modified fock-schwinger method - kyoto u

52
IABLOKOV S.N. [1,2] and KUZNETSOV A.V. [1] 19.01.2021 Modified Fock-Schwinger method [1] P.G. Demidov Yaroslavl State University, Yaroslavl, Russia [2] A.A. Kharkevich Institute for Information Transmission Problems, Moscow, Russia simplifies calculation of charged particle propagators in a constant magnetic field

Upload: others

Post on 06-Apr-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modified Fock-Schwinger method - Kyoto U

IABLOKOV S.N. [1,2] and KUZNETSOV A.V. [1]

19.01.2021

Modified Fock-Schwinger method

[1] P.G. Demidov Yaroslavl State University, Yaroslavl, Russia

[2] A.A. Kharkevich Institute for Information Transmission Problems, Moscow, Russia

simplifies calculation of charged particle propagators in a constant magnetic field

Page 2: Modified Fock-Schwinger method - Kyoto U

2 approaches to find propagators

Canonical quantization

“Sum over solutions”

2

Page 3: Modified Fock-Schwinger method - Kyoto U

2 approaches to find propagators

Canonical quantization Path integral formalism

“Sum over solutions” Propagator equation

3

Page 4: Modified Fock-Schwinger method - Kyoto U

Sum over solutions: main features

Obtain general form

4

Orthogonalization & normalization

Sum over polarizations

Find polarizations vectors

Page 5: Modified Fock-Schwinger method - Kyoto U

Propagator equation: main features

Obtain general form

Orthogonalization & normalization

Sum over polariations

Find polarizations vectors

5

𝐻 𝑥, 𝜕𝑥 𝑆 𝑥, 𝑥′ = 𝛿4(𝑥 − 𝑥′)

𝑆 𝑥, 𝑥′ = 𝑆 𝑥 − 𝑥′ = න𝑑4𝑝

2𝜋 4𝑒−𝑖 𝑝 𝑥−𝑥′

𝑆(𝑝)

Translational invariance is assumed

Page 6: Modified Fock-Schwinger method - Kyoto U

Propagator equation

Add external field

6

𝑖𝜕𝜇 → 𝑖𝐷𝜇 = 𝑖𝜕𝜇 + 𝑒𝑄𝐴𝜇(𝑥)

Page 7: Modified Fock-Schwinger method - Kyoto U

Propagator equation

Translational invariance is lostAdd external field

7

𝑖𝜕𝜇 → 𝑖𝐷𝜇 = 𝑖𝜕𝜇 + 𝑒𝑄𝐴𝜇(𝑥) 𝑆 𝑥, 𝑥′ ≠ 𝑆 𝑥 − 𝑥′

≠ න𝑑4𝑝

2𝜋 4𝑒−𝑖 𝑝(𝑥−𝑥′) 𝑆(𝑝)

Page 8: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

Let’s solve this equation for S(x,x’):

8

𝐻 𝑥, 𝜕𝑥 𝑆 𝑥, 𝑥′ = 𝛿(𝑥 − 𝑥′)

Page 9: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

Let’s solve this equation for S(x,x’): Choose a parametrization:

9

𝐻 𝑥, 𝜕𝑥 𝑆 𝑥, 𝑥′ = 𝛿(𝑥 − 𝑥′) 𝑆 𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 𝑈(𝑥, 𝑥′, 𝜏)

Ref: J.SchwingerPhys. Rev. 82, 664Published 1 June 1951

See also: FS method ina book on QFT byC. Itzykson, J.-B. Suber

Page 10: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

Let’s solve this equation for S(x,x’): Choose a parametrization:

10

𝐻 𝑥, 𝜕𝑥 𝑆 𝑥, 𝑥′ = 𝛿(𝑥 − 𝑥′) 𝑆 𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 𝑈(𝑥, 𝑥′, 𝜏)

𝐻 𝑥, 𝜕𝑥 𝑆 𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 𝐻 𝑥, 𝜕𝑥 𝑈(𝑥, 𝑥′, 𝜏) = 𝛿(𝑥 − 𝑥′)

