modelling biochemical rumen functions with special emphasis on methanogenesis

Upload: mevlut-gunal

Post on 02-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    1/49

    ModellingModelling

    biochemical rumen functionsbiochemical rumen functions

    with special emphasis onwith special emphasis onmethanogenesismethanogenesis

    DDD

    Dr Jan DijkstraDr Jan DijkstraAnimal Nutrition GroupAnimal Nutrition Group

    Wageningen UniversityWageningen University

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    2/49

    Overview

    Principles of mathematicalPrinciples of mathematical modellingmodelling

    Empirical models of methane productionEmpirical models of methane production

    Mechanistic models of methane productionMechanistic models of methane production

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    3/49

    Prediction ~ mathematical models

    A model is anA model is an equation or set of equationsequation or set of equations

    thatthatrepresent therepresent the behaviour of a systembehaviour of a system

    France and Thornley (1984)France and Thornley (1984)

    Prediction requires use of modelsPrediction requires use of models

    A model can be viewed as an idea, hypothesis orA model can be viewed as an idea, hypothesis orrelation expressed in mathematicsrelation expressed in mathematics

    Symbiosis between experimentation andSymbiosis between experimentation andmodellingmodelling

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    4/49

    Model classification

    dynamic OR staticdynamic OR static

    deterministic OR stochasticdeterministic OR stochastic

    mechanistic OR empiricalmechanistic OR empirical

    To put categories into a more familiar context, a modelTo put categories into a more familiar context, a modelbased on:based on:

    regression analysisregression analysis

    static, stochastic, empiricalstatic, stochastic, empirical

    linear programminglinear programming static, deterministic, empiricalstatic, deterministic, empirical

    differentialdifferential eqnseqns

    dynamic, deterministic,dynamic, deterministic,

    mechanisticmechanistic J. DijkstraModelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    5/49

    Levels of organization

    1

    1

    -

    -

    +

    i

    i

    i

    2

    Description of levelLevel

    Herd / flock

    Animal

    Organ / tissue

    Cell

    i

    Dijkstra & France

    (2005)

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    6/49

    Properties of hierarchical systems

    Each level has its own concepts and languageEach level has its own concepts and language

    Each level is an integration of items from lowerEach level is an integration of items from lowerlevelslevels

    Successful operation of a level requires lowerSuccessful operation of a level requires lower

    levels to function properly, but not necessarilylevels to function properly, but not necessarily viceviceversaversa

    LevelLevel Description of levelDescription of level

    i + 1i + 1

    ii

    i - 1i - 1

    i - 2i - 2

    Herd / flockHerd / flock

    AnimalAnimalOrgan / tissueOrgan / tissue

    CellCell

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    7/49

    Contributions of modelling

    Models make best use of (precious) dataModels make best use of (precious) data

    Models provide a convenient data summary,Models provide a convenient data summary,

    useful for interpolation and cautious extrapolationuseful for interpolation and cautious extrapolation

    Models provide quantitative description andModels provide quantitative description and

    understanding of biological problemsunderstanding of biological problems

    ModellingModelling

    provides strategic and tactical supportprovides strategic and tactical support

    to researchto research programmesprogrammes

    ModellingModelling

    allows exploration of possibleallows exploration of possible

    outcomes when data are not availableoutcomes when data are not available

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    8/49

    Overview

    Principles of mathematicalPrinciples of mathematical modellingmodelling

    Empirical models of methane productionEmpirical models of methane production

    Mechanistic models of methane productionMechanistic models of methane production

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    9/49

    Livestock greenhouse gases

    manure /

    fertilizer

    CO2

    N2

    O

    CH4

    deforestatio

    n

    enteric

    fermentation

    FAO (2006)

    GWP*-100 yr:

    CO2 1

    CH4 25

    N2

    O 298*Global Warming

    Potential

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    10/49

    Livestock greenhouse gases

    manure /

    fertilizer

    CO2N2

    O

    CH4

    deforestatio

    n

    enteric

    fermentation

    GWP*-20 yr:

    CO2 1

    CH4 72

    N2

    O 289*Global Warming

    Potential

    J. Dijkstra

    Modelling methane emissions

    FAO (2006)

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    11/49

    Rumen methanogenesis

    Fermentative microFermentative micro--organisms utilize dietaryorganisms utilize dietary

    organic matter to produce VFA plus gases (e.g.,organic matter to produce VFA plus gases (e.g.,

    COCO22

    , H, H22

    ))

    amount of Hamount of H22

    depends on type of VFAdepends on type of VFA

    MethanogensMethanogens

    reduce COreduce CO22

    to CHto CH44

    using Husing H22

    ,,keeping Hkeeping H22

    partial pressure in rumen lowpartial pressure in rumen low

    HH22

    is used up as it is producedis used up as it is produced

    CHCH44

    production:production:

    22

    12% of GE intake12% of GE intake

    1010

    35 g/kg DM intake35 g/kg DM intake J. DijkstraModelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    12/49

    Organic

    matterMicro-

    organismsVF

    A

    feed

    intake

    Rumen

    2. Microbial

    growth

    (efficiency)

    3. Type VFA

    f (substrate type, pH, )

    Gut

    outflow

    absorption

    Factors involved in rumen methanogenesis

    1. Chemical composition & degradation characteristics

    H2 CH4

    CO2

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    13/49

    Empirical models of methane production

    > 30 empirical models available> 30 empirical models available

    inventoryinventory

    mitigation strategymitigation strategy

    Independent variables include live weight, milkIndependent variables include live weight, milk

    production, feed intake, dietary components,production, feed intake, dietary components,

    digestibilitydigestibility

    Applied in models of greenhouse gas emissionsApplied in models of greenhouse gas emissionsin whole farm settingin whole farm setting

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    14/49

    Assessment of accuracy of empirical models

    9 methane equations applied in 8 whole farm9 methane equations applied in 8 whole farm

    modelsmodels

    169 observations from 9 studies169 observations from 9 studies

    Ellis et al. (2010) Global Change Biology

    MeanMean SDSD MinMin MaxMaxFeed intake (kg DM/d)Feed intake (kg DM/d) 19.619.6 4.04.0 11.211.2 32.032.0

    Milk production (kg/d)Milk production (kg/d) 30.330.3 9.059.05 8.88.8 49.449.4

    Methane production (g/d)Methane production (g/d) 371371 77.177.1 117117 698698

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    15/49

    Empirical models of methane production - 1

    274 (Europe) or 323 (N274 (Europe) or 323 (N--America)America)

    IPCC (1997) Tier IIPCC (1997) Tier I

    0.06 x GE intake / 55.650.06 x GE intake / 55.65

    IPCC (1997) Tier IIIPCC (1997) Tier II

    10 + 4.9 x milk yield + 1.5 x LW10 + 4.9 x milk yield + 1.5 x LW0.750.75KirchgeKirchgenerner

    et al. (1995)et al. (1995) -- 11

    137 + 10 x milk yield137 + 10 x milk yield

    CorreCorre

    (2002)(2002)

    CHCH44

    production (g/d) estimated as:production (g/d) estimated as:

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    16/49

    Empirical models of methane production - 2

    (45(45

    0.02 x DMI0.02 x DMI22

    1.8 x C18:21.8 x C18:2

    84 x C84 x C20) x20) x

    DMIDMIGigerGiger--ReverdinReverdin

    et al. (2003)et al. (2003)

    [1.3 + 0.11 x[1.3 + 0.11 x DigDigmm

    ++ MnMn

    x (2.4x (2.4

    0.05 x0.05 x DigDigmm

    )] x)] x

    GEIGEIBlaxterBlaxter

    && ClappertonClapperton

    (1965)(1965)

    63 + 79 x CF + 10 x NFE + 26 x CP63 + 79 x CF + 10 x NFE + 26 x CP

    212 x FAT212 x FATKirchgeKirchgenerner

    et al. (1995)et al. (1995) -- 22

    (3 + 0.5 x NSC + 1.7 x HC + 2.7 x CEL)/55.65(3 + 0.5 x NSC + 1.7 x HC + 2.7 x CEL)/55.65Moe & Tyrrell (1979)Moe & Tyrrell (1979)

    CHCH44

    production (g/d) estimated as:production (g/d) estimated as:

    20 x concentrate + 22 x maize20 x concentrate + 22 x maize silsil

    + 27 x grass+ 27 x grass

    ((silsil)) SchilsSchils

    et al. (2006)et al. (2006)J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    17/49

    Evaluation of empirical methane models

    PredPred

    CHCH44(g/d)(g/d)

    RMSPE(%)

    CCC

    IPCC (1997) Tier IIPCC (1997) Tier I 304304 27.6 0.01

    IPCC (1997) Tier IIIPCC (1997) Tier II 399399 20.9 0.49

    CorreCorre

    (2002)(2002) 440440 34.2 0.13

    KirchgeKirchgenerner

    et al. (1995)et al. (1995)

    11404404 29.5 0.29

    GigerGiger--ReverdinReverdin

    et al. (2003)et al. (2003) 230230 52.5 0.12

    BlaxterBlaxter

    && ClappertonClapperton

    (1965)(1965) 332332 21.2 0.27

    Moe & Tyrrell (1979)Moe & Tyrrell (1979) 391391 20.2 0.46KirchgeKirchgenerner

    et al. (1995)et al. (1995)

    22 345345 20.9 0.22

    SchilsSchils

    et al. (2006)et al. (2006) 483483 39.5 0.25

    Ellis et al. (2010)

    Observed CH4371 g/d

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    18/49

    Evaluation of empirical methane models

    PredPred

    CHCH44(g/d)(g/d)

    RMSPERMSPE(%)(%)

    CCC

    IPCC (1997) Tier IIPCC (1997) Tier I 304304 27.627.6 0.01

    IPCC (1997) Tier IIIPCC (1997) Tier II 399399 20.920.9 0.49

    CorreCorre

    (2002)(2002) 440440 34.234.2 0.13

    KirchgeKirchgenerner

    et al. (1995)et al. (1995)

    11404404

    29.529.5 0.29

    GigerGiger--ReverdinReverdin

    et al. (2003)et al. (2003) 230230 52.552.5 0.12

    BlaxterBlaxter

    && ClappertonClapperton

    (1965)(1965) 332332 21.221.2 0.27

    Moe & Tyrrell (1979)Moe & Tyrrell (1979) 391391 20.220.2 0.46KirchgeKirchgenerner

    et al. (1995)et al. (1995)

    22 345345 20.920.9 0.22

    SchilsSchils

    et al. (2006)et al. (2006) 483483 39.539.5 0.25

    Ellis et al. (2010)

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    19/49

    Evaluation of empirical methane models

    PredPred

    CHCH44(g/d)(g/d)

    RMSPERMSPE(%)(%)

    CCCCCC

    IPCC (1997) Tier IIPCC (1997) Tier I 304304 27.627.6 0.010.01

    IPCC (1997) Tier IIIPCC (1997) Tier II 399399 20.920.9 0.490.49

    CorreCorre

    (2002)(2002) 440440 34.234.2 0.130.13

    KirchgeKirchgenerner

    et al. (1995)et al. (1995)

    11 404404 29.529.5 0.290.29

    GigerGiger--ReverdinReverdin

    et al. (2003)et al. (2003) 230230 52.552.5 0.120.12

    BlaxterBlaxter

    && ClappertonClapperton

    (1965)(1965) 332332 21.221.2 0.270.27

    Moe & Tyrrell (1979)Moe & Tyrrell (1979) 391391 20.220.2 0.460.46KirchgeKirchgenerner

    et al. (1995)et al. (1995)

    22 345345 20.920.9 0.220.22

    SchilsSchils

    et al. (2006)et al. (2006) 483483 39.539.5 0.250.25

    Ellis et al. (2010)

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    20/49

    Evaluation of empirical methane modelsEllis et al. (2010)

    Model:

    Giger-Reverdin

    et al. (2003)0 100 200 300 400 500 600 700Observed CH

    4(g/d)

    0

    100

    200

    300

    400

    500

    600

    700

    Predic

    tedCH4

    (g

    /d)

    y = x

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    21/49

    Evaluation of empirical methane modelsEllis et al. (2010)

    Model:

    Moe & Tyrrell

    (1979)

    0 100 200 300 400 500 600 700

    Observed CH4(g/d)

    0

    100

    200

    300

    400

    500

    600

    700

    Predic

    tedCH4

    (g

    /d)

    y = x

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    22/49

    Conclusions empirical methane models

    Predictions poor; significant bias and deviation ofPredictions poor; significant bias and deviation ofregression slope from unityregression slope from unity

    Simple, generalized models performed worseSimple, generalized models performed worse

    than models based on diet compositionthan models based on diet composition

    Substantial errors into inventories of whole farmSubstantial errors into inventories of whole farmgreenhouse gas emissions are likelygreenhouse gas emissions are likely

    Low prediction error may lead to incorrectLow prediction error may lead to incorrect

    mitigation recommendationsmitigation recommendations

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    23/49

    Overview

    Principles of mathematicalPrinciples of mathematical modellingmodelling

    Empirical models of methane productionEmpirical models of methane production

    Mechanistic models of methane productionMechanistic models of methane production

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    24/49

    Rate : state formalism

    State variables:State variables: QQ11,,

    QQ22,,

    ..,.., QQnn

    Change of state variables with timeChange of state variables with time tt::

    ddQQ11/d/dt = ft = f11 ((QQ11, Q, Q22,, ,, QQnn;;

    PP ))

    ddQQ22/d/dt = ft = f22 ((QQ11, Q, Q22,, ,, QQnn;;

    PP ))

    . .. .

    . .. .

    ddQQnn

    /d/dtt = f= fnn

    ((QQ11

    , Q, Q22

    ,, ,, QQnn

    ;;

    PP ))

    Differential equations based on law of massDifferential equations based on law of mass

    conservation, 1conservation, 1stst

    law of thermodynamics, etclaw of thermodynamics, etc

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    25/49

    Organic

    matterMicro-

    organismsVF

    A

    feed

    intake

    Rumen

    2. Microbial

    growth

    (efficiency)

    3. Type VFA

    f (substrate type, pH, )

    Gut

    outflow

    absorption

    Factors involved in rumen methanogenesis

    1. Chemical composition & degradation characteristics

    H2 CH4

    CO2

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    26/49

    Mechanistic rumen module

    smallsmall

    intestineintestineNDFNDFNDF

    feed intakefeed intake rumenrumen

    gut wallgut wall

    NDFmicrobmicrob

    starchstarchstarchstarch

    VFAVFA

    Ac Pr Bu

    starch

    LCFA LCFA

    protein proteinproteinprotein

    NH3NHNH33

    amino

    acids

    aminoamino

    acidsacids

    NH3urea

    protein

    sugars

    F-AA +pept

    glucoseglucoseglucose

    NDF

    glucose

    amino acid

    NH3urea

    microb

    Dijkstra et al. (1992)

    Modifications:

    Dijkstra (1994)

    Mills et al. (2001)

    Dijkstra et al. (2002)Kebreab

    et al.(2004)

    Bannink

    et al.(2006)

    In use in:

    Netherlands

    UK

    AustraliaBrazil

    Canada

    USA

    and many moreJ. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    27/49

    Efficiency of microbial growth

    Substrate is used for

    non-growth purposes (maintenance)

    growth purposes

    Yield is related to fractional

    growth rate

    (Pirt, 1965)

    1 / Y = M /

    + 1 / Ymax

    Y = growth yield

    M = maintenance requirement

    Ymax

    = maximum yield

    = fractional growth rate 0.00 0.10 0.20 0.30Fractional growth rate (/h)

    0.00

    0.20

    0.40

    0.60

    Growthyield(g/g)

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    28/49

    Microbial metabolism: N source

    Yield affected by availability of preformed molecules

    0 500 100090

    110

    130

    150

    per unit OM

    per unit CHO

    Bacterialproteinyield

    (gprotein/kg

    degrOMor

    CHO)

    Trypticase (mg/l)

    Russell & Sniffen (1984)

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    29/49

    Energy and N synchrony: energy spillingK. aerogenes; Neijssel

    & Tempest

    (1976)

    0.00 0.25 0.50 0.750

    5

    10

    15

    20

    Dilution rate (/h)

    glycerol limited

    ammonia limited

    Micro

    bialyield

    (gDM

    /molATP)

    J. Dijkstra

    Modelling methane emissions

    Uglycerol

    in energy spilling

    = vmax

    Qmicrobes

    /(1+[ammonia]/Jammonia

    )

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    30/49

    Significance of VFA molar proportion

    CC66

    HH1212

    OO66

    +2H+2H22

    OO

    2C2C22

    HH44

    OO22

    (acetate) + 2CO(acetate) + 2CO22

    ++ 4H4H22

    CC66

    HH1212

    OO66

    ++2H2H22

    2C2C33

    HH66

    OO22

    (propionate) + 2H(propionate) + 2H22

    OO

    CC66

    HH1212

    OO66

    CC44

    HH88

    OO22

    (butyrate) + 2CO(butyrate) + 2CO22

    ++ 2H2H22

    COCO22

    ++ 4H4H22

    CHCH44

    + 2H+ 2H22

    OO

    acetateacetate

    70%70%

    propionatepropionate

    15%15%butyratebutyrate

    15%15%

    CHCH44

    0.39 mol/mol VFA0.39 mol/mol VFA

    60%60%

    25%25%15%15%

    0.31 mol/mol VFA0.31 mol/mol VFAJ. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    31/49

    Mechanistic model methane production

    (Dijkstra et

    al. 1992; Mills et al. 2001; Bannink et al. 2006)

    Acetate

    H2

    Propionate

    Butyrate

    Lipidhydrogenation

    Valerate

    Microbial growthwith ammonia

    Microbial growthwith amino acids

    H2 source H2 sink

    Fermentation

    Feed input

    Large IntestinalModel

    Small intestinaldigestion

    Rumen ModelFermentation

    FermentationMethane

    CO2

    + 4H2

    CH4

    +2H2

    O

    EXCESS

    Methane

    module

    Methane

    module

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    32/49

    VFA stoichiometry

    Type of VFA formed related to substrateType of VFA formed related to substratefermented, rumen pH, roughagefermented, rumen pH, roughage vsvs

    concentrateconcentrate

    J. Dijkstra

    Modelling methane emissions

    0.0

    0.5

    1.0

    1.5

    molacetate/molsubstrate

    sugars

    sta

    rch

    cellulo

    se

    hemi-

    cellu

    lose

    roughage concentrate

    0.0

    0.5

    1.0

    1.5

    molpropionate/molsubstrate

    sugars

    sta

    rch

    cellulo

    se

    hemi-

    cellu

    lose

    roughage concentrate

    Murphy et al.

    (1984)

    acetate propionate

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    33/49

    Analysissubstrate type

    roughage

    vs.

    concentratesefficiencymicrobialgrowth

    kineticsVFA-absorption

    pH

    In vivo datarumendigestionlactating cows

    VFA stoichiometry

    and rumen pHBannink

    et al. (2008)

    J. Dijkstra

    Modelling methane emissions

    Sc: sugars

    St: starch

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    34/49

    Methane formation from various substrates

    J. Dijkstra

    Modelling methane emissions

    Starch Cell wall Protein0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    1.20

    Relativeme

    thaneformation

    pH 5.5

    pH 6.0

    pH 6.5 CH4

    from

    soluble

    carbohydrates

    set at unity

    Bannink

    et al. (2008)

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    35/49

    Mechanistic models of methane formation

    Prediction based on description of the rumen inPrediction based on description of the rumen in

    terms of components and associated processesterms of components and associated processes

    Mechanistic models superior predictive powerMechanistic models superior predictive power

    BenchaarBenchaar

    et al. (1998); Mills et al. (2001);et al. (1998); Mills et al. (2001); KebreabKebreab

    et al. (2006)et al. (2006)

    Allows evaluation of dietary mitigation optionsAllows evaluation of dietary mitigation options

    Inventories under Kyoto protocolInventories under Kyoto protocol

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    36/49

    Example: Netherlands, database 1990 -

    2008

    Milk production and composition dataMilk production and composition data

    Feed intake dataFeed intake data

    feed categories: fresh grass, grass silage, maizefeed categories: fresh grass, grass silage, maizesilage, wet byproducts, concentratessilage, wet byproducts, concentrates

    concentrate chemical composition from centralconcentrate chemical composition from central

    databasedatabase

    roughage chemical composition from Laboratory forroughage chemical composition from Laboratory for

    Soil and Crop TestingSoil and Crop Testing

    Dietary changes in 1990

    2008

    more maize silage and less fresh grass

    crude protein content decreased

    starch and sugar content increased J. DijkstraModelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    37/49

    DM intake and fat corrected milk (FCM)

    J. Dijkstra

    Modelling methane emissions

    1990 1995 2000 2005 2010

    Year

    12

    14

    16

    18

    20

    22

    24

    FCMorDMI(kg/d)

    FCM production

    DM intake

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    38/49

    J. Dijkstra

    Modelling methane emissions

    Simulated methane production

    1990 1995 2000 2005 2010

    Year

    100

    105

    110

    115

    120

    125

    130

    Methaneproduction(kg

    /cow/yr)

    15

    16

    17

    18

    19

    20

    Methane(g/kgDMorg

    /kgFCM)

    Methane (kg/cow/yr)

    Methane (g/kg DM)

    Methane (g/kg FCM)

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    39/49

    Simulated methane production

    J. Dijkstra

    Modelling methane emissions

    1990 1995 2000 2005 2010

    Year

    100

    105

    110

    115

    120

    125

    130

    Methaneproduction(kg

    /cow/yr)

    15

    16

    17

    18

    19

    20

    Methane(g/kgDMorg

    /kgFCM)

    Methane (kg/cow/yr)

    Methane (g/kg DM)

    Methane (g/kg FCM)

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    40/49

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    41/49

    Methane Conversion Factor (MCF)

    Trend methaneTrend methaneproductionproduction

    (kg/cow/yr):(kg/cow/yr):

    IPCC 1.38IPCC 1.38

    model 1.05model 1.05 1990 1995 2000 2005 2010

    Year

    5.7

    5.8

    5.9

    6.0

    6.1

    6.2

    6.3

    M

    CF(%G

    E)

    Mechanistic model

    IPCC Tier 2 (1997)

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    42/49

    Conclusions mechanistic methane models

    Continued interaction between mechanisticContinued interaction between mechanisticmodellingmodelling

    and experimentation allows fasterand experimentation allows faster

    progressprogress

    combine expertise in traditional fermentation parameters,combine expertise in traditional fermentation parameters,

    molecular microbiological tools, and mathematicsmolecular microbiological tools, and mathematics

    Mechanistic methane models enable predictionMechanistic methane models enable prediction

    based on understanding of the systembased on understanding of the system

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    43/49

    Acknowledgements

    AndreAndre BanninkBannink

    LelystadLelystad, the Netherlands, the Netherlands

    Jennifer EllisJennifer Ellis

    UnivUniv

    Guelph, CanadaGuelph, Canada

    James FranceJames France

    UnivUniv

    GuelpGuelp, Canada, Canada

    ErmiasErmias

    KebreabKebreab

    UnivUniv

    Davis, USADavis, USA

    SecundinoSecundino

    LopezLopez

    UnivUniv

    Leon, SpainLeon, Spain

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    44/49

    Acknowledgements

    AndreAndre BanninkBannink

    LelystadLelystad, the Netherlands, the Netherlands

    Jennifer EllisJennifer Ellis

    UnivUniv

    Guelph, CanadaGuelph, Canada

    James FranceJames France

    UnivUniv

    GuelpGuelp, Canada, Canada

    ErmiasErmias

    KebreabKebreab

    UnivUniv

    Davis, USADavis, USA

    SecundinoSecundino

    LopezLopez

    UnivUniv

    Leon, SpainLeon, Spain

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    45/49

    Practical solutions: model results

    0

    510

    15

    20

    25

    mean NL doubled

    maize

    silage

    early cut

    grass

    silage

    reduced

    fertiliser

    +2% fat

    Metha

    ne(g/kg)

    per kg feed

    per kg milk

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    46/49

    Practical solutions: model results

    0

    510

    15

    20

    25

    mean NL doubled

    maize

    silage

    early cut

    grass

    silage

    reduced

    fertiliser

    +2% fat

    Metha

    ne(g/kg)

    per kg feed

    per kg milk

    -4%

    -5%

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    47/49

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    48/49

    Practical solutions: model results

    0

    510

    15

    20

    25

    mean NL doubled

    maize

    silage

    early cut

    grass

    silage

    reduced

    fertiliser

    Metha

    ne(g/kg)

    per kg feed

    per kg milk

    -3%

    -6%

    +8%

    +11%-4%

    -5%

    J. Dijkstra

    Modelling methane emissions

  • 8/11/2019 Modelling Biochemical Rumen Functions With Special Emphasis on Methanogenesis

    49/49

    Practical solutions: model results

    0

    510

    15

    20

    25

    mean NL doubled

    maize

    silage

    early cut

    grass

    silage

    reduced

    fertiliser

    +2% fat

    Metha

    ne(g/kg)

    per kg feed

    per kg milk

    -3%

    -6%

    +8%

    +11%-2%

    -6%

    -4%

    -5%

    J. Dijkstra