modeling, simulation and identification of heat loss ...mathmod 2015 - 8th vienna international...

34
Modeling, Simulation and Identification of Heat Loss Mechanisms for Parabolic Trough Receivers in Concentrating Solar Thermal Power Plants German Aerospace Center (DLR) Institute for Solar Research Simon Caron, Marc Röger MathMod 2015 Conference 19 th February 2015, Vienna

Upload: others

Post on 10-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Modeling, Simulation and Identification of Heat Loss Mechanisms for Parabolic Trough Receivers in Concentrating Solar Thermal Power Plants German Aerospace Center (DLR) Institute for Solar Research Simon Caron, Marc Röger MathMod 2015 Conference 19th February 2015, Vienna

Page 2: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Agenda

• Introduction

• Thermodynamic Model

• Steady-State Validation • Transient Simulation • Parameter Identification

• Results & Conclusion

Slide 2 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

Page 3: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Introduction

1

1

2

Slide 3 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

Page 4: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Thermodynamic model

Equivalent thermal network: 3 4

Labor

Slide 4 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

Lactive

Page 5: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Heat Loss Balance

• Stationary (Receiver):

• Transient (Glass envelope):

qcond,abs = qrad,abs-gl + qconv,abs-gl (1)

qrad,abs-gl + qconv,abs-gl = qcond,gl (2)

qcond,gl = qrad,gl-amb + qconv,gl-amb (3)

qrad,abs-amb + qcond,gl = qloss (4)

(5)

qin = qrad,abs-gl + qconv,abs-gl (6)

qout= qrad,gl-amb + qconv,gl-amb (7)

3

Slide 5 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

Page 6: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Heat Loss Mechanisms (I)

Mechanism 1: Thermal radiation exchange

5

Slide 6 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

6

Page 7: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Heat Loss Mechanisms (II)

Mechanism 2: Gas thermal conduction

7

Slide 7 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

��𝑞𝑔𝑔𝑔𝑔𝑔𝑔,𝑔𝑔𝑎𝑎𝑔𝑔−𝑔𝑔𝑔𝑔 = 2.π.𝑅𝑅𝑔𝑔𝑎𝑎𝑔𝑔,𝑜𝑜. 𝐿𝐿𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 .𝒉𝒉𝒂𝒂𝒂𝒂𝒂𝒂. 𝑇𝑇𝑔𝑔𝑎𝑎𝑔𝑔,𝑜𝑜 − 𝑇𝑇𝑔𝑔𝑔𝑔,𝑎𝑎

Page 8: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Semi-transparent vs. opaque glass envelope

8

Slide 8 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

6

8

Page 9: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Receiver Library SignalLibrary ModelLibrary

Package SimulationStudio OOP: Modelica Simulation: Dymola

• No graphical user interface • Inclusion of test data via external .dsu files

Slide 9 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

Page 10: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Steady-State Validation (I)

• Experimental set-up • DLR QUARZ®, ThermoRec Test Bench • National Renewable Energy Laboratory (U.S.A) • Chinese Academy of Science, Institute of Electrical Engineering

3

Slide 10 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

Page 11: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Steady-State Validation (II)

Good agreement for specific heat losses Stationary model validated

Residual mismatch For glass temperature: Model calibration vs. Experimental errors

Slide 11 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

Page 12: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Transient Infrared Thermography

• Laboratory experimental set-up:

Slide 12 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

9

10

Page 13: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Transient measurements

Measured temperature profiles (IR sensors)

Slide 13 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

9

Page 14: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

• Working point: • Average absorber temperature Tabs, av [°C] • Average Glass temperature Tgl,av [°C] • Average ambient temperature Tair,av [°C]

• Transient measurands:

• Amplitude ratio A(ω) [-] • Phase shift φ(ω) [rad] • Angular frequency ω [rad/s], [Hz]

• Simulated temperature profiles

Slide 14 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

Transient simulation (I)

Page 15: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Transient simulation (II)

Modeling approach: • Linear Time Invariant (LTI) System • First order system reponse analysis

Slide 15 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

𝐹𝐹(𝑗𝑗𝑗𝑗) = 𝐺𝐺

1 + 𝑗𝑗𝑗𝑗𝑗𝑗 𝐴𝐴(𝑗𝑗) =

𝐺𝐺1 + 𝑗𝑗2𝑗𝑗2

𝜑𝜑 𝑗𝑗 = −𝑡𝑡𝑡𝑡𝑡𝑡−1(𝑗𝑗𝑗𝑗)

Page 16: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Identification problem

SYSTEM {RECEIVER+SHIELD} (Materials, Geometry)

INPUT SIGNAL

SIMULATION Tabs,o (t)

NOISE SIGNALS

vair [m/s]

Tair (t)

THERMAL PROPERTIES

εabs [%]

hann [W/m2.K]

Tgl,o (t)

Tgl,o (t) = ?

MEASUREMENT

?

? Heat Loss Mechanism 2:

Heat Loss Mechanism 1:

Slide 16 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

Page 17: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Parameter Identification Strategy

• Combination of Global Search with Particle Swarm Optimization (PSO) with subsequent Local Search with Nelder Mead Simplex (NMS):

• Definition of candidate parameter vectors X0 with PSO • Tuning of parameter vector with NMS from X0 seed

Coupling between MATLAB and DYMOLA:

• MATLAB: • Measurement Data Processing • Optimization Wrapper Function (PSO + NMS)

• DYMOLA: • Numerical Simulation (6 sec per simulation)

Slide 17 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

Page 18: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Parameter Identification (I): Transient Analysis

• Routine 1: Multi-criteria optimization

• Search Space segmentation; PSO: 10 iter.; NMS: max. 200 iter.

Slide 18 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

Page 19: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Results (I): Transient Analysis

• Routine 1: Multi-criteria Optimization

Slide 19 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

Page 20: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Parameter Identification (II): Direct Identification

• Routine 2: Least Square Optimization

• Search Space Duplication; PSO: 50 iter.; NMS: max. 100 iter.

Slide 20 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

Page 21: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Results (II): Direct Identification

• Routine 2: Least Square Optimization

Slide 21 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

Page 22: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Conclusion & Outlook

• Object Oriented Thermodynamic Model simulates PTRs for: • Stationary measurements (Off-sun, Laboratory) • Transient measurements (Off-sun, Laboratory + Field)

• Direct Identification tends to work better than Transient Analysis:

• Least Mean Square Optimization Criterium is easier to interprete • Analysis method is more robust for noisy data (field measurements)

• Optimization potential:

• PSO/NMS Fine Tuning for a faster convergence • Parallel Computing for multi-session simulation

Slide 22 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

Page 23: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Thank you for your attention!

• Do you have any question ? • [email protected]

Slide 23 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

Page 24: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

References (I)

Plataforma Solar de Almeria, Largest European research centre devoted Concentrating Solar Energy (2013): http://www.psa.es/webesp/instalaciones/ Folleto%20PSA%202013_EN_131202.pdf

1

2

3

4 Forristall, R., Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver, U.S. National Renewable Energy Laboratory, NREL/TP-550-34169, 2003

Slide 24 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

Burkholder, F., Kutscher, C., Heat Loss Testing of Schott‘s 2008 PTR70 Parabolic Trough Receiver, U.S. National Renewable Energy Laboratory, NREL/TP-550-45633, 2009

Lei,D., Li, Q., Wang, Z., Li,J., Li,J., An experimental study of thermal characterization of parabolic trough receivers, Journal Energy Conversion and Management, Vol. 69 (2013) pp. 107-115

5

6 Planck Law of Radiation: http://de.wikipedia.org/wiki/Plancksches_Strahlungsgesetz# mediaviewer/File:BlackbodySpectrum_lin_150dpi_de.png

Tesfamichael, T., Characterization of Selective Solar Absorbers : Experimental and Theoretical Modeling, PhD Dissertation, Uppsala University, 2000

Page 25: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

References (II)

Schott Premium Receivers with noble gas capsules: http://www.schott.com/csp/english/ schottsolar-ptr-70-premium-receivers.html?so=iberica&lang=spanish

Slide 25 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

7

8

9

Pfänder, M., Pyrometrische Temperaturmessung an solarthermischen Hochtemperatur-Receivern, PhD Dissertation, Deutsches Zentrum für Luft- und Raumfahrt, 2006

Röger, M., Potzel, P., Pernpeintner, J., Caron, S., A Transient Thermography Method to Separate Heat Loss Mechanisms in Parabolic Trough Receivers, Journal of Solar Energy Engineering, Vol. 136, 011006-1:9, 2014

Caron, S., Röger, M., Pernpeintner, J., Transient Infrared Thermography Heat Loss Measurements on Parabolic Trough Receivers under Laboratory Conditions, Conference Proceedings,SolarPaces Beijing 2014

10

Page 26: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Routine 1; Ergebnisse (1) PTR Category Cat. A Working point WP-A1 WP-A2 WP-A3 Tabs [°C] 359.4 411.7 457.7