Ref: J.SchwingerPhys. Rev. 82, 664Published 1 June 1951

See also: FS method ina book on QFT byC. Itzykson, J.-B. Suber

Page 11: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

In the FS method we demand the following:

11

𝐻 𝑥, 𝜕𝑥 𝑈 𝑥, 𝑥′, 𝜏 = 𝑖𝜕

𝜕𝜏𝑈 𝑥, 𝑥′, 𝜏

𝑈 𝑥, 𝑥′, 0 = 𝛿(𝑥 − 𝑥′) 𝑈 𝑥, 𝑥′, −∞ = 0

Page 12: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

In the FS method we demand the following:

12

𝐻 𝑥, 𝜕𝑥 𝑆 𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 𝐻 𝑥, 𝜕𝑥 𝑈 𝑥, 𝑥′, 𝜏

𝐻 𝑥, 𝜕𝑥 𝑈 𝑥, 𝑥′, 𝜏 = 𝑖𝜕

𝜕𝜏𝑈 𝑥, 𝑥′, 𝜏

𝑈 𝑥, 𝑥′, 0 = 𝛿(𝑥 − 𝑥′) 𝑈 𝑥, 𝑥′, −∞ = 0

Let’s check:

Page 13: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

In the FS method we demand the following:

13

𝐻 𝑥, 𝜕𝑥 𝑆 𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 𝐻 𝑥, 𝜕𝑥 𝑈 𝑥, 𝑥′, 𝜏

𝐻 𝑥, 𝜕𝑥 𝑈 𝑥, 𝑥′, 𝜏 = 𝑖𝜕

𝜕𝜏𝑈 𝑥, 𝑥′, 𝜏

𝑈 𝑥, 𝑥′, 0 = 𝛿(𝑥 − 𝑥′) 𝑈 𝑥, 𝑥′, −∞ = 0

Let’s check:

Page 14: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

In the FS method we demand the following:

14

𝐻 𝑥, 𝜕𝑥 𝑆 𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 𝑖𝜕

𝜕𝜏𝑈 𝑥, 𝑥′, 𝜏

𝐻 𝑥, 𝜕𝑥 𝑈 𝑥, 𝑥′, 𝜏 = 𝑖𝜕

𝜕𝜏𝑈 𝑥, 𝑥′, 𝜏

𝑈 𝑥, 𝑥′, 0 = 𝛿(𝑥 − 𝑥′) 𝑈 𝑥, 𝑥′, −∞ = 0

Let’s check:

Page 15: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

In the FS method we demand the following:

15

𝐻 𝑥, 𝜕𝑥 𝑆 𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 𝑖𝜕

𝜕𝜏𝑈 𝑥, 𝑥′, 𝜏 = 𝑈 𝑥, 𝑥′, 0 − 𝑈 𝑥, 𝑥′, −∞

𝐻 𝑥, 𝜕𝑥 𝑈 𝑥, 𝑥′, 𝜏 = 𝑖𝜕

𝜕𝜏𝑈 𝑥, 𝑥′, 𝜏

𝑈 𝑥, 𝑥′, 0 = 𝛿(𝑥 − 𝑥′) 𝑈 𝑥, 𝑥′, −∞ = 0

Let’s check:

Page 16: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

In the FS method we demand the following:

16

𝐻 𝑥, 𝜕𝑥 𝑆 𝑥, 𝑥′ = 𝑈 𝑥, 𝑥′, 0 − 𝑈 𝑥, 𝑥′, −∞

𝐻 𝑥, 𝜕𝑥 𝑈 𝑥, 𝑥′, 𝜏 = 𝑖𝜕

𝜕𝜏𝑈 𝑥, 𝑥′, 𝜏

𝑈 𝑥, 𝑥′, 0 = 𝛿(𝑥 − 𝑥′) 𝑈 𝑥, 𝑥′, −∞ = 0

Let’s check:

Page 17: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

In the FS method we demand the following:

