models of the atom a historical perspective

10
Models of the Atom a Historical Perspective

Upload: hamlin

Post on 17-Feb-2016

36 views

Category:

Documents


4 download

DESCRIPTION

Models of the Atom a Historical Perspective. fire. Democritus. earth. air. water. Aristotle. Early Greek Theories. 400 B.C. - Democritus thought matter could not be divided indefinitely. This led to the idea of atoms in a void. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Models of the Atom   a Historical Perspective

Models of the Atom

a Historical Perspective

Page 2: Models of the Atom   a Historical Perspective

Aristotle

Early Greek Theories• 400 B.C. - Democritus thought matter

could not be divided indefinitely.

• 350 B.C - Aristotle modified an earlier theory that matter was made of four “elements”: earth, fire, water, air.

Democritus

• Aristotle was wrong. However, his theory persisted for 2000 years.

fire

air

water

earth

• This led to the idea of atoms in a void.

Page 3: Models of the Atom   a Historical Perspective

John Dalton• 1800 -Dalton proposed a modern atomic model

based on experimentation not on pure reason.• All matter is made of atoms.• Atoms of an element are identical.• Each element has different atoms.• Atoms of different elements combine

in constant ratios to form compounds.• Atoms are rearranged in reactions.

• His ideas account for the law of conservation of mass (atoms are neither created nor destroyed) and the law of constant composition (elements combine in fixed ratios).

Page 4: Models of the Atom   a Historical Perspective

Adding Electrons to the Model

1) Dalton’s “Billiard ball” model (1800-1900)Atoms are solid and indivisible.

2) Thompson “Plum pudding” model (1900)Negative electrons in a positive framework.

3) The Rutherford model (around 1910)Atoms are mostly empty space.Negative electrons orbit a positive nucleus.

Materials, when rubbed, can develop a charge difference. This electricity is called “cathode rays” when passed through an evacuated tube (demos). These rays have a small mass and are negative.Thompson noted that these negative subatomic particles were a fundamental part of all atoms.

Page 5: Models of the Atom   a Historical Perspective

Ernest Rutherford http://www.youtube.com/watch?v=FfY4R5mkMY8

Most particles passed through. So, atoms are mostly empty.

Some positive -particles deflected or bounced back!

Thus, a “nucleus” is positive & holds most of an atom’s mass.

Radioactive substance path of invisible

-particles

• Rutherford shot alpha () particles at gold foil.

Lead blockZinc sulfide screen Thin gold foil

Page 6: Models of the Atom   a Historical Perspective

Bohr’s model

There are 2 types of spectra: continuous spectra & line spectra. It’s when electrons fall back down that they release a photon. These jumps down from “shell” to “shell” account for the line spectra seen in gas discharge tubes (through spectroscopes).

• Electrons orbit the nucleus in “shells”•Electrons can be bumped up to a higher

shell if hit by an electron or a photon of light.

Page 7: Models of the Atom   a Historical Perspective

Quantum Mechanical Model

• A quantum of energy is the amount of energy required to move an electron from one energy level to another.

• The energy levels are like the rungs of a ladder but are not equally spaced.

• Energy levels are like the orbits in Bohr’s atomic model.

Page 8: Models of the Atom   a Historical Perspective

Quantum Mechanical Model

• 1920’s• Werner Heisenberg (Uncertainty Principle)

– At any time, we can not know exactly where an electron is located.

• Louis de Broglie (electron has wave properties)– Although they are particles, electrons also act like waves

• Erwin Schrodinger (mathematical equations using probability, quantum numbers)

This is Werner Heisenberg. He’s a pretty cool looking guy, isn’t he?

Page 9: Models of the Atom   a Historical Perspective

Electron Motion Around an Atom, Shown as a de Broglie Wave

Orbitals take on different shapes depending on their energies. You can never be sure when an

electron is in an electron cloud, but mathematical equations allow scientists to

guess.

Page 10: Models of the Atom   a Historical Perspective

Summing up the Quantum Mechanical Model:

1. Electrons are located in specific energy levels.

2. There is no exact path around the nucleus.

3. The model estimates the probability of finding an electron in a certain position.