness and occurrence coming from VHMulti-layers approachComparison to homogeneous structure

Plane Wave

Page 26: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Plane waves results

Page 27: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Multlayer model: dipole

Page 28: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Dipole results (1/3)

Page 29: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Dipole results (2/3)

Page 30: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Dipole results (3/3)

Page 31: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Dosimetry and base station antennas

Page 32: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Human exposure from Base station

Public concerns on fields emitted by BSA close to living areasExpert groups recommend information

EMF VisualEMF Visual

Field levelsPublic Compliance Boundary

Page 33: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Specific antenna model is needed

Near field is able to be described using full wave analysis

These approaches ( MoM, FDTD, FEM…) - Are accurate - Quite heavy compared to the objective- Should be waste of time if the environment is not perfectly known

Far field gain is easy to use but inaccurate in the near fieldNew and specific approach is needed in the vicinity of the base station

Page 34: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Specificity of radio base station

Sub-antenna

λλ

λ 22;2=≥≈

DRD

∑=

≅cellsN

i

icell PEPE

1)()(

Far field zone of sub-antenna :

( ) ( )iijkR

i

iiicell

icelli

cellie

RGP

PE φθρφθ

,ˆ,30)( −≅

the field is the superposition of the field emitted by each sub-antenna

P

Page 35: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Synthesis problemGiven the antenna characteristics (sub-antennas are known), find the power distribution

Genetic Algorithm can be used

The cost function based on the maxima of the far field gain

p

r1

r2

r3

r4

α12 Pin

α22 Pin

α32 Pin

α42 Pin

(b)

(a)

Page 36: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Real antenna model K739636

Optimized power feedpattern (amplitude)

Optimized power feed pattern (phase)

E field 5m in front of the antennaon a vertical line

Compliance distance vs Input Power

Page 37: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Perfectly matched model

Synthesis problem : “Given the antenna characteristics, find

the sub-antennas (sub-antenna gain patterns and the power

distribution)”

Spherical harmonics decomposition of the sub-antennas and

of the whole antenna

Page 38: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Spherical waves expansion

Spherical modes spectrum: optimal representation of the EM fields

∑∑ ∑= = −=

=2

1 1),,(

s

N

n

n

nmsmnsmn rFE φθζr

y

x

O

O'

x'

y'

z'A

[ ]⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

=

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

×

NNN

N

sub

subMM MM

2

101

111

2

1

321

ζ

ζζ

χ

χχ

MML

Page 39: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

K 739662

MeasurementMeasurement

Optimal modelOptimal model

Page 40: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Reduced modelBase station antenna

8 cells96 modes / cell1 λ spaced

4 cells160 modes / cell2 λ spaced

P

Page 41: Modélisation électromagnétique des interactions ondes

Research & Development March 2006

Challenges in Electromagnetic ModellingFine details of the field (distribution and absolute levels)

from the source (close to tissues)in the tissues

Need of fine tissue modellingSegmentation <1mmHead models for children

Staircasing of FDTD issue, modelling of the sourceSubgriddingAdvanced numerical algorithmsHybridization of techniquesCoupling to other physics

(thermal, cellular, …)