17

𝐻 𝑥, 𝜕𝑥 𝑆 𝑥, 𝑥′ = 𝑈 𝑥, 𝑥′, 0 − 𝑈 𝑥, 𝑥′, −∞ = 𝛿(𝑥 − 𝑥′)

𝐻 𝑥, 𝜕𝑥 𝑈 𝑥, 𝑥′, 𝜏 = 𝑖𝜕

𝜕𝜏𝑈 𝑥, 𝑥′, 𝜏

𝑈 𝑥, 𝑥′, 0 = 𝛿(𝑥 − 𝑥′) 𝑈 𝑥, 𝑥′, −∞ = 0

Let’s check:

Page 18: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

In the FS method we demand the following:

18

𝐻 𝑥, 𝜕𝑥 𝑆 𝑥, 𝑥′ = 𝛿(𝑥 − 𝑥′)

𝐻 𝑥, 𝜕𝑥 𝑈 𝑥, 𝑥′, 𝜏 = 𝑖𝜕

𝜕𝜏𝑈 𝑥, 𝑥′, 𝜏

𝑈 𝑥, 𝑥′, 0 = 𝛿(𝑥 − 𝑥′) 𝑈 𝑥, 𝑥′, −∞ = 0

Let’s check:

Page 19: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

Solving this Schroedinger-type equation…

19

𝐻 𝑥, 𝜕𝑥 𝑈 𝑥, 𝑥′, 𝜏 = 𝑖𝜕

𝜕𝜏𝑈 𝑥, 𝑥′, 𝜏

𝑈 𝑥, 𝑥′, 0 = 𝛿(𝑥 − 𝑥′) 𝑈 𝑥, 𝑥′, −∞ = 0

Page 20: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

Solving this Schroedinger-type equation…

20

𝑈 𝑥, 𝑥′, 𝜏 = e−i𝜏𝐻 𝑥,𝜕𝑥 + 𝜏 𝛿(𝑥 − 𝑥′)

𝐻 𝑥, 𝜕𝑥 𝑈 𝑥, 𝑥′, 𝜏 = 𝑖𝜕

𝜕𝜏𝑈 𝑥, 𝑥′, 𝜏

𝑈 𝑥, 𝑥′, 0 = 𝛿(𝑥 − 𝑥′) 𝑈 𝑥, 𝑥′, −∞ = 0

…one obtains the following result:

Page 21: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

21

Finally, the solution of

is the following expression:

𝑆 𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 e−i𝜏𝐻+ 𝜏 𝛿(𝑥 − 𝑥′)

𝐻 𝑥, 𝜕𝑥 𝑆 𝑥, 𝑥′ = 𝛿(𝑥 − 𝑥′)

Page 22: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

22

What’s next?

𝑆 𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 e−i𝜏𝐻+ 𝜏 𝛿(𝑥 − 𝑥′)

Page 23: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

23

What’s next?

𝑆 𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 e−i𝜏𝐻+ 𝜏 𝛿(𝑥 − 𝑥′)

In the original FS method we actually usethis result to further “massage” theoriginal differential equation:

𝑯 𝒙, 𝝏𝒙 𝑼 𝒙, 𝒙′, 𝝉 = 𝒊𝝏

𝝏𝝉𝑼 𝒙, 𝒙′, 𝝉

Page 24: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

24

What’s next?

𝑆 𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 e−i𝜏𝐻+ 𝜏 𝛿(𝑥 − 𝑥′)

In the original FS method we actually usethis result to further “massage” theoriginal differential equation:

𝑯 𝒙, 𝝏𝒙 𝑼 𝒙, 𝒙′, 𝝉 = 𝒊𝝏

𝝏𝝉𝑼 𝒙, 𝒙′, 𝝉

In the modified Fock-Schwinger (MFS)method one directly evaluates the actionof exponential operator on 𝛿-function:

𝒆−𝒊𝝉𝑯+𝜺𝝉 𝜹 𝒙 − 𝒙′ = …

Ref: S. N. IABLOKOV & A. V.KUZNETSOV, 2019 J. Phys.:Conf. Ser. 1390 012078

Ref: S. N. IABLOKOV & A. V.KUZNETSOV, Phys. Rev. D102, 096015 – Published 12November 2020

Page 25: Modified Fock-Schwinger method - Kyoto U

Modified Fock-Schwinger (MFS) method

Assume the following decomposition of 𝛿-function:

such that:

25

Page 26: Modified Fock-Schwinger method - Kyoto U

Modified Fock-Schwinger (MFS) method

26

Page 27: Modified Fock-Schwinger method - Kyoto U

Modified Fock-Schwinger (MFS) method

27

Page 28: Modified Fock-Schwinger method - Kyoto U

Modified Fock-Schwinger (MFS) method

28

Page 29: Modified Fock-Schwinger method - Kyoto U

Modified Fock-Schwinger (MFS) method

29

Page 30: Modified Fock-Schwinger method - Kyoto U

Application of MFS

30

Π𝜆Π𝜆 −𝑚2 𝛿 𝜌𝜇− 2𝑖𝑒𝑄𝐹 𝜌

𝜇− 1 − ൗ1 𝜉 Π𝜇Π𝜌 𝐺 𝜈

𝜌𝑥, 𝑥′ = 𝛿4 𝑥 − 𝑥′ 𝛿 𝜈

𝜇

𝐹 𝜌𝜇=

0 0 0 00 0 𝐵 00 −𝐵 0 00 0 0 0 𝜌

𝜇

Π𝜇 = 𝑖𝜕𝜇 + 𝑒𝑄𝐴𝜇(𝑥)

𝐴𝜇 = (0,0,−𝐵𝑥, 0)

Vector charged boson in a constant magnetic field:

Page 31: Modified Fock-Schwinger method - Kyoto U

Application of MFS

31

Π𝜆Π𝜆 −𝑚2 𝛿 𝜌𝜇− 2𝑖𝑒𝑄𝐹 𝜌

𝜇− 1 − ൗ1 𝜉 Π𝜇Π𝜌 𝐺 𝜈

𝜌𝑥, 𝑥′ = 𝛿4 𝑥 − 𝑥′ 𝛿 𝜈

𝜇

A B C𝐹 𝜌𝜇=

0 0 0 00 0 𝐵 00 −𝐵 0 00 0 0 0 𝜌

𝜇

Π𝜇 = 𝑖𝜕𝜇 + 𝑒𝑄𝐴𝜇(𝑥)

𝐴𝜇 = (0,0,−𝐵𝑥, 0)

A remarkable fact:

𝐴, 𝐵 = 0

Vector charged boson in a constant magnetic field:

Page 32: Modified Fock-Schwinger method - Kyoto U

Application of MFS

32

Π𝜆Π𝜆 −𝑚2 𝛿 𝜌𝜇− 2𝑖𝑒𝑄𝐹 𝜌

𝜇− 1 − ൗ1 𝜉 Π𝜇Π𝜌 𝐺 𝜈

𝜌𝑥, 𝑥′ = 𝛿4 𝑥 − 𝑥′ 𝛿 𝜈

𝜇

A B C

A remarkable fact:

𝐹 𝜌𝜇=

0 0 0 00 0 𝐵 00 −𝐵 0 00 0 0 0 𝜌

𝜇

Π𝜇 = 𝑖𝜕𝜇 + 𝑒𝑄𝐴𝜇(𝑥)

𝐴𝜇 = (0,0,−𝐵𝑥, 0)

𝐴 + 𝐵, 𝐶 = 0

𝐴, 𝐵 = 0

Vector charged boson in a constant magnetic field:

Page 33: Modified Fock-Schwinger method - Kyoto U

According to the MFS method:

Application of MFS

33

𝐺 𝜈𝜌

𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 e−i𝜏𝐻+ 𝜏𝜈

𝜌𝛿4 𝑥 − 𝑥′

A B C= Π𝜆Π𝜆 −𝑚2 𝛿 𝜌𝜇

= −2𝑖𝑒𝑄𝐹 𝜌𝜇 = − 1 − ൗ1 𝜉 Π𝜇Π𝜌

Page 34: Modified Fock-Schwinger method - Kyoto U

According to the MFS method:

Application of MFS

34

𝐺 𝜈𝜌

𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 e−i𝜏 𝐴+𝐵+𝐶 + 𝜏𝜈

𝜌𝛿4 𝑥 − 𝑥′

A B C= Π𝜆Π𝜆 −𝑚2 𝛿 𝜌𝜇

= −2𝑖𝑒𝑄𝐹 𝜌𝜇 = − 1 − ൗ1 𝜉 Π𝜇Π𝜌

𝐴 + 𝐵, 𝐶 = 0

𝐴, 𝐵 = 0

Page 35: Modified Fock-Schwinger method - Kyoto U

According to the MFS method:

Application of MFS

35

𝐺 𝜈𝜌

𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 e−i𝜏 𝐴+𝐵+𝐶 + 𝜏𝜈

𝜌𝛿4 𝑥 − 𝑥′

A B C= Π𝜆Π𝜆 −𝑚2 𝛿 𝜌𝜇

= −2𝑖𝑒𝑄𝐹 𝜌𝜇 = − 1 − ൗ1 𝜉 Π𝜇Π𝜌

𝐴 + 𝐵, 𝐶 = 0

𝐴, 𝐵 = 0

e−i𝜏 𝐴+𝐵+𝐶

Separating the exponent…

Page 36: Modified Fock-Schwinger method - Kyoto U

According to the MFS method:

Application of MFS

36

𝐺 𝜈𝜌

𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 e−i𝜏 𝐴+𝐵+𝐶 + 𝜏𝜈

𝜌𝛿4 𝑥 − 𝑥′

A B C= Π𝜆Π𝜆 −𝑚2 𝛿 𝜌𝜇

= −2𝑖𝑒𝑄𝐹 𝜌𝜇 = − 1 − ൗ1 𝜉 Π𝜇Π𝜌

𝐴 + 𝐵, 𝐶 = 0

𝐴, 𝐵 = 0

e−i𝜏 𝐴+𝐵+𝐶 = e−i𝜏 𝐶e−i𝜏 𝐴+𝐵

Separating the exponent…

Page 37: Modified Fock-Schwinger method - Kyoto U

According to the MFS method:

Application of MFS

37

𝐺 𝜈𝜌

𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 e−i𝜏 𝐴+𝐵+𝐶 + 𝜏𝜈

𝜌𝛿4 𝑥 − 𝑥′

A B C= Π𝜆Π𝜆 −𝑚2 𝛿 𝜌𝜇

= −2𝑖𝑒𝑄𝐹 𝜌𝜇 = − 1 − ൗ1 𝜉 Π𝜇Π𝜌

𝐴 + 𝐵, 𝐶 = 0

𝐴, 𝐵 = 0

e−i𝜏 𝐴+𝐵+𝐶 = e−i𝜏 𝐶e−i𝜏 𝐴+𝐵 = e−i𝜏 𝐶e−i𝜏 𝐵e−i𝜏 𝐴

Separating the exponent…

Page 38: Modified Fock-Schwinger method - Kyoto U

Application of MFS

38

𝐺 𝜈𝜇= −𝑖 න

−∞

0

𝑑𝜏 𝛿4 𝑥 − 𝑥′e+i𝜏 1− ൗ1 𝜉 Π𝜇Π𝜌 𝑒−2𝜏𝑒𝑄𝐹 𝜌

𝜇

e−i𝜏 Π𝜆Π𝜆−𝑚2 𝛿 𝜈

𝜇+ 𝜏

Page 39: Modified Fock-Schwinger method - Kyoto U

Application of MFS

39

𝐺 𝜈𝜇= −𝑖 න

−∞

0

𝑑𝜏 𝛿4 𝑥 − 𝑥′e+i𝜏 1− ൗ1 𝜉 Π𝜇Π𝜌 𝑒−2𝜏𝑒𝑄𝐹 𝜌

𝜇

e−i𝜏 Π𝜆Π𝜆−𝑚2 𝛿 𝜈

𝜇+ 𝜏

The expression has a nested structure:

Page 40: Modified Fock-Schwinger method - Kyoto U

Application of MFS

40

𝐺 𝜈𝜇= −𝑖 න

−∞

0

𝑑𝜏 𝛿4 𝑥 − 𝑥′e+i𝜏 1− ൗ1 𝜉 Π𝜇Π𝜌 𝑒−2𝜏𝑒𝑄𝐹 𝜌

𝜇

e−i𝜏 Π𝜆Π𝜆−𝑚2 𝛿 𝜈

𝜇+ 𝜏

Propagation of a scalar particle

The expression has a nested structure:

Page 41: Modified Fock-Schwinger method - Kyoto U

Application of MFS

41

𝐺 𝜈𝜇= −𝑖 න

−∞

0

𝑑𝜏 𝛿4 𝑥 − 𝑥′e+i𝜏 1− ൗ1 𝜉 Π𝜇Π𝜌 𝑒−2𝜏𝑒𝑄𝐹 𝜌

𝜇

e−i𝜏 Π𝜆Π𝜆−𝑚2 𝛿 𝜈

𝜇+ 𝜏

Propagation of a scalar particle

Accounting for a spin

The expression has a nested structure:

Page 42: Modified Fock-Schwinger method - Kyoto U

Application of MFS

42

𝐺 𝜈𝜇= −𝑖 න

−∞

0

𝑑𝜏 𝛿4 𝑥 − 𝑥′e+i𝜏 1− ൗ1 𝜉 Π𝜇Π𝜌 𝑒−2𝜏𝑒𝑄𝐹 𝜌

𝜇

e−i𝜏 Π𝜆Π𝜆−𝑚2 𝛿 𝜈

𝜇+ 𝜏

Propagation of a scalar particle

Accounting for a spin

Considering an arbitrary 𝜉-gauge

The expression has a nested structure:

Page 43: Modified Fock-Schwinger method - Kyoto U

Application of MFS

43

𝐺 𝜈𝜇= −𝑖 න

−∞

0

𝑑𝜏 𝛿4 𝑥 − 𝑥′e+i𝜏 1− ൗ1 𝜉 Π𝜇Π𝜌 𝑒−2𝜏𝑒𝑄𝐹 𝜌

𝜇

e−i𝜏 Π𝜆Π𝜆−𝑚2 𝛿 𝜈

𝜇+ 𝜏

What about 𝛿-function?

Page 44: Modified Fock-Schwinger method - Kyoto U

Application of MFS

44

𝐺 𝜈𝜇= −𝑖 න

−∞

0

𝑑𝜏 𝛿4 𝑥 − 𝑥′e+i𝜏 1− ൗ1 𝜉 Π𝜇Π𝜌 𝑒−2𝜏𝑒𝑄𝐹 𝜌

𝜇

e−i𝜏 Π𝜆Π𝜆−𝑚2 𝛿 𝜈

𝜇+ 𝜏

What about 𝛿-function?

𝛿4 𝑋 − 𝑋′ =

𝑛=0

න𝑑3𝑝∥,𝑦2𝜋 3

𝑒−𝑖 𝑝 𝑋−𝑋′

∥,𝑦𝑉𝑛 𝑥 𝑉𝑛(𝑥′)

here, 𝑉𝑛 𝑥 are simple harmonic oscillator eigenfunctions

Π𝜇 = 𝑖𝜕𝜇 + 𝑒𝑄𝐴𝜇(𝑥)

𝐴𝜇 = (0,0,−𝐵𝑥, 0)

Page 45: Modified Fock-Schwinger method - Kyoto U

Application of MFS

45

𝐺 𝜈𝜇= −𝑖 න

−∞

0

𝑑𝜏 𝛿4 𝑥 − 𝑥′e+i𝜏 1− ൗ1 𝜉 Π𝜇Π𝜌 𝑒−2𝜏𝑒𝑄𝐹 𝜌

𝜇

e−i𝜏 Π𝜆Π𝜆−𝑚2 𝛿 𝜈

𝜇+ 𝜏

What about 𝛿-function?

𝛿4 𝑥 − 𝑥′ =

𝑛=0

න𝑑3𝑝∥,𝑦2𝜋 3

𝑒−𝑖 𝑝 𝑥−𝑥′

∥,𝑦𝑉𝑛 𝑥 𝑉𝑛(𝑥′)

here, 𝑉𝑛 𝑥 are simple harmonic oscillator eigenfunctions

Π𝜆Π𝜆 −𝑚2 𝑒−𝑖 𝑝 𝑥−𝑥′

∥,𝑦𝑉𝑛 𝑥 = 𝑝∥2 −𝑚2 + 𝑄𝑒𝐵 2𝑛 + 1 𝑒

−𝑖 𝑝 𝑥−𝑥′∥,𝑦𝑉𝑛(𝑥)

Π𝜇 = 𝑖𝜕𝜇 + 𝑒𝑄𝐴𝜇(𝑥)

𝐴𝜇 = (0,0,−𝐵𝑥, 0)An example of simplification:

Page 46: Modified Fock-Schwinger method - Kyoto U

Application of MFS

46

𝐺 𝜈𝜇= −𝑖 න

−∞

0

𝑑𝜏 𝛿4 𝑥 − 𝑥′e+i𝜏 1− ൗ1 𝜉 Π𝜇Π𝜌 𝑒−2𝜏𝑒𝑄𝐹 𝜌

𝜇

e−i𝜏 Π𝜆Π𝜆−𝑚2 𝛿 𝜈

𝜇+ 𝜏

What about 𝛿-function?

𝛿4 𝑥 − 𝑥′ =

𝑛=0

න𝑑3𝑝∥,𝑦2𝜋 3

𝑒−𝑖 𝑝 𝑥−𝑥′

∥,𝑦𝑉𝑛 𝑥 𝑉𝑛(𝑥′)

here, 𝑉𝑛 𝑥 are simple harmonic oscillator eigenfunctions

The rest of the calculations are boring straightforward…

Charged massive vector boson propagator in a constant magnetic field in arbitrary ξ-gaugeobtained using the modified Fock-Schwinger method; S. N. Iablokov and A. V. KuznetsovPhys. Rev. D 102, 096015 – Published 12 November 2020

Page 47: Modified Fock-Schwinger method - Kyoto U

Application of MFS

47

Charged massive vector boson propagator in a constant magnetic field in arbitrary ξ-gaugeobtained using the modified Fock-Schwinger method; S. N. Iablokov and A. V. KuznetsovPhys. Rev. D 102, 096015 – Published 12 November 2020

Page 48: Modified Fock-Schwinger method - Kyoto U

Conclusions

MFS allows to obtain the solution of the propagator equation directly (almost) in momentum space.

48

Page 49: Modified Fock-Schwinger method - Kyoto U

Conclusions

MFS allows to obtain the solution of the propagator equation directly (almost) in momentum space.

49

MFS simplifies calculations and provides additional representations of the propagator.

Page 50: Modified Fock-Schwinger method - Kyoto U

Conclusions

MFS allows to obtain the solution of the propagator equation directly (almost) in momentum space.

50

MFS simplifies calculations and provides additional representations of the propagator.

Drawback: MFS is as good as one’s ability to obtain/guess the form of the wave-equation’s solution.

Page 51: Modified Fock-Schwinger method - Kyoto U

Conclusions

MFS allows to obtain the solution of the propagator equation directly (almost) in momentum space.

51

MFS simplifies calculations and provides additional representations of the propagator.

Drawback: MFS is as good as one’s ability to obtain/guess the form of the wave-equation’s solution.

Can be applied for the constant electric field configuration, which is relevant for the Schwinger effect.

Page 52: Modified Fock-Schwinger method - Kyoto U

Thank you for your attention

52