modeling and analysis of a mail inserting machine drive system

116
Lehigh University Lehigh Preserve eses and Dissertations 1990 Modeling and analysis of a mail inserting machine drive system Samuel Mark Palmer Lehigh University Follow this and additional works at: hps://preserve.lehigh.edu/etd Part of the Mechanical Engineering Commons is esis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in eses and Dissertations by an authorized administrator of Lehigh Preserve. For more information, please contact [email protected]. Recommended Citation Palmer, Samuel Mark, "Modeling and analysis of a mail inserting machine drive system" (1990). eses and Dissertations. 5357. hps://preserve.lehigh.edu/etd/5357

Upload: others

Post on 12-May-2022

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modeling and analysis of a mail inserting machine drive system

Lehigh UniversityLehigh Preserve

Theses and Dissertations

1990

Modeling and analysis of a mail inserting machinedrive systemSamuel Mark PalmerLehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by anauthorized administrator of Lehigh Preserve. For more information, please contact [email protected].

Recommended CitationPalmer, Samuel Mark, "Modeling and analysis of a mail inserting machine drive system" (1990). Theses and Dissertations. 5357.https://preserve.lehigh.edu/etd/5357

Page 2: Modeling and analysis of a mail inserting machine drive system

MODELING AND ANALYSIS OF

A MAIL INSERTING MACHINE DRIVE SYSTEM.

I

by

Samuel Mark Palmer

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

Mechanical Engineering

Lehigh University

1990

r . ,.

' C. ,', ·,: '

.....

Page 3: Modeling and analysis of a mail inserting machine drive system

---------------~------

..

This thesis is accepted and approved in

partial fulfillment of the requirements for the degree.

of Master of Science.

II, /~90

(date)

Professor in Charge

Chairman of Department

• • 11

..

Page 4: Modeling and analysis of a mail inserting machine drive system

. ,. .

I

ACKNOWLEDGEMENTS·

The author wishes to acknowledge Professor

Robert Lucas for his guidance, enthusiasm, and patience

in this study.

The author also appreciates the flexibility t

and understanding of his employer, the Bell & Howell

Phillipsburg Company, which provided much of the

analysis facilities utilized in this wor~.

·. \

• • • 111

. -

/

Page 5: Modeling and analysis of a mail inserting machine drive system

TABLE OF CONTENTS -- • -- 1 ..... -

Abstract •••••••••••••••••••••••••••••••• 1

I. Introduction ........ -................... · 2

II. Methodologies of Analysis .............. 11

III. Identification and Analysis

of Major Dynamic Loads ........... 21

IV • Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

V. Indicated further study .................. 45

VI. Conclusion .............................. 50

Tables ................................. 52

Figures •.• ··-., •.••.•.••.•...•..•.•.•.....••• 61

Ref ere nces • • • • • • . • . . . • . • . . • . . . . . . . . . . • • 96

Appendices • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 98

Vi ta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

• lV

Page 6: Modeling and analysis of a mail inserting machine drive system

}-'

'

LIST OF TABLES

TABLE ..... ---·-- DESCRIPTION · ... ..__._....... .. .... PAGE ....... ___ _

1 . Qualitative Estimate of Loads • • • • • • • • • • • • • • • • 52

2. Envelope Transport Power ..................... 53

3. Insert Transport Power . . . . . . . . . . . . . . . . . . . . . . . . 54

4 • Envelope Takeaway Power . . . . . . . . . . . . . . . . . . . . . . 55

5. Arm Drive Torque -- with Product ............. 56

6. Arm Drive Torque -- with Product, Adjusted 56 •••

7. Arm Drive Torque -- wi thout·.Product 57 • • • • • • • • • • , ,.

8. Arm Drive Torque Composite . 58 -- • • • • • • • • • • • • • • • •

9. Arm Release Torque and Power ................. 59

10. Component Power in Machine Time ............. 60

V

/

Page 7: Modeling and analysis of a mail inserting machine drive system

FIGURE . - -

)

"

LIST OF FIGURES /

DESCRIPTION. -

.,

PAGE .. .. ....... -

1 INSERTING MACHINE ........................... 61

2 INSERTING MACHINE MODULES .. · ................. 62

3 INSERT STATION MODULE . . . . . . . . . . . . . . . . . . . . . . . 63

4 INSERT GATHERING MODULE ..................... 64

5 ENVELOPE STATION MODULE ..................... 65

6 ENVELOPE TRANSPORT MODULE ................... 66

7 INSERTING MODULE ............................ 67

8 ENVELOPE TAKEAWAY MODULE .................... 68

9 TIMING DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

10 MODEL OF TRANSPORT DEVICE ................... 70

11 ENVELOPE TRANSPORT DEVICE ................... 71

12 ENVELOPE TRANSPORT POWER CURVE .............. 72

13 INSERT TRANSPORT DEVICE ..................... 73

14 INSERT TRANSPORT POWER CURVE ................ 74

15 ENVELOPE TAKEAWAY POWER CURVE ............... 75

16 GRIPPER ARM DRIVE MECHANISM ................. 76

17 ARM DRIVE MODEL • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 77

18 ARM DRIVE TORQUE CURVE (WITH PRODUCT) • • • • ••• 78

19 ARM DRIVE TORQUE CURVE (WITHOUT PRODUCT) •••• 79

20 ARM DRIVE TORQUE CURVE (COMPOSITE) • • • • • • ai ••• 80

21 ARM GRASP AND RELEASE DEVICES ............... 81

22 ARM GRASP MECHANISM MODEL ................... 82

23 ARM DR I VE CAM MODEL . . . . . . . . . . . . . . . . . . . . . . . . . 83

• Vl

. .. ,

Page 8: Modeling and analysis of a mail inserting machine drive system

24 ARM GRASP POWER CURVE ....................... 84

25 ARM RELEASE POWER CURVE ···~················ 85

26 TURNOVER DEVICE ............................ 86

27 TURNOVER DEVICE MECHANISM MODEL ............ 87

28 TURNOVER DEVICE TORQUE CURVE ............... 88

29 INSERT SUCKER SWING POWER CURVE ...... ·. . . . . . 89

30 ENVELOPE SUCKER DEVICE POWER CURVE ......... 90 '

31 MOISTENER BRUSH POWER CURVE • • • • • • • • • • • • • • • • 91

32 INSERT HOLDDOWN POWER CURVE ................ 92

33 TOTAL MACHINE POWER CURVE .................. 93

34 TOTAL MACHINE TORQUE CURVE ................. 94

35 EQUIVALENT INERTIA OF CAM MODEL ............ 95

' • •

Vll

Page 9: Modeling and analysis of a mail inserting machine drive system

0

----------------------.--_..,,.....,.,-~--·····

ABSTRP«:T

(,

This study develops a model of the power .

consumption of a commercial mail inserting machine,

operating at steady-state conditions. ~··-'···~·········

The machine is represented as a series of modules

and a quantitative evaluation of the machine loads is

presented. Loads are characterized as to their

significance and type: inertial, frictional, and spring.

Computer-aided engineering methods are used to

analyze each major power-consuming device. A complete

machine model is developed based on the individual

timing of the devices analyzed. The power curve for one

complete machine cycle is presented.

Opportunities for further refinement of the

analysis are noted. Improvements within the current

scope of the drive system are proposed, and alternative

drive system architecture is discussed.

-1

, ..

/

Page 10: Modeling and analysis of a mail inserting machine drive system

\

I. INTRODUCTION

A. BACKGROUND 0

Automated mail inserting mach-inery is in use

throughout the world, by organizations such as insurance

companies, banks, public utilities, government agencies

and other large-volume mailers. In the United States,

it is estimated such organizations account for 80% of

all mail delivered by the U.S. Postal Service (ref.

20). Several thousand inserting machines are

manufactured every year in the United States alone.

Such machines automatically collate one or

more letters, or "inserts", and place these into an

envelope for subsequent mailing (see Figure 1). Typical

inserts include invoices, statements, advertising

material, brochures, return-address envelopes, and even

specialty material such as coins, seed packets, or small

booklets. Filled envelopes are closed, sealed, and

accumulated for further processing or mailing.

Low-end models have capabilities of one or two

inserts, at speeds of a few thousand cycles (filled

envelopes) per hour. Some low-end equipment is semi­

automatic, requiring the operator to perform critical

tasks such as insert separation or final insertion.

Machines for medium-volume mailers have

capabilities of four to six inserts, at speeds of about

2

'

Page 11: Modeling and analysis of a mail inserting machine drive system

"

-----------~·-·---•·

4000 -6000 per hour, and are usually fully-automatic.

6'

Fully-aut~matic machines require the operator to. load -

. .,

material, such as the inserts and envelopes, into feed

hopper~ on the machine. Also, the operator removes

'

completed filled envelopes from the delivery area.

Other consumables, such as water for the envelope flap

moistening system, are also provided by the operator.

Automatic machines detect certain errors, such as missed

inserts, and divert the defective mailing or stop the

machine for operator intervention. Advanced automatic

machines are microprocessor-controlled, using programs

that are custom-developed for specific applications.

High-speed, high-volume inserters are

typically of modular design, permitting many inserts to

be handled (up to 32 inserts or more), and can operate

at speeds up to 10,000 cycles per hour. Current market

trends favor the further development of suth high-end

machines. Many attachments are available for handling

modern data-processing output, such as continuous form

fan-folded high-speed line printer output or cut-sheet

high-speed laser printed material. Also, attachments

are available for applying postage to the completed

envelope, and for diverting filled envelopes containing

errors or over the allowable postage weight.

With such a large combination of options

available, it is not surprising that these high-end,

3

-- ---~---------

.. ,

I

Page 12: Modeling and analysis of a mail inserting machine drive system

m~chines are of modular .. design. That is, the actual

. machine for .a given customer is specially configured fof

the particular application, using fairly. standard

''modules" which are designed to be interfaced together.

Certain modules handle the conventional inserts, other

modules handle the continuous line-printer output, etc.

As far as practical, modules are designed to be

universally compatible with all other complementary

modules.

Development efforts in recent years have

focused on the electronic control of the base machine

and its many peripheral devices, to meet the increasing

demands of specific customer applications. However,

much of the design of the basic inserter itself-- the

core of these complex systems -- dates from earlier

years of mechanical development. Very little of this

earlier mechanical engineering work was documented; it

can be assumed that relatively little analysis was

performed and that much of the design was based on

practical knowledge rather than rigorous application of

engineering principles. With the current trend towards

larger machines, higher speeds, and generally more

dem~nding applications, it is necessary to develop an

accurate analytical model of the base inserting machine

in order to meet competitive challenges.

Therefore, this investigation was undertaken

4

•.:•;,; , ..

-- 1'

Page 13: Modeling and analysis of a mail inserting machine drive system

-------------------,----,--~-- ---------

"

\

to create such a model of one particular product line in

current production.

B. GENERAL DESCRIPTION

The "Mailstar 775" is a high-end inserting

machine, manufactured by the Bell & Howell Phillipsburg

Company of Allentown, Pennsylvania. It is available in

a wide variety of configurations; the smallest is a

four-station model (capable of inserting four items),'

with no attachments for other media or postage

application. Larger machines are available in two­

station increments (6,8,10, etc.). Recently, a 32-

station machine was"built, the largest conventional

machine ever constructed. Other machines have been

constructed with fewer insert stations, but with several

computer-form feeders and output attachments.

The heart of the ''Mailstar 775'' machine is the

basic inserting section (see Figure 1). Within this

section, inserts are gathered and the outside envelope

is prepared for stuffing. The inserts are placed into

the envelope,·and the envelope is sealed for mailing or

further processing. ,,

This 1'base inserting machine" is approximately

48" high, 32" wide, and has a length which varies from 8

feet to over 35 feet depending on the numqer of insert

stations supplied. The machine is comprised of several

5

Page 14: Modeling and analysis of a mail inserting machine drive system

<I,

thousand discrete components, most of which are designed

and manufactured ''in-house'' by Bell & Howell. It is an

i ntermi tten'l;,-motion machi n,; e.ach machine cycle produces .. ~· '

one completed envelope. Ap.proximately 25 mechanisms are

required in the base inserter to perform all the •

··r: ....

required mechanical operations on the inserts and

envelopes. Because of the need to carefully control the

motion of the end-effectors, and thereby control the

paper itself, the majority of these·mechanisms are

driven by cams. Due to required cycle speeds and the

intermittent nature of the motion, rather large

accelerations are also required.

All of the mechanical devices (cams,

mechanisms, etc) within the base machine are driven by a

single motor, via a complex drive system consisting of

gears, shafts, power transmission chain·, and belts.

These. devices are maintained in synchronous motion by

the integral ratios .chosen throughout the power

transmission system.

Several devices employ vacuum to handle the

paper, by means of suction cups. Vacuum is supplied by

pumps mounted within the base machine, each having a

dedicated motor. The vacuum system is not included in

this investigation. Peripheral devices attached to the

base inserter (computer form feeders, postage meters,

etc.) also contain dedicated dr~ve motors nd are not

6 "-\ -~

..

Page 15: Modeling and analysis of a mail inserting machine drive system

..

' .

included in .the model· developed.

C. DETAILED DESCRIPTION OF BASE INSERTER

The base inserting machine can be described as ,

1'

a series of six functional modules. Figure 2 shows the

machine and the approximate positions of these modules.

Each functional module includes two or more mechanisms.

Module 1, the INSERT STATION (see Figure 3)

'holds a large supply of inserts, and separates and

dispenses one insert per machine cycle. Inserts are

placed face down into the next module (insert

transport).

Each insert station contains 1) a suction cup,

which separates one insert from the stack; 2) a

separator foot, which maintains the insert in position;

and 3) a gripper arm and jaw, which pulls the insert

from the hopper and places it in the insert transp9rt

module.

The suction cup mechanism and separator foot

are actuated by cams. The gripper arm is operated by a

six-bar linkage, driven by a crank. The jaw on the arm

is operated twice each cycle, by two different cams.

Module 2, the INSERT GATHERING module,

transports each insert along the length of the base

7 C,

Page 16: Modeling and analysis of a mail inserting machine drive system

machine, permitting more inserts from other stations to

be sequentially added to the mailing.

The gathering module ( see Figure 4) ~onsists

of a track and a hold-down device. The track guides the

paper, and transports it with an indexing motion.

Pusher lugs are attached to a roller chain which is

driven by a conjugate cam drive, once per machine cycle.

The hold-down device is raised and lowered each cycle by

a cam.

The ENVELOPE STATION, Module 3, holds a supply

of empty envelopes, separates and dispenses one per

cycle, and places it face down into the next module

(envelope transport).

The envelope station (see Figure 5) consists

of a suction cup device and a kicker. The suction cups

separate one envelope from the stack, moving under the

action of a cam. The kicker pushes the envelope into

the envelope transport, and is operated by a crank­

rocker linkage.

Module 4, the ENVELOPE TRANSPORT, is somewhat

similar to the insert gathering module. The envelope

transport opens the flap of the envelope to allow

inserts to be inserted, then moistens and closes the

8

1

')

Page 17: Modeling and analysis of a mail inserting machine drive system

flap and places the filled envelope into the next

module.

. / '

There are six devices associated with this

module (see Figure 6). The basic transport device is a

series of gripper jaws, attached to roller chai.n, which

indexes once per cycle. A jaw opening device grasps the

envelope as it is presented from the envelope station.

Two devices, a suction cup and a moving blade, work

together to open the flap. After material is inserted,

a wetted brush moistens the adhesive, and another blade

closes the flap.

The chain is driven by the same conjugate cam

device as in Module 2; the other five devices are

actuated by five cams respectively.

Module 5, the INSERTING MODULE, places the

inserts gathered by Module 2, into· the envelope prepared

by Module 4. It consists of six devices (see Figure 7).

A flap holder grasps the open flap of the / j

envelope. Simultaneously, the envelope transport jaw is

released by a jaw opener. Two suction cup devices pull

the envelope panels open from above and below.

Thin steel guides enter the envelope, and a

set of pushers move the insert set into the open

envelope. The guides are withdraw~, the suction <;

released, and the transport jaw re-grips the filled

9

Page 18: Modeling and analysis of a mail inserting machine drive system

\ ..

l

envelope for further processing.

The insert pushers are operated by the six-bar

linkage of Module 1; the other five devices are operated

by cams.

The ENVELOPE TAKEAWAY, Module 6, (see Figure •

8) turns the filled envelope face-up and transports it

out of the base machine, into one of several optional

peripheral devices.

Four devices make up this module: 1) a

mechanism to open. the envelope transport jaw; 2) the

cam-driven.turnover jaws; 3) a geneva drive mechanism to

index the turnover; and 4) a takeaway transport chain.

The transport chain is very similar to the insert

transport device in Module 2, and is driven by the same

conjugate cam.

This comple~es the overall description of the

base inserting machine.

10

,

Page 19: Modeling and analysis of a mail inserting machine drive system

II. GENERAL ANALYSIS METHODS

A. OVERALL ANALYSIS APPROACH

Each device was qualitatively estimated as to

the significance of 1 the 1-oad it imposes on the machine ..

Each major load was analyzed separately, in a

time frame of reference which was convenient to that

particular component (e.g., each cam was analyzed with

zero degrees at the start of a rise or fall, not

intermediate to a rise).

All loads were combined by referring their

component time to overall machine timing (see Figure 9,

Timing Diagram). This ''phasing'' was done in a

spreadsheet type file.

All analyses were done in terms of power. The

machine was analyzed at the steady-state condition of

maximum rated speed. Torque was then derived, based on

instantaneous power and the known constant speed.

B. QUALITATIVE ANALYSIS & CHARACTERIZATION OF LOADS

Each device on the machine was examined to

identify probable major loads, and to characterize·the

device as to type. This was based on several years of

experience with the machinery, and a familiarity with

the parts involved. In Pareto fashion, it is estimated

that-a small number of devices, prob~bly 25%~ account

11

G

Page 20: Modeling and analysis of a mail inserting machine drive system

,,

for the majority of the power~ ,cons~mption of th·~-

"

machine, probably 75%. These re"latively large lo·a.ds

were thoroughly analyzed; the smaller loads were roughly

analyzed, estimated or neglected. Each load was

characterized as predominantly a friction load, an

inertia load, a spring load, or a combination of these.

In order to obtain a complete machine model to the

required accuracy with reasonable effort, only the

predominant characteristic of each load was included in

the analysis.

Also, each device was characterized as either

"incremental", meaning the device is repeated for each

additional insert station on larger machines, or "non­

incremental", meaning only one instance of the

device is used, regardless of the overall machine size.

The result of this qualitative estimation is

presented in Table 1. Five of the 25 loads were

estimated to be ''large", and four of these were

"incremental". Thirteen were judged to be "medium"·, and

the remaining seven were judged "small" and were

neglected in this investigation.

C. MECHANISMS ANALYSIS METHODOLOGY

All analyses of mechanisms (linkages) were

performed using a commercial software package, produced

by ,the McDonnell Douglas Automation Company and marketed •

12

Page 21: Modeling and analysis of a mail inserting machine drive system

under the name "U.G. Mechanisms". This is modula~

software, integrated within a general CAD/CAM

system sold by McDonnell Douglas, called "Unigraphics".

,,

The "Mechanisms" package has capabilities to

design, analyze and synthesize n-bar spatial linkages ..

The package is fully three-dimensional, and has a

sizable menu of joint types. Linkage design is

accomplished by entering parameters defining the

geometry of the links, and defining joint types and

locations. Analysis may include external loads (such as

constant force or torque), spring elements, and mass

properties of the links. Synthesis was not utilized in

this study.

Analysis results include the kinematic results

of displacement, velocity, and acceleration, and

kinetostatic results of forces and torques.

D. CAM ANALYSIS METHODOLOGY

All analysis of cam-driven mechanisms was

performed using a commercial software package, produced

by the McDonnell Douglas Automation Company, marketed

under the name '1 Machine Elements''. This is modular

software, integrated within a general CAD/CAM system

sold by McDonnell Douglas, called "Unigraphics". The

"Machine Elements" package consists of three modules:

"Cams'', and two other modules not used here.

f

Page 22: Modeling and analysis of a mail inserting machine drive system

•

--------------------__,....,--~~·, ., ....

The "Cams" module has capabilities to design,

analyze, and optimize cams. The package can model

roller or flat-face followers, and translating or

pivoted follower arms. Cam design is accomplished by

entering parameters defining the geometry, follower

motion, and timing. Analysis is performed by adding

follower loads and properties·. Optimization· was not

attempted in this thesis.

In addition to all geometric parameters, the 0

inputs to the program for analysis work include:

follower mass; follower moment of inertia; follower

center of mass; follower spring constant and preload;

and any constant force or torque applied to follower

arm.

Analysis results include the geometric and

kinematic results of displacement, velocity,

acceleration, jerk, pressure angle, "and radius of

curvature; and kinetostatic results of transmitted

force, transmitted torque, and power.

A major limitation of the "Machine ,/

Elements/Cams" package is its lack of ability to model

or analyze a linkage attached to the follower itself.

Also, the package does not communicate with

commercially-available linkage analysis packages (such

14

Page 23: Modeling and analysis of a mail inserting machine drive system

·; .

as McDonnell Douglas's own "Mechanisms" package).

Hence, each linkage must be analyzed outside of the

"Cams" p~ckage, and reduced to an equivalent model at

the cam follower.

E. MASS PROPERTY ANALYSIS METHODOLOGY

Analysis of rigid bodies to find mass

properties was performed using a commercially available

computer~aided solids modelling package, called

''Unisolids", marketed by the McDonnell Douglas

Automation Company. This package is a constructive

solid geometry modeller.

"Unisolids" has a full complement of

primitives, and the typical Boolean operators, for use

in constructing models. Also, two-dimensional outlines

can be constructed in McDonnell Douglas's "Unigraphics"

software, transferred to "Unisolids", and utilized to

create sweep-solid profiles.

Analysis results include the typical solid

body results such as mass, center of mass, moments and

products of inertia about any axis system.

F. WORK/ENERGY METHOD

A work/energy approach was developed during

the investigation, using experimentally measured data,

as an expedient method for the approximate analysis of

15

0

Page 24: Modeling and analysis of a mail inserting machine drive system

. . .' ~ '• ..... - . '"

cam-driven linkages. This method reduces the· fQllower

linkage system to a kinetically equivalent system,

concentrated at the cam follower itself. While portions

. .

of this method are described in reference (1), it is

f

believed that the overall method developed here is

unique and has not been presented previously in the

literature.

The following assumptions were made: 1)·

friction in the linkage is negligible; 2) external work

done by the system is negligible; 3) the follower is

maintained in contact with the cam at all times; 4) an

equivalent spring, acting directly on the follower and

having a constant spring rate, is a valid model of the

actual spring; 5) an equivalent inertia, applied

directly at the follower, is a valid model of the actual

inertia; and 6) each transmission angle within the

1 i nkage varies over a relat.ively small range, hence the

equivalent inertia at the follower can be assumed

constant.

Measurements were taken to determine the

spring force present in the device at a convenient

location on the linkage. The direction of the applied ' ..

force was maintained reasonably co-linear with the

direction of motion at that point. The force applied

was just sufficient to separate the follower from the

cam. The· measurement was performed in two pos~tions:

16

\.

Page 25: Modeling and analysis of a mail inserting machine drive system

-~

L

' .

,,.. .. , ..

with the foll~wer resting on the base circle (the lowest

point of the cam); and with the follower resting on the

major circle (highest point on cam) .. Also, at the point . ..,

of ap~lication of the force, the displacement between ,,

the two positions is noted. The work done on the system

duritig this displacement is then:

where:

1-2. k X dx --

2 2. . 1 /2 k ( X 2 - X 1 ) · F·dR --w =

W = work done between positions 1 & 2

F = applied force vector

R = displacement vector

k = equivalent spring constant, at location of

applied force

x2 = displacement at second position

x1 = displacement at first position

For convenience, this is rewritten:

where:

W = 1/2 ( kx~ - kxi )

= 1/2 [kx:z(x1+Ax) - kx1x1]

= 1/2 [kx1 /:lx + kx2 Ax]

= 1/2 6x (F1 + F2 ~)

6 x = x2 - x1 = displacement from position 1 to

2 at location of applied force

17

..

•

• '•

Page 26: Modeling and analysis of a mail inserting machine drive system

,.

V

F1 = measured force at position 1

F2 = measured force at positioh 2

This work, computed from values measured anywhere on the

linkage, is approximately the same as the work done at

the.cam follower.

The average power, Pavg, to overcome the

spring during the rise of the cam, at machine speed, is

then:

Pavg = W/t = 1/2W ~x (F2 + F1 )/~ ·

where:

t = time

LJ = angular velocity of cam

fo = angle of duration of cam rise

The peak power developed by the cam, to overcome the

spring, occurs at the point of maximum velocity of the

cam. Utilizing normalized tables of cam velocity

factors Cv from reference (7), the peak power due to the

spring can be written:

Ppeak = Cv max Pavg

= 1/2 Cvmax W b. X ( F:2 + Fi)/~

This provides an expeditious method to compute the peak

18

•

Page 27: Modeling and analysis of a mail inserting machine drive system

I j • •

power consumed by a cam operating a linkage~ where the

primary load is due to the spring force.

The method to estimate the follower system

inertia is as follows. From the work/energy approach

described above for the spring, the equivalent spring

stiffness at the follower roller was computed. Then,

the force provided by this spring at the instant of

maximum acceleration was determined, and equated to the

mass-acceleration at that instant (see Figure 35).

Since the acceleration of the follower is known, the

equivalent inertia of the follower system, concentrated

at the cam follower, can be computed. Although this

equivalent inertia is only valid at one position of the

mechanism, it is a fair approximation to use for all

positions if the transmission angles are within small

ranges.

This value is used in the calculation of peak

power consumption due to inertia. For any incrementally

small period of the cam motion, the acceler1ation can be

considered constant. Therefore the energy consumption

due to the inertia is:

.,

where:

w = F·dR -- m a x ma dx --

m = equivalent mass of follower system

19

J "

Page 28: Modeling and analysis of a mail inserting machine drive system

a= acceleration of follower

x = displacement of follower

The instantaneous power consumption Pis then:

P = dW/dt = d/dt (max)= ma dx/dt =ma v

where v = instantaneous velocity of the follower.

By consulting the normalized charts of cam

accelerations and velocities in reference (7), the

instant when the product of the acceleration times the

velocity can be determined for any given cam

acceleration profile. Hence the peak power due to

inertia can be determined.

For cams operating a linkage which has I

significant inertia and a significant return spring, a

combination of the above approaches was used to estimate

the overall peak power consumed.

Parameters of the equivalent spring and

equivalent inertia determined by the above method, were

used in "Machine Elements/Cams•• to obtain power curves

over the complete cycle for several devices.

20

' \ _,

Page 29: Modeling and analysis of a mail inserting machine drive system

III. ANALYSIS OF MAJOR DYNAMIC lOADS

•

A. INDEXING TRANSPORT DEVICES . ~ . .

1. GENERAL DESCRIPTION

There are three paper transport devices in the .

inserting machine which are driven with an indexing

motion. The three devices are similar in most respects.

Their timing consists of one complete index within 180 r

degrees of machine time, then a dwell period during the

other 180 degrees of machine time. All three transports

are chain devices (roller chain), which propel the paper

along a guided pathway or track, in translating motion.

The paper is deposited in these devices, and removed

from their outputs, during the dwell period of the

cycle.

The index motion is produced by a

commercially-available conjugate cam indexing device,

Cameo Model 387-P3H28-180 (Reference 15). This device

provides three index rotations ·of 120 degrees output

rotation each, alternating with three dwell periods.

Gearing is used to transform the 120 degree output

rotation into the necessary shaft rotation at the •

sprockets and attain the appropriate roller chain

translation. The conjugate cam profile is a "modified

sine•• acceleration curve, with no constant speed period,

and equal aciceleration/deceleration periods.

21

Page 30: Modeling and analysis of a mail inserting machine drive system

~·· ~:,'

,,

•

2. METHODOLOGY OF ANALYSIS .

Each index transport device was modelled as a

pivoted follow~r, driven by a rotating cam, using

"Machine Elements/Cams" software (see Figure 10). An

arbitrarily large cam and an extremely long pivoted-arm

length was used, so that the motion of the contact point

approximated a straight line (a translating follower).

To provide the ''follower roller'' with a linear

displacement equal to the motion of the chain, the

corresponding angular displacement of the pivoted arm ~

was calculated and used in the model. This displacement

takes place dur1ng a period of 180 degrees of ''cam''

motion (since the index occurs during 180° of machine

time). The ''cam'' profile is modified sine, with equal I

acceleration/deceleration periods, and no constant

velocity. ''Machine Elements'' always creates a closed

cam profile; hence the model includes a fall motion

which is of no consequence here.

The total mass of the chain· assembly is ,,

modelled as the mass-inertia of the pivoted follower.

Friction deserves special attention. Two

models of friction are possible: viscous damping, and

coulomb damping. Examination of the inserting machine

shows that the indexing chains are guided. throughout

22

Page 31: Modeling and analysis of a mail inserting machine drive system

·.,

their motion by extruded aluminum tracks, which are

liberally coated with a heavy grease. Based,on a review

of the literature (References 16 and 17), it was decided

to approximate this behavior as boundary lubrication.

This behavior most closely follows the .laws of dry

friction: 1) the friction force is prop~rtional to the

normal force; 2) the friction force is independent of (

relative velocity; and 3) the friction force is

independent of the area in contact. With these

assumptions, the friction in an indexing chain is

modelled as a constant force, in the direction opposite

chain motion.

The actual friction force present in each

chain index transport was measured using a spring scale

on several machines, and the results averaged to

estimate the magnitude of the friction force. These ..

tests were pe·ff9rmed on relatively new machines, which

were properly set-up and lubricated in the Bell & Howell

factory. Very little wear had taken place, since the

machines had only a minimum of testing cycles prior to

the tests. The average measured value of dynamic

friction was chosen for the model. The static friction

occurs only at the beginning of each cycle, when the

speed is zero (hence power is zero) and mechanical

advantage through the cam box is high (hence input

torque is low). Since t.he- model consists of a pivoted

23

Page 32: Modeling and analysis of a mail inserting machine drive system

'f:itl',

type follower, the friction force was converted to an

equivalent constant torque on the arm, in the direction

resisting motion.

Analysis was then performed, using ''Machine

Elements/Cams", to find the transmitted fofce between

cam and follower, the transmitted torque, and the power

required to drive the cam.

A translating follower could also have be used \

as the model for this device. However, the chosen

software has an error in the mass/inertia/force

calculation: it does not treat the "weight" of a

translating follower as a true mass-inertia. "Machine

Elements" software therefore yields incorrect results

for translating followers.

3. EMPTY ENVELOPE TRANSPORT

3.a. DESCRIPTION -- EMPTY ENVELOPE TRANSPORT

The empty envelope transport device consists

of two-piece gripper jaws, attached to roller chain (see

Figure 11). The jaws are machined from steel investment

castings; the chain is a non-standard ASA #65 roller

chain chosen for its lightness. The complete assembly

'· ,,

consists of ten sets of jaws, spaced every 10 1/2" along

the chain, for a total of 105" of chain.

During one index cycle, the envelope transport

moves exactly 10 1/2", to maintain the proper Jaw

24

.'(}

Page 33: Modeling and analysis of a mail inserting machine drive system

' .

position for the next cycle.

The chain runs over four sprockets, three are '

. idlers and one the driving sprocket. The fixed part of ~

each gripper jaw includes two guiding lugs along its .I\

outer surface~. which engage in fixed steel support

tracks to guide the chain along its "active" portion of

the loop. Other portions of the loop are unsupported. I

The empty-envelope transport system is the

same, regardless of the overall inserter machine length

(number of stations).

3.b. ANALYSIS -- EMPTY ENVELOPE TRANSPORT

The.entire chain/jaw assembly was weighed on a

scale accurate to+/- .05 lb, and found to weigh 3.0 lb

total. To estimate the friction, several assembled

machines were tested by displacing the chain transport

using a hand-held spring scale. The average peak

dynamic friction was 24 lb, with considerable variation

among machines, and much lower values during some parts

of the mo~ion cycle.

A model was constructed in ''Machine

Elements/Cams", using the above values as input

parameters (see Figure 10). A pivoted follower was

constructed, using an arm length of 100". This was

given an angular displacement of 6.0189 degrees, which

provides the equivalent of 10.5" of motion at the '

25

. ,_

Page 34: Modeling and analysis of a mail inserting machine drive system

{

I.' , .

follower roller. The follower system was assigned a

mass of 0.093 lbf-sec2/ft, conc~ntrated at the follower

roller. No moments or products of inertia were applied I ' .

to the arm. To model the friction, a constant torque

was attached to the follower pivot in the direction

resisting motion. A value of 2400 in-lbf was used to

create the equivalent of 24 lbf at the end of the 100 1'

follower arm.

The cam model was given a constant angular

velocity equivalent to 10,000 cycle/hour, the maximum

speed of the inserting equipment.

3.c. RESULTS -- EMPTY ENVELOPE TRANSPORT

The result, shown in Figure 12, indicates a

peak power consumption of 2855 in-lbf/sec, or .43

horsepower, oc·6uring at a cam displacement of 69

degrees. The complete horsepower curve, for every 5

degrees of cam rotation, is shown in Table 2.

The above values were verified using

conventional analytical methods, as described in

Appendix 1, with very good agreement.

4. INSERT TRANSPORT

4.a. DESCRIPTION -- INSERT TRANSPORT

This system varies with machine length -- as

more insert stations are included in the machine

26

).J ~. I

Page 35: Modeling and analysis of a mail inserting machine drive system

. .• ; ' ./,, '. ~·

configuration, a longer insert transport system is

required.

The insert transport is composed of ASA #65

roller chains, with special stamped-steel pusher lugs,

or pins, attached to the chain every 10'' along its

length (see· Figure 13). Two such chain assemblies are

· used to propel the inserts, running in parallel. A dual

sprocket assembly drives the chain at one end of the

chain loop; a dual sprocket idler provides tension at

the other end. The "active'' portion of the loop

includes an extruded aluminum guide, with c-shaped

channels along each side, to guide and support the

chain. The return portion of the chain loop has several

short pieces of the same extrusion, to help support the

chain. The chains move exactly 10" during one index

stroke of the inserting machine.

A four-station machine (smallest standard

inserter) utilizes twin chain assemblies including nine

pusher pins each, and 90" of roller chain each. One

such assembly was weighed at 1.35 lb.

4.b. ANALYSIS -- INSERT TRANSPORT

Friction tests were performed, using the

spring scale to measure peak dynamic friction on several

four-station machines. The average peak value was 8

lbf. This value was attained with both chain assemblies

27

Page 36: Modeling and analysis of a mail inserting machine drive system

~ .

in place, well-lubricated, properly tensioned, and run '

in for a short period. f

A ''Machine Elements/Cams'' model was

constructed, similar to the empty-envelope transport

model: arbitrarily large cam, 180 degree modified-sine

rise, pivoted follower with 100'' arm. In this case, a

displacement of 5.732 degrees was used to provide 10"

linear motion at the follower. The follower system was

given a mass of 0.084 lbf-sec2/ft, the equivalent of the

two chain assemblies involved, and this mass was

concentrated at the follower roller. A constant torque

of 800 in-lbf was used to model the friction measured

\ above.

4.c. RESULTS -- INSERT TRANSPORT

At a cam velocity of 10,000 cycle/hour,

results in Figure 14 show peak power of 1258 in-lbf/sec

or .19 horsepower. Table 3 lists power consumption for

every 5 degrees of cam rotation ..

5. FILLED-ENVELOPE TRANSPORT

5.a. DESCRIPTION -- FILLED ENVELOPE TRANSPORT

This device is very similar to the insert

transport system. Again, ASA #65 chain is employed,

with stamped steel pins to push the filled envelopes.

In this case, a single chain is used, and pin spacing is

28

Page 37: Modeling and analysis of a mail inserting machine drive system

14 inches. An extruded guide channel supports the cha.i~

along its run in one direction; it is unsupported on the

return. Three sprockets (two idlers and a drive

sprocket) are used.

The full-envelope transport system is the

same, regardless of overall inserter machine length

(number of stations).

5.b. ANALYSIS -- FILLED ENVELOPE TRANSPORT

This chain assembly weighs 1.05 lb, and

friction tests gave an average dynamic peak of 2 pounds.

A model was constructed very similar to the

above, but with an angular displacement of 8.03 degrees,

a concentrated mass of 0.0326 lbf-sec2/ft, and a

constant torque of 200 in-lbf resisting the motion.

5~c. RESULTS -- FILLED ENVELOPE TRANSPORT

Results were a peak power consumption of 700

in-lbf/sec, or 0.106 horsepower. Figure 15 and Table 4

show results graphically and in tabular form for a

complete cycle.

8. GRIPPER ARM MOTION

1. GENERAL DESCRIPTION

The insert gripper arms (one per insert

station) are mounted to a common shaft, which is driven

29

Page 38: Modeling and analysis of a mail inserting machine drive system

-

with a rocker motion via a six-bar linkage (see Figure

16). The crank of the linkage rotates at constant

machine speed (10,000 revolutions/hour) driving a bell-

crank, which in turn drives a rocker arm clamped to the

gripper arm shaft. The arms cycle once per machine

cycle, with a displacement of about 55 degrees.

Each gripper arm assembly is made up of a

cast-iron arm, a steel movable jaw, and several other

smaller parts. The inertia of the assembly is therefore

significant. Other links in the mechanism, the bell­

crank and the rocker arm clamp, also present significant

inertias. Friction in the joints of the linkage is

relatively low, due to well-lubricated journal bearings.

No spring loads are present.

Each arm grasps its respective insert at one

end of the stroke, and pulls the insert from the bottom

of the stack as the arm is driven outwards. The

friction between this insert and the stack is

significant -- in fact, under certain conditions,

inserts may slip out of the jaws of the arm, causing a

miss-feed. Length from the arm pivot to the gripping

point is 9.187 inches.

2. METHODOLOGY OF ANALYSIS

The major component parts of the arm assembly

were modelled in simplified for~. using McDonnell

30

Page 39: Modeling and analysis of a mail inserting machine drive system

Dou~las "UniSolids". Mass properties were derived from

these models.

A "Unigraphics Mechanisms'~g,del was

constructed of the six-bar linkage (see Figure 17).

Link parameters included mass and moments of inertia as

. found in "UniSolids". Values corresponding to four arms

were used in the analysis. The driver crank was given

an initial angular velocity equivalent to 10,000

cycles/hour, and a constant motion input of the same

velocity.

To model the pulling of inserts, a constant

torque was added to the mechariism model, at the joint of

the gripper arm swing, equivalent to the torque caused

by t~e maximum pull force of four arms operating at the

radius of the gripper jaws. This force only applies

during the first 110 degrees of crank rotation. Beyond

this displacement, the inserts are completely extracted

and free of the stack, and are no longer subject to

inter-stack friction.

In actuality, the frictional force on the

insert decreases gradually as the insert is being pulled

from the stack. The load of the stack above is

gradually being transferred to the floor plate of the

hopper, so the stack places less load on the moving

insert., The normal force on the moving insert is

steadily decreasing. Hence, the driver-crank torque was

31

.,

Page 40: Modeling and analysis of a mail inserting machine drive system

•

r

I .

computed twice: with and without the friction torque.

For the first 110° of motion, the torque was decreased

in proportion to the displacement of the arm. Beyond

this position, the data from the zero-torque model· was

used to complete a full-cycle representation of the arm

swing motion.

3. RESULTS ./'

Previous tests performed at Bell & Howell

indicated that the maximum pulling force generated by a •

gripper arm is about 6 pounds. Therefore, as the worst-

case, this value was assumed as the initial frictional

force on all four arms, and a constant tor~ue of 220.5

in-lbf was applied to the·model. Figure 18 and Table 5

show the resulting torque required at the crank for the

first 110 degrees of rotation. The peak torque is 116.5

in-lbf~ this corresponds to 0.3 horsepower at machine

speed.

Table 6 shows the modified result, accounting

for the continuous decrease in normal force as the paper

is extracted from the stack. This improved model gives

a peak torque of 59.9 in-lbf, and a peak power of 0.16

horsepower.

Figure 19 and Table 7 show the crank torque

required for portions of the cycle when no friction is

present. These values are combined with the friction

32

Page 41: Modeling and analysis of a mail inserting machine drive system

"

• ·,· f• I'

values to give the composite values shown in Table 8 and

Figure 20. Peak power consumption is 1045.69 lbf­

in/sec, or .158 horsepower (see Appendix 3).

As can be seen, the major contributor-to power a·

consumption and torque is the force re.quired to extract

the insert from the bottom o the stack.

~--)

C. INSERT GRASP AND RELEASE DEVICES

1. GRASP DEVICE

1.a. GENERAL DESCRIPTION

As the gripper arm swings in to reach the

insert, the movable jaw on the arm is opened

approximately 16 degrees, and then quickly,re-closed to

grasp the insert. The arm then swings outwards, pulling

the grasped insert from the stack.

This opening and closing of the jaw is

controlled by a cam. (See Figure 21). The cam actuates

a pushrod, raising another link which is in the shape of

an arc. A rocker arm, with roller, contacts the arc­

shaped link so that the required motion is transferred

to the swinging gripper arms. The rocker arm operates a I I ,~,)

" 1-------....... '-..J

shaft, which passes through bearings in all gripper ') ,., ...

arms. Additional links attached to the operating shaft

transfer the motion to the movable gripping jaws of the

arms. __ .,,-_

\ \ '

The ca'1 rises to open the jaws; a spring is r-

< '· 33

I

Page 42: Modeling and analysis of a mail inserting machine drive system

used to close the jaws. Because of the·gripping force .

required to pull paper from the stack, the spring is

relatively stiff, having a spring constant of 10 lb/in.

It is stretched significantly: even in the closed-jaw -,

position. The spring has a wound-in pretension of 1.7

lb, with a free length of 1.406 inches.

Also on the gripper arm assembly is a

detection device which checks for the presence of one,

and only one, insert during each cycle. If an insert is

missed or a double is pulled, the machine is faulted

(stopped), and the operator is signalled to correct the

error. The detector is a simple mechanical device,

consisting of a flat steel spring (2.06 ·in. active

length, .022 in. thick, .25 in. wide, C-1095 hardened

spring steel) and two adjustable electrical contacts.

These contacts are adjusted by the operator, so that no

contact occurs when a single insert is present. The

electrical circuit is gated to ignore contact during

other portions of the machine cycle, (e.g. periods when

the jaw is fully open under the action of the cam).

This detection device constitutes another spring load to

the system, having no pre-load when the Jaw is closed,

but inducing a force when the jaw is opened, deflecting

the flat spring.

1.b. METHODOLOGY OF ANALYSIS -- GRASP DEVICE

34

/

,, '

Page 43: Modeling and analysis of a mail inserting machine drive system

(

---------------------~~--~- -

The overall system was transformed to an

e~uivalent system, acting at the cam follower, by

utilizing the ~Unigraphics Mechanisms" software. The •

linkage was modelled in two positions, to obtain forces

at the high and low points of the cam. The equivalent

spring was assumed to be linear between these points . •

''Machine Elements/Cams'' was then used t6 analyze the

cam.

For the mechanism model, a simple crank was '

substituted -for the cam, the crank having a stroke of

.5625'' (radius of .28125''), equalling the cam

displacement. All other links and joints were modelled

conventionally (see Figure 22).

·A translating spring element was applied to

the moving jaw, to model the stiff return spring on the

jaw. To simulate the wound-in pretension, an

artificially short free length of 1.236'' was calculated.

A spring constant of 40 lb/in was used to model four

gripper arms operating in unison.

The 1detect spring was analyzed using

elementary beam theory. For small displacements, the -(

beam has a spring constant of 2.27 lb/in of end

deflection. This equates to a torsional spring constant

of 0.396 in-lbf/deg of jaw opening. To model four arms

operating simultaneously, a torsion spring having a

constant of 1.584 in-lbf/deg was applied to the pivot

35

.,

Page 44: Modeling and analysis of a mail inserting machine drive system

joint of the movable jaw.

As a check on the correctness of the combined ,

spring vjlues, an actual jaw was tested, using a spring .,

scale and several discrete displacements. Test results

agreed reasonably well with calculated values (see

Appendix 2) . The inertias of the links were estimated '

to be smail, compared to the spring forces, so were

neglected in this analysis. Likewise, the friction in

the joints was also estimated to be small and was

neglected. Because the only forces present are spring

forces, a static analysis using "Mechanisms'' was

suff icie·nt to determine the force in the crank pin at

top-dead-center and at bottom-dead-center.

Hence, a "Machine Elements/Cams'' model of the

grasping cam was created, having a lift of .5625 11 in 65

degrees rotation, rotating at machine speed (10,000

cycle/hr), and having the linear spring parameters found

in the mechanism analysis above. A translating-type

follower was used in this model (see Figure 23).

1.c. RESULTS -- GRASP DEVICE

The ''Mechanisms'' analysis at the first

position (jaw closed, just starting to open) gave a

crank pin force of 8.116 lb. along the line of action of

the connecting rod. At the second position (jaw full

open), the analysis yielded 28.715 lb. Therefore, the

36

"' ·.>

Page 45: Modeling and analysis of a mail inserting machine drive system

,spring created in "Machine Elements" was given an

initial tension of 8.166 lb and a spring constant of

36.32 lbf/in.

At these conditions, the power curve is shown

in Figure 24. Peak power is 394 in-lbf/sec, or .06

horsepower, for four arms.

The analysis was re-run, using only the heavy

return spring, and neglecting the detection spring.

Values obtained were 38% lower.

2. RELEASE DEVICE

2.a. GENERAL DESCRIPTION

This is simliar to the grasping mechanisms

above, however a different method of cam actuation is

used. As the arm swings out of the stack, it pulls the

selected insert free of the hopper. The arm continues

its motion, positioning the insert over the transport

track. The movable jaw is then opened to release the

insert.

This release is accomplished by opening the

jaw of the- arm, again via a cam (see Figure 21). This

cam is a stationary cam segment, mounted to the arc­

shaped link described in section A above. As the arm

swings, the rocker arm attached to gripper assembly

rides up the cam segment, and transfers this motion ,

through a link to open the jaw. This releases the paper

37

'

Page 46: Modeling and analysis of a mail inserting machine drive system

0

from the jaw.

The cam segment has a rise of .437", over 15

degre s·of displacement. However, this is not

• equ1va to 15 degrees of machine time, since it is

the swinging motion of the gripper arm that causes the

rocker arm to ride up the cam surface.

Like the grasping cam, it is the rise of the

,'

cam that opens the jaw, and this acts against the stiff

extension spring and the detection spring on the arm

itself.

2.b. METHODOLOGY OF ANALYSIS

The method chosen was similar to the grasping

cam analysis. ''Mechanisms'' models were constructed at

two points, the equivalent spring was found, and the

''Machine Elements/Cams'' model was created using this

spring. Inertias and friction were neglected. The

''Mechanisms" models were created at positions of

impending jaw opening and at full jaw opening.

In this case, the contact force at the sliding

joint was used to construct an equivalent spring in the

"Cams" model, since the cam segment is located at this

point.

The cam model w'as created with .437" rise in

15 degrees. Torque results were computed for every

38

Page 47: Modeling and analysis of a mail inserting machine drive system

\

'

degree of cam rotation. These results were used, along

with gripper.arm positions computed in Section

III.B abo~e, to find instantaneous power consumption in

machine time.

2.c. RESULTS -- GRIPPER ARM RELEASE

The "Mechanisms" model at the first position

(impending opening) gave a contact force at the sliding

joint of 23.3 !bf. At the full-open jaw position, the

contact force was 42.8 lbf. Therefore, the spring

created in the cam model was givencan initial tension

23.3 lbf, and a rate of 44.62 lbf/in. These values

include the combined effects of the extension and

detection springs.

Table 9 shows the transformation of cam torque

from 15° of cam rotation to the equivalent machine

rotation. Horsepower is tabulated also·. The power

curve is shown in Figure 25. Peak power is 160.5 lbf­

in/sec, or .024 horsepower.

D. ENVELOPE TURNOVER DEVICE

1. GENERAL DESCRIPTION

The envelope turnover device consists of a

wheel assembly with eight clamping jaws, driven about

its axis with an indexing motion created by a geneva

indexing device (see Figure 26). This wheel operates

39

' /

Page 48: Modeling and analysis of a mail inserting machine drive system

.,, .

,.

once per machine cycle, rotating 22 1/2° each cycle.

The envelope transport device places one envelope into

the open clamping jaw during the dwell of the geneva,

the jaw is closed to grip the envelope, and the geneva

indexes one position (1/8 revolution). Subsequent

envelopes are placed into clamping jaws in turn during

I each machine cycle. After four index cycles, the

clamping jaw is again opened and the filled envelope is

removed by the filled-envelope tr·ansport device.

A complete wheel assembly weighs 8.0 lb.,+/-

.05 lb. The overall wheel assembly has an outer

diameter of approximately 8 inches. All moving parts

are mounted in journal bearings and are well-lubricated.

An analysis of the geneva indexing motion is

presented here; the cam-action clamping jaw consumes

negligible power.

2. METHODOLOGY OF ANALYSIS.

A model of the geneva was constructed in

"Unigraphics Mechanisms", employing the usual revolute

and slider joints (see Figure 27). The input link was

given a motion vector of 10,000 cycle/hour.

The inertia of the wheel assembly was

estimated based on the measured weight of 8.0 lb, and

the handbook formula for moment of inertia of a solid

cylinder. Much of the mass of the wheel is concentrated

40

/

•

Page 49: Modeling and analysis of a mail inserting machine drive system

'

at its center, hence a diameter less than the 8" actual

value was chosen and the wheel assembly inertia was

estimated at .13 lbf-in-sec2~ Filled envelopes

contribute another .05 lbf-in-sec2, so a total of .18

lbf-in-sec2 was used in the mechanism model. Friction

was neglected, due to lubrication of the joints.

3. RESULTS

Figure 23 shows the torque curve for the

mechanism during the active part of the geneva cycle,

which is 135 degrees of input rotation. Peak torque is

11.5 lbf-in; power is then calculated as 199.8 lbr­

in/sec or .030 horsepower (see Appendix 3).

E. OTHER DEVICES

1. GENERAL DESCRIPTION

Several other devices were selected for

analysis, based on initial estimates of power

consumption. These devices include: the insert sucker

swing; envelope sucker bar; moistener brush; and insert

holddowns. All are of similar construction: each is a

linkage, driven by a cam, and restrained by a spring.

2. METHODOLOGY OF~NALYSIS

The work/energy approach described in Section

II. F. was used to estimate the power consumed by these

41

(

Page 50: Modeling and analysis of a mail inserting machine drive system

.. ·

devices, and each was modelled using HMachine

Elements/Cams". This approach was selected as an

efficient method, yielding conservative results,

appropriate for devices judged to be of moderate

significance to the total machine.

.. ~.

One mechanism (envelope sucker bar) performs

work on the product, during the "rise'' motion of the

cam. The work was included in the "Machine

Elements/Cam" model.

3. RESULTS

See Appendix 4 for experimental measurements

of spring forces, and for analytical calculation of the

equivalent spring and equivalent inertia -at the cam

follower for each device.

Figures 29 through 32 show the power

consumption for these mechanisms. Peak power

consumption ranges from 0.05 horsepower for the insert

sucker swing, to 0.1 horsepower for the envelope sucker '

bar.

42

Page 51: Modeling and analysis of a mail inserting machine drive system

IV. OVERALL RESULTS

Table 10 lists 'the power consume9 by each

component analyzed at every 10° of machine position.

All component devices are properly phased -according to

the overall machine timing diagram. Total power was

obtained by summing the component data (see right-most

column of Table 10), in units of horsepower. All data

are computed for a four-station machine, operating ai

maximum speed of 10,000 cycles/hour. Figure 33 shows

the total power curve for one complete machine cycle.

Peak power consumption is 0.72 horsepower,

occuring at a machine position of 240 degrees. This

agrees well with previous design practice at Bell & ~

Howell. Small base inserting machines, including four­

station machines such as analyzed here, were equipped

with 3/4 horsepower main drive motors. Hundreds of

units are currently in use with these motors, with no

problems~. Larger machines were equipped with more

powerful motors, and recently the company standardized

on 1 1/2 horsepower motors to reduce inventory and

purchasing costs.

The dominant power consumers at the peak

position are the three transport devices. The envelope

transport alone accounts for 59% of the peak power

consumption. In all three transport devices, power

consumption is primarily caused by friction, due to the

43

•

Page 52: Modeling and analysis of a mail inserting machine drive system

relatively high peak velocity attained during the index

motion.

Much smaller peaks occur at 30° and 50-60°

positions. At these points in the cycle, inserts are

being pulled from the bottom of the stack.m The

resulting peaks of about 0.17 horsepower are primarily

due to the frictional loads that occur when removing the

bottom insert from the stack. The geneva indexing

device also contributes to the power required at this

time.

Periods of negative power consumption occur

between 1100 to 1000, and again at 3100 to 330°. This

is caused by spring and inertia elements, returning

energy back into the system. Primary contributors are

the inertias of the transport devices and geneva device,

and the springs on several cam-actuated devices.

The average power consumption over the _,,./ .... '

complete cycle is 0.18 horsepower. This value is only

25% of the peak, indicating that the machine loads are

not well-distributed over the cycle.

The torque curve at the drive motor is shown

in Figure 34, calculated from the power curve and motor ' , .

speed of 1600 rev/min. Peak torque is 28.18 in-lbf.

44

Page 53: Modeling and analysis of a mail inserting machine drive system

. I·

V. INDICATED FURTHER STUDY

A. SUGGESTED REFINEMENTS OF THE ANALYSIS

Several refinements could be incorporated to

increase the accuracy of this study.

The estimation of friction loads in the

transport devices could be improved by obtaining data

from a larger sample of actual machines. This would

increase the accuracy of the evaluation, as these

frictional loads represent the predominant power

consumption of the total machine. The envelope

transport is most significant in this respect . .

The addition of friction in the joints of the

mechanism model of the gripper arm could be considered.

Although journal bearings are used, the normal forces

induced by the jaw operating cams may be significant

during parts of the cycle.

The moistener brush and envelope suction bar

linkages include sliding joints; the friction in these

joints was not considered and could be added to the

analysis.

The four devices which were analyzed using

energy methods could be refined by performing complete •

kinematic analysis, thereby eliminating the need for the

assumptions used in the energy method of estimation.

The inertia of the geneva device could be

determined by the use of solid body modeling techniques.

45

Page 54: Modeling and analysis of a mail inserting machine drive system

Devices neglected in this investigation could

be estimated using the energy method, and included in

the total-mach.ine ·model.

B. SUGGESTED EXTENSIONS OF THE ANALYSIS

The modeling techniques developed in this

study may be used to evaluate larger machine

configurations, of 6 or more stations. Extremely large

machines, such as 32 stations, are of particular

interest.

Other machine cycle speeds could be

considered. Currently, machines including more stations

are rated at lower speeds. The model could be extended

to predict torque loads and power consumption at various

speeds for these large machines. If indicated by the

analysis, higher speed ratings could be considered.

This productivity increase would provide a competitive

advantage in the marketplace.

Other available optional attachments could be

analyzed. Different design configurations of the

envelope station and envelope takeaway are available,

and would present different loads to the system.

Torque may be calculated at specific locations

in the drive system. Certain shafts and other drive

components may be optimized with this data. On large

machines, the phase delay or "wind-up" between insert

46

Page 55: Modeling and analysis of a mail inserting machine drive system

) •

stations may be significant and should be evalua~ed .

An evaluation 6f the interaction .of the end

effectors and-the paper should be performed. In

particular, the action of the gripper arm as.it pulls •·

one insert from the hopper would be of interest. Also

important is the motion of the insert suction cup as it

separates one insert from the stack.

Other Bell & Howell inserting machine models

could be analyzed, using the procedure developed in this

study. These models share some of the devices ~!ready

analyzed. Major loads on other models can be quickly

identified using the understanding gained during this

investigation.

C. SUGGESTED DESIGN IMPROVEMENTS

The drive system design should be improved,

within the existing architecture of a single power

source and synchronous motion.

Friction in the transport devices should be

reduced, which would reduce power consumption. More

importantly, the lower torque loads would permit the use

of lower settings on overload clutches, making them more -~ ~

sensitive to paper jams. This could reduce operator

time in clearing difficult jams, and provide better

protection of the machinery.

The gripper arm accelerates rapidly as it

47

Page 56: Modeling and analysis of a mail inserting machine drive system

pulls one insert from the stack. A linkage providing

lower acceleration should be tested, which might result

in fewer missed inserts due to th~ paper slipping from

the jaws.

The detection device currently used on the

gripper arm adds significantly to the force required to

open the gripper jaw. This is especially important on

machines with numerous insert stations. An alternative

detection device, without the cantilever detect spring,

is in use on a similar Bell & Howell inserting machine.

This should be adapted to the "Mailstar 775" product to

reduce the jaw opening force.

D. POSSIBLE ALTERNATIVE DRIVE SYSTEM ARCHITECTURES

Several drive system alternatives are

possible. The design of such systems would make use of

the data obtained in this investigation.

The current architecture is not verY

• I

efficient; the peak power is four times the average.

This is primarily due to the power fluctuation in the

transport devices. several design changes could be

employed to reduce this effect. The transport devices

could operate with some phase difference, so that all

three peaks do not occur simultaneously. They could be

made to operate continuously, over the full 360° of

machine time, which would reduce the peak velocity. The

48

Page 57: Modeling and analysis of a mail inserting machine drive system

)

direction of motion of the paper could be changed, sb

that a smaller displacement is required, which ~ould

reduce the peak velocity.

The six-bar linkage simultaneously drives both

the gripper arms and the insert pusher device. The

motion of each device could be improved if separate

driving mechanisms were employed, eliminating the

current compromised motion brought about by the common

linkage.

The single, mechanically synchronized drive

system could be replaced with several separate drives

such as stepper motors or servomotors. In this case,

synchroniza'f".ion would be accomplished by electronic

motor control. This by itself would not reduce power

consumption, but the power fluctuation could be reduced

by altering the time phasing of major power consumers.

The motion of each device could be more easily

optimized, using the flexibility present in an ~

electronic motion control system. The system could be

designed to decrease machine stoppages caused by feed

errors. For example, an error in the envelope transport

could be diverted, and a second envelope fed while the

othe~ transport sub-systