modelling of low-temperature...

49
Atelier Fonctionnalisation de surfaces par plasmas: Techniques et Applications 6-8 juin 2017, GREMI – Orléans L.L. Alves [email protected] Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Universidade de Lisboa Lisboa, Portugal http://www.ipfn.ist.utl.pt Modelling of low-temperature plasmas: kinetic and transport mechanisms

Upload: others

Post on 26-Jun-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Atelier Fonctionnalisation de surfaces par plasmas:

Techniques et Applications

6-8 juin 2017, GREMI – Orléans

L.L. [email protected]

Instituto de Plasmas e Fusão Nuclear

Instituto Superior Técnico, Universidade de Lisboa

Lisboa, Portugalhttp://www.ipfn.ist.utl.pt

Modelling of low-temperature plasmas:kinetic and transport mechanisms

Page 2: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Modelling of low-temperature plasmasGoal: understand and predict

2

Page 3: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Modelling of low-temperature plasmasInteraction between species (in volume and at the wall)

3

Rotational excitationRotational excitation

Vibrational excitationVibrational excitation

Electronic excitationElectronic excitation IonizationIonization

Interaction with surfaceInteraction

with surface

FragmentationChemistry

FragmentationChemistry

electronselectrons

heavy-speciesheavy-species

Page 4: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Modelling of low-temperature plasmasModelling approaches

• Statistical models

• Kinetic models

• Fluid models

• Hybrid models (combination of the above)

4

Page 5: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Modelling of low-temperature plasmasOutline

5

• Kinetic modellingThe electron Boltzmann equation

• Fluid modellingThe hydrodynamic transport equations

• Hybrid modellingJoining the pieces…

• Example results

• Final remarks and questions

Page 6: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Modelling of low-temperature plasmasKey references

6

• Kinetics and Spectroscopy of Low Temperature Plasmas

J. Loureiro and J. Amorim, 2016, Springer International Publishing

• Principles of Plasma Discharges and Materials ProcessingM. A. Lieberman and A. J. Lichtenberg, 1994, John Wiley

• Lecture Notes on Principles of Plasma ProcessingF. F. Chen and J.P. Chang, 2003, Kluwer Academic / Plenum Publishers

• Plasma Physics, Volumes 1 and 2

Jean-Loup Delcroix, 1965 / 1968, J. Wiley

• Motions of Ions and ElectronsW. P. Allis, Handbuch der Physik, vol. 21, 1956, S. Flugge, Springer-Verlag – Berlin

• Electron kinetics in atomic and molecular plasmasC. M. Ferreira and J. Loureiro, Plasma Sources Sci. Technol. 9 (2000) 528–540

• Fluid modelling of the positive column of direct-current glow dischargesL. L. Alves, Plasma Sources Sci. Technol. 16 (2007) 557–569

Page 7: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Kinetic modellingThe electron Boltzmann equation

Page 8: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

• Inclusion of an energy description

• Definition of boundary conditions

• Complete problem : 6D ⇒ long run times

Kinetic modellingThe “master” kinetic equation

8

F(r,v,t) is the distribution function, representing the number of particles

per unit volume in phase space (r,v), at time t.

Page 9: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Rate of F

in time

in configuration space

in velocity space

due to collisions

Force acting upon particles

Kinetic modelling The electron Boltzmann equation

9

� The total electric field acting on electrons

dc space-charge field hf field at frequency ω

Page 10: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Charge separation at the boundariesThe space-charge sheath

10

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

++

+

+

+

+

+

+

+

+

+ ++

++

+

+

+

+

Page 11: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Charge separation at the boundariesThe space-charge sheath

11

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

++

+

+

+

+

+

+

+

+

+ ++

++

+

+

+

+

Space-charge field, Es

Page 12: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Charge separation at the boundariesThe space-charge sheath

12

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+ ++

+

+

+

+

+

+

++

+

Space-charge field, Es

Page 13: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Charge separation at the boundariesThe space-charge sheath

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

r/R

ne / n

e(0

) ; n

p / n

e(0

)

0.98 0.99 1.000.0

0.1

0.2

0.3

0.4

13Source: LL Alves, PSST 16 557 (2007)

Page 14: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

� Disregard the space-charge electric field acting on electrons

dc space-charge field hf field at frequency ω� No external magnetic field

The electron Boltzmann equationThe two-term approximation

14

� The electron distribution function F is expanded

in spherical harmonics in velocity space

in Fourier series in time

Isotropic component

(energy relaxation)

Anisotropic components

(transport)

Page 15: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

⇒ Independent parameters

The homogeneous electron Boltzmann equationInput data: working parameters

15

Page 16: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

The homogeneous electron Boltzmann equationInput data: collisional data

( ) 2/12 meuN cc σν =

0

0

= =

i

i

N

NN ⇒ Gas density

⇒ Chemistry model (heavy-species kinetics)

16

( ) 2/12, meuNq ijiσν =

Page 17: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Input dataExcitation / ionization mechanisms

17

Page 18: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Input data Cross sections

Data from…� Bibliography

� Databases (e.g. LXCat: www.lxcat.net) 18

Page 19: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Input data The LXCat database

19

Page 20: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

The homogeneous electron Boltzmann equationThe electron energy distribution function (EEDF)

20Courtesy of Bolsig+ (https://www.bolsig.laplace.univ-tlse.fr/)

Page 21: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Fluid modellingThe hydrodynamic transport equations

Page 22: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

• No energy description

• Use of the hydrodynamic approximation

moments of a kinetic equation

rate balance equations (particle / energy)

flux equations (charged particle / neutral species)

• Definition of boundary conditions

• Short run times

Fluid modelling The hydrodynamic transport equations

22

Page 23: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Particle balance equation

Energy balance equation

Particle flux equation

Energy flux equation

Fluid modelling The moments of the Boltzmann equation

23

Page 24: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Fluid modelling Summary of the hydrodynamic equations

The particle balance equation (continuity equation)

The flux equation (drift-diffusion approximation)

The energy balance equation

Page 25: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Poisson’s equation for the space-charge field

Fluid modelling Poisson’s equation

( )0ε

ei nneE

−=⋅∇rr

0.0 0.2 0.4 0.6 0.8 1.010

-2

10-1

100

101

102

103

p = 5 torr

p = 0.3 torr

50 mA

200 mA

r/R

Er /

N (

10

-16 V

cm

2)

Helium dc discharge

Source: LL Alves, PSST 16 557 (2007)

++

+

+

+

+

+++

+

++

++

+

++

+

+

+

+

+ ++

+ ++++

+++

+

+

+ ++

++

+

+++

Space-charge field, Es

Page 26: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Fluid modelling Boundary conditions: plasma-surface interaction

1-βγ = β-s

film

Wall-loss probability

β = 1 – ζ : total loss probability

γ: recombination probability

s : sticking probability

Page 27: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Dynamical MC (BKL algorithm)

X

Dedicated exp

Model

Fluid modelling Boundary conditions: plasma-surface interaction

Recombination probability

Source: V Guerra and D Marinov, PSST 25 045001 (2016)

Page 28: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Fluid / Chemistry modelling Collisional – Radiative Models (CRM)

transport kinetics

∇−=Γ

=Γ⋅∇+∂∂

nD

nt

nI

rr

rrν

InnDt

n ν+∇−=∂∂

⇒ 2

System of coupled equations for the various plasma species

Page 29: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Fluid / Chemistry modelling Collisional – Radiative Models (CRM)

nD

nD2

2

Λ−≈∇

Transport rates

For electrons, the transport parameters can be related with the EEDF

( )NEdvvn

FvD

ec

e function43

0

20

0

2

== ∫∞

πν

( )NEdvvv

F

nm

ev

ec

e function41

30

20

0 =∂

∂−= ∫∞

πν

µ

Electron free diffusion coefficient

Electron mobility

Page 30: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Fluid / Chemistry modelling Collisional – Radiative Models (CRM)

∑∑ −=k

k

j jjI nnn νννReaction rates (for collisional-radiative kinetic mechanisms)

For electrons, the collision frequencies can be related with the EEDF

Electron rate coefficients

( )NEdvvn

Fv

n

NC

e

j

e

j

j function40

20

0 ==≡ ∫∞

πσν

Page 31: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Fluid / Chemistry modelling Collisional – Radiative Models (CRM)

Kinetic data: example for nitrogen

Source: LL Alves et al, PSST 21 045008 (2012)

Page 32: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Fluid / Chemistry modelling Collisional – Radiative Models (CRM)

Kinetic data: example for nitrogen

Source: LL Alves et al, PSST 21 045008 (2012)

Page 33: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Hybrid modellingjoining the pieces…

Page 34: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Closing the calculationEigenvalue calculation of the excitation field

2

22

2 10

Λ≡=∇

⇒=+∇−=∂∂

NDN

N

n

nnnD

t

n II

νν

� PDE solution (with boundary condition for the charged-particle density)

const1

2

2

=∇n

n

� Electron gain/loss balance (Schottky condition)

( )2Λ=

N

DN

N

EIGENVALUE

N

E

Page 35: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Hybrid modelling Joining the pieces

Kinetic moduleBoltzmann solver

for electrons

Fluid moduleChemistry solver

for neutral / charged

heavy-species

Other

rate coefficients

Electron

rate coefficients

transport parameters

E/N (initial value)Electron cross sections

Schottky condition

satisfied?

E/N (update)

Electron energy

distribution function

Densities and fluxes

of charged particles

Page 36: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Hybrid modelling The LisbOn KInetics code (LoKI)

Modular tools with state-of-the-art kinetic

schemes and transport description,

including

• Boltzmann solver

• Chemistry solver

Page 37: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Example results

Page 38: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

A:

ω/N = 0

E/N = 3x10-16 V cm2

B:

ω/N = 2x10-6 cm3 s-1

E/N = 3x10-15 V cm2

Kinetic calculations EEDF for argon

ne / N

0, full

10-4, dashed

A

B

38

Influence of - excitation frequency- e-e collisions

Source: CM Ferreira and J Loureiro, PSST 9 528 (2000)

Page 39: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

TV = 2000 K

3000 K

4000 K

6000 K

E/N = 10-15 V cm2

ω/N = 0

E/N = 10-15 V cm2

ω/N = 0

2000 K

6000 K

6000 K

TV = 2000 K

Kinetic calculationsEEDF and VDF for nitrogen

39Source: CM Ferreira and J Loureiro, PSST 9 528 (2000)

Page 40: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Kinetic calculationsSwarm studies for oxygen (influence of rotational mechanisms)

40

DCO … discrete collisional operatorCC-CAR … continuous approximation rotations (with Chapman-Cowling correction)

Source: MA Ridenti et al, PSST 24 035002 (2016)

Page 41: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Hybrid calculations – dc discharge in heliumSpace-charge potential and electron mean energy

41

0.0 0.2 0.4 0.6 0.8 1.0-30

-20

-10

0

p = 0.4 Torr

150 mA

simulation

measurement [Kimura et al (1995)]

r/R

V (

V)

1 101

10

50 mA

200 mA

simulations (x 0.5)

,

measurements

Kaneda (1979)

, , ,

Dote and Shimada (1982), Sato (1993)

pR (torr cm)

NR (1016

cm-2)

ε(0)

(eV

)

1 10

Source: LL Alves, PSST 16 557 (2007)

Page 42: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Hybrid calculations – capacitive discharge in N2 and N2-H2Self-bias potential and radiative transition intensities

42

0 1 2 3 40.0

0.2

0.4

0.6

0.8

1.0

Inte

nsi

ty S

PS

(0,0

) (a

.u.)

z (cm)

N2 1 mbar0.2 mbar

0 1 2 3 4 50.5

1.0

1.5

2.0

2.5

H2/(H

2+N

2) (%)

Inte

nsi

ty F

NS

(0,0

) (a

.u)

N2-H2

1.2 mbar0.6 mbar

0 5 10 15 20 250

25

50

75

100

125

150

175

- V

dc (

V)

Weff

(W)

N2

1 mbar0.5 mbar0.2 mbar

Source: LL Alves et al, PSST 21 045008 (2012)

Page 43: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Hybrid calculations – microwave discharge in airAbsolute densities of N2 species

43Source: GD Stancu et al, JPD 49 435202 (2016)

N2(B)

N2(C)

N2+(B)

--- ne increased 20%… Tg–80K

129 W 129 W

Page 44: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Hybrid calculations – microwave discharge in airAbsolute densities of atomic species

44Source: GD Stancu et al, JPD 49 435202 (2016)

O (3p 5P)

N (3p 4S)

--- ne increased 20%… Tg–80K129 W

129 W

Page 45: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Hybrid calculations – microwave discharge in airVibrational temperature of the N2(C) state

45Source: GD Stancu et al, JPD 49 435202 (2016)

γN2 = 1.1x10-3

γN2 = 0.02

Influence of the wall deactivation coefficient

129 W

Page 46: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Verification of codes Round-robin call

46

Following the GEC16 workshop on LXCat…The need for a community wide activity on validation of plasma chemical kinetics in

commonly used gases has been clearly identified. (…) we would like to propose a

round-robin to acess the consistency in results of calculations from different

participants in a simplified system.(coordination: Sergey Pancheshnyi)

A round robin test is an interlaboratory test (measurement, analysis, or experiment)

performed independently several times. This can involve multiple independent scientists

performing the test with the use of the same method in different equipment, or a variety

of methods and equipment. In reality it is often a combination of the two, for example if a

sample is analyzed, or one (or more) of its properties is measured by different

laboratories using different methods, or even just by different units of equipment of

identical construction.(Source: Wikipedia, April 2017)

Page 47: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Verification of codes Round-robin exercise

47

General conditions

Gas temperature (constant) 300 K Species

Gas pressure (constant) 0.1 bar e electrons

Initial density of electrons 1 cm-3 Ar neutrals

Initial density of ions 1 cm-3 Ar+ positive ions

Time interval 0 … 0.01 s Ar* excited states

Processes and rates

e + Ar → e + Ar scattering cross section provided

e + Ar → e + Ar* scattering cross section provided

e + Ar → e + e + Ar+ scattering cross section provided

Ar+ + e + e → Ar + e C (cm6 s-1) = 8.75x10-27 Te –(4.5)

Input parameter

[ ])ms(exp)ms(43)Td( ttN

E −=

Page 48: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

Final remarks

Page 49: Modelling of low-temperature plasmasplasmasfroids.cnrs.fr/IMG/pdf/Fonctionnalisation2017_Alves.pdf · • Principles of Plasma Discharges and Materials Processing M. A. Lieberman

49

Modelling of low-temperature plasmasFinal remarks and questions

• Modelling tools are formidable aides for understanding and predicting

the behaviour of low-temperature plasmas (LTPs)

• The main difficulties in deploying LTP models are

- describing the plasma excitation and transport

(particularly if spatial effects are relevant)

- defining a kinetic scheme for the plasma species

(and finding the corresponding elementary data)

• Modelling tools need

- verification, e.g. based on crossed-benchmarking, round-robin exercises…

(the community is currently starting a collective to meet this goal)

- validation of results, by comparing simulations with experiment

(collaboration with experimental teams is most welcome)

Questions ?