modeling of biomass combustion in grate fired fuel bed

45
Fatehi & Bai Lund 2010-02-11 Modeling of biomass combustion in grate fired fuel bed Hesam Fatehi, Xue-Song Bai Division of Fluid Mechanics Dept. of Energy Sciences Lund University

Upload: others

Post on 27-Feb-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Modeling of biomass combustion in grate fired fuel bed

Hesam Fatehi, Xue-Song BaiDivision of Fluid Mechanics

Dept. of Energy SciencesLund University

Page 2: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Outline

• Solid Fuel

• Governing Equation

• Numerical Discreetization

• Results

• Future work

Page 3: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Solid Fuels

Page 4: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Combustion of Solid Fuels

• Three main types of combustion systems for firing the solid fuels are

– Fixed-bed Combustion

– Suspension

– Fluidized-bed Combustion

• behavior of these three combustion system is related to the behavior of a single fuel particle.

• When a solid fuel particle is exposed to a hot flowing gas stream, it undergoes three stages of mass loss:

– Drying

– Devolatilization or Pyrolysis (generally refers to the anaerobicthermal decomposition of solids )

– Char Combustion

Page 5: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Combustion of Solid Fuels

• The Time and Sequence of these three processes depends on

– Fuel Type

– Fuel Moisture

– Size

– Heat and Mass Transfer

Page 6: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Typical boiler

Page 7: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Governing Equation

Page 8: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Two phases

Page 9: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Conservation of mass

�������(������+ (1 − ��)����)

��������+ ��������∙ ��+ ��������∙ �������= 0

����

• Conservation of mass

• Conservation of mass for the solid phase

• Conservation of mass for the gas phase

�������(������)

��������+ ��������∙ �������=

����� ω� g����

����

�������((1 − ��)����)

��������+ (��������∙ ��)����= � ω� s

��������

����

Page 10: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Conservation of mass

����� = �������������������� �������� ���� ������ ��� ��= ���������������������� �������� ���� ���������� ����= �������� ���������������� ���� ������������ �� ���� = �������������� ���� ������ �������������� ����= �������������� ���� ���������� ���� = ���������������� ���� ������ �������������� ����= ���������������� ���� ���������� ω� s = ω� drying + ω� dev + ω� charcomb

ω� s + ω� g = 0

Page 11: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Conservation of Energy

• where is the enthalpy of formation at the reference temperature (T=25ºc)

�������(������ℎ��+ ����(1 − ��)ℎ��)

��������+ ������������∙ ��ℎ��+ ��������∙ ��ℎ�������

����

− ������∇����+ (1 − ��)����∇�������������

= � �����dV����

ℎ�� = " ����ℎ��

ℎ��= # ������������

��0+ ℎ��°

ℎ°

Page 12: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Enthalpy of particle

• particles contain different materials (ash, moisture, char and DAF wood)

• The enthalpy of the particle can be written as sum of the enthalpy of these different materials

ℎ��= ������ℎ ℎ������ℎ + ������������ℎ������������ + ����ℎ����ℎ����ℎ����+ ����������ℎ����������

ℎ�������� = % ��������������������0 + (1 − ����)ℎ��������������° + ����(ℎℎ2��° − ����)

������������ = ������������������ +4190 ����1−����

1+ ����1−����

+ )23.5��0 − 1320 ����1−����

− 6191. ����1−����

������������������ = 3.87����+ 103.1

Page 13: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Wood CP

������������ = ������ℎ ��������ℎ + �������������������������� + ����������������������

��������ℎ = 800, �������������� = 4200, ������������ = 2400 ��/������

Page 14: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Wood enthalpy of formation

• assume wood (formed only from Carbon, Hydrogen and Oxygen) on a one step complete combustion

• The products of combustion are only the carbon dioxide and water(in gas form)

������������+ ����2 → ������2 + ����2��

ℎ��������������° = �� ������2����������

ℎ����2° + �� ����2��

����������ℎ��2��° + ��������������

Page 15: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Kinetic rates

������ ����������������456 ������ ��������+ ���������� ����������

������ ����������������456 ��ℎ����+ ����ℎ + ������������������

��ℎ���� ������ ����������������������������45556 ����2 + ��2��

Page 16: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Drying

• the mass change between two phases due to drying is equal to the mass rate of H

2O extracted from the solid going to the gas

phase.

• Two different drying models can be used. The first one is based on the Arrhenius expression of chemical reaction model

• The second drying model calculates the evaporation rate of a particle using convective mass transfer between the solid and gas phases. This model expresses drying as a function of moisture content of the wood and the surrounding air and hot gases

• km is the mass transfer coefficient (m/s), Ap is the area of particle cross section (m2), and are the concentration of moisture on gas flow and on particle surface, respectively (kg/m3).

��� ��drying = ������������ �������� , �������� = ����exp(−����ℛ����)

ℳ� ��drying = −��������(����∞ − ������)

����∞ ������

Page 17: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Devolatilization

• where the subscribe DAF means Dry Ash Free particle and is the fraction of each of tar, char and gas inside DAF particles

��� ��dev = �������� �������� , ��������= ����exp(−����ℛ����)

��� ��dev ������ = ∅������∗ ℳ� ��dev

��� ��dev ������ = ∅������ ∗ ℳ� ��dev

��� ��dev ����ℎ��= ∅��ℎ����∗ ℳ� ��dev (��ℎ���� ���� ������ ��ℎ���� ��������������������)

Page 18: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Char Combustion Rate

��� ��charcomb = −60 ����?��2@ 11

���� + 1����

, ����= 2.3����������(−11100/����)

���� ���� ��ℎ�� �������� ���������������� ���������������������� (����)

Page 19: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Numerical Modeling

Page 20: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Page 21: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Drying, devolatilizationDevolatilization, combustion

combustion

ash

fuelModeled fuel bed shape

Fuel bed and primary air and flue gas supply

several zones supplying hot flue gas + air

Page 22: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Input Data: Fuel supply

• The fuel - waste

– High ash content: 21.448%

– Low heating value of fuel as DAF: 9.09 MJ/kg

– Moisture content: 30.248%

– Mass rate: 2.933 kg/s

– Energy input = mass rate x LHV = 2.933x9.09x0.483 = 13 MW

• DAF fuel composition (mass fractions)

– C%: 51.76

– H%: 6.87

– O%: 40.52

– N%: 0.842

• DAF fuel reaction mechanism

– DAF Fuel = 0.293 Gas + 0.557 Tar + 0.15 Char

– Gas = 0.22CO2 + 0.51H2O + 0.22CO + 0.05CH4

Page 23: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Input Data: Air supply

• Air supply to the furnace

– Total mass flow rate: 16.58 kg/s

– Primary air flow rate (50.3% of total air) = 8.34 kg/s

– Primary air temperature: 298.1 K

– Energy input through primary air: 0

• Primary air and flue gas distribution

– 8 zones

Page 24: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Page 25: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Mp_tar represents the

potential volatile in the solid.

Less Mp_tar indicates that the volatileshave been ’running’ outside of the solid particles

More volatile

at the fresh wood

Less volatiles in the

final particles. Here

the particle is mostly made of ash

Page 26: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Page 27: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Page 28: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Page 29: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Page 30: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Temperature

Page 31: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Mass of gas extracting from bed

Page 32: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Nitrogen

Page 33: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

CO2

Page 34: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Drying

Page 35: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Hydrocarbons

Page 36: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Carbon Monoxide

Page 37: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Particle

Page 38: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Species

Page 39: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Mass balance

– Input from fuel: 2.933 kg/s

– Input from flue gas: 0. kg/s

– Input from primary air: 8.34 kg/s

– Output through volatile: 10.05 kg/s

– Output through Particle: 0.07 kg/s

– Loss through ash + char: 1.07 kg/s

Page 40: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Energy balance

– Input from fuel: 24.7 MW

– Input from flue gas: 0 MW

– Output through volatile: 6.6 +11.9 = 18.5 MW

– Loss through ash + char: 6.1 MW

Page 41: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

CFD Modeling of Upper Part

Page 42: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Modeling Problem

Page 43: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

• OpenFOAM

• Solver:

– Flow: buoyantSimpleFoam (Steady-state solver for buoyant, turbulent flow of compressible fluids)

• Prepare boundary condition

– Combustion: ?

• Radiation is an important issue

Page 44: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Expected Results

Page 45: Modeling of biomass combustion in grate fired fuel bed

Fatehi & Bai Lund 2010-02-11

Future Work

• More detail kinetic rates; drying, devolatilisation, char combustion, volatile combustion, particle shrinkage

• Radiation models (more detail heat transfer models)

• Coupling bed model with upper part combustion CFD model