modeling uncertainty in climate change: a multi … · 2016. 4. 14. · 1 modeling uncertainty in...

67
MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTIMODEL COMPARISON By Kenneth Gillingham, William Nordhaus, David Anthoff, Geoffrey Blanford, Valentina Bosetti, Peter Christensen, Haewon McJeon, John Reilly, and Paul Sztorc September 2015 COWLES FOUNDATION DISCUSSION PAPER NO. 2022 COWLES FOUNDATION FOR RESEARCH IN ECONOMICS YALE UNIVERSITY Box 208281 New Haven, Connecticut 06520-8281 http://cowles.yale.edu/

Upload: others

Post on 21-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI‐MODEL COMPARISON

By

Kenneth Gillingham, William Nordhaus, David Anthoff, Geoffrey Blanford, Valentina Bosetti, Peter Christensen,

Haewon McJeon, John Reilly, and Paul Sztorc

September 2015

COWLES FOUNDATION DISCUSSION PAPER NO. 2022

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS YALE UNIVERSITY

Box 208281 New Haven, Connecticut 06520-8281

http://cowles.yale.edu/

Page 2: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      1 

ModelingUncertaintyinClimateChange:

AMulti‐ModelComparison1

KennethGillingham,WilliamNordhaus,DavidAnthoff,GeoffreyBlanford,ValentinaBosetti,PeterChristensen,HaewonMcJeon,JohnReilly,PaulSztorc

September17,2015

Abstract

Theeconomicsofclimatechangeinvolvesavastarrayofuncertainties,complicatingboththeanalysisanddevelopmentofclimatepolicy.Thisstudypresentstheresultsofthefirstcomprehensivestudyofuncertaintyinclimatechangeusingmultipleintegratedassessmentmodels.Thestudylooksatmodelandparametricuncertaintiesforpopulation,totalfactorproductivity,andclimatesensitivity.Itestimatesthepdfsofkeyoutputvariables,includingCO2concentrations,temperature,damages,andthesocialcostofcarbon(SCC).Onekeyfindingisthatparametricuncertaintyismoreimportantthanuncertaintyinmodelstructure.Ourresultingpdfsalsoprovideinsightsontailevents.

                                                            1TheauthorsaregratefultotheDepartmentofEnergyandtheNationalScienceFoundationforprimarysupportoftheproject.ReillyandMcJeonacknowledgesupportbytheU.S.DepartmentofEnergy,OfficeofScience.ReillyalsoacknowledgestheothersponsorstheMITJointProgramontheScienceandPolicyofGlobalChangelistedathttp://globalchange.mit.edu/sponsors/all.TheStanfordEnergyModelingForumhasprovidedsupportthroughitsSnowmasssummerworkshops.KennethGillinghamcurrentlyworksasaSeniorEconomistfortheCouncilofEconomicAdvisers(CEA).TheCEAdisclaimsresponsibilityforanyoftheviewsexpressedherein,andtheseviewsdonotnecessarilyrepresenttheviewsoftheCEAortheUnitedStatesgovernment.Noneoftheauthorshasaconflictofinteresttodisclose.KennethGillinghamandWilliamNordhausarecorrespondingauthors([email protected]@yale.edu).

Page 3: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      2 

I. Introduction

Acentralissueintheeconomicsofclimatechangeisunderstandinganddealingwiththevastarrayofuncertainties.Theserangefromthoseregardingeconomicandpopulationgrowth,emissionsintensitiesandnewtechnologies,tothecarboncycle,climateresponse,anddamages,andcascadetothecostsandbenefitsofdifferentpolicyobjectives.

Thispaperpresentsthefirstcomprehensivestudyofuncertaintyofmajoroutcomesforclimatechangeusingmultipleintegratedassessmentmodels(IAMs).ThesixmodelsusedinthestudyarerepresentativeofthemodelsusedintheIPCCFifthAssessmentReport(IPCC2014)andintheU.S.governmentInteragencyWorkingGroupReportontheSocialCostofCarbonorSCC(USInteragencyWorkingGroup2013).Wefocusoureffortsinthisstudyonthreekeyuncertainparameters:populationgrowth,totalfactorproductivitygrowth,andequilibriumclimatesensitivity.Fortheestimateduncertaintyinthesethreeparameters,wedevelopestimatesoftheuncertaintyto2100formajorvariables,suchasemissions,concentrations,temperature,percapitaconsumption,output,damages,andthesocialcostofcarbon.

Ourapproachisatwo‐trackmethodologythatpermitsreliablequantificationofuncertaintyformodelsofdifferentsizeandcomplexity.Thefirsttrackinvolvesperformingmodelrunsoverasetofgridpointsandfittingasurfaceresponsefunctiontothemodelresults;thisapproachprovidesaquickandaccuratewaytoemulaterunningthemodels.Thesecondtrackdevelopsprobabilitydensityfunctionsforthechoseninputparameters(i.e.,theparameterpdfs)usingthebestavailableevidence.WethencombinebothtracksbyperformingMonteCarlosimulationsusingtheparameterpdfsandthesurfaceresponsefunctions.

Thismethodologyprovidesatransparentapproachtoaddressinguncertaintyacrossmultipleparametersandmodelsandcaneasilybeappliedtoadditionalmodelsanduncertainparameters.Animportantaspectofthismethodology,unlikevirtuallyallothermodelcomparisonexercises,isitsreplicability.Theapproachiseasilyvalidatedbecausethedatafromthecalibrationexercisesarerelativelycompactandarecompiledinacompatibleformat,thesurfaceresponsescanbeestimatedindependently,andtheMonteCarlosimulationscanbeeasilyruninmultipleexistingsoftwarepackages.

Thispaperisstructuredasfollows.Thenextsectiondiscussesthestatisticalconsiderationsunderpinningourstudyofuncertaintyinclimatechange.SectionIIIpresentsourmethodologyforthetwo‐trackapproach,whilethenextsectiondiscussesselectionofcalibrationruns.SectionVgivesthederivationofthe

Page 4: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      3 

probabilitydistributions.SectionVIgivestheresultsofthemodelcalculationsandthesurfaceresponsefunctions,andsectionVIIpresentstheresultsoftheMonteCarloestimatesofuncertainties.WeconcludewithasummaryofthemajorfindingsinsectionVIII.TheAppendicesprovidefurtherbackgroundinformation.

II. StatisticalConsiderations

A. BackgroundonUncertaintyinClimateChange

Climatechangescienceandpolicyhavefocusedlargelyonprojectingthecentraltendenciesofmajorvariablesandimpacts.Whilecentraltendenciesareclearlyimportantforafirst‐levelunderstanding,attentionisincreasinglyontheuncertaintiesintheprojections.Uncertaintiestakeongreatsignificancebecauseofthepossibilityofnon‐linearitiesinresponses,particularlythepotentialfortriggeringthresholdsinearthsystems,inecosystem,orineconomicoutcomes.Tobesure,uncertaintieshavebeenexploredinmajorreports,suchastheIPCCScientificAssessmentReportsfromthefirsttothefifth.However,thesehavemainlyexamineddifferencesamongmodelsasatoolforassessinguncertaintiesaboutfutureprojections.Asweindicatebelow,ourresultssuggestthatparametricuncertaintyisquantitativelymoreimportantthandifferencesacrossmodelsformostvariables.

Inrecentreviewsofclimatechange,thereisanincreasingfocusonimprovingourunderstandingoftheuncertainties.Forexample,in2010theInter‐AcademyReviewoftheIPCC,theprimaryrecommendationforimprovingtheusefulnessofthereportwasaboutuncertainty:

Theevolvingnatureofclimatescience,thelongtimescalesinvolved,

andthedifficultiesofpredictinghumanimpactsonandresponsestoclimatechangemeanthatmanyoftheresultspresentedinIPCCassessmentreportshaveinherentlyuncertaincomponents.Toinformpolicydecisionsproperly,itisimportantforuncertaintiestobecharacterizedandcommunicatedclearlyandcoherently.(InterAcademyCouncil2010)

Inarecentreport,theU.S.CongressionalBudgetOfficealsovoiceditsconcernsaboutuncertainty:

Inassessingthepotentialrisksfromclimatechangeandthecostsofavertingit,however,researchersandpolicymakersencounterpervasiveuncertainty.Thatuncertaintycontributestogreat

Page 5: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      4 

differencesofopinionastotheappropriatepolicyresponse,withsomeexpertsseeinglittleornothreatandothersfindingcauseforimmediate,extensiveaction.Policymakersarethusconfrontedwithawiderangeofrecommendationsabouthowtoaddresstherisksposedbyachangingclimate—inparticular,whether,how,andhowmuchtolimitemissionsofgreenhousegases.(CBO2005)

Thefocusonuncertaintyhastakenonincreasedurgencybecauseofthegreatattentiongivenbyscientiststotippingelementsintheearthsystem.AninfluentialstudybyLentonetal.(2008)discussedimportanttippingelementssuchasthelargeicesheets,large‐scaleoceancirculation,andtropicalrainforests.Someclimatologistshavearguedthatglobalwarmingbeyond2°CwillleadtoanirreversiblemeltingoftheGreenlandicesheet(Robinsonetal.2012).Onceuncertaintiesarefullyincluded,policieswillneedtoaccountfortheprobabilitythatpathsmayleadacrosstippingpoints,withparticularconcernforonesthathaveirreversibleelements.

Afurthersetofquestionsinvolvesthepotentialforfattailsinthedistributionofparameters,ofoutcomes,andoftheriskofcatastrophicclimatechange.(Afat‐orthick‐taileddistributionisonewheretheprobabilityofextremeeventsdeclinesslowly,sothetailofthedistributionisthick.Animportantexampleisthepower‐laworParetodistribution,inwhichthevarianceoftheprocessisunboundedforcertainparametervalues.)

Theissuearisesbecauseofthecombinationofoutcomesthatarepotentiallycatastrophicinnatureandprobabilitydistributionswithfattails.Thecombinationofthesetwofactorsmayleadtosituationsinwhichfocusingoncentraltendenciesiscompletelymisleadingforpolicyanalysis.Inaseriesofpapers,MartinWeitzman(seeespeciallyWeitzman2009)hasproposedadramaticallydifferentconclusionfromstandardanalysisinwhathehascalledtheDismalTheorem.Intheextremecase,thecombinationoffattails,unlimitedexposure,andhighriskaversionimpliesthattheexpectedlossfromcertainriskssuchasclimatechangeisunboundedandwethereforecannotperformstandardoptimizationcalculationsorcost‐benefitanalyses.

Therearetodatemanystudiesoftheimplicationsofuncertaintyforclimatechangeandclimate‐changepolicyorofuncertaintyinoneormanyparametersusingasinglemodel.SomenotableexamplesincludeReillyetal.(1987),PeckandTeisberg(1993),NordhausandPopp(1997),Pizer(1999),Webster(2002),Baker(2005),Hope(2006),Nordhaus(2008),Websteretal.(2012),AnthoffandTol(2013),andLemoineandMcJeon(2013).

Page 6: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      5 

Todate,however,theonlypublishedstudythataimstoquantifyuncertaintyinclimatechangeformultiplemodelsistheU.S.governmentInteragencyWorkingGroupreportonthesocialcostofcarbon,whichispublishedinGreenstoneetal.(2013)andmoreextensivelydescribedinIAWG(2010).Thisstudyusedthreemodels,twoofwhichareincludedinthisstudy,toestimatethesocialcostofcarbonforU.S.governmentpurposes.However,whileitdidexamineuncertainty,thecross‐modelcomparisonfocusedonasingleuncertainparameter(equilibriumclimatesensitivity)foritsformaluncertaintyanalysis;allotheruncertainparametersinthemodelswereleftuncertainwiththemodelers’pdfs.Evenwiththissingleuncertainparameter,theestimatedsocialcostofcarbonvariesgreatly.The2015socialcostofcarbonintheupdatedIAWG(2013)is$38pertonofCO2usingthemedianestimateversus$109pertonofCO2usingthe95percentile(bothin2007dollarsandusinga3%discountrate),whichwouldimplyverydifferentlevelsofpolicystringency.TheIAWGanalysisalsousedcombinationsofmodelinputsandoutputsthatwerenotalwaysinternallyconsistent.Comparisonoftheuncertaintiesinaconsistentmannerindifferentmodelsisclearlyanimportantmissingareaofstudy.

B. Centralapproachofthisstudy

Thisprojectaimstoquantifytheuncertaintiesofkeymodeloutcomesinducedbyuncertaintyinimportantparameters.Wehopetolearnthedegreetowhichthereisprecisioninthepointestimatesofmajorvariablesthatareusedinmajorintegratedassessmentmodels.Putdifferently,theresearchquestionweaimtoanswerfromthisstudyis:Howdomajorparameteruncertaintiesaffectthedistributionofpossibleoutcomesofmajoroutcomes;andwhatisthelevelofuncertaintyofmajoroutcomevariables?

Wecallthisquestiononeof“classicalstatisticalforecastuncertainty.”Thestudyofforecastinguncertaintyanderrorhasalonghistoryinstatisticsandeconometrics.SeeforexampleClementsandHendry(1998,1999)andEricsson(2001).Thestandardtoolsofforecastinguncertaintyhavevirtuallyneverbeenappliedtomodelsintheenergy‐climate‐economyareasbecauseofthecomplexityofthemodelsandthenon‐probabilisticnatureofbothinputsandstructuralrelationships.

Keyuncertaintiesthatwewillexamineincludebothprojectionsandpolicyoutcomes.Forexample,whataretheuncertaintiesofemissions,concentrations,temperatureincreases,anddamagesinabaselineprojection?Whatistheuncertaintyinthesocialcostofcarbon?Howdouncertaintiesacrossmodelscomparewiththeuncertaintieswithinmodelsgeneratedbyparameteruncertainty?

Page 7: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      6 

Oneofthekeycontributionsofthisworkisthatithasthepotentialtohighlightareaswherereducinguncertaintywillhaveahighpayoff.

C. Uncertaintyinabroadercontext

Thereareseveraluncertaintiesinclimatechangethatfacebothnaturalandsocialscientistsanddecisionmakers.Amongtheimportantonesare:(1)parametricuncertainty,suchasuncertaintyaboutclimatesensitivityoroutputgrowth;(2)modelorspecificationuncertainty,suchasthespecificationoftheaggregateproductionfunction;(3)measurementerror,suchasthelevelandtrendofglobaltemperatures;(4)algorithmicerrors,suchasonesthatfindtheincorrectsolutiontoamodel;(5)randomerrorinstructuralequations,suchasthoseduetoweathershocks;(6)codingerrorsinwritingtheprogramforthemodel;and(7)scientificuncertaintyorerror,suchaswhenamodelcontainsanerroneoustheory. Thisstudyfocusesprimarilyonthefirstofthese,parametricuncertainty,andtoalimitedextentonthesecond,modeluncertainty.Wefocusonthefirstbecausetherearemajoruncertaintiesaboutseveralparameters,becausethishasbeenakeyareaforstudyinearlierapproaches,andbecauseitisatypeofuncertaintythatlendsitselfmostreadilytomodelcomparisons.Inaddition,sinceweemploysixmodels,theresultsprovidesomeinformationabouttheroleofmodeluncertainty,althoughwedonotdevelopaformalapproachtomodeluncertainty.Werecognizethatparameterandmodeluncertaintiesarebuttwooftheimportantquestionsthatarise,butarigorousapproachtomeasuringthecontributionoftheseuncertaintieswillmakeamajorcontributiontounderstandingtheoveralluncertaintyofclimatechange. Fromatheoreticalpointofview,themeasuresofuncertaintycanbeviewedasapplyingtheprinciplesofjudgmentalorsubjectiveprobability,or“degreeofbelief,”tomeasuringfutureuncertainties.Thisapproach,whichhasitsrootsintheworksofRamsey(1931),deFinetti(1937),andSavage(1954),recognizesthatitisnotpossibletoobtainfrequentistoractuarialprobabilitydistributionsforthemajorparametersinintegratedassessmentmodelsorinthestructuresofthemodels.Thetheoryofsubjectiveprobabilityviewstheprobabilitiesasakintotheoddsthatinformedscientistswouldtakewhenwageringontheoutcomeofanuncertainevent.Forexample,supposetheeventwaspopulationgrowthfrom2000to2050.Thesubjectiveprobabilitymightbethattheinterquartilerange(25%,75%)wasbetween0.5%and2.0%peryear.Inmakingtheassessment,thescientistwouldineffectsaythatitisamatterofindifferencewhethertobetthattheoutcomewhenknownwouldbeinsideoroutsidethatrange.Whileitisnotcontemplatedthatabet

Page 8: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      7 

wouldactuallyoccur(althoughthatisnotunprecedented),thewagerapproachhelpsframetheprobabilitycalculation.

III. Methodology

A. Overviewofourtwotrackapproach

Inundertakinganuncertaintyanalysis,theprojectcontemplatedtwopotentialapproaches.Inoneapproach,eachmodelwoulddoaMonteCarlosimulationinwhichitwoulddomanyrunswherethechosenuncertainparametersaredrawnfromajointpdf.Whilepotentiallyfeasibleforsomemodels,suchanapproachisexcessivelyburdensomeandlikelyinfeasibleatthescalenecessarytohavereliableestimates.

Wethereforedevelopedasecondapproachwhichwecallthe“two‐trackMonteCarlo.”ThisapproachseparatesthemodelcalibrationrunsfromgenerationoftheparameterpdfsandtheMonteCarloestimates.Atthecoreoftheapproacharetwoparalleltracks,whicharethencombinedtoproducethefinalresults.Thefirsttrackusesmodelrunsfromsixparticipatingeconomicclimatechangeintegratedassessmentmodelstodevelopsurfaceresponsefunctions;theserunsprovidetherelationshipbetweenouruncertaininputparametersandkeyoutputvariables.Thesecondtrackdevelopsprobabilitydensityfunctionscharacterizingtheuncertaintyforeachanalyzeduncertaininputparameter.WecombinetheresultsofthetwotracksusingaMonteCarlosimulationtocharacterizestatisticaluncertaintyintheoutputvariables.

B. Theapproachinequations

Itwillbehelpfultoshowthestructureoftheapproachanalytically.Wecanrepresentamodelasamappingfromexogenousandpolicyvariablesandparameterstoendogenousoutcomes.Themodelscanbewrittensymbolicallyasfollows:

(1) ( , , )m mY H z u

Inthisschema,Ymisavectorofmodeloutputsformodelm;zisavectorofexogenousandpolicyvariables; isavectorofmodelparameters;uisavectorofuncertainparameterstobeinvestigated;andHmrepresentsthemodelstructure.Weemphasizethatmodelshavedifferentstructures,modelparameters,andchoiceofinputvariables.However,wecanrepresenttheargumentsofHwithoutreferencetomodelsbyassumingsomeareomitted.

Page 9: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      8 

Thefirststepintheprojectistoselecttheuncertainparametersforanalysis.Oncetheparametersareselected,eachmodelthendoesselectedcalibrationruns.Thecalibrationrunstakeasacentralsetofparametersthebaseorreferencecaseforeachofthemodels.Itthenmakesseveralrunsthataddorsubtractspecifiedincrementsfromeachofthebasevaluesoftheuncertainparameters.Thisproducesasetofinputandoutputsforeachmodel.

Moreprecisely,hereistheprocedureforthefirsttrackoftheapproach.Eachmodelhasabaselinerunwithbasevaluesforeachoftheuncertainparameters.

Denotethebaseparametervaluesas ,1 ,2 ,3( , , ).b b bm m mu u u Thenextstepdeterminesagrid

ofdeviationvaluesoftheuncertainparametersthateachmodeladdsorsubtractsfromthebasevaluesoftheuncertainparameters.Denotethesedeviationvaluesas

1,1,1 1,1,2 5,5,5( , ,..., ).G The G vectorrepresents125=5x5x5deviationsfrom

themodelers’baseparametervalues.So,forexample,thevector 1,1,1 would

representoneofthe125gridvectorsthattakesthefirstvalueforeachuncertainparameter.Supposethat 1,1,1 ( 0.014, .02, 2). Thenthatcalibrationrunwould

calculatetheoutcomesfor ,1 ,2 ,3( , , .014, .02, 2)m m b b bm m mY H z u u u ,whereagain ,

bm ku is

thebasevalueforuncertainparameterkformodelm.Similarly, 3,3,3 (0,0,0). For

thatdeviationvalue,thecalibrationrunwouldcalculatetheoutcomesfor

,1 ,2 ,3( , , , , ),m m b b bm m mY H z u u u whichisthemodelbaselinerun.

Thethirdstepistoestimatesurfaceresponsefunctions(SRFs)foreachmodelandvariableoutcome.Symbolically,thesearethefollowingfunctions:

(2) 1 ,1 2 ,2 3 ,3 ,1 ,2 ,3( , , ) ( , , )m m b b b mm m m m m mY R u u u u u u R u u u

TheSRFsarefitovertheobservationsofthe ,m ku fromthecalibrationexercises

(125eachforthebaselineandforthecarbon‐taxcases).TheSRFsarelinear‐quadratic‐interactionequationsasdescribedbelow.

Thesecondtrackoftheprojectprovidesuswithprobabilitydensityfunctions

foreachofouruncertainparameters, ( )kkf u .Thesearedevelopedonthebasisof

externalinformationasdescribedbelow.

Thefinalstepistoestimatethecumulativedistributionoftheoutputvariables, ( ).m mG Y Thesearethedistributionsoftheoutcomevariables mY for

Page 10: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      9 

modelm,wherewenotethatthedistributionswilldifferbymodel.ThedistributionsarecalculatedbyMonteCarlomethods,forasamplesizeofN:

(3) ,1 ,2 ,31

( ) 1 if ( , , ) , otherwise = 0 /N

m m m n n n mm m m

n

G Y H u u u Y N

Thenotationhereisthat ,n

m ku isthenthdrawofrandomvariable ku inthe

MonteCarloexperiment.ThisunintuitiveequationsimplystatesthatthecumulativedistributionisequaltothefractionofoutcomesintheMonteCarlosimulationwheretheSRFyieldsavalueoftheoutcomevariablethatislessthan .mY Thedistributionofoutcomesforeachvariableandmodelisconditionalonthemodelstructureandontheharmonizeduncertaintyoftheuncertainparameters.ForaclassicstudyofMonteCarlomethods,seeHammersleyandHandscomb(1964).

C. IntegratedAssessmentModels

Thechallengeofanalysisandpoliciesforglobalwarmingisparticularlydifficultbecauseitspansmanydisciplinesandpartsofsociety.Thismany‐facetednaturealsoposesachallengetonaturalandsocialscientists,whomustincorporateawidevarietyofgeophysical,economic,andpoliticaldisciplinesintotheirdiagnosesandprescriptions.Thetaskofintegratedassessmentmodels(IAMs)istopulltogetherthedifferentaspectsofaproblemsothatprojections,analyses,anddecisionscanconsidersimultaneouslyallimportantendogenousvariables.IAMsgenerallydonotpretendtohavethemostdetailedandcompleterepresentationofeachincludedsystem.Rather,theyaspiretohave,atafirstlevelofapproximation,modelsthatoperateallthemodulessimultaneouslyandwithreasonableaccuracy.

ThestudydesignwaspresentedatameetingwheremanyoftheestablishedmodelerswhobuildandoperateIAMswerepresent.Allwereinvitedtoparticipate.Aftersomepreliminaryinvestigationsandtrialruns,sixmodelswereabletoincorporatethemajoruncertainparametersintotheirmodelsandtoprovidemostoftheoutputsthatwerenecessaryformodelcomparisons.Thefollowingisabriefdescriptionofeachofthesixmodels.TableA5intheappendixprovidesfurtherdetailsoneachmodel.

TheDICE(DynamicIntegratedmodelofClimateandtheEconomy)wasfirstdevelopedaround1990andhasgonethroughseveralextensionsandrevisions.ThelatestpublishedversionisNordhaus(2014)withadetaileddescriptioninNordhausandSztorc(2014).TheDICEmodelisagloballyaggregatedmodelthatviewstheeconomicsofclimatechangefromtheperspectiveofneoclassicaleconomicgrowththeory.Inthisapproach,economiesmakeinvestmentsincapitalandinemissions

Page 11: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      10 

reductions,reducingconsumptiontoday,inordertolowerclimatedamagesandincreaseconsumptioninthefuture.Thespecialfeatureofthemodelistheinclusionofallmajorelementsinahighlyaggregatedfashion.Themodelcontainsabout25dynamicequationsandidentities,includingthoseforglobaloutput,CO2emissionsandconcentrations,globalmeantemperature,anddamages.Theversionforthisprojectrunsfor60five‐yearperiods.ItcanberunineitheranExcelversionorinthepreferredGAMSversion.TheversionusedforthisstudydatesfromDecember2013andaddsloopstocalculatetheoutcomesfordifferentuncertainparameters.TherunswereimplementedbyWilliamNordhausandPaulSztorc.

TheFUNDmodel(ClimateFrameworkforUncertainty,Negotiation,andDistribution)wasdevelopedprimarilytoassesstheimpactsofclimatepoliciesinanintegratedframework.Itisarecursivemodelthattakesexogenousscenariosofmajoreconomicvariablesasinputsandthenperturbsthesewithestimatesofthecostofclimatepolicyandtheimpactsofclimatechange.Themodelhas16regionsandcontainsexplicitrepresentationoffivegreenhousegases.Climatechangeimpactsaremonetizedandincludeagriculture,forestry,sea‐levelrise,healthimpacts,energyconsumption,waterresources,unmanagedecosystems,andstormimpacts.Eachimpactsectorhasadifferentfunctionalformandiscalculatedseparatelyforeachofthe16regions.Themodelrunsfrom1950to3000intimestepsof1year.Thesourcecode,data,andatechnicaldescriptionofthemodelarepublic(www.fund‐model.org),andthemodelhasbeenusedbyothermodelingteams(e.g.,Reveszetal.(2014)).FUNDwasoriginallycreatedbyRichardTol(Tol,1997)andisnowjointlydevelopedbyDavidAnthoffandRichardTol.TherunswereimplementedbyDavidAnthoff.

TheGCAM(GlobalChangeAssessmentModel)isaglobalintegratedassessmentmodelofenergy,economy,land‐use,andclimate.GCAMisalong‐termglobalmodelbasedontheEdmondsandReillymodel(EdmondsandReilly1983a,b,c).GCAMintegratesrepresentationsoftheglobaleconomy,energysystems,agricultureandlanduse,withrepresentationsofterrestrialandoceancarboncycles,andasuiteofcoupledgas‐cycleandclimatemodels.TheclimateandphysicalatmosphereinGCAMisbasedontheModelfortheAssessmentofGreenhouse‐GasInducedClimateChange(MAGICC)(Meinshausenetal.2011).TheglobaleconomyinGCAMisrepresentedin14geopoliticalregions,explicitlylinkedthroughinternationaltradeinenergycommodities,agriculturalandforestproducts,andothergoodssuchasemissionspermits.Thescaleofeconomicactivityineachregionisdrivenbypopulationsize,age,andgenderaswellaslaborproductivity.Themodelisdynamic‐recursivelysolvedforasetofmarket‐clearingequilibriumpricesinallenergyandagriculturalgoodmarketsevery5yearsover2005‐2095.Thefull

Page 12: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      11 

documentationofthemodelisavailableataGCAMwiki(Calvinandetal.2011).GCAMisopen‐source,butisprimarilydevelopedandmaintainedbytheJointGlobalChangeResearchInstitute.ThemodelrunswereperformedbyHaewonMcJeon.

TheMERGEmodel(ModelforEvaluatingRegionalandGlobalEffectsofgreenhousegasreductionpolicies)isanintegratedassessmentmodeldescribingglobalenergy‐economy‐climateinteractionswithregionaldetail.ItwasintroducedbyManneetal.(1999)andhasbeencontinuallydevelopedsince;arecentlypublisheddescriptionisinBlanfordetal.(2014).MERGEisformulatedasamulti‐regiondynamicgeneralequilibriummodelwithaprocessmodeloftheenergysystemandareduced‐formrepresentationoftheclimate.ItissolvedinGAMSviasequentialjointnon‐linearoptimizationwithNegishiweightstobalanceinter‐regionaltradeflows.Theeconomyisrepresentedasatop‐downRamseymodelinwhichelectricandnon‐electricenergyinputsaretradedoffagainstcapitalandlaborandproductionisallocatedbetweenconsumptionandinvestment.Theenergysystemincludesexplicittechnologiesforelectricitygenerationandnon‐electricenergysupply,witharesourceextractionmodelforfossilfuelsanduranium.Theclimatemodelincludesafive‐boxcarboncycleandtracksallmajornon‐CO2greenhousegasesandnon‐CO2forcingagentsexplicitly.Temperatureevolvesasatwo‐boxlagprocess,whereuncertaintyaboutclimatesensitivityisconsideredjointlywithuncertaintyabouttheresponsetimeandaerosolforcing.Theversionusedforstudyincludes10modelregionsandrunsthrough2100,withclimatevariablesprojectedforanadditionalcentury.TherunswereimplementedbyGeoffreyBlanford.

TheMITIGSM(IntegratedGlobalSystemsModel)wasdevelopedintheearly1990’sandhasbeencontinuallyupdated.Itincludesageneralcirculationmodeloftheatmosphereanditsinteractionswithoceans,atmosphericchemistry,terrestrialvegetation,andthelandsurface.Itseconomiccomponentrepresentstheeconomyandanthropogenicemissions.ThefullIGSMisdescribedinSokolovetal.(2009)andWebsteretal.(2012).TheversionoftheeconomiccomponentappliedhereisdescribedinChenetal.(2015).Theearthsystemcomponentisasimplifiedgeneralcirculationmodelresolvedin46latitudebandsand11verticallayersintheatmospherewithan11layeroceanmodel.Thelandsystemincludes17vegetationtypes.Theeconomiccomponentisamulti‐sector,multi‐regionappliedgeneralequilibriummodel,anempiricalimplementationconsistentwithneo‐classicaleconomictheory.Forthecurrentproject,themodeloperatesinarecursivefashioninwhichtheeconomydrivestheearthsystemmodelbutwithoutfeedbacksofclimateimpactsontheeconomicsystem.Theeconomiccomponentissolvedfor5yeartimestepsinGAMS‐MPSGEandforthisexercisewasrunthrough2100.The

Page 13: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      12 

earthsystemcomponentsolveson10minutetimesteps(thevegetationmodelonmonthlytimesteps).ThesimulationsforthisexercisewereconductedbyY.‐H.HenryChen,AndreiSokolov,andJohnReilly.

TheWITCH(WorldInducedTechnicalChangeHybrid)modelwasdevelopedin2006(Bosettietal.2006)andhasbeendevelopedandextendedsincethen.ThelatestversionisfullydescribedinBosettietal.(2014).Themodeldividestheworldinto13majorregions.TheeconomyofeachregionisdescribedbyaRamsey‐typeneoclassicaloptimalgrowthmodel,whereforward‐lookingcentralplannersmaximizethepresentdiscountedvalueofutilityofeachregion.Theseoptimizationstakeaccountofotherregions'intertemporalstrategies.Theoptimalinvestmentstrategyincludesadetailedappraisalofenergysectorinvestmentsinpower‐generationtechnologiesandinnovation,andthedirectconsumptionoffuels,aswellasabatementofothergasesandland‐useemissions.Greenhouse‐gasemissionsandconcentrationsarethenusedasinputsinaclimatemodelofreducedcomplexity(Meinshausenetal.2011).Theversionusedforthisprojectrunsfor30five‐yearperiodsandcontains35statevariablesforeachofthe13regions,runningontheGAMSplatform.TherunswereimplementedbyValentinaBosettiandGiacomoMarangoni.

IV. Choiceofuncertainparametersandgriddesign

A. Choiceofuncertainparameters

Oneofthekeydecisionsinthisstudywastoselecttheuncertainparameters.Thecriteriaforselectionwere(atleastafterthefact)clear.First,eachparametermustbeimportantforinfluencinguncertainty.Second,parametersshouldbeonesthatcanbevariedineachofthemodelswithoutexcessiveburdenandwithoutviolatingthespiritofthemodelstructure.Third,theparametersshouldbeonesthatcanberepresentedbyaprobabilitydistribution,eitheronthebasisofpriorresearchorfeasiblewithinthescopeofthisproject. Ataninitialmeeting,anexperimentwasundertakeninwhicheachofthemodelswasgivensixuncertainparametersorshockstotestforfeasibility.Attheendofthisinitialtestexperiment,twoofthemodelingteamsdecidednottoparticipatebecausetheinitialparameterscouldnotbeeasilyincorporatedinthemodeldesignorbecauseoftimeconstraints.Threeoftheparametersfulfilledtheabove‐mentionedcriteria,andtheseweretheonesthatwereincorporatedinthefinalsetofexperiments. Thefinallistofuncertainparameterswerethefollowing:(1)Therateofgrowthofproductivity,orpercapitaoutput;(2)therateofgrowthofpopulation;

Page 14: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      13 

and(3)theequilibriumclimatesensitivity(equilibriumchangeinglobalmeansurfacetemperaturefromadoublingofatmosphericCO2concentrations).

Additionally,itwasdecidedtodotwoalternativepolicyscenarios.Onewasa“Base”runinwhichnoclimatepolicieswereintroduced;andthesecond,labelled“CarbonTax”(andsometimes“Ampere”)introducedarapidlyrisingglobalcarbontax.2Arunbasedoncarbonpriceswasselected(insteadofquantitativelimits)becausemanymodelshadundertakensimilarrunsinothermodelcomparisonprojects,sotheywererelativelyeasytoimplement.

Severalotherparameterswerecarefullyconsideredbutrejected.Apulseofemissionswasrejectedbecauseithadessentiallynoimpact.Aglobalrecessionwasrejectedforthesamereason.Itwashopedtoadduncertaintiesfortechnology(suchasthoseconcerningtherateofdecarbonization,thecostofbackstoptechnologies,orthecostofadvancedcarbon‐freetechnologies),butitprovedimpossibletofindonethatwasbothsufficientlycomprehensiveandcouldbeincorporatedinallthemodels.Uncertaintyaboutclimatedamageswasexcludedbecausehalfthemodelsdidnotcontaindamages.Afinalpossibilitywastoanalyzepolicyrunsthathadquantitativelimitsratherthancarbonprices.Forexample,somemodelshadparticipatedinmodelcomparisonsinwhichradiativeforcingswerelimited.Thisapproachwasrejectedbecausethecarbontaxprovedeasiertodefineandimplement.Additionally,earlierexperimentsindicatedthatquantitativelimitswereoftenfoundinfeasible,andthiswouldcloudtheinterpretationoftheresults.3

                                                            2TheCarbonTaxrunwasselectedfromtheAMPEREmodelcomparisonstoreducetheburdenonmanyofthemodelersandsothattheresultsfromthisstudycanbecomparedtothosefromtheAMPEREinter‐modelcomparisonstudy(Kriegleretal.2015).ThespecificscenariochosenisknownintheAMPEREstudyas"CarbonTax$12.50‐increasing.”ThefullAMPEREscenariodatabasecanbefoundonlineathttps://secure.iiasa.ac.at/web‐apps/ene/AMPEREDB.3SeeparticularlytheresultsforEnergyModelingForum22reportedinaspecialissueinEnergyEconomics(e.g.,seeClarkeandWeyant(2009)).Manymodelsfoundthattightconstraintswereinfeasiblefortheirbaseruns.Aquantitativelimitwouldalmostsurelyhavefoundthatlargenumbersofthe125scenarioswereinfeasibleforanytightlimitontemperatureorradiativeforcings.

Page 15: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      14 

B. Descriptionofuncertainparameters

Wenextdescribethethreeuncertainparameterscontainedinthestudy.Itturnedoutthatharmonizingtheseacrossmodelswasmorecomplicatedthanwasoriginallyanticipated,asdescribedbelow.

(1) Therateofgrowthofpopulation.Uncertaintyabouttherateofgrowthofpopulationwasstraightforward.Forglobalmodels,therewasnoambiguityabouttheadjustment.Theuncertaintywasspecifiedasplusorminusauniformpercentagegrowthrateeachyearovertheperiod2010‐2100.Forregionalmodels,theadjustmentwaslefttothemodeler.Mostmodelsassumedauniformchangeinthegrowthrateineachregion.

(2)Therateofgrowthofproductivity,orpercapitaoutput.Theoriginaldesignhadbeentoincludeavariablethatrepresentedtheuncertaintyaboutoveralltechnologicalchangeintheglobaleconomy(oraveragedacrossregions).Theresultsoftheinitialexperimentindicatedthatthespecificationsoftechnologicalchangedifferedgreatlyacrossmodels,anditwasinfeasibletospecifyacomparabletechnologicalvariablethatcouldapplyforallmodels.Forexample,somemodelshadasingleproductionfunction,whileothershadmultiplesectors.

Ratherthanattempttofindacomparableparameter,itwasdecidedtoharmonizeontheuncertaintyofglobaloutputpercapitagrowthfrom2010to2100.Eachmodelerwasaskedtointroduceagridofchangesinitsmodel‐specifictechnologicalparameterthatwouldleadtoachangeinpercapitaoutputofplusorminusagivenamount(tobedescribedinthenextsection).ThemodelersweretheninstructedtoadjustthatchangesothattherangeofgrowthratesinpercapitaGDPfrom2010to2100inthecalibrationexercisewouldbeequaltothedesiredrange.

(3)Theclimatesensitivity.Modelinguncertaintyaboutclimatesensitivityprovedtobeoneofthemostdifficultissuesofharmonizationacrossthedifferentmodels.WhileallmodelshavemodulestotracethroughthetemperatureimplicationsofchangingconcentrationsofGHGs,theydifferindetailandspecification.Themajorproblemwasthatadjustingtheequilibriumclimatesensitivitygenerallyrequiredadjustingotherparametersinthemodelthatdeterminethespeedofadjustmenttotheequilibrium;theadjustmentspeedissometimesrepresentedbythetransientclimatesensitivity.Thisproblemwasidentifiedlateintheprocess,afterthesecond‐roundrunshadbeencompleted,andmodelerswereaskedtomaketheadjustmentsthattheythoughtappropriate.Somemodelsmadeadjustmentsinparameterstoreflectdifferencesinlargeclimate

Page 16: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      15 

models.Othersconstrainedtheparameterssothatthemodelwouldfitthehistoricaltemperaturerecord.Thedifferingapproachesledtodifferingstructuralresponsestotheclimatesensitivityuncertainty,aswillbeseenbelow.

C. Griddesign

Inthefirsttrack,themodelingteamsprovideasmallnumberofcalibrationrunsthatincludeafullsetofoutputsforathree‐dimensionalgridofvaluesoftheuncertainparameters.Foreachoftheuncertainparameters,weselectedfivevaluescenteredonthemodel’sbaselinevalues.Therefore,for3uncertainparameters,therewere125runseachfortheBaseandtheCarbonTaxpolicyscenarios.

Onthebasisofthesecalibrationruns,thenextstepinvolvedestimatingsurface‐responsefunctions(SRFs)inwhichthemodeloutcomesareestimatedasfunctionsoftheuncertainparameters.ThehopewasthatiftheSRFscouldapproximatethemodelsaccurately,thentheycouldbeusedtosimulatetheprobabilitydistributionsoftheoutcomevariablesaccurately.AninitialtestsuggestedthattheSRFswerewellapproximatedbyquadraticfunctions.Wethereforesettherangeofthegridsothatitwouldspanmostofthespacethatwouldbecoveredbythedistributionoftheuncertainparameters,yetnotgosofarastopushthemodelsintopartsoftheparameterspacewheretheresultswouldbeunreliable.

Asanexample,takethegridforpopulationgrowth.Thecentralcaseisthemodel’sbasecaseforpopulationgrowth.Eachmodelthenusesfouradditionalassumptionsforthegridforpopulationgrowth:thebasecaseplusandminus0.5%peryearandplusandminus1.0%peryear.Thesewouldcovertheperiod2010to2100.Forexample,assumethatthemodelhadabasecasewithaconstantpopulationgrowthrateof0.7%peryearfrom2010to2100.Thenthefivegridpointsforpopulationgrowthwouldbeconstantgrowthratesof‐0.3%,0.2%,0.7%,1.2%,and1.7%peryear.Populationafter2100wouldhavethesamegrowthrateasinthemodeler’sbasecase.Theseassumptionsmeanthatpopulationin2100wouldbe(0.99)90,(0.995)90,1,(1.005)90,and(1.01)90timesthebasecasepopulationfor2100.

Forproductivitygrowth,thegridwassimilarlyconstructed,butadjustedsothatthegrowthinpercapitaoutputfor2100added‐1%,‐0.5%,0%,0.5%,and1%tothegrowthrateineachyearfortheperiod2010‐2100.

Fortheclimatesensitivity,themodelersweretoaddtothebaselineequilibriumclimatesensitivity‐3°C,‐1.5°C,0°C,1.5°C,and3°C.Itturnedoutthatthelowerendofthisrangecauseddifficultiesforsomemodels,andforthesethe

Page 17: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      16 

modelersreportedresultsonlyforthefourhigherpointsinthegridorsubstitutedanotherlowvalue.

Inprinciple,then,fortrackIeachmodelreported5x5x5modelresultsforboththeBasecaseandtheCarbonTaxpolicyassumptions.

V. Approachfordevelopingprobabilitydensityfunctions

A. Generalconsiderations

Thethreeuncertainparametershavebeenthesubjectofuncertaintyanalysisinearlierstudies.Foreachparameter,wereviewedearlierstudiestodeterminewhethertherewasanexistingsetofmethodsordistributionsthatcouldbedrawnupon.Thedesirablefeaturesofthedistributionsisthattheyshouldreflectbestpractice,thattheyshouldbeacceptabletothemodelinggroups,andthattheybereplicable.Itturnedoutthatthethreeparametersusedthreedifferentapproaches,aswillbedescribedbelow.

B. Population

Populationgrowthhasbeenthesubjectofprojectionsformanyyears,andnumerousgroupshaveundertakenuncertaintyanalysesforbothcountriesandatthegloballevel.Ourreviewfoundonlyoneresearchgroupthathadmadelong‐termglobalprojectionsofuncertaintyforseveralyears,whichwasthepopulationgroupattheInternationalInstituteforAppliedSystemsAnalysis(IIASA)inAustria.(Foradiscussion,seeO'Neilletal.(2001)).TheIIASAdemographygroupisunderthedirectionofdemographerWolfgangLutz.

TheIIASAstochasticprojectionsweredevelopedoveraperiodofmorethanadecadeandarewidelyusedbydemographers.Themethodologyissummarizedasfollows:“IIASA’sprojections…arebasedexplicitlyontheresultsofdiscussionsofagroupofexpertsonfertility,mortality,andmigrationthatisconvenedforthepurposeofproducingscenariosforthesevitalrates”(Seehttp://www.demographic‐research.org/volumes/vol4/8/4‐8.pdf)Thelatestprojectionsfrom2013(Lutzetal.2014)areanupdatetothepreviousprojectionsfrom2007and2001(Lutzetal.2008),2001).Themethodologyisdescribedasfollows:

Theforecastsarecarriedoutfor13worldregions.Theforecastspresentedherearenotalternativescenariosorvariants,butthedistributionoftheresultsof2,000differentcohortcomponentprojections.Forthesestochasticsimulationsthefertility,mortalityandmigrationpathsunderlyingtheindividualprojection

Page 18: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      17 

runswerederivedrandomlyfromthedescribeduncertaintydistributionforfertility,mortalityandmigrationinthedifferentworldregions.(Lutz,Sanderson,andScherbov2008)

Thebackgroundmethodsaredescribedasfollowsonpage219ofO'Neilletal.(2001):

TheIIASAmethodologyisbasedonaskingagroupofinteractingexpertstogivealikelyrangeforfuturevitalrates,where"likely"isdefinedtobeaconfidenceintervalofroughly90%(Lutz1996,Lutzetal.1998).Combiningsubjectiveprobabilitydistributionsfromanumberofexpertsguardsagainstindividualbias,andIIASAdemographersarguethatastrengthofthemethodisthatitmaybepossibletocapturestructuralchangeandunexpectedeventsthatotherapproachesmightmiss.Inaddition,inareaswheredataonhistoricaltrendsaresparse,theremaybenobetteralternativetoproducingprobabilisticprojections.

Forthisstudy,weareaimingforaparsimoniousparameterizationofpopulationuncertainty.Thisisnecessarybecauseofthelargedifferencesinmodelstructure.Wethereforeselectedtheuncertaintyaboutglobalpopulationgrowthfortheperiod2010‐2100asthesingleparameterofinterest.Wefittedthegrowth‐ratequantilesfromtheIIASAprojectionstoseveraldistributions,withnormal,log‐normal,andgammabeingthemostsatisfactory.Thenormaldistributionperformedbetterthananyoftheothersonfiveofthesixquantitativetestsoffitfordistributions.Basedontheseresults,wethereforedecidedtorecommendthenormaldistributionforthepdfofpopulationgrowthovertheperiod.

Inaddition,wedidseveralalternativeteststodeterminewhethertheprojectionswereconsistentwithothermethodologies.Onesetoftestsexaminestheprojectionerrorsthatwouldhavebeengeneratedusinghistoricaldata.Asecondtestlooksatthestandarddeviationof100‐yeargrowthratesofpopulationforthelastmillennium.AthirdtestexaminesprojectionsfromareportoftheNationalResearchCouncilthatestimatedtheforecasterrorsforglobalpopulationovera50‐yearhorizon(seeNRC(2000),AppendixF,p.344).Whiletheseallgaveslightlydifferentuncertaintyranges,theyweresimilartotheuncertaintiesestimatedintheIIASAstudy.

Onthebasisofthisreview,wedecidedtouseanormaldistributionforthegrowthrateofpopulationbasedontheIIASAstudythathasastandarddeviationoftheaverageannualgrowthrateof0.22percentagepointsperyearovertheperiod

Page 19: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      18 

2010‐2100.Moredetailswithabackgroundmemorandumontheresultsareavailablefromtheauthors.

C. ClimateSensitivity

Animportantparameterinclimatescienceistheequilibriumorlong‐runresponseintheglobalmeansurfacetemperaturetoadoublingofatmosphericcarbondioxide.Intheclimatesciencecommunity,thisiscalledtheequilibriumclimatesensitivity.Withreferencetoclimatemodels,thisiscalculatedastheincreaseinaveragesurfacetemperaturewithadoubledCO2concentrationrelativetoapathwiththepre‐industrialCO2concentration.ThisparameteralsoplaysakeyroleinthegeophysicalcomponentsintheIAMsusedinthisstudy.Intheremainderofthispaper,wewillfollowtheconventioninthegeosciencesandcallittheequilibriumclimatesensitivity(ECS).

GiventheimportanceoftheECSinclimatescience,thereisanextensiveliteratureestimatingprobabilitydensityfunctions.Thesepdfsaregenerallybasedonclimatemodels,theinstrumentalrecordsoverthelastcenturyorso,paleoclimaticdatasuchasestimatedtemperatureandradiativeforcingsoverice‐ageintervals,andtheresultsofvolcaniceruptions.Muchoftheliteratureestimatesaprobabilitydensityfunctionusingasinglelineofevidence,butafewpaperssynthesizedifferentstudiesordifferentkindsofevidence.

Wefocusonthestudiesdrawinguponmultiplelinesofevidence.TheIPCCFifthAssessmentreport(AR5)reviewedtheliteraturequantifyinguncertaintyintheECSandhighlightedfiverecentpapersusingmultiplelinesofevidence(IPCC2014).EachpaperusedaBayesianapproachtoupdateapriordistributionbasedonpreviousevidence(thepriorevidenceusuallydrawnfrominstrumentalrecordsoraclimatemodel)tocalculatetheposteriorprobabilitydensityfunction.Sinceeachdistributionwasdevelopedusingmultiplelinesofevidence,andinsomecasesthesameevidence,itwouldbeinconsistenttoassumethattheywereindependentandsimplytocombinethem.Further,sincewecouldnotreliablyestimatethedegreeofdependenceofthedifferentstudies,wecouldnotsynthesizethembytakingintoaccountthedependence.WethereforechosetheprobabilitydensityfunctionfromasinglestudyandperformedrobustnesscheckstousingtheresultsfromalternativestudiescitedintheIPCCAR5.

ThechosenstudyforourprimaryestimatesisOlsenetal.(2012).ThisstudyisrepresentativeoftheliteratureinusingaBayesianapproach,withapriorbasedonpreviousstudiesandalikelihoodbasedonobservationalormodeleddata,suchasglobalaveragesurfacetemperaturesorglobaltotalheatcontent.ThepriorinOlsenetal.(2012)isprimarilybasedonKnuttiandHegerl(2008).Thatprioristhen

Page 20: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      19 

combinedwithoutputvariablesfromtheUniversityofVictoriaESCMclimatemodel(Weaveretal.2001)todeterminethefinalorposteriordistribution.

Olsenetal.(2012)waschosenforthefollowingreasons.First,itwasrecommendedtousinpersonalcommunicationswithseveralclimatescientists.Second,itwasrepresentativeoftheotherfourstudiesweexaminedandfallsintothemiddlerangeofthedifferentestimates.4Third,sensitivityanalysesoftheeffectonaggregateuncertaintyofchangingthestandarddeviationoftheOlsenetal.(2012)resultsfoundthatthesensitivitywassmall(seethesectionbelowonsensitivityanalyses).Appendix1providesmoredetailsonOlsenetal.(2012)andalsopresentsafigurecomparingthisstudytotheotherstudiesintheIPCCAR5.

NotethattheUSgovernmentusedaversionoftheRoeandBakerdistributioncalibratedtothreeconstraintsfromtheIPCCforitsuncertaintyestimates(IAWG2010).Specifically,theIAWGReportmodifiedtheoriginalRoeandBakerdistributiontoassumethatthemedianvalueis3.0°C,theprobabilityofbeingbetween2and4.5°Cistwo‐thirds,andthereisnomassbelowzeroorabove10°C.ThemodifiedRoeandBakerdistributionhasahighermeanECSthananyofthemodels(3.5°C)andamuchhigherdispersion(1.6°Cascomparedto0.84°CfromOlsenetal.2012).

TheestimatedpdfforOlsenetal.(2012)wasderivedasfollows.Wefirstobtainedthepdffromtheauthors.Thispdfwasprovidedasasetofequilibriumtemperaturevaluesandcorrespondingprobabilities.Wethenexploredfamiliesofdistributionsthatbestapproximatedthenumericalpdfprovided.Wefoundthatalog‐normalpdffitstheposteriordistributionsextremelywell.

Tofindtheparametersofthefittedlog‐normalpdf,weminimizethesquareddifferencebetweentheposteriordensityfunctionfromOlsenetal.andthelog‐normalpdfoverthesupportofthedistribution(theL2orEuclidiannorm).Inotherwords,weminimizethesumofthesquareoftheverticaldifferencesbetweentheposteriorpdfandalog‐normalpdfoverallgridpointsvaluesintheOlsenetal.(2012)distribution.5Figure1showstheOlsenetal.(2012)pdf,alongwiththefittedlog‐normaldensityfunction.Thefitisextremelyclose,withthelog‐normaldistributionalwayswithin0.14%oftheOlsenetal.(2012)pdfforanygridpointvalue.

                                                            4Intests,wefoundthattheOlsenetal.(2012)distributionissimilartoasimplemixturedistributionofallfivedistributions.Wecalculatethismixturedistributionbytakingtheaverageprobabilityoveralldistributionsateachtemperatureincrease.5MorepreciselyweminimizeovertherangeoftheOlsenetal.distribution,[1.509,7.4876]°C,withagridpointspacingof0.1508°C.

Page 21: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      20 

D. TotalFactorProductivity

Uncertaintyinthegrowthofproductivity(oroutputpercapita)isknowntobeacriticalparameterindeterminingallelementsofclimatechange,fromemissionstotemperaturechangetodamages(Nordhaus2008).ClimatemodelsgenerallydrawtheirestimatesofemissionstrajectoriesfrombackgroundmodelsofeconomicgrowthsuchasscenariospreparedfortheIPCCorstudiesoftheEnergyModelingForum.Nomajorstudies,however,relyonstatistically‐basedestimatesofemissionsandeconomicgrowth.

Forecastsoflong‐runproductivitygrowthinvolveactivedebatesonissuessuchastheroleofnewtechnologiesandinventions(BrynjolfssonandMcAfee2012,Gordon2012),potentialincreasesintheresearchintensityandeducationalattainmentinemergingeconomies(FernaldandJones2014,Freeman2010),andinstitutionalreformandpoliticalstability(Acemogluetal.2005).Whiletheempiricalliteratureoneconomicgrowthhasprovidedevidenceinsupportofvariousunderlyingmodels,noexistingstudycontainssufficientinformationtoderiveaprobabilitydistributionforlong‐rungrowthrates.

 

 

Figure1.TheOlsenetal.(2012)probabilitydensityfunctionalongwiththefittedlog‐normaldistributionusedinouranalysis. 

Page 22: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      21 

Thehistoricalrecordprovidesausefulbackgroundforestimatingfuturetrends.However,itisclearfromboththeoreticalandempiricalperspectivesthattheprocessesdrivingproductivitygrowtharenon‐stationary.Forexample,estimatesofthegrowthofglobaloutputpercapitaforthe18th,19th,and20thcenturyare0.6,1.9,and3.7percentperyear(DeLong2015inhttp://holtz.org/Library/Social%20Science/Economics/Estimating%20World%20GDP%20by%20DeLong/Estimating%20World%20GDP.htm).Totheextentthatexpertsoneconomicgrowthpossessvalidinsightsaboutthelikelihoodandpossibledeterminantsoflong‐rungrowthpatterns,theninformationdrawnfromexpertscanaddvaluetoforecastsbasedpurelyonhistoricalobservationsordrawnfromasinglemodel.Combiningexpertestimateshasbeenshowntoreduceerrorinshort‐runforecastsofeconomicgrowth(BatchelorandDua1995).However,therearefewexpertstudiesonlong‐rungrowth(seeAppendix2fordiscussion)and,toourknowledge,therehasbeennosystematicanddetailedpublishedstudyofuncertaintyinlong‐runfuturegrowthrates.

Todevelopestimatesofuncertainties,theprojectteam,ledbyPeterChristensen,undertookasurveyofexpertsoneconomicgrowthtodetermineboththecentraltendencyandtheuncertaintyaboutlong‐rungrowthtrends.Oursurveyutilizedinformationdrawnfromapanelofexpertstocharacterizeuncertaintyinestimatesofglobaloutputfortheperiods2010‐2050and2010‐2100.WedefinedgrowthastheaverageannualrateofrealpercapitaGDP,measuredinpurchasingpowerparity(PPP)terms.Weaskedexpertstoprovideestimatesoftheaverageannualgrowthratesat10th,25th,50th,75th,90thpercentiles.

Beginninginthesummerof2014,wesentoutsurveystoapanelof25economicgrowthexperts.AsofJune2015,wecollected11completeresultswithfulluncertaintyanalysisfortheperiod2010‐2100.AsummaryoftheprocedureisprovidedinAppendix2,andacompletereportwillbepreparedseparately.

Therearemanydifferentapproachestocombiningexpertforecasts(Armstrong2001)andaggregatingprobabilitydistributions(ClemenandWinkler1999).Weassumethatexpertshaveinformationaboutthelikelydistributionoflong‐rungrowthrates.Theirinformationsetsaredefinedbyestimatesfor5differentpercentiles.Webeginbyassumingthattheestimatesareindependentacrossexpertsandthenexaminedthedistributionsthatbestfitthepercentilesforeachexpertandforthecombinedestimates(averageofpercentiles)acrossexperts.

WefounditusefulforthisprojecttocharacterizetheexpertpdfswithcommonlyuseddistributionssothattheMonteCarloestimatescouldbeeasilyimplemented.Intestingthedistributionsforeachexpert,wefoundthatmostexperts’estimatescan

Page 23: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      22 

becloselyfittedbyanormaldistribution;similarly,thecombineddistributioniswellfittedbyanormaldistribution.DetailsareprovidedinAppendix2.

Theresultingcombinednormaldistributionhasameangrowthrateof2.29%peryearandastandarddeviationofthegrowthrateof1.15%peryearovertheperiod2010‐2100.(ThemeangrowthrateofpercapitaGDPinthebaserunsofthesixmodelsisslightlylowerat1.9%peryearoverthisperiod.)Wetestdifferentapproachesforcombiningtheexpertresponsesandfindlittlesensitivitytothechoiceofaggregationmethod.Figure2showsthefittedindividualandcombinednormalpdfs(explainedinAppendix2).IntheMonteCarloestimatesbelow,wechoseastandarddeviationofthegrowthrateofpercapitaoutputof1.12%peryear(basedonthefirst11responses).Thisvalueisusedinthisdraft,butwillbeupdatedwiththeadditionoffurtherresponses.

 

Figure2.Individualandcombinedpdfsforannualgrowthratesofoutputpercapita,2010–2100(averageannualpercentperyear)Forthemethods,seeAppendix2.

 

Page 24: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      23 

Itisusefultocomparethesurveyresultswithhistoricaldata.Ifwetakethelong‐termestimatesfromMaddison(2003),the100‐yearvariabilityofgrowthoverthetencenturiesfrom1000to2000was1.5%peryear,witharangeof‐0.1%to3.7%peryear.Thevariabilityinthesecentury‐stepdataishigherthantheexperts’estimateof1.15%peryear.

Globalgrowthratesbasedondetailednationaldataareavailablesince1900.Thestandarddeviationofannualgrowthratesoverthisperiodwas2.9%peryear,whilethestandarddeviationof25‐yeargrowthrateswas1.2or1.4%peryeardependinguponthesource.Thevariabilityofgrowthinrecentyearswaslowerthanfortheentireperiodsince1900.Thestandarddeviationintheannualgrowthrateduringtheperiod1975‐2000was1.1%peryear.Wecannoteasilytranslatehistoricalvariabilitiesintocentury‐longvariabilitieswithoutassumingaspecificstochasticstructureofgrowthrates.

VI. ResultsofModelingStudies

A. Modelresultsandlatticediagrams

Webeginbyprovidingresultsonthecalibrationrunsandthesurfaceresponsefunctions.Foreachmodel,thereisavoluminoussetofinputsandoutputvariablesfrom2010to2100.Thefullset(consistingof46,150x22elements)clearlycannotbefullypresented.Werestrictourfocusheretosomeofthemostimportantresults,andconsignfurtherresultstoAppendix3,withthefullresultsavailableonlineattimeofpublication.

Tohelpvisualizetheresults,wehavedevelopedlatticediagramstoshowhowtheresultsvaryacrossuncertainvariablesandmodels.Figure3isalatticediagramfortheincreaseinglobalmeansurfacetemperaturein2100.Withineachoftheninepanels,they‐axisistheglobalmeansurfacetemperatureincreasein2100relativeto1900.Thex‐axisisthevalueoftheequilibriumtemperaturesensitivity.Goingacrosspanelsonthehorizontalaxis,thefirstcolumnusesthegridvalueofthefirstofthefivepopulationscenarios(whichisthelowestgrowthrate);themiddlecolumnshowstheresultsforthemodeler’sbaselinepopulation;andthethirdcolumnshowstheresultsforthepopulationassociatedwiththehighestpopulationgrid(orhighestgrowthrate).

Goingdownpanelsontheverticalaxis,thefirstrowusesthehighestgrowthrateforTFP(orthefifthTFPgridpoint);themiddlerowshowsTFPgrowthforthemodelers’baselines;andthebottomrowshowstheresultsfortheslowestgridpointforthegrowthrateofTFP.Notethatinallcases,themodelers’baselinevalues

Page 25: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      24 

generallydiffer,butthedifferencesinparametervaluesacrossrowsorcolumnsareidentical.

Tounderstandthislatticegraph,begininthecenterpanel.Thispanelusesthemodeler’sbaselinepopulationandTFPgrowth.Itindicateshowtemperaturein2100acrossmodelsvarieswiththeECS,withthedifferencesbeing1.5°CbetweentheECSgridpoints.AfirstobservationisthatthemodelsallassumethattheECSiscloseto3°Cinthebaseline.Next,isthattheresultingbaselinetemperatureincreasesfor2100arecloselybunchedbetween3.75and4.25°C.Allcurvesareupwardsloping,indicatingagreater2100temperaturechangeisassociatedwithahigherECS.

AstheECSvariesfromthebaselinevalues,themodeldifferencesaredistinct.ThesecanbeseenintheslopesofthedifferentmodelcurvesinthemiddlepanelofFigure3.Wewillseebelowthattheimpactofa1°CchangeinECSon2100temperaturevariesbyafactorof2½acrossmodels.Forexample,DICE,MERGE,andGCAMhaverelativelyresponsiveclimatemodules,whileIGSMandFUNDclimatemodulesaremuchlessresponsivetoECSdifferences.Thedifferenceacrossmodelsbecomeslargeraswemovefromthebottom‐lefttotheupperright‐handpanel,correspondingtoincreasingpopulationandTFPgrowthfrombottomlefttotopright.Thisresulthighlightskeydifferencesinboththeeconomicandclimatecomponentsofthedifferentmodels.

Page 26: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      25 

Anotherimportantrelationshiptoexamineishowdifferentmodelsreacttothecarbonprices.Figure4showsthepercentagereductioninCO2emissionsintheCarbonTaxscenariov.theBaserun.Thehorizontalaxisshowsthemagnitudeofthecarbontax.Onekeyfeatureofallmodelsisthatattainingzeroemissionswouldrequireextremelyhighcarbonprices.

 

 

 

 

Figure3.Latticediagramfor2100temperatureincreaseThislatticediagramshowsthedifferencesinmodelresultsfor2100globalmeansurfacetemperatureacrosspopulation,totalfactorproductivityandtemperaturesensitivityparameters.Thecentralboxusesthemodelers’baselineparametersandtheBasepolicy. 

Page 27: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      26 

Therearemanyotherresultsofthemodelingexercise.Appendix3containsfurtherlatticediagrams,includingthoseforpercapitaconsumption,emissions,anddamages,aswellasadditionaltablesofresults.However,theprimarypurposeofthepresentstudyistodeterminetheimpactofuncertainties,soweleavethemodelcomparisonsofmajoroutputsasideatthispoint.

B. Resultsoftheestimatesofthesurfaceresponsefunctions

RecallthattrackIprovidesthemodeloutcomes(suchasoutput,emissions,andtemperature)foreachgrid‐pointofa5x5x5x2gridofthevaluesoftheuncertainparametersandpolicies.Thenextstepintheanalysisistofitsurfaceresponsefunctions(SRFs)toeachofthemodeloutputs.TheseSRFsthenwillbeused,whencombinedwiththeTrackIIprobabilitydistributionsjustdiscussed,toprovideprobabilitydistributionsoftheoutcomevariablesforeachmodel.

 

  

Figure4.CarbontaxandemissionsreductionsbymodelModelsshowdifferingresponsetohighercarbonprices.Notethatthecarbonpricesareallassociatedwithgivendatesandarecommonforallmodels.Thepointstothefarleftarefor2010,whiletheonesatthefarrightarefor2100.Theseestimatesareforthemodelers’baselineparameters. 

0%

20%

40%

60%

80%

100%

120%

0 100 200 300 400 500

Percen

tage red

uction (A

mpere v base)

Carbon price ($/tCO2)

DICE FUND

GCAM IGSM

MERGE WITCH

Page 28: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      27 

WeundertookextensiveanalysisofdifferentapproachestoestimatingtheSRFs.Theinitialandeventuallypreferredapproachwasalinear‐quadratic‐interactions(LQI)specification.Thistookthefollowingform:

3 3

01 1 1

j

i i ij i ji j i

Y u u u

Inthisspecification, and i ju u aretheuncertainparameters.TheYarethe

outcomevariablesfordifferentmodelsanddifferentyears(e.g.,temperaturefortheFUNDmodelfor2100intheBaserunfordifferentvaluesofthe3uncertainparameters).Theparameters 0 , , and i i j aretheestimatesfromtheSRF

regressionequations.Wesuppressthesubscriptforthemodel,year,policy,andvariable.

Table1showsacomparisonoftheresultsfortemperatureandlogofoutputforthelinear(L)andLQIspecificationsforthesixmodels.AllspecificationsshowmarkedimprovementoftheequationfitintheLQIrelativetotheLversion.Lookingatthelogoutputspecification(thelastcolumninthebottomsetofnumbers),theresidualvarianceintheLQIspecificationisessentiallyzeroforallmodels.ForthetemperatureSRF,morethan99.5%ofthevarianceisexplainedbytheLQIspecification.Thestandarderrorsofequationsfor2100temperaturerangefrom0.05to0.18°CfordifferentmodelsintheLQIversion.

Page 29: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      28 

Theequationsarefitasdeviationsfromthecentralcase,socoefficientsarelinearizedatthecentralpoint,whichisthemodelers’baselinesetofparameters.LookingattheLQIcoefficientsfortemperature,notethattheeffectoftheECSon2100temperaturevariessubstantiallyamongthemodels.Atthehighend,thereisclosetoaunitcoefficient,whileatthelowendthevariationisabout0.4°Cper°Cin

 

  

 

Table1.LinearparametersinofSRFfortemperatureandlogoutputforlinear(L)andliner‐quadratic‐interactions(LQI)specifications

ThelinearparametersarethecoefficientsonthelineartermintheSRFregressions.Becausethedataaredecentered(removethemedians),thelineartermsinthehigher‐orderpolynomialsarethederivativesorlineartermsatthemedianvaluesoftheuncertainparameters.

 

Page 30: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      29 

ECSchange.ForTFP,theimpactsarerelativelysimilarexceptfortheWITCHmodel,whichismuchlower.ThisislikelyduetoimplementationoftheTFPchangesasinput‐neutraltechnicalchange(ratherthanchangesinlaborproductivity,asinseveralothermodels).Forpopulation,theLQIcoefficientsvarybyafactorofthree.

Forlogofoutput,severalmodelshavenofeedbackfromECStooutputandthusshowa0.000value.TheimpactofTFPisalmostuniformbydesign.Similarly,theimpactofpopulationonoutputisverysimilar.

WetestedsevendifferentspecificationsfortheSRF:Linear(L),Linearwithinteractions(LI),Linearquadratic(LQ),Linear,quadratic,linearinteractions(LQI)asshownabove,3rddegreepolynomialwithlinearinteractions(P3I),4thdegreepolynomialswithseconddegreeinteractions(P4I2),andfourthdegreepolynomialwithfourthdegreeinteractionsandpolynomialthree‐wayinteractions(P4I4S3).Forvirtuallyallmodelsandspecifications,theaccuracyincreasedsharplyasfarastheLQIspecification.However,asisshowninFigure5,verylittlefurtherimprovementwasfoundforthemoreexoticpolynomials.Inadditiontothepolynomialinterpolations,weinvestigatedseveralalternativetechniques,includingChebyshevpolynomialsandbasis‐splines.Wefoundnoimprovementfromtheseotherapproaches.

 

  

Figure5.Residualvarianceforallvariables,models,andspecificationsindicatesthatfornearlyallmodels,thereislittletobegainedaddingfurtherpolynomialtermsbeyondLQI. 

0.00

0.02

0.04

0.06

0.08

0.10L LQ LI LQI LQI++

1‐R2

All

Temp(2100)

Conc(2100)

Y(2100)

Page 31: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      30 

Insummary,wefoundthatthelinear‐quadratic‐interaction(LQI)specificationofthesurfaceresponsefunctionperformedextremelywellinfittingthedatainourtests.Thereasonisthatthemodels,whilehighlynon‐linearoverall,aregenerallyclosetoquadraticinthethreeuncertainparameters.WearethereforeconfidentthattheyareareliablebasisfortheMonteCarlosimulations.

C.ReliabilityoftheMUPprocedureswithextrapolation

OneissuethatarisesinestimatingthedistributionsofoutcomevariablesistheextenttowhichthecalibrationrunsintrackIadequatelycovertherangeofthepdfsfromtrackII.Forbothpopulationandtheequilibriumtemperaturesensitivity,thecalibrationrunscoveratleast99.9%oftherangeofthepdfs.However,whensettingthecalibrationrangeforTFPbasedonearlierinformalestimates,weunderestimatedthevariabilityofthefinalpdfs.Asaresult,thecalibrationrunsonlyextendasfarasthe83percentileattheupperend,requiringustoextrapolatebeyondtherangeofthecalibrationruns.

Sinceitwasnotpossibletorepeatthecalibrationrunswithanexpandedgrid,wetestedthereliabilityoftheextrapolationandthetwotrackapproachwithtwomodels.WefirstexaminedthereliabilityforTFPwiththebasecaseintheDICEmodel.ThiswasdonebymakingrunswithincrementsofTFPgrowthupto3estimatedstandarddeviations(i.e.,uptoaglobaloutputgrowthrateof6.1%peryearto2100).Theserunscover99.7%ofthedistribution.Wethenestimatedasurfaceresponsefunctionfor2100temperatureoverthesameintervalasforthecalibrationexercisesandextrapolatedoutsidetherange.TheresultsshowedhighreliabilityoftheestimatedSRFfortemperatureincreaseuptoabout2standarddeviationsabovethebaselineTFPgrowthrate.Beyondthat,theSRFtendedtooverestimatethe2100temperature.(SimilarresultswerefoundforCO2concentrationsandthedamage‐outputratiointheDICEmodel.)Thereasonfortheoverestimateisthatcarbonfuelsbecomeexhaustedathighgrowthrates,soraisingthegrowthratefurtherabovethealready‐highratehasarelativelysmalleffectsonemissions,concentrations,2100temperature,andthedamageratio.NotethatthisimpliesthatthefaruppertailofthetemperaturedistributionusingthecorrectedSRFwillshowathinnertailthantheonegeneratedbytheSRFestimatedoverthecalibrationruns.

WealsoperformedamorecomprehensivecomparisonoftheMUPprocedureswithafullMonteCarlousingtheFUNDmodel.Forthis,wetookthepdfsforthethreeuncertainvariablesandranaMonteCarloforthefullFUNDmodelwith1milliondraws.Wethencomparedthemeansandstandarddeviationsofdifferent

Page 32: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      31 

variablesforthetwoapproaches.WetestedfourdifferentspecificationsoftheSRFstodeterminewhetherthesewouldproducemarkedlydifferentoutcomes.TheresultsindicatedthattheMUPprocedureprovidedreliableestimatesofthemeansandstandarddeviationsofallvariablesthatwetestedexceptFUNDdamages.Exceptingdamages,forthepreferredLQIestimate,theabsoluteaverageerrorofthemeanfortheMUPprocedurerelativetotheFUNDMonteCarlowas0.3%,whiletheabsoluteaverageerrorforthestandarddeviationwas1.2%.Fordamages,theerrorswere7%and44%,respectively.Additionally,thepercentileestimatesfortheMUPprocedure(againexceptfordamages)wereaccurateuptothe90thpercentile.And,aswillbenotedbelow,theestimatesfortheparametersofthetailsofthedistributionswereaccurateforallvariablesexceptdamages.Anoteprovidingfurtherdetailsonthecomparisonsisavailablefromtheauthors.

VII. ResultsoftheMonteCarlosimulations

A. Distributionsformajorvariables

FortheMonteCarlosimulations,wetooktheSRFsforeachparameter/model/year/policyandmade1,000,000drawsfromeachpdfforthethreeuncertainparameters.Wethenexaminedtheresultingdistributions.Thissamplesizewaschosenbecausetheresultswerereliableatthatlevel.Thebootstrapstandarderrorsofthemeansandthestandarddeviationsweregenerallylessthan0.1%ofthemeanorstandarddeviation.Theexceptionwasfordamages,wherethebootstrapstandarderroroftheestimatedstandarddeviationswasabout0.2%ofthevaluefortheFUNDmodel.Wetreateachpdfindependently,butrecognizethattheremaybesomecorrelationbetweenrealizationsofpopulationandGDP.However,explorationsintothisrevealedthatitdidnotsubstantiallyinfluenceourfindings.

Table2showsstatisticsofthedistributionofthedrawsforeachofthemajoroutcomevariables,withaveragestakenacrossallsixmodels.WealsoshowtheestimatesforthelinearandLQIversionstoillustratethesensitivityoftheresultstotheSRFspecification.Thelastcolumnshowsthecoefficientofvariationforeachvariable.Notethattheseestimatesarewithin‐model(parametricuncertainty)resultsanddonotincludeacross‐modelvariability.Theresultshighlightthatemissions,economicoutput,anddamageshavethehighestcoefficientofvariation,underscoringthattheuncertaintyintheseoutputvariablesisgreaterthanforothervariables,suchasCO2concentrationsandtemperature.Thisistheresultofboththeunderlyingpdfsusedandthemodelsthemselves.

Page 33: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      32 

Table3showsthepercentiledistributionforallmajorvariablesforallmodelswithresultsforthebasecase.Thedetailedresultsbymodelsareprovidedintheappendix.Akeyresultisthedistributionoftemperatureincreasefor2100.Themedianincreaseacrossallmodelsis3.79°Cabove1900levels.The95thpercentileoftheincreaseis5.46°C.Giventhesizeoftheinterquartilerange,theseresultsdefinitelyindicatethattherearesubstantialuncertaintiesinallaspectsoffutureclimatechangeanditsimpactsinallthemodelsinvestigatedhere.

 

 

 

Table2.ResultsofMonteCarlosimulationsforaveragesofallmodelsThetableshowsthevaluesofallvariablesfor2100,exceptforthesocialcostofcarbon,whichisfor2020.DamagesandSCCareforthreemodels. 

 

 

Table3.Distributionofallmajorvariables,averageofsixmodelsThedateforallvariablesis2100exceptfortheSCC,whichis2020.DamagesandSCCareforthreemodels. 

Page 34: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      33 

Table4showsthedistributionforglobaltemperatureincreasein2100bymodel.Thetemperaturedistributionsofthesixmodelsareonthewholereasonablyclose.Themedianrangesfrom3.6to4.2°C,withIGSMbeingthelowestandMERGEbeingthehighest.Theinterquartilerangevariesfrom0.99°C(FUND)to1.39°C(DICE).The10‐90%rangesfrom1.91°C(WITCH)to2.65°C(DICE).Sincethevariabilityintherandomparametersisthesame,thedifferencesareduetomodelstructures. Oneinterestingfeatureisthetemperaturedistributioninthetails.The99thpercentilerangesfrom5.6(WITCH)to7.1°C(MERGE),whilethefartailofthe99.9thpercentilerangesfrom6.2(WITCH)to8.5°C(MERGE).

Table5showsthedistributionoftheSCCforthethreemodelsthatprovidetheseestimates.Thesearetheestimatesofthepresentvalueoftheflowoffuturemarginaldamagesofemissionsin2020.Twoofthemodels(WITCHandDICE)usesimilarquadraticdamagefunctionsandareroughlycomparableinthemiddleofthedistribution,buttherangeismuchsmallerinWITCH.6TheFUNDmodelhasmuchlowerdamages(duetoadifferentdamagefunction),andtheSCCdistributionisanorderofmagnitudelowerthantheothertwomodels.NotethatthecentralestimateoftheSCChereis$13.30pertonofCO2.ThisismuchlowerthanthepreferredestimateoftheUSgovernmentfor2020,whichis$46pertonin2011$witha3%annualdiscountrate.However,thebasecasediscountratesintheMUPrunsforthemodelsthatreportaverage4½%peryearto2050.TheIAWGestimateata5%discountrateis$13pertonandthereforeconsistentwiththeestimatespresentedhere.

                                                            6InWITCHmultipleregionsaremodeled,hencetheglobalSCCistheresultoftheaggregationofregionalSCC.

 

 

Table4.DistributionoftemperaturechangeintheBasecase,2100,°C 

Page 35: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      34 

Figure6showstheresultsforthetemperaturedistributionsforthemodelsonapercentilescale.Theshapesofthedistributionsaresimilar,althoughtheydifferbyasmuchas1°Cinscaleacrossmostofthedistribution.

Animportantquestionthatthisstudycanaddressiswhether,basedonthecurrentmodelstructuresandtheassumptionsaboutuncertainparameters,thedistributionsofoutcomesarethinorfattailed.Forthesetests,wedefineafattaileddistributionasonethathasaninfinite‐varianceParetoorpower‐lawdistributioninthetails(basedonthediscussioninSchuster1984).VariableswithaParetodistributionhaveinfinitevariancewhentheshapeparameterisbelow2,andtheyhaveaninfinitemeanwithaparameterequaltoorlessthanone.Asaninformaltest,wecanexaminetheratioofthevaluesoftheoutputvariablesatthe99thand

 

 

Table5.Distributionofsocialcostofcarbon,2020(2005$pertonCO2) 

 

  

Figure6.Percentilesofthechangeintemperaturein2100acrossthesixmodels. 

0

1

2

3

4

5

6

7

8

9

 ‐  20  40  60  80  100

Temperature increase, 2100 (deg C)

Percentile of results

DICE FUND

GCAM IGSM

MERGE WITCH

Page 36: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      35 

99.9thpercentile.Foranormaldistribution,theratiooftheseis1.33.ForParetodistributionswithslopevaluesof2.0,1.8,and1.5,theratiosare3.7,3.9,and5.2.IfweexaminetheMonteCarloestimates,themaximumratiois1.56,whichoccursfordamagesintheDICEandFUNDmodels.Whilethissuggestsatailthatisslightlyfatterthanthenormaldistribution,itfallsfarshortoftheslopeassociatedwithaninfinite‐varianceParetoprocess.

Beforepresentingtheresults,wereiteratetheconcernthatthecalibrationrunsdonotextendfarintothetailsforTFP.ThisimpliesthattheresultsontailsreportedhererelyonextrapolationsoftheSRFoutsidethesamplerange.WecommentbelowonourreplicationofthetailestimateswiththeFUNDmodel,whicharegenerallyaccurate.Wealsoemphasizethattheestimatesofthetailsarederivedfromtheinteractionofthemodelswiththeassumedpdfs.Totheextentthatthemodelsomitdiscontinuitiesorsharpnon‐linearities,orthatourassumedpdfsaretoothin‐tailed,thenwemayunderestimatethethicknessofthetails.

WecanalsouseaformaltestoftheParetoshapeparameter,althoughthisismorecomplicatedbecauseitrequiresassumptionsabouttheminimumoftheParetoregion(statisticaltechniquesarefromRytgaard1990).Examiningthetop10%ofthedamagedistributionfortheDICEmodel(themostskewedofthevariables),wefindthattheparameteroftheParetodistributionabovethe1%righttailisestimatedtobe4.7(+0.047),whichiswellbelowtheinfinite‐variancethresholdof2.TheParetoparameterestimateforthe0.1%tailis7.03(+0.22).Thesetestsrejectthehypothesisthatthedistributionsarefat‐tailedinthesenseofbelongingtoaninfinite‐varianceParetodistribution.Theresultsareduetoboththestructuresofthemodelsandthenatureoftheshocks.Nothinginthemodelspreventsthegenerationoffattailsinthissituation,buttheymaymisscriticalnon‐linearities,sothetestsarenotbyanymeansconclusive.

WeexaminedthevalidityoftheresultsforthetailsusingthefullMonteCarloestimateoftheFUNDmodeldiscussedabove.Forthese,wecomparedtheinformaltests(ratioofthevariablesatthe99.9%iletothe99%ile).TheMUPcalculationswereveryaccurateforallvariablesexceptdamages,whereasfordamagestheMUPcalculationsunderestimatedtheskewness(overestimatedtheParetotail).WealsoexaminedtheParetoparameterinthefullFUNDMonteCarloandfoundthattheestimatewassignificantlyabovethethresholdofaninfinitevarianceprocess.

Theresultscanalsobeseeninboxplots.Figure7showstheboxplotfortemperatureincreaseto2100.Figure8showstheboxplotfortheCO2concentrationsfor2100.Bothoftheseunderscorethatwhiletherearedifferencesbetweenthemodelsinthewaythattheyarerunforthisstudy,theyareperhaps

Page 37: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      36 

smallerthanonemighthaveexpected–andaremuchsmallerthanthewithin‐modelvariation.Weshowthisformallyinthenextsection.

 

0

1

2

3

4

5

6

7

DICE FUND GCAM IGSM MERGE WITCH

Temperature increase, 2100 (deg C)

  

Figure7.Boxplotfortheincreaseintemperatureacrossmodelsin2100.Noteonboxplots:Dotismean.Horizontallineismedian.Shadedareaaroundlineis95%confidenceintervalofmedian(usuallytoosmalltosee).Boxcontainsinterquartilerange(IQRor25%ileto75%ile).Theupperstaple(horizontalbar)issetatthemedianplus2timestheIQR,whilelowerstapleissetatthemedianminus2timestheIQR.Theupperstableisapproximatelythe95%ileformostvariables.Becauseofskewnessofthevariables,thelowerstaplerepresentsfaroutliers,andisgenerallyaroundthe0.1%ile. 

Page 38: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      37 

B. Modeluncertaintyv.parametricuncertainty

Inexaminingtheuncertaintiesofclimatechangeandotherissues,acommonapproachhasbeentolookatthedifferencesamongforecasts,models,orapproaches(“ensembles”)andtoassumethattheseareareasonableproxyfortheuncertaintiesabouttheendresultorendogenousvariables.Intheareaofclimatemodels,forexample,researchershaveoftenlookedattheequilibriumclimatesensitivitiesindifferentclimatemodelsandassumedthatthedispersionwouldbeanaccuratemeasureoftheactualuncertaintyoftheECS.

Itisconceptuallyclearthattheensembleapproachisaninappropriatemeasureofuncertaintyofoutcomes.Thedifferenceamongmodelsrepresentsameasureofstructuraluncertainty.Forexample,alternativeclimatemodelsmighthavedifferentwaysofincludingcloudfeedbacks.Takingallthedifferencesamongthemodelswouldindicatehowstate‐of‐the‐artmodelsdifferontheprocessesandvariablesthattheyinclude.Evenhere,however,existingmodelsarelikelytohaveanincompleteunderstandingandwillthereforeunderestimatestructuraluncertainty.However,fromaconceptualvantagepoint,theygenerallydonot

 

200

400

600

800

1,000

1,200

1,400

1,600

1,800

DICE FUND GCAM IGSM MERGE WITCH

CO2 Concentrations, 2100, ppm

 

Figure8.BoxplotforCO2concentrations,2100.Forexplanationofboxplots,seeFigure7. 

Page 39: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      38 

explicitlymodelandconsiderparametricuncertainty.InIAMs,tocomeclosertohome,differencesinmodelsreflectdifferencesinassumptionsaboutgrowthrates,productionfunctions,energysystems,andthelike.Butfewmodelsexplicitlyincludeparametricuncertaintyaboutthesevariables.Differencesinpopulationgrowth,forexample,areverysmallrelativetomeasuresofuncertaintybasedonstatisticaltechniquesbecausemanymodelsusethesameestimatesoflong‐runpopulationtrends.

WecanusetheresultsoftheMonteCarlosimulationstoestimatetherelativeimportanceofparametricuncertaintyandmodeluncertainty.WecanwritetheresultsoftheMonteCarlosimulationsschematicallyasfollows.Assumethatthe

modeloutcomeforvariableiandmodelmis miY andthattheuncertainparameters

are and i ju u :

3 3

,1 1 1

jm m m m

i i i i i j i ji j i

Y u u u

Foragivendistributionofeachoftheuncertainparameters,thevarianceof iY

includingmodelvariationis:

3 32 2 2 2 2 2 2

,1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )j

m mi i i i i j i j

i j i

Y u u u

Thefirsttermontherighthandsideisthevarianceduetomodeldifferences(orstructuraluncertainty),whilethesecondandthirdtermsarethevarianceduetoparameteruncertainty.Forthispurpose,weincludetheinteractionofthemodel

coefficients ,( and )m mi i j andtheparameteruncertainties 2[ ( )]iu asparametric

uncertaintybecausetheywouldnotbeincludedinensembleuncertainty.Theothertermsvanishbecauseweassumethattheparametricuncertaintiesareindependent.Whiledependencewilladdfurthertermsontheright‐handsideoftheequationforthevariance,itwillnotaffectthefractionduetostructuraldifferencesduetothefirstterm.

Wecaneasilyestimatethetotaluncertaintyandthestructuraluncertaintyfordifferentvariables.TheresultsareshowninTable6.Formostvariables,virtuallyallthevarianceisexplainedbyparametricuncertainty.Forexample,94%ofthevarianceofthe2100temperatureincreaseinallthemodelsisexplainedbyparametricuncertainty,andonly6%isexplainedbydifferencesinmodelmeans.ThisfactiseasilyseenintheboxchartsinFigures7and8.Theonlyvariablefor

Page 40: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      39 

whichmodeluncertaintyisimportantisthesocialcostofcarbon,forwhichfour‐fifthsofthetotalvarianceisduetomodeldifferences.

Wecanputtheseresultsintermsofthevariabilitiesduetodifferentfactors.Ifwetakethecalculatedtemperatureincreaseto2100,theoverallstandarddeviationis0.84°Cincludingbothmodelandparametricuncertainty.Thestandarddeviationofthemodelmeansaloneis0.21°C.Sothevariabilitymeasuredintermsofstandarddeviationsofthetemperatureincreaseisunderestimatedbyafactoroffourusingtheensembletechnique.

Theneteffectoftheseresultsissobering.Theyindicatethatthetechniqueofrelyinguponensemblesasatechniquefordeterminingtheuncertaintyoffutureoutcomesis(atleastforthemajorclimatechangevariables)highlydeficient.Ensembleuncertaintytendstounderestimateoveralluncertaintybyasignificantamount.

C. Sensitivityoftheresultstoparametervariability

Animportantquestionistheextenttowhichtheresultsaresensitivetotheindividualpdfsfortheuncertainparameters.Totestforsensitivity,weperformedanexperimentwhereweincreasedthestandarddeviationofeachofthepdfsbyafactorof2,bothoneatatimeandtogether.Foradoublingofthestandarddeviationofallparameters,theincreaseinthestandarddeviationof2100temperaturewasa

 

  

Table6.Fractionofuncertainty(variance)explainedbymodeldifferences. 

Page 41: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      40 

factorof1.83forallmodelstogether.Webelievethatthisislessthantwobecausetheshort‐runtemperatureimpactisnotproportionaltotheECS.

Table7showstheresultschangingtheuncertaintybyafactoroftwooneparameteratatimefortheaverageofthe6modelsforallvariableswhichareproducedbythesixmodels.Thenumbershowstheratioofthestandarddeviationofthe2100valueofthevariableinthesensitivitycaserelativetothecasewithassumedpdfs.Doublingalluncertaintiesproducesclosetoadoublingoftheoutputuncertainty,withsomedeviationsbecauseofnon‐linearities.

Doublingpopulationuncertaintyhasasmalleffectonallvariablesexceptpopulation.Doublingequilibriumtemperatureuncertaintyraisestheuncertaintyof2100temperatureby40%buthasnosignificanteffectonotheruncertainties.ThemajorsensitivityisTFPuncertainty.Doublingthisuncertaintyleadstoclosetodoublingoftheuncertaintyofothermajoreconomicvariables,andtoanincreaseof62percentintheuncertaintyof2100temperature.ThisresultissimilartoaresultinvanVuurenetal.(2008),whichsuggeststhatuncertaintyinGDPgrowthdominatestheuncertaintyinemissions.

Thesummaryonsensitivityoftheresultstothepdfsshowsanimportantandsurprisingresult.Onthewhole,theresultsareinsensitivetochangesinthepopulationgrowthpdf;aremoderatelysensitivetotheuncertaintyabout

 

  

Table7.Sensitivityofoutcomesforchangesinstandarddeviationofeachuncertainparameterbyfactorof2Thefiguregivestheratioofthestandarddeviationofthevariableatthetopofthecolumntothestandarddeviationinthebaserun.Forexample,doublingthestandarddeviationofpopulationincreasedthestandarddeviationof2100temperatureby6%.

Page 42: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      41 

equilibriumtemperaturesensitivityontemperature(aswellastodamagesandthesocialcostofcarbon,notshown);andareextremelysensitivetotheuncertaintyabouttherateofgrowthofproductivity.Whilelong‐runproductivitygrowthhasthegreatestimpactonuncertainty,itisalsotheleastcarefullystudiedofanyoftheparameterswehaveexamined.Thisresultsuggeststhatmuchgreaterattentionshouldbegiventodevelopingreliableestimatesofthetrendanduncertaintiesaboutlong‐runproductivity.

VIII. Conclusions

Thisstudyisthefirstmulti‐modelanalysisofparametricuncertaintyineconomicclimate‐changemodeling.Theapproachisbasedonestimatingclassicstatisticalforecastuncertainty.Thecentralmethodologyconsistsoftwotracks.TrackIinvolvesdoingasetofmodelcalibrationrunsforthesixmodelsandthreeuncertainparametersandestimatingasurfaceresponsefunctionfortheresultsofthoseruns.TrackIIinvolvesdevelopingpdfsforkeyuncertainparameters.ThetwotracksarebroughttogetherthroughasetofMonteCarlosimulationstoestimatetheoutputdistributionsofmultipleoutputvariablesthatareimportantforclimatechangeandclimate‐changepolicy.Thisapproachisreplicableandtransparent,andovercomesseveralobstaclesforexamininguncertaintyinclimatechange.

Herearethekeyresults.First,thecentralprojectionsoftheintegratedassessmentmodels(IAMs)areremarkablysimilaratthemodeler’sbaselineparameters.Thisresultisprobablyduetothefactthatmodelshavebeenusedinmodelcomparisonsandmayhavebeenrevisedtoyieldsimilarbaselineresults.However,theprojectionsdivergesharplywhenalternativeassumptionsaboutthekeyuncertainparametersareused,especiallyathighlevelsofpopulationgrowth,productivitygrowth,andequilibriumclimatesensitivity.

Second,despitethesedifferencesacrossmodelsforalternativeparameters,thedistributionsofthekeyoutputvariablesareremarkablysimilaracrossmodelswithdifferentstructuresandlevelsofcomplexity.Totakeyear2100temperatureasanexample,thequantilesofthedistributionsofthemodelsdifferbylessthan½°Cfortheentiredistributionuptothe95thpercentile.

Third,wefindthattheclimate‐relatedvariablesarecharacterizedbylowuncertaintyrelativetothoserelatingtomosteconomicvariables.Forthiscomparison,welookatthecoefficientofvariation(CV)oftheMonteCarlosimulations.AsshowninTable2,CO2concentrations,radiativeforcings,andtemperature(allfor2100)haverelativelylowCV.OutputanddamageshaverelativelyhighCV.Asexamples,themodel‐averagecoefficientofvariationforcarbondioxideconcentrationsin2100is0.28,whilethecoefficientofvariationfor

Page 43: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      42 

climate‐changedamagesis1.29.ThesocialcostofcarbonhasanintermediateCVwithinmodels,butwhenmodelvariationisincludedtheCVisclosetothatofoutputanddamages.Theseresultshighlighttheimportanceoffurtherresearchoneconomicvariablesanddamagefunctionsforreducinguncertaintyandimprovingpolicymaking(e.g.,seePizeretal.2014andDrouetetal.2015).

Fourth,wefindmuchgreaterparametricuncertaintythanstructural(acrossmodel)uncertaintyforalloutputvariablesexceptthesocialcostofcarbon.Forexample,inexaminingtheuncertaintyin2100temperatureincrease,thedifferenceofmodelmeans(ortheensembleuncertainty)isapproximatelyone‐quarterofthetotaluncertainty,withtherestdrivenbyparametricuncertainty.Whilelookingacrosssixmodelsbynomeansspansthespaceofmethods,thesixmodelsexaminedherearerepresentativeofthedifferencesinsize,structure,andcomplexityofIAMs.Thisresultisimportantbecauseofthewidespreaduseofensembleuncertaintyasaproxyforoveralluncertaintyandhighlightstheneedforare‐orientationofresearchtowardsexaminingparametricuncertaintyacrossmodels.

Afifthinterestingfindingofthisanalysisisthelackofevidenceinsupportoffattailsinthedistributionsofemissions,globalmeansurfacetemperature,ordamages.Populationgrowth,totalfactorproductivitygrowth,andclimatesensitivityareverylikelytobethreeofthekeyuncertainparametersinclimatechange.Yet,basedonbothinformalandformaltests,themodelsascurrentlyconstructedfindthatthetailsarerelativelythin.Thedeclineinprobabilitiesassociatedwithachangeinanyofthevariablesismuchlargerthanwouldbeassociatedwithaninfinite‐varianceParetoprocess.Asdiscussedabove,weemphasizethatthesefindingsshouldbeinterpretedinthecontextofthecurrentgroupofmodelsandtheassumedpdfs.Theresultsdonotruleoutfattails,buttheydoprovideempiricalevidenceagainstfattailsinoutcomesinvestigatedinthisstudyforthecurrentsetofmodelsandthedistributionsofthethreeuncertainvariablesconsideredhere.Theseresultstendtosupporttheuseofexpectedbenefit‐costanalysisforclimatechangepolicy,incontrasttosuggestionsbysomeauthorsthatneglectoffattaileventsmayvitiatestandardanalyses(Weitzman2009).

Sixth,wefindthatwithinawiderangeofuncertainty,changesindispersionoftwooftheuncertainparameterstakensinglyhavearelativelysmalleffectontheuncertaintyoftheoutputvariables,thesebeingpopulationgrowthandequilibriumtemperaturesensitivity.However,uncertaintyaboutproductivitygrowthhasamajorimpactontheuncertaintyofallthemajoroutputvariables.Thereasonforthisisthattheuncertaintyofproductivitygrowthfromtheexpertsurveycompoundsgreatlyoverthe21stcenturyandinducesanextremelylargeuncertainty

Page 44: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      43 

aboutoutput,emissions,concentrations,temperaturechange,anddamagesbytheendofthecentury. Asinanystudy,thisanalysisisintentionallysharplyfocused.Byanalyzingparametricuncertaintyinthreekeyparameters,wedonotclaimtobecapturingalluncertaintiesinclimatechange.Aswedescribeabove,therearemanyuncertaintiesthatcannotbecapturedusingthestatisticalframeworkdevelopedhere.ButbyprovidingdetailedestimatesofuncertaintyacrossarangeofIAMsthatarecurrentlybeingusedinthepolicyprocess,webelievethatwehavesignificantlyimprovedtheunderstandingofuncertaintyinclimatechange.Moreover,ournewtwo‐trackmethodologyiswell‐suitedforexpansiontoadditionalparametersandmodels,andcanbereadilyusedtoexploreadditionalconcerns,suchastheinteractionbetweencarbonpoliciesanduncertainty.

Page 45: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      44 

Appendix1.FurtherDetailsontheChoiceofECSDistribution

Thisappendixexplainstheprocedurefordevelopingthepdfforclimatesensitivity.Thestudybeganbyreviewingthefiveprobabilitydensityfunctionsforequilibriumclimatesensitivity(ECS)usedintheIPCCAR5thatdrawuponmultiplelinesofevidence.TheseareAldrinetal.(2012),LibardoniandForest(2013),Olsenetal.(2012),AnnanandHargreaves(2006),andHegerletal.(2006).FigureA1illustratesthelog‐normalfitstoeachofthesedistributions(fitsbythepresentauthors).

Ourchosenstudy,Olsenetal.(2012),isrepresentativeofthestudiesinbothitsmethodologyandresults.ItusesaBayesianapproach.Thepriordistributionwasconstructedtofitthe“mostlikely”valuesand“likely”rangesinFigure3inKnuttiandHegerl(2008)basedonthesummarystatisticsofthe“currentmeanclimatestate”and“LastGlacialMaximummodels.”Olsenetal.assumeaninverseGaussian(Wald)distributionandobtainthispriorbyassumingindependencebetweenthe

 

  

FigureA1.Log‐normaldistributionsfittotheprobabilitydensityfunctionscitedintheIPCCAR5.ThedistributionshownhereisfromtheupdatedLibardoni&Forest(2013)figures. 

Page 46: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      45 

currentmeanclimatestateandthelastglacialmaximummodels,andthencomputingthemixturedistribution.

TheposteriordistributionisthencalculatedbyusingaMarkovChainMonteCarlosimulationtoupdatethepriorwithalikelihoodfunction.Thelikelihoodisbasedonseveraldifferenttracers,suchasglobalaverageatmosphericsurface/oceansurfacetemperaturesandglobaltotalheatcontent.ThesetracerscomefromtheUniversityofVictoriaESCMclimatemodel,whichconsistsofathree‐dimensionaloceangeneralcirculationmodelcoupledwithathermodynamic/dynamicsea‐icemodel.Theauthorsassumeindependence,sothatthelikelihoodofbothobservationsisequaltotheproductofthelikelihoods.

Theparametersofthelog‐normaldistributionfittoOlsenetal.areμ=1.10704andσ=0.264.Themajorsummarystatisticsofthereferencedistributioninthestudyarethefollowing:mean=3.13,median=3.03,standarddeviation=0.843,skewness=0.824,andkurtosis=4.23.InimplementingtheMonteCarloforeachmodel,weretainedthemeanECSforthatmodel.Wethenimposedalog‐normaldistributionthatretainedthearithmeticstandarddeviationoftheECS(i.e.,astandarddeviationof0.843)basedontheOlsenetal.(2012)distribution.

Page 47: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      46 

Appendix2.ExpertSurveyonTotalFactorProductivity

Akeycomponentoftheprojectwasdeterminingtheuncertaintyinproductivity(or,asoperationallydefined,outputpercapita).Areviewofexistingstudiesindicatedthattherewerenodetailedstudiesoffutureoutputuncertaintiesoutto2100thatwecouldrelyon.Wethereforedecidedtoundertakeanexpertelicitation.Thedetailedresultsofthesurveywillbeshortlyavailableseparatelyasaworkingpaper.Thisappendixsketchesthemethodsandsummarizesthepreliminaryresults.Notethatthecurrentresultsincludeonly11oftherespondents,andthecompletesurveyresultswillbeusedforthefinalpublication.

2.1 SurveyDesign

Indeterminingtheprobabilitydistributionoffutureproductivitygrowth,amajordifficultyisthenon‐stationarityofthisvariable.Itisclearlynon‐stationaryifoneexamineshistoricaldata.Fromatheoreticalpointofview,wewouldexpectnon‐stationaritybecausethemajordeterminantsoflong‐rungrowth–inventionandtechnologicalchange–involvenewanddifferentprocessesratherthanreplicationofsomeunderlyingprocess.Forthisreason,itisimportanttooverlayanyempiricalstudywithexpertviews.

Expertopinionhasbeenusedsystematicallyinaverylimitednumberofstudiesofeconomicgrowth.Forexample,Websteretal.(2002)analyzeuncertaintyintheGDPgrowthrateoutto2100(asaproxyforchangesinlaborproductivity)usingestimatescollectedfromanelicitationof5expertsfromasingleinstitution.Thisseemedtoothinabaseforthepresentstudy.

Inthisstudy,weconductedasurveyofexpertpredictionsaboutuncertaintyinglobalannualgrowthratesfortheperiod2010‐2100.Expertsprovidedresponsesusinganonlinesurvey(seeFigureA2fortheresponseformat).Thepanelofexpertswasselectedthroughaprocessofnominationbyleadingeconomists.

Weaskedexpertsaboutgrowthratesinhigh‐,medium‐,andlow‐incomecountries,aswellasaboutglobalaggregaterates.Aspartofthesurvey,wealertedexpertstoproblemsofoverconfidenceandincludeawarm‐upsectionthatwasdesignedtoincreaseawarenessoftheirpersonaloverconfidence.Inaddition,weaskedexpertsaboutanyambiguitiesthattheyexperiencedinthesurveyand

Page 48: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      47 

providedthemwithhistoricaldataongrowthratesfortheperiod1900‐2000fromBarro‐Ursua(2010)andMaddison(2003).7

Thesurveywascomprisedof4setsofquestionsaboutgrowthrates:(1)centralestimates(50thpercentile)forgrowthratesfor2010‐2050and2010‐2100,(2)estimatesofuncertaintybasedonprovidingthe10th,25th,75th,and90thpercentilesofthegrowthrates,(3)theprojectedmagnitudeofeffectsofpositiveandnegativeshockstotheeconomy,and(4)near‐termpredictions(forthefollowingyear).Weaskedeachexperttodescribetherationalefortheirresponseaswellasanexplanationofmajorpositiveandnegativeshocks.Thesurveyalsoaskedexpertstoidentifyoutsidesourcesofinformationthatwereusedtogenerateforecastsandtoranktheirownexpertiseoverallandforparticularregions.

2.2 CombiningExpertDistributions

Weusetwomethodstoestimatethemeanandstandarddeviationforthe

best‐fittingcombinednormaldistributionofgrowthratesfortheperiod2010‐2100.

Thefirstmethodassumesthatexpertshaveestimatesofquantilesofthedistributionoflong‐rungrowthrates.Thecombinedpdfisthenthedistributionthatminimizesthesumofsquareddifferencesbetweenthecombinednormal

                                                            7Barro‐UrsuaMacroeconomicDataavailableat:rbarro.com/data‐sets/.MaddisonisfromAngusMaddison(2003).Availableat:http://www.theworldeconomy.org/statistics.htm.

 

  

FigureA2.ResponseFormatforExpertSurvey 

Page 49: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      48 

distributionateachquantileandtheaverageofthequantileestimatesoftheexperts.Thesecondmethodbeginswithestimatesoftheparametersofthebest‐fittingnormaldistributionforeachexpert;andthentakesthesamplemeansoftheparametersoftheexpertsforthecombinednormaldistribution.

Wefindverylittledifferencebetweenthetwomethods.Forthepreliminarysample,themeangrowthratesofpercapitaoutputforthetwomethodsare2.29and2.30,respectivelyformethods1and2.Thecombinedstandarddeviationsare1.15and1.17,respectively.

Thecombinedpdfsalongwith11preliminaryresponsesareshowninFigure2inthemaintext.ThecurrentprocedureusesthesamplemeanofthestandarddeviationfortheMonteCarloestimates,butweareconsideringusingarobustestimatorforthefinalreport.

Page 50: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      49 

Appendix3.AdditionalLatticeDiagrams

Weincludeherefurtherlatticediagrams.Thestructureisasdescribedinthetext.Theonlydifferenceistheoutputvariable,whichisshownatthetopofthegraph.

Notethatthefirstgroupofdiagramsisforthebaseruns,whilethesecondgroupisfortherunswithcarbontaxes(CarbonTaxorAmpereruns).

Page 51: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      50 

Page 52: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      51 

Page 53: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      52 

Page 54: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      53 

Page 55: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      54 

Page 56: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      55 

Appendix4.AdditionalTablesandGraphs

TableA1.Overviewofglobalintegratedassessmentmodelsincludedinthisstudy.

Model Numberof

EconomicRegions

TimeHorizon

VariablesIncluded

KeyCharacteristics SelectedReference

s

DICE 1 2010‐2300

1,2,3,5,6 Optimalgrowthmodel,endogenousGDPandtemperature,exogenouspopulation,SWFisCESwithrespecttoconsumption.

(NordhausandSztorc2014)

FUND 16 1950‐3000

1,2,3,4,5,6,7

Multi‐region,multi‐gas,detaileddamagefunctions,exogenousscenariosperturbedbymodel

(AnthoffandTol2010,2013)

GCAM 14 2005‐2095

1,2,3,4,5,7 Integratedenergy‐land‐climatemodelwithtechnologydetail;exogenouspopulationandGDP;endogenousenergyresources,agriculture,andtemperature;economiccostsarecalculatedforproducerandconsumersurpluschange

(Calvinandetal.2011)

IGSM 16

2100 1,2,3,4,5,7 Fullgeneralcirculationmodellinkedtoamultisector‐multiregiongeneralequilibriummodeloftheeconomywithexplicitadvancedtechnologyoptions

(Chenetal.2015,Sokolovetal.2009,Websteretal.2012)

MERGE 10 2100 1,2,3,4,5,7 Ramseymodelcoupled (Blanford

Page 57: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      56 

withenergyprocessmodel,multipleregions,endogenousGDPandtemperature,exogenouspopulation

etal.2014)

WITCH 13 2150 1,2,3,4,5,6,7

Optimalgrowthmodel,endogenousGDPandtemperature,exogenouspopulation,SWFisCESwithrespecttoconsumption.

(Bosettietal.2006)

Notes:SWF=socialwelfarefunction,CES=constantelasticityofsubstitution.Forvariablesincludedthekeyis:1=GDP,population2=CO2emissions,CO2concentrations3=globaltemperature4=multipleregions5=mitigation6=damages7=non‐CO2GHGs

Page 58: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      57 

ResultsofMonteCarlosimulationsformodelsandmajorvariables[Allvariablesare2100exceptSCC,whichis2020]

Page 59: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      58 

FigureforboxplotsforCO2emissions,2100.Fordiscussionofboxplots,seeFigure7.

 

-100

0

100

200

300

400

500

DICE FUND GCAM IGSM MERGE WITCH

CO2 emissions, 2100 (billions tons CO2)

Page 60: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      59 

DICEFUNDWITCH

Figureforboxplotsforsocialcostofcarbon,2020.Fordiscussionofboxplots,seeFigure7.

Page 61: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      60 

Estimatesfromsurfaceresponsefunctionsbyvariableandmodel.

Page 62: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      61 

GoodnessoffitofworstfittingLQIvariablebymodel.

Tableshowstheresidualvariance(1‐R2)fortheworstfittingoftheequations.Forexample,intheLQIspecification,theworstSRFfortheDICEmodelistheequationforpopulation,whichhasaresidualvarianceof0.00706.FortheMERGEmodel,theworstequationisforCO2emissions.NoteaswellthattheonlytwomodelsforwhichtheworstequationhasasignificantreductioninresidualvariationfromLQItoLQI++aretheIGSMandWITCHmodels.

Page 63: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      62 

References

Acemoglu,D.,S.Johnson,andJ.Robinson.2005."InstitutionsasaFundamentalCauseofLong‐runGrowth."InHandbookofEconomicGrowth,editedbyPhilippeAghionandStevenDurlauf.North‐Holland.

Anthoff,D.,andR.Tol(2010)."OnInternationalEquityWeightsandNationalDecisionMakingonClimateChange."JournalofEnvironmentalEconomicsandManagement60(1):14‐20.

Anthoff,D.,andR.Tol(2013)."TheUncertaintyAbouttheSocialCostofCarbon:ADecompositionAnalysisUsingFUND."ClimaticChange117(3):515‐530.

Armstrong,J.Scott.(2001)."Combiningforecasts."Principlesofforecasting.SpringerUS,417‐439.

Baker,E.(2005)."UncertaintyandLearninginaStrategicEnvironment:GlobalClimateChange."ResourceandEnergyEconomics27(1):19‐40.

Batchelor,Roy,andPamiDua(1995)."Forecasterdiversityandthebenefitsofcombiningforecasts."ManagementScience41.1(1995):68‐75.

Blanford,G.,J.Merrick,R.Richels,andR.Steven(2014)."Trade‐offsBetweenMitigationCostsandTemperatureChange."ClimaticChange123(3‐4):527‐541.

Bosetti,V.,C.Carraro,M.Galeotti,E.Massetti,andM.Tavoni(2006)."WITCH:AWorldInducedTechnicalChangeHybridModel."EnergyJournal27(SI2):13‐37.

Bosetti,V.,C.Carraro,E.Massetti,andM.Tavoni.2014.ClimateChangeMitigation,TechnologicalInnovationandAdaptation:EdwardElgarPublishers.

Brynjolfsson,E.,andA.McAfee.2012.RaceAgainsttheMachine:HowtheDigitalRevolutionisAcceleratingInnovation,DrivingProductivity,andIrreversiblyTransformingEmploymentandtheEconomy:DigitalFrontierPress.

Calvin,K.,andetal.2011.GCAMWikiDocumentation.http://wiki.umd.edu/gcam/index.php?title=Main_Page.CollegePark,MD:JointGlobalChangeResearchInstitute.

CBO.2005.UncertaintyinAnalyzingClimateChange:PolicyImplications.Washington,DC:CongressionalBudgetOffice.

Chen,Y.‐H.,S.Paltsev,J.Reilly,J.F.Morris,andM.H.Babiker.2015.TheMITEPPA6Model:EconomicGrowth,EnergyUse,andFoodConsumption,MITJointProgramReportNumber278.Cambridge,MA.

Page 64: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      63 

Clarke,L.,andJ.Weyant(2009)."IntroductiontotheEMF22SpecialIssueonClimateChangeControlScenarios."EnergyEconomics31(2):S63.

Clemen,RobertT.,andRobertL.Winkler(1999)."Combiningprobabilitydistributionsfromexpertsinriskanalysis."Riskanalysis19.2:187‐203.

Clements,M.,andD.Hendry.1998.ForecastingEconomicTimeSeries.Cambridge,UK:CambridgeUniversityPress.

Clements,M.,andD.Hendry.1999.ForecastingNon‐stationaryEconomicTimeSeries.Cambridge,MA:MITPress.

deFinetti,B.(1937)."Laprevision:Sesloislogiques,sessourcessubjectives."Annalesdel'InstitutHenriPoincaré7:1‐68.

Edmonds,J.,andJ.Reilly(1983a)."GlobalEnergyandCO2totheYear2050."EnergyJournal4(3):21‐47.

Edmonds,J.,andJ.Reilly(1983b)."GlobalEnergyProductionandUsetotheYear2050."Energy8(6):419‐432.

Edmonds,J.,andJ.Reilly(1983c)."ALong‐termGlobalEnergy‐economicModelofCarbonDioxideReleaseFromFossilFuelUse."EnergyEconomics5(2):74‐88.

Ericsson,N.2001.ForecastUncertaintyinEconomicModeling.Washington,DC:BoardofGovernorsoftheFederalReserveSystemInternationalFinanceDiscussionPapers.

Fernald,J.,andC.Jones.2014.TheFutureofU.S.EconomicGrowth.Cambridge,MA:NationalBureauofEconomicResearchWorkingPaper19830

Freeman,R.2010."WhatDoesGlobalExpansionofHigherEducationMeanfortheUnitedStates?"InAmericanUniversitiesinaGlobalMarket,373‐404.UniversityofChicagoPress.

Gordon,R.2012.IsU.S.EconomicGrowthOver?FalteringInnovationConfrontstheSixHeadwinds.Cambridge,MA:NationalBureauofEconomicResearchWorkingPaper18315.

Greenstone,M.,E.Kopits,andA.Wolverton(2013)."DevelopingaSocialCostofCarbonforUSRegulatoryAnalysis:AMethodologyandInterpretation."ReviewofEnvironmentalEconomicsandPolicy7(1):23‐46.

Hammersley,J.M.,andD.C.Handscomb.1964.MonteCarloMethods.NewYork:JohnWileyandSons.

Hope,C.(2006)."TheMarginalImpactofCO2fromPAGE2002:AnIntegratedAssessmentModelIncorporatingtheIPCC'sFiveReasonsforConcern."IntegratedAssessment6(19‐56).

IAWG.2010.TechnicalSupportDocument:SocialCostofCarbonforRegulatoryImpactAnalysisUnderExecutiveOrder12866.Washington,DC:InteragencyWorkingGroupontheSocialCostofCarbon.

Page 65: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      64 

IAWG.2013.TechnicalSupportDocument:TechnicalUpdateoftheSocialCostofCarbonforRegulatoryImpactAnalysisUnderExecutiveOrder12866.Washington,DC:InteragencyWorkingGroupontheSocialCostofCarbon.

InterAcademyCouncil.2010.ClimateChangeAssessments:ReviewoftheProcessesandProceduresoftheIPCC,2010,HaroldShapiro,chair.

IPCC.2014.FifthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Cambridge,UKandNewYork,NY:CambridgeUniversityPress.

Knutti,R.,andG.Hegerl(2008)."TheEquilibriumSensitivityoftheEarth'sTemperaturetoRadiationChanges."NatureGeoscience1:735‐743.

Kriegler,E.,N.Peterman,V.Krey,V.J.Schwanitz,G.Luderer,S.Ashina,V.Bosetti,J.Eom,A.Kitous,A.Mejean,L.Paroussos,F.Sano,H.Turton,C.Wilson,andD.VanVuuren(2015)."DiagnosticIndicatorsforIntegratedAssessmentModelsofClimateChange."TechnologicalForecastingandSocialChange90(A):45‐61.

Lemoine,D.,andH.McJeon(2013)."TrappedBetweenTwoTails:TradingOffScientificUncertaintiesviaClimateTargets."EnvironmentalResearchLetters8:1‐10.

Lenton,T.,H.Held,E.Kriegler,J.Hall,W.Lucht,S.Rahmstorf,andH.J.Schellnhuber(2008)."TippingElementsintheEarth'sClimateSystem."ProceedingsoftheNationalAcademyofSciences105(6):1786‐1793.

Lutz,W.,ed.1996.TheFuturePopulationoftheWorld:WhatCanWeAssumeToday?London:EarthscanPublicationLtd.

Lutz,W.,W.Butz,andS.KC.2014.WorldPopulationandHumanCapitalintheTwenty‐FirstCentury.Oxford,UK:OxfordUniversityPress.

Lutz,W.,W.Sanderson,andS.Scherbov.1998."Expert‐basedProbabilisticProjections."InFrontiersofPopulationForecasting,editedbyWolfgangLutz,J.W.VaupelandD.A.Ahlburg,139‐155.PopulationandDevelopmentReview.

Lutz,W.,W.Sanderson,andS.Scherbov.IIASA's2007ProbabilisticWorldPopulationProjections,IIASAWorldPopulationProgramOnlineDataBaseofResults2008.Availablefromhttp://www.iiasa.ac.at/web/home/research/researchPrograms/WorldPopulation/Reaging/2007_update_prob_world_pop_proj.html.

Manne,A.,R.Mendelsohn,andR.Richels(1999)."MERGE:AModelforEvaluatingRegionalandGlobalEffectsofGreenhouseGasReductionPolicies."EnergyPolicy23(1):17‐34.

Meinshausen,M.,S.C.Raper,andT.Wigley(2011)."EmulatingCoupledAtmosphere‐OceanandCarbonCycleModelswithaSimplerModel,MAGICC6‐PartI:

Page 66: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      65 

ModelDescriptionandCalibration."AtmosphericChemistryandPhysics11:1417‐1456.

Nordhaus,W.2008.AQuestionofBalance:WeighingtheOptionsonGlobalWarmingPolicies.NewHaven,CT:YaleUniversityPress.

Nordhaus,W.,andD.Popp(1997)."WhatistheValueofScientificKnowledge?AnApplicationtoGlobalWarmingUsingthePRICEModel."EnergyJournal18(1):1‐45.

Nordhaus,W.,andP.Sztorc.2014.DICE2013:IntroductionandUser'sManual.NewHaven,CT:YaleUniversity.

NRC.2000.BeyondSixBillion:ForecastingtheWorld'sPopulation.Washington,DC:NationalAcademyPress.

O'Neill,B.,D.Balk,M.Brickman,andM.Ezra(2001)."AGuidetoGlobalPopulationProjections."DemographicResearch4(8):203‐288.

Olsen,R.,R.Sriver,M.Goes,N.Urban,D.Matthews,M.Haran,andK.Keller(2012)."AClimateSensitivityEstimateUsingBayesianFusionofInstrumentalObservationsandanEarthSystemModel."GeophysicalResearchLetters117(D04103):1‐11.

Peck,S.,andT.Teisberg(1993)."GlobalWarmingUncertaintiesandtheValueofInformation:AnAnalysisUsingCETA."ResourceandEnergyEconomics15(1):71‐97.

Pizer,W.(1999)."OptimalChoiceofClimateChangePolicyinthePresenceofUncertainty."ResourceandEnergyEconomics21(3‐4):255‐287.

Pizer,W.,M.Adler,J.Aldy,D.Anthoff,M.Cropper,K.Gillingham,M.Greenstone,B.Murray,R.Newell,R.Richels,A.Rowell,S.Waldhoff,andJ.Wiener(2014)."UsingandImprovingtheSocialCostofCarbon."Science346(6214):1189‐1190.

Ramsey,F.1931."TruthandProbability."InTheFoundationsofMathematicsandOtherLogicalEssays,editedbyRichardBevanBraithwaite,156‐198.London,UK:Kegan,Paul,Trench,TrubnerandCompany.

Reilly,J.,J.Edmonds,R.Gardner,A.Brenkert(1987)"MonteCarloAnalysisoftheIEA/ORAUEnergy/CarbonEmissionsModel."EnergyJournal8:1‐29.

Revesz,R.,P.Howard,K.Arrow,L.Goulder,R.Kopp,M.Livermore,M.Oppenheimer,andT.Sterner(2014)."GlobalWarming:ImproveEconomicModelsofClimateChange."Nature508(7495):173‐175.

Robinson,A.,R.Calov,andA.Ganopolski(2012)."MultistabilityandCriticalThresholdsoftheGreenlandIceSheet."NatureClimateChange2:429‐432.

Rytgaard,Mette(1990)."EstimationintheParetodistribution."AstinBulletin20.02:201‐216.

Page 67: MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI … · 2016. 4. 14. · 1 Modeling Uncertainty in Climate Change: A Multi‐Model Comparison1 Kenneth Gillingham, William Nordhaus,

      66 

Savage,L.1954.TheFoundationsofStatistics.NewYork:JohnWileyandSons.Schuster,EugeneF.(1984).”ClassificationofProbabilityLawsbyTailBehavior,”

JournaloftheAmericanStatisticalAssociation,Vol.79,No.388:936‐939.Sokolov,A.,P.H.Stone,C.Forest,R.Prinn,M.Sarofim,M.Webster,S.Paltsev,A.

Schlosser,D.Kicklighter,S.Dutkiewicz,J.Reilly,C.Wang,B.Felzer,J.Melillo,andH.Jacoby(2009)."ProbabilitisticForecastfor21stCenturyClimateBasedonUncertaintiesinEmissions(withoutPolicy)andClimateParameters."JournalofClimate22(19):5175‐5204.

Tol,Richard(1997)"OntheOptimalControlofCarbonDioxideEmissions‐AnApplicationofFUND."EnvironmentalModellingandAssessment,2:151‐163.

USInteragencyWorkingGroup.2013.TechnicalUpdateoftheSocialCostofCarbonforRegulatoryImpactAnalysisUnderExecutiveOrder12866.Washington,DC:ExecutiveOfficeofthePresident.

vanVuuren,D.,B.deVries,A.Beusen,andP.Heuberger(2008)."ConditionalProbabilisticEstimatesof21stCenturyGreenhouseGasEmissionsBasedontheStorylinesoftheIPCC‐SRESScenarios."GlobalEnvironmentalChange,18:635‐654.

Weaver,A.,M.Eby,E.Wiebe,C.Bitz,P.Duffy,T.Ewen,A.Fanning,M.Holland,A.MacFadyen,D.Matthews,K.Meissner,O.Saenko,A.Schmittner,H.Wang,andM.Yoshimori(2001)."TheUVicEarthSystemClimateModel:ModelDescription,Climatology,andApplicationstoPast,PresentandFutureClimates."Atmosphere‐Ocean39(4):361‐428.

Webster,M.(2002)."TheCuriousRoleofLearning:ShouldWeWaitforMoreData?"EnergyJournal23(2):97‐119.

Webster,M.,M.H.Babiker,M.Mayer,J.Reilly,J.M.Harnisch,M.Sarofim,andC.Wang(2002)."UncertaintyinEmissionsProjectionsforClimateModels."AtmosphericEnvironment36(22):3659‐3670.

Webster,M.,A.Sokolov,J.Reilly,C.Forest,S.Paltsev,A.Schlosser,C.Wang,D.Kicklighter,M.Sarofim,J.Melillo,R.Prinn,andH.Jacoby(2012)."AnalysisofClimatePolicyTargetsUnderUncertainty."ClimaticChange112(3‐4):569‐583.

Weitzman,M.(2009)."OnModelingandInterpretingtheEconomicsofCatastrophicClimateChange."ReviewofEconomicsandStatistics91(1):1‐19.