TRANSIENT

εabs [%] 12.42% 14.60% 16.18% hann [W/m2.K] 0.040 0.010 0.004 Optimization criterium δ 3.0 e-3 4.9 e-3 1.9e-2 Q'th,loss [W/m]

TRANSIENT (A)

Standard conditions (25°C, 0 m/s)

226.7 365.4 526.1

STEADY-STATE Q'th,loss [W/m]

THERMOREC (B) 208.4 306.7 413.0

Absolute deviation; (A-B) [W/m] 18.3 58.7 113.1 Relative deviation; (A-B)/B [%] 8.8% 19.1% 27.4%

MATERIAL DATA,

SIMULATIONS

εabs [%] (material data)

(FTIR Spectrophotometer) 8.89% 10.27% 11.75%

hann [W/m2.K] (specifications)

(annulus pressure , Table 1) 0.013 0.013 0.012

Q'th,loss [W/m]

SIMULATION (C)

Standard conditions (25°C, 0 m/s)

163.2 260.9 387.4

Slide 26 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

Page 27: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Routine 2; Ergebnisse (1) PTR Category Cat. A Working point WP-A1 WP-A2 WP-A3 Tabs [°C] 355.9 407.7 450.5

TRANSIENT

εabs [%] 11.87% 11.98% 12.59% hann [W/m2.K] 0.064 0.013 0.032 Optimization criterium δ 0.19 0.47 0.55 Q'th,loss [W/m]

TRANSIENT (A)

Standard conditions (25°C, 0 m/s)

213.2 295.3 399.1

STEADY-STATE Q'th,loss [W/m]

THERMOREC (B) 208.2 307.4 407.0

Absolute deviation; (A-B) [W/m] +5.0 -12.1 -7.9 Relative deviation; (A-B)/B [%] +2.4% -3.9% -2.0%

MATERIAL DATA,

SIMULATIONS

εabs [%] (material data)

(FTIR Spectrophotometer) 8.81% 10.15% 11.50%

hann [W/m2.K] (specifications)

(annulus pressure , Table 1) 0.013 0.013 0.012

Q'th,loss [W/m]

SIMULATION (C)

Standard conditions (25°C, 0 m/s)

158.4 252.0 365.0

Slide 27 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

Page 28: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Routine 1; Ergebnisse (2) PTR Category Cat. B Working point WP-B1 WP-B2 WP-B3 Tabs [°C] 191.4 231.4 271.5

TRANSIENT

εabs [%] 78.45% 73.88% 69.69% hann [W/m2.K] 2.63 3.14 3.88 Optimization criterium δ 7.9e-7 8.2 e-6 7.0e-7 Q'th,loss [W/m]

TRANSIENT (A)

Standard conditions (25°C, 0 m/s)

327.8 461.6 625.0

STEADY-STATE Q'th,loss [W/m]

THERMOREC (B) 337.9 493.8 686.4

Absolute deviation; (A-B) [W/m] -10.1 -32.2 -61.4 Relative deviation; (A-B)/B [%] -3.0% -6.5% -9.0%

MATERIAL DATA,

SIMULATIONS

εabs [%] (material data)

(FTIR Spectrophotometer) 87.30% 86.84% 86.44%

hann [W/m2.K] (specifications)

(annulus pressure , Table 1) 0.013 0.013 0.013

Q'th,loss [W/m]

SIMULATION (C)

Standard conditions (25°C, 0 m/s)

305.1 445.4 620.7

Slide 28 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

Page 29: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Routine 2; Ergebnisse (2) PTR Category Cat. B Working point WP-B1 WP-B2 WP-B3 Tabs [°C] 189.6 225.4 262.0

TRANSIENT

εabs [%] 90.50% 92.59% 92.21% hann [W/m2.K] 1.57 0.50 0.21

Optimization criterium δ 0.22 0.21 0.18 Q'th,loss [W/m]

TRANSIENT (A)

Standard conditions (25°C, 0 m/s)

332.8 446.2 606.3

STEADY-STATE Q'th,loss [W/m]

THERMOREC (B) 331.1 465.7 639.4

Absolute deviation; (A-B) [W/m] +1.8 -19.5 -33.1 Relative deviation; (A-B)/B [%] +0.5% -4.2% -5.2%

MATERIAL DATA,

SIMULATIONS

εabs [%] (material data)

(FTIR Spectrophotometer) 87.30% 86.90% 86.53%

hann [W/m2.K] (specifications)

(annulus pressure , Table 1) 0.013 0.013 0.013

Q'th,loss [W/m]

SIMULATION (C)

Standard conditions (25°C, 0 m/s)

299.6 422.4 576.0

Slide 29 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

Page 30: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Routine 1; Ergebnisse (3) PTR Category Cat. C Working point WP-C1 WP-C2 WP-C3 Tabs [°C] 193.2 232.8 273.0

TRANSIENT

εabs [%] 84.10% 70.43% 62.71% hann [W/m2.K] 3.67 6.20 8.46 Optimization criterium δ 4.3e-7 7.4e-6 5.9e-7 Q'th,loss [W/m]

TRANSIENT (A)

Standard conditions (25°C, 0 m/s)

362.8 510.8 692.3

STEADY-STATE Q'th,loss [W/m]

THERMOREC (B) 358.1 513.8 703.9

Absolute deviation; (A-B) [W/m] 4.7 -3.0 -11.6 Relative deviation; (A-B)/B [%] 1.3 % -0.6% -1.7%

MATERIAL DATA,

SIMULATIONS

εabs [%] (material data)

(FTIR Spectrophotometer) 87.28% 86.83% 86.43%

hann [W/m2.K] (specifications)

(annulus pressure , Table 1) 4.49 4.58 4.63

Q'th,loss [W/m]

SIMULATION (C)

Standard conditions (25°C, 0 m/s)

381.6 535.8 725.4

Slide 30 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

Page 31: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Routine 2; Ergebnisse (3) PTR Category Cat. C Working point WP-C1 WP-C2 WP-C3 Tabs [°C] 186.0 225.5 264.5

TRANSIENT

εabs [%] 90.23% 88.72% 91.68% hann [W/m2.K] 4.56 4.40 4.58

Optimization criterium δ 0.20 0.29 0.30 Q'th,loss [W/m]

TRANSIENT (A)

Standard conditions (25°C, 0 m/s)

363.6 507.7 676.4

STEADY-STATE Q'th,loss [W/m]

THERMOREC (B) 334.3 483.7 665.5

Absolute deviation; (A-B) [W/m] +29.3 +24.1 +11.0 Relative deviation; (A-B)/B [%] +8.8% +5.0% +1.7%

MATERIAL DATA,

SIMULATIONS

εabs [%] (material data)

(FTIR Spectrophotometer) 87.37% 86.91% 86.51%

hann [W/m2.K] (specifications)

(annulus pressure , Table 1) 4.49 4.58 4.63

Q'th,loss [W/m]

SIMULATION (C)

Standard conditions (25°C, 0 m/s)

357.1 505.1 682.5

Slide 31 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

Page 32: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Heat Loss Balance Heat flow Heat Transfer from … to… Mechanism

qcond,abs (W) Absorber (inner to outer surface) Temperatures: Tabs,i (K); Tabs,o (K)

Conduction (3D)

qrad,abs-gl (W) Absorber

(outer surface) Tabs,o (K)

Envelope (inner surface)

Tgl,i (K)

Radiation (1D)

qrad,abs-amb (W) Absorber

(outer surface) Tabs,o (K)

Ambient (Sky temp.)

Tsky (K)

Radiation (1D)

qconv,abs-gl (W) Absorber

(outer surface) Tabs,o (K)

Envelope (inner surface)

Tgl,i (K)

Convection (1D)

qcond,gl (W) Envelope (inner to outer surface) Temperatures: Tgl,i (K); Tgl,o (K)

Conduction (3D)

qrad,gl-amb (W) Envelope

(outer surface) Tgl,o (K)

Ambient (Sky temp.)

Tsky (K)

Radiation (1D)

qconv,gl-amb (W) Envelope

(outer surface) Tgl,o (K)

Ambient (air temp.)

Tair (K)

Convection (1D)

Slide 32 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

Page 33: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

• Particle Swarm: • Basic Version • Parameters:

• 10 Particles • Weight W=0.5 • Social Constant: 2 • Cognitive Constant: 2

• Hit on boundary constraints:

• Coordinate re-sampled

• Nelder Mead Simplex • Version: FminsearchBnd • Operations:

• Initial Simplex • Reflect • Expand • Contract Outside • Contract Inside • Shrink

• Parameters (default): • Rho = 1 • Chi = 2 • Psi = 0.5 • Sigma = 0.5

Optimization Algorithms

Slide 33 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling

Page 34: Modeling, Simulation and Identification of Heat Loss ...MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling Routine 2; Ergebnisse (2) PTR Category Cat. B Working

Slide 34 MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling