modern numerical methods for large scale eigenvalue problems · introduction algorithms for linear...

48
MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG November 5, 2010 Modern Numerical Methods for Large–Scale Eigenvalue Problems Patrick K¨ urschner Max Planck Institute for Dynamics of Complex Dynamical Systems Computational Methods in Systems and Control Theory Max Planck Institute Magdeburg Patrick K¨ urschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 1/19

Upload: others

Post on 19-Aug-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

MAX PLANCK INSTITUTE

FOR DYNAMICS OF COMPLEX

TECHNICAL SYSTEMS

MAGDEBURG

November 5, 2010

Modern Numerical Methods for Large–ScaleEigenvalue Problems

Patrick Kurschner

Max Planck Institute for Dynamics of Complex Dynamical SystemsComputational Methods in Systems and Control Theory

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 1/19

Page 2: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

Overview

1 Introduction

2 Algorithms for Linear Problems

3 Methods for Nonlinear Eigenvalue Problems

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 2/19

Page 3: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

IntroductionWhat are eigenvalue problems?

Recall the standard linear eigenvalue problem from undergraduate linearalgebra courses:

= •

A x = λ x

n× n matrix A

(right) eigenvectorx ∈ Cn\0 of A

eigenvalueλ ∈ C of A

• λ is an eigenvalue of A

⇔ λ is a root of thecharacteristic polynomialχA(λ) := det (A− λI ) = 0

⇔ A− λI is singular

• left eigenvectors:yHA = yHλ, yHx = 1

This is only the beginning!

Some facts

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 3/19

Page 4: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

IntroductionWhat are eigenvalue problems?

Recall the standard linear eigenvalue problem from undergraduate linearalgebra courses:

= •

A x = λ x

n× n matrix A

(right) eigenvectorx ∈ Cn\0 of A

eigenvalueλ ∈ C of A

• λ is an eigenvalue of A

⇔ λ is a root of thecharacteristic polynomialχA(λ) := det (A− λI ) = 0

⇔ A− λI is singular

• left eigenvectors:yHA = yHλ, yHx = 1

This is only the beginning!

Some facts

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 3/19

Page 5: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

IntroductionWhat are eigenvalue problems?

Recall the standard linear eigenvalue problem from undergraduate linearalgebra courses:

= •

A x = λ x

n× n matrix A

(right) eigenvectorx ∈ Cn\0 of A

eigenvalueλ ∈ C of A

• λ is an eigenvalue of A

⇔ λ is a root of thecharacteristic polynomialχA(λ) := det (A− λI ) = 0

⇔ A− λI is singular

• left eigenvectors:yHA = yHλ, yHx = 1

This is only the beginning!

Some facts

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 3/19

Page 6: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

IntroductionWhat are eigenvalue problems?

Recall the standard linear eigenvalue problem from undergraduate linearalgebra courses:

= •

A x = λ x

n× n matrix A

(right) eigenvectorx ∈ Cn\0 of A

eigenvalueλ ∈ C of A

• λ is an eigenvalue of A

⇔ λ is a root of thecharacteristic polynomialχA(λ) := det (A− λI ) = 0

⇔ A− λI is singular

• left eigenvectors:yHA = yHλ, yHx = 1

This is only the beginning!

Some facts

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 3/19

Page 7: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

IntroductionWhat are eigenvalue problems?

Recall the standard linear eigenvalue problem from undergraduate linearalgebra courses:

= •

A x = λ x

n× n matrix A

(right) eigenvectorx ∈ Cn\0 of A

eigenvalueλ ∈ C of A

• λ is an eigenvalue of A

⇔ λ is a root of thecharacteristic polynomialχA(λ) := det (A− λI ) = 0

⇔ A− λI is singular

• left eigenvectors:yHA = yHλ, yHx = 1

This is only the beginning!

Some facts

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 3/19

Page 8: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

IntroductionWhat are eigenvalue problems?

Recall the standard linear eigenvalue problem from undergraduate linearalgebra courses:

= •

A x = λ x

n× n matrix A

(right) eigenvectorx ∈ Cn\0 of A

eigenvalueλ ∈ C of A

• λ is an eigenvalue of A

⇔ λ is a root of thecharacteristic polynomialχA(λ) := det (A− λI ) = 0

⇔ A− λI is singular

• left eigenvectors:yHA = yHλ, yHx = 1

This is only the beginning!

Some facts

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 3/19

Page 9: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

IntroductionWhat are eigenvalue problems?

Recall the standard linear eigenvalue problem from undergraduate linearalgebra courses:

= •

A x = λ x

n× n matrix A

(right) eigenvectorx ∈ Cn\0 of A

eigenvalueλ ∈ C of A

• λ is an eigenvalue of A

⇔ λ is a root of thecharacteristic polynomialχA(λ) := det (A− λI ) = 0

⇔ A− λI is singular

• left eigenvectors:yHA = yHλ, yHx = 1

This is only the beginning!

Some facts

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 3/19

Page 10: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

IntroductionWhat are eigenvalue problems?

standard problems: Ax = λx

generalized problems: (A−λE )x = 0

Linear eigenvalue problems

Different kinds ofeigenvalue problems

T (λ)x = 0, where T (λ) is an arbitrary nonlinear matrix-valuedoperator T (·) : C→ Cn×n.

Polynomial problems:

T (λ)x =p∑

i=0

λiAix = 0, e.g., (λ2M + λD + K )x = 0

Rational problems:

T (λ)x =

(A + λB +

p∑i=0

1λ−µi

Ci

)x = 0

Transcendent problems:T (λ)x =

[λ2M + λD + K − e−λ(U + λV )

]x = 0

Nonlinear eigenvalue problems

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 4/19

Page 11: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

IntroductionWhat are eigenvalue problems?

standard problems: (A− λI )x = 0

generalized problems: (A−λE )x = 0

Linear eigenvalue problems

Different kinds ofeigenvalue problems

T (λ)x = 0, where T (λ) is an arbitrary nonlinear matrix-valuedoperator T (·) : C→ Cn×n.

Polynomial problems:

T (λ)x =p∑

i=0

λiAix = 0, e.g., (λ2M + λD + K )x = 0

Rational problems:

T (λ)x =

(A + λB +

p∑i=0

1λ−µi

Ci

)x = 0

Transcendent problems:T (λ)x =

[λ2M + λD + K − e−λ(U + λV )

]x = 0

Nonlinear eigenvalue problems

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 4/19

Page 12: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

IntroductionWhat are eigenvalue problems?

standard problems: (A− λI )x = 0

generalized problems: (A−λE )x = 0

Linear eigenvalue problems

Different kinds ofeigenvalue problems

T (λ)x = 0, where T (λ) is an arbitrary nonlinear matrix-valuedoperator T (·) : C→ Cn×n.

Polynomial problems:

T (λ)x =p∑

i=0

λiAix = 0, e.g., (λ2M + λD + K )x = 0

Rational problems:

T (λ)x =

(A + λB +

p∑i=0

1λ−µi

Ci

)x = 0

Transcendent problems:T (λ)x =

[λ2M + λD + K − e−λ(U + λV )

]x = 0

Nonlinear eigenvalue problems

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 4/19

Page 13: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

IntroductionWhat are eigenvalue problems?

standard problems: (A− λI )x = 0

generalized problems: (A−λE )x = 0

Linear eigenvalue problems

Different kinds ofeigenvalue problems

T (λ)x = 0, where T (λ) is an arbitrary nonlinear matrix-valuedoperator T (·) : C→ Cn×n.

Polynomial problems:

T (λ)x =p∑

i=0

λiAix = 0, e.g., (λ2M + λD + K )x = 0

Rational problems:

T (λ)x =

(A + λB +

p∑i=0

1λ−µi

Ci

)x = 0

Transcendent problems:T (λ)x =

[λ2M + λD + K − e−λ(U + λV )

]x = 0

Nonlinear eigenvalue problems

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 4/19

Page 14: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

IntroductionWhat are eigenvalue problems?

standard problems: (A− λI )x = 0

generalized problems: (A−λE )x = 0

Linear eigenvalue problems

Different kinds ofeigenvalue problems

T (λ)x = 0, where T (λ) is an arbitrary nonlinear matrix-valuedoperator T (·) : C→ Cn×n.

Polynomial problems:

T (λ)x =p∑

i=0

λiAix = 0, e.g., (λ2M + λD + K )x = 0

Rational problems:

T (λ)x =

(A + λB +

p∑i=0

1λ−µi

Ci

)x = 0

Transcendent problems:T (λ)x =

[λ2M + λD + K − e−λ(U + λV )

]x = 0

Nonlinear eigenvalue problems

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 4/19

Page 15: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

IntroductionWhat are eigenvalue problems?

standard problems: (A− λI )x = 0

generalized problems: (A−λE )x = 0

Linear eigenvalue problems

Different kinds ofeigenvalue problems

T (λ)x = 0, where T (λ) is an arbitrary nonlinear matrix-valuedoperator T (·) : C→ Cn×n.

Polynomial problems:

T (λ)x =p∑

i=0

λiAix = 0, e.g., (λ2M + λD + K )x = 0

Rational problems:

T (λ)x =

(A + λB +

p∑i=0

1λ−µi

Ci

)x = 0

Transcendent problems:T (λ)x =

[λ2M + λD + K − e−λ(U + λV )

]x = 0

Nonlinear eigenvalue problems

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 4/19

Page 16: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

IntroductionWhat are eigenvalue problems?

standard problems: (A− λI )x = 0

generalized problems: (A−λE )x = 0

Linear eigenvalue problems

Different kinds ofeigenvalue problems

T (λ)x = 0, where T (λ) is an arbitrary nonlinear matrix-valuedoperator T (·) : C→ Cn×n.

Polynomial problems:

T (λ)x =p∑

i=0

λiAix = 0, e.g., (λ2M + λD + K )x = 0

Rational problems:

T (λ)x =

(A + λB +

p∑i=0

1λ−µi

Ci

)x = 0

Transcendent problems:T (λ)x =

[λ2M + λD + K − e−λ(U + λV )

]x = 0

Nonlinear eigenvalue problems

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 4/19

Page 17: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

IntroductionWhat are eigenvalue problems?

standard problems: (A− λI )x = 0

generalized problems: (A−λE )x = 0

Linear eigenvalue problems

Different kinds ofeigenvalue problems

T (λ)x = 0, where T (λ) is an arbitrary nonlinear matrix-valuedoperator T (·) : C→ Cn×n.

Polynomial problems:

T (λ)x =p∑

i=0

λiAix = 0, e.g., (λ2M + λD + K )x = 0

Rational problems:

T (λ)x =

(A + λB +

p∑i=0

1λ−µi

Ci

)x = 0

Transcendent problems:T (λ)x =

[λ2M + λD + K − e−λ(U + λV )

]x = 0

Nonlinear eigenvalue problems

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 4/19

Page 18: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

IntroductionApplications - Linear dynamical systems

Important application: Vibration analysis of mechanical structures

(a) Mass-spring-damper-chain (b) Structural FE-model of a crankshaft

Description by second order control system

M x(t) + D x(t) + K x(t) = B u(t)

y(t) = C x(t)Mass Damping Stiffness

large n × n matrices

input / control,e.g., excitationby external forces

output equation

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 5/19

Page 19: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

IntroductionApplications - Linear dynamical systems

Using the Laplace transformation yields the transfer function of thecontrol system

H(s) = C (s2M + sD + K )−1B, s ∈ C.

Its poles are the eigenvalues of the quadratic eigenvalue problem

T (λ)x = (λ2M + λD + K )x = 0.

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 6/19

Page 20: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

IntroductionApplications - Linear dynamical systems and model order reduction

M x + D x + K x = B u

y = C x

Original large-scale system

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 7/19

Page 21: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

IntroductionApplications - Linear dynamical systems and model order reduction

M x + D x + K x = B u

y = C x

Original large-scale system

Model-Order-Reduction

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 7/19

Page 22: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

IntroductionApplications - Linear dynamical systems and model order reduction

M x + D x + K x = B u

y = C x

Original large-scale system

Model-Order-Reduction

W TM V ¨x + W T

D V ˙x + W TK V x = W T

B u

y = C V x

with V = · · · W T = ...

right left

eigenvectors x , y of T (λ) = λ2M + λD + K

Projection of original system

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 7/19

Page 23: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

IntroductionApplications - Linear dynamical systems and model order reduction

M x + D x + K x = B u

y = C x

Original large-scale system

Model-Order-Reduction

M ¨x + D ˙x + K x = B u

y = C x

with M, D, K ∈ Rk×k,B ∈ Rk×m, C ∈ Rp×k

and k n.

with V = · · · W T = ...

right left

eigenvectors x , y of T (λ) = λ2M + λD + K

Reduced system

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 7/19

Page 24: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

IntroductionApplications - Linear dynamical systems and model order reduction

M x + D x + K x = B u

y = C x

Original large-scale system

Model-Order-Reduction

M ¨x + D ˙x + K x = B u

y = C x

with M, D, K ∈ Rk×k,B ∈ Rk×m, C ∈ Rp×k

and k n.

with V = · · · W T = ...

right left

eigenvectors x , y of T (λ) = λ2M + λD + K

Reduced system

• see also our poster

Modal Approximation of Large–Scale DynamicalSystems using Jacobi-Davidson Methods

• other MOR techniques in the talks of

→ Peter Benner (yesterday)→ Lihong Feng (1000)→ Tobias Breiten (1030)

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 7/19

Page 25: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

IntroductionApplications – Quantum Mechanics

Another application: semiconductor devices in microelectronicsConsider a so called quantum dot, an extremely small semiconductornanostructure, i.e. its dimensions are smaller than the electronwavelength (≈ 10−12 m).Hence, its electronic states are quantized at discrete energy levels.

Ω1 - InAs matrix

Ω2

GaAs quantum dot

The Schrodinger equation

−∇ ·(

~2

2mj(λ)∇ψ)

+ Vjψ = λψ

for j ∈ 1, 2 reveals the relevant energylevels λ and wave functions ψ of the elec-trons.

~ - reduced Planck constant,

Vj - (constant) confinement potential in Ωj ,

mj(λ) - effective electron mass in Ωj (j ∈ 1, 2).

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 8/19

Page 26: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

IntroductionApplications – Quantum Mechanics

Another application: semiconductor devices in microelectronicsConsider a so called quantum dot, an extremely small semiconductornanostructure, i.e. its dimensions are smaller than the electronwavelength (≈ 10−12 m).Hence, its electronic states are quantized at discrete energy levels.

Ω1 - InAs matrix

Ω2

GaAs quantum dot

The Schrodinger equation

−∇ ·(

~2

2mj(λ)∇ψ)

+ Vjψ = λψ

for j ∈ 1, 2 reveals the relevant energylevels λ and wave functions ψ of the elec-trons.

~ - reduced Planck constant,

Vj - (constant) confinement potential in Ωj ,

mj(λ) - effective electron mass in Ωj (j ∈ 1, 2).

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 8/19

Page 27: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

IntroductionApplications – Quantum Mechanics

For this semiconductor setting the non-parabolic effective mass model

1

mj(λ)=

p2j

~2

(2

λ+ Vj − τj− 1

λ+ Vj − µj

), τj 6= µj ∈ R, j ∈ 1, 2

leads with a discretization of the Schrodinger equation, e.g. by FEM, . . .,to a rational eigenvalue problem T (λ)x = 0, where

T (λ) = λ M − 1m1(λ) N − 1

m2(λ) P − Q

large, sparse n × n FE - matrices

Solution with nonlinear Jacobi-Davidson algorithm:

multiply by greatest common denominator and solve quinticpolynomial problem T (λ) = λ5A5 +λ4A4 +λ3A3 +λ2A2 +λA1 + A0

[Hwang, Lin, Wang, Wang ’04/’05]

directly as rational eigenproblem[Voss ’06]

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 9/19

Page 28: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

IntroductionApplications – Quantum Mechanics

For this semiconductor setting the non-parabolic effective mass model

1

mj(λ)=

p2j

~2

(2

λ+ Vj − τj− 1

λ+ Vj − µj

), τj 6= µj ∈ R, j ∈ 1, 2

leads with a discretization of the Schrodinger equation, e.g. by FEM, . . .,to a rational eigenvalue problem T (λ)x = 0, where

T (λ) = λ M − 1m1(λ) N − 1

m2(λ) P − Q

large, sparse n × n FE - matrices

Solution with nonlinear Jacobi-Davidson algorithm:

multiply by greatest common denominator and solve quinticpolynomial problem T (λ) = λ5A5 +λ4A4 +λ3A3 +λ2A2 +λA1 + A0

[Hwang, Lin, Wang, Wang ’04/’05]

directly as rational eigenproblem[Voss ’06]

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 9/19

Page 29: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

Overview

1 Introduction

2 Algorithms for Linear Problems

3 Methods for Nonlinear Eigenvalue Problems

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 10/19

Page 30: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

Algorithms for Linear ProblemsSmall Problems

Back to Ax = λx where A is of small or moderate size.General procedure:Transform A via a similarity transformation T to an easier form:

A T−1 A T =

such that the eigenvalues appear on the diagonal.

Francis’ QR algorithm, QZ method, Divide & Conquer, . . .MATLAB R© (eig, schur), LAPACK

Algorithms & available software

Similarity / unitary transformations are very expensive(complexity O(n3))⇒ not feasible for large-scale problems

Disadvantage

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 11/19

Page 31: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

Algorithms for Linear ProblemsSmall Problems

Back to Ax = λx where A is of small or moderate size.General procedure:Transform A via a unitary transformation T to an easier form:

A TH A T =

such that the eigenvalues appear on the diagonal.

Francis’ QR algorithm, QZ method, Divide & Conquer, . . .MATLAB R© (eig, schur), LAPACK

Algorithms & available software

Similarity / unitary transformations are very expensive(complexity O(n3))⇒ not feasible for large-scale problems

Disadvantage

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 11/19

Page 32: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

Algorithms for Linear ProblemsSmall Problems

Back to Ax = λx where A is of small or moderate size.General procedure:Transform A via a unitary transformation T to an easier form:

A TH A T =

such that the eigenvalues appear on the diagonal.

Francis’ QR algorithm, QZ method, Divide & Conquer, . . .MATLAB R© (eig, schur), LAPACK

Algorithms & available software

Similarity / unitary transformations are very expensive(complexity O(n3))⇒ not feasible for large-scale problems

Disadvantage

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 11/19

Page 33: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

Algorithms for Linear ProblemsSmall Problems

Back to Ax = λx where A is of small or moderate size.General procedure:Transform A via a unitary transformation T to an easier form:

A TH A T =

such that the eigenvalues appear on the diagonal.

Francis’ QR algorithm, QZ method, Divide & Conquer, . . .MATLAB R© (eig, schur), LAPACK

Algorithms & available software

Similarity / unitary transformations are very expensive(complexity O(n3))⇒ not feasible for large-scale problems

Disadvantage

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 11/19

Page 34: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

Algorithms for Linear ProblemsLarge-Scale Problems

General procedure for large-scale problems

1.

Project A onto low-dimensional subspaceV = colspan(V ), V ∈ Rn×k , k n

V T

A V = HSimilar approach asin MOR with W = V .

2.Compute eigenvalues θ and eigenvectors q of H usingmethods for small matrices.

3.Approximate eigenpairs of A are (θ, v := Vq),residual r := Av − λv .

4.

If ‖r‖ is not sufficiently small?

YES: converged !NO: expand V by some appropriatenew vector t and goto 1.

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 12/19

Page 35: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

Algorithms for Linear ProblemsLarge-Scale Problems I: Krylov–Subspace Methods

Generate V as Krylov subspaceKk(A, v) = spanv , Av , A2v , . . . , Ak−1v.

I. Arnoldi method

V T

A V =

II. Lanczos method for A = AT

V T

A V =

• eigs in MATLAB

• ARnoldiPACKage (ARPACK), Fortran 77 library

• Scalable Library for Eigenvalue Problem Computations(SLEPc), C++ library for parallel computers

Available software

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 13/19

Page 36: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

Algorithms for Linear ProblemsLarge-Scale Problems II: Jacobi–Davidson Methods

Jacobi-Davidson methods: Impose no special structure on V

V T

A V =

Expand V orthogonally by t ⊥ v , obtained from the (inexact) solution ofthe Jacobi-Davidson correction equation

(I − vvT )(A− θI )(I − vvT )t = −r .

[Sleijpen, Van der Vorst, et al ’96/’98/’00]

• MATLAB routines (JDQR, JDQZ, . . .)[Sleijpen, Van der Vorst, Fokkema ’98]

• SLEPc (since August 2010)

• PRIMME (SLEPc add-on for A = AT ) [Stathopoulos ’07]

Available software

Preconditioned eigensolver, similar toPINVIT in the talk by

→ Thomas Mach (900)

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 14/19

Page 37: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

Algorithms for Linear ProblemsLarge-Scale Problems II: Jacobi–Davidson Methods

Jacobi-Davidson methods: Impose no special structure on V

V T

A V =

Expand V orthogonally by t ⊥ v , obtained from the (inexact) solution ofthe Jacobi-Davidson correction equation

(I − vvT )(A− θI )(I − vvT )t = −r .

[Sleijpen, Van der Vorst, et al ’96/’98/’00]

• MATLAB routines (JDQR, JDQZ, . . .)[Sleijpen, Van der Vorst, Fokkema ’98]

• SLEPc (since August 2010)

• PRIMME (SLEPc add-on for A = AT ) [Stathopoulos ’07]

Available softwarePreconditioned eigensolver, similar toPINVIT in the talk by

→ Thomas Mach (900)

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 14/19

Page 38: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

Overview

1 Introduction

2 Algorithms for Linear Problems

3 Methods for Nonlinear Eigenvalue Problems

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 15/19

Page 39: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

Methods for Nonlinear Eigenvalue ProblemsSmall Problems – Newton’s Method

Note that an eigenpair (λ, x) of T (λ) is a root of the function

F (x , λ) =

[T (λ)x

wHx − 1

], F : Cn+1 7→ Cn+1.

First idea: apply Newton’s method.Initial approximation (θ, v) ≈ (λ, x), Newton system for the next(hopefully better) approximation (θ+, v+) is[

v+

θ+

]=

[vθ

]− [∂F (v , θ)]−1 F (v , θ).

• Requires good initial approximations (θ, v)

• Matrix inversion infeasible for large problems

Drawbacks

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 16/19

Page 40: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

Methods for Nonlinear Eigenvalue ProblemsSmall Problems – Newton’s Method

Note that an eigenpair (λ, x) of T (λ) is a root of the function

F (x , λ) =

[T (λ)x

wHx − 1

], F : Cn+1 7→ Cn+1.

First idea: apply Newton’s method.Initial approximation (θ, v) ≈ (λ, x), Newton system for the next(hopefully better) approximation (θ+, v+) is[

v+

θ+

]=

[vθ

]−[

T (θ) T (θ)vwH 0

]−1 [T (λ)v

wHv − 1

].

• Requires good initial approximations (θ, v)

• Matrix inversion infeasible for large problems

Drawbacks

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 16/19

Page 41: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

Methods for Nonlinear Eigenvalue ProblemsSmall Problems – Newton’s Method

Note that an eigenpair (λ, x) of T (λ) is a root of the function

F (x , λ) =

[T (λ)x

wHx − 1

], F : Cn+1 7→ Cn+1.

First idea: apply Newton’s method.Initial approximation (θ, v) ≈ (λ, x), Newton system for the next(hopefully better) approximation (θ+, v+) is[

v+

θ+

]=

[vθ

]−[

T (θ) T (θ)vwH 0

]−1 [T (λ)v

wHv − 1

].

• Requires good initial approximations (θ, v)

• Matrix inversion infeasible for large problems

Drawbacks

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 16/19

Page 42: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

Methods for Nonlinear Eigenvalue ProblemsLarge-Scale Problems - Nonlinear Jacobi-Davidson

Nonlinear Jacobi-Davidson: Project the operator T (λ) onto V

V T

T (λ) V = H(λ)

Solve the small problem H(θ)q = 0, e.g., using Newton’s method

Expand V orthogonally by t ⊥ v , obtained from the (inexact) solution ofthe Jacobi-Davidson correction equation for the nonlinear EVP(

I − T (θ)vvT

vT T (θ)v

)T (θ)

(I − vvT

)t = −r = −T (θ)v .

[Betcke, Voss ’04, Schreiber, Schwetlick ’07/’08]

Applies only cheap operations compared to Newton’s method.

Advantage

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 17/19

Page 43: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

Methods for Nonlinear Eigenvalue ProblemsLarge-Scale Problems - Nonlinear Jacobi-Davidson

Nonlinear Jacobi-Davidson: Project the operator T (λ) onto V

V T

T (λ) V = H(λ)

Solve the small problem H(θ)q = 0, e.g., using Newton’s methodExpand V orthogonally by t ⊥ v , obtained from the (inexact) solution ofthe Jacobi-Davidson correction equation for the nonlinear EVP(

I − T (θ)vvT

vT T (θ)v

)T (θ)

(I − vvT

)t = −r = −T (θ)v .

[Betcke, Voss ’04, Schreiber, Schwetlick ’07/’08]

Applies only cheap operations compared to Newton’s method.

Advantage

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 17/19

Page 44: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

Methods for Nonlinear Eigenvalue ProblemsLarge-Scale Problems - Nonlinear Jacobi-Davidson

Nonlinear Jacobi-Davidson: Project the operator T (λ) onto V

V T

T (λ) V = H(λ)

Solve the small problem H(θ)q = 0, e.g., using Newton’s methodExpand V orthogonally by t ⊥ v , obtained from the (inexact) solution ofthe Jacobi-Davidson correction equation for the nonlinear EVP(

I − T (θ)vvT

vT T (θ)v

)T (θ)

(I − vvT

)t = −r = −T (θ)v .

[Betcke, Voss ’04, Schreiber, Schwetlick ’07/’08]

Applies only cheap operations compared to Newton’s method.

Advantage

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 17/19

Page 45: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

Methods for Nonlinear Eigenvalue ProblemsLarge-Scale Problems - Nonlinear Jacobi-Davidson

Still highly dependent on good initial approximations!

Disadvantage

• nonlinear Arnoldi

• Rayleigh functional iteration, inverse iteration

• safeguarded iteration, method of successive linear problems

• homotopy methods

• . . .

Other methods

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 18/19

Page 46: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

Methods for Nonlinear Eigenvalue ProblemsLarge-Scale Problems - Nonlinear Jacobi-Davidson

Still highly dependent on good initial approximations!

Disadvantage

• nonlinear Arnoldi

• Rayleigh functional iteration, inverse iteration

• safeguarded iteration, method of successive linear problems

• homotopy methods

• . . .

Other methods

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 18/19

Page 47: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

Methods for Nonlinear Eigenvalue ProblemsLarge-Scale Problems - Nonlinear Jacobi-Davidson

• efficient treatment of involved linear systems

• stable computation of several eigenvalues and correspondingeigenvectors

• computation of left eigenvectors

• application within MOR for nonlinear systems

• . . .

Further Challenges

Thank you for your attention!

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 19/19

Page 48: Modern Numerical Methods for Large Scale Eigenvalue Problems · Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems Overview 1 Introduction 2 Algorithms

Introduction Algorithms for Linear Problems Methods for Nonlinear Eigenvalue Problems

Methods for Nonlinear Eigenvalue ProblemsLarge-Scale Problems - Nonlinear Jacobi-Davidson

• efficient treatment of involved linear systems

• stable computation of several eigenvalues and correspondingeigenvectors

• computation of left eigenvectors

• application within MOR for nonlinear systems

• . . .

Further Challenges

Thank you for your attention!

Max Planck Institute Magdeburg Patrick Kurschner, Modern Numerical Methods for Large–Scale Eigenvalue Problems 19/19