modified everitt-jennings (mej) method and the gibbs method: … · 2012. 11. 20. · sept. 14 -...

24
6 th Annual Sucker Rod Pumping Workshop Wyndham Hotel, Dallas, Texas September 14 – 17, 2010 Modified Everitt-Jennings (MEJ) Method and the Gibbs Method: Downhole Card Comparison Victoria Ehimeakhe, Ph. D. Weatherford

Upload: others

Post on 21-Aug-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modified Everitt-Jennings (MEJ) Method and the Gibbs Method: … · 2012. 11. 20. · Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 2 Introduction • The most accurate method

6th Annual Sucker Rod Pumping Workshop

Wyndham Hotel, Dallas, TexasSeptember 14 – 17, 2010

Modified Everitt-Jennings (MEJ) Method and the Gibbs Method:

Downhole Card ComparisonVictoria Ehimeakhe, Ph. D.Weatherford

Page 2: Modified Everitt-Jennings (MEJ) Method and the Gibbs Method: … · 2012. 11. 20. · Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 2 Introduction • The most accurate method

Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 2

Introduction

• The most accurate method to control a beam pumping well is based on fillage calculated from the downhole card.

• Downhole data can be directly measured by a downhole dynamometer or can be calculated by solving the one-dimensional damped wave equation.

• For years no significant innovations in solving the wave equation have been implemented, leaving the Gibbs method as the most prevalently used method in the industry.

• Over the past two years, Weatherford has implemented the Everitt-Jennings method for solving the wave equation. A paper was presented with details during the SWPSC 2010, entitled “Comparative Study Of Downhole Cards Using Modified Everitt-Jennings Method And Gibbs Method”.

Page 3: Modified Everitt-Jennings (MEJ) Method and the Gibbs Method: … · 2012. 11. 20. · Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 2 Introduction • The most accurate method

Solving the Wave Equation• The irreversible energy losses which occur along the rod string

because of elasticity, take the form of stress waves traveling down the rod string at the speed of sound.

• The one dimensional damped waved equation models the propagation of stress waves in an ideal slender bar.

• The wave equation reads as follows:

• The modified Everitt-Jennings (MEJ) method uses finite differences to solve the wave equation at M steps down the rod string.

• The modified Everitt-Jennings method also utilizes an iteration on the net stroke and damping factor approach, which includes a fluid level calculation.

Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 3

Page 4: Modified Everitt-Jennings (MEJ) Method and the Gibbs Method: … · 2012. 11. 20. · Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 2 Introduction • The most accurate method

Advantages of using MEJ• The use of finite differences to solve the wave equation involves

dividing the rod string into a finite number of nodes.• The number of nodes can be picked by the user.• This guarantees that the position, load and stress can be

calculated at each level down the taper.• The MEJ computes the minimum number of nodes necessary for

the computation to be stable insuring a successful calculation each time.

• The use of the iteration on the damping factor allows the user to be assured that the proper damping factor is picked for each stroke, without manual intervention.

• This step is crucial when managing moderate to large groups of wells.

Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 4

Page 5: Modified Everitt-Jennings (MEJ) Method and the Gibbs Method: … · 2012. 11. 20. · Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 2 Introduction • The most accurate method

Iteration on the net stroke and damping factor

• In the Everitt-Jennings method, the hydraulic horsepower represents the useful work expended to lift the given amount of liquid from the dynamic fluid level to the surface.

• The hydraulic horsepower (HH) is given by:where Q is the production rate,

Fg is the specific fluid gravity, Fl is the fluid level.

• The damping factor is then given by the following equation:

where g is the gravity constant, HPR is the polished rod horsepower,τ is the period of the stroke,ρ is the taper density,A is the taper cross sectional area,L is the taper length,S is the net stroke length.

Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 5

Page 6: Modified Everitt-Jennings (MEJ) Method and the Gibbs Method: … · 2012. 11. 20. · Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 2 Introduction • The most accurate method

Iteration on the net stroke and damping factor

Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 6

Page 7: Modified Everitt-Jennings (MEJ) Method and the Gibbs Method: … · 2012. 11. 20. · Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 2 Introduction • The most accurate method

Full WellNet stroke:

Gibbs : 87.24

MEJ : 86.19

Load range:

Gibbs : 6097

MEJ : 6146

Iteration on the net stroke : 2

Iteration on the damping factor : 1

Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 7

Page 8: Modified Everitt-Jennings (MEJ) Method and the Gibbs Method: … · 2012. 11. 20. · Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 2 Introduction • The most accurate method

Fluid Pound WellNet stroke:

Gibbs : 138.98

MEJ : 138.56

Load range:

Gibbs : 3852

MEJ : 3984

Iteration on the net stroke : 3

Iteration on the damping factor : 4

Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 8

Page 9: Modified Everitt-Jennings (MEJ) Method and the Gibbs Method: … · 2012. 11. 20. · Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 2 Introduction • The most accurate method

Fluid Pound WellNet stroke:

Gibbs : 98.05

MEJ : 97.90

Load range:

Gibbs : 2098

MEJ : 2286

Iteration on the net stroke : 2

Iteration on the damping factor : 4

Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 9

Page 10: Modified Everitt-Jennings (MEJ) Method and the Gibbs Method: … · 2012. 11. 20. · Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 2 Introduction • The most accurate method

Fluid Pound WellNet stroke:

Gibbs : 34.97

MEJ : 34.92

Load range:

Gibbs : 1172

MEJ : 1209

Iteration on the net stroke : 3

Iteration on the damping factor : 4

Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 10

Page 11: Modified Everitt-Jennings (MEJ) Method and the Gibbs Method: … · 2012. 11. 20. · Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 2 Introduction • The most accurate method

Gas CompressionNet stroke:

Gibbs : 100.27

MEJ : 100.01

Load range:

Gibbs : 2796

MEJ : 2883

Iteration on the net stroke : 2

Iteration on the damping factor : 6

Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 11

Page 12: Modified Everitt-Jennings (MEJ) Method and the Gibbs Method: … · 2012. 11. 20. · Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 2 Introduction • The most accurate method

Gas CompressionNet stroke:

Gibbs : 83.99

MEJ : 83.74

Load range:

Gibbs : 2966

MEJ : 3272

Iteration on the net stroke : 2

Iteration on the damping factor : 7

Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 12

Page 13: Modified Everitt-Jennings (MEJ) Method and the Gibbs Method: … · 2012. 11. 20. · Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 2 Introduction • The most accurate method

Viscous FluidsNet stroke:

Gibbs : 97.22

MEJ : 96.92

Load range:

Gibbs : 4994

MEJ : 4992

Iteration on the net stroke : 2

Iteration on the damping factor : 3

Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 13

Page 14: Modified Everitt-Jennings (MEJ) Method and the Gibbs Method: … · 2012. 11. 20. · Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 2 Introduction • The most accurate method

Viscous FluidsNet stroke:

Gibbs : 58.1

MEJ : 58.4

Load range:

Gibbs : 2724

MEJ : 2726

Iteration on the net stroke : 2

Iteration on the damping factor : 1

Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 14

Page 15: Modified Everitt-Jennings (MEJ) Method and the Gibbs Method: … · 2012. 11. 20. · Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 2 Introduction • The most accurate method

Worn PumpNet stroke:

Gibbs : 42.03

MEJ : 42.19

Load range:

Gibbs : 5049

MEJ : 4918

Iteration on the net stroke : 2

Iteration on the damping factor : 2

Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 15

Page 16: Modified Everitt-Jennings (MEJ) Method and the Gibbs Method: … · 2012. 11. 20. · Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 2 Introduction • The most accurate method

Slanted CardNet stroke:

Gibbs : 101.87

MEJ : 101.90

Load range:

Gibbs : 1136

MEJ : 1148

Iteration on the net stroke : 2

Iteration on the damping factor : 1

Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 16

Page 17: Modified Everitt-Jennings (MEJ) Method and the Gibbs Method: … · 2012. 11. 20. · Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 2 Introduction • The most accurate method

Tagging BottomNet stroke:

Gibbs : 86.44

MEJ : 86.03

Load range:

Gibbs: 5696

MEJ : 5798

Iteration on the net stroke : 1

Iteration on the damping factor : 1

Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 17

Page 18: Modified Everitt-Jennings (MEJ) Method and the Gibbs Method: … · 2012. 11. 20. · Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 2 Introduction • The most accurate method

Unexplained Card ShapeNet stroke:

Gibbs : 118.75

MEJ : 117.48

Load range:

Gibbs : 4724

MEJ : 4878

Iteration on the net stroke : 3

Iteration on the damping factor : 4

Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 18

Page 19: Modified Everitt-Jennings (MEJ) Method and the Gibbs Method: … · 2012. 11. 20. · Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 2 Introduction • The most accurate method

Unexplained Card ShapeNet stroke:

Gibbs : 114.84

MEJ : 115.05

Load range:

Gibbs: 14809

MEJ : 14490

Iteration on the net stroke : 2

Iteration on the damping factor : 1

Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 19

Page 20: Modified Everitt-Jennings (MEJ) Method and the Gibbs Method: … · 2012. 11. 20. · Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 2 Introduction • The most accurate method

Comparison with updated Gibbs damping factor

• For the above well, the results from the MEJ are compared first to results from the Gibbs method without human intervention, and second to results from the Gibbs method after the damping factor was manually modified until the desired results were produced.

• As seen above, the Gibbs downhole card without manual intervention displayed a loop, which is removed after intervention.

• The MEJ card iterated to the correct damping factor. Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 20

Page 21: Modified Everitt-Jennings (MEJ) Method and the Gibbs Method: … · 2012. 11. 20. · Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 2 Introduction • The most accurate method

Statistics: 1000 wells

Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 21

•A sample of 1000 wells was selected at random from different locations.• These wells represent almost every downhole conditions possible - rod type, well depth, fluid viscosity, etc.• The net stroke values using the results from the MEJ and the Gibbs method were recorded and compared.• From the above graph, in 81% of the cards studied, the difference in the net stroke values is less than 2 inches, while in 89% of the cards studied, the difference in the net stroke values is less than 3 inches.

Page 22: Modified Everitt-Jennings (MEJ) Method and the Gibbs Method: … · 2012. 11. 20. · Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 2 Introduction • The most accurate method

Conclusions• When applied to field data as well as laboratory data, results

from the modified Everitt-Jennings proved similar for the most part to the results from the Gibbs method by yielding cards having the same shape, similar load ranges and similar net strokes.

• In some cases, the results from the modified Everitt-Jennings method were superior to that of the Gibbs method – providing smoother data with less noise and a better approximation of the damping factor.

• Using the modified Everitt-Jennings algorithm improves well analysis and optimization through more accurate determination of the downhole conditions, as well as a more realistic determination of the volume of fluid produced on each stroke. This is due to more accurate net downhole stroke values and damping factor approximation.

Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 22

Page 23: Modified Everitt-Jennings (MEJ) Method and the Gibbs Method: … · 2012. 11. 20. · Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 2 Introduction • The most accurate method

Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 23

Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Sucker Rod Pumping Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

– Display the presentation at the Workshop.– Place it on the www.alrdc.com web site, with access to the site to be as

directed by the Workshop Steering Committee.– Place it on a CD for distribution and/or sale as directed by the Workshop

Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Sucker Rod Pumping Workshop where it was first presented.

Page 24: Modified Everitt-Jennings (MEJ) Method and the Gibbs Method: … · 2012. 11. 20. · Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 2 Introduction • The most accurate method

Sept. 14 - 17, 2010 2010 Sucker Rod Pumping Workshop 24

DisclaimerThe following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Sucker Rod Pumping Web Site.The Artificial Lift Research and Development Council and its officers and trustees, and the Sucker Rod Pumping Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Sucker Rod Pumping Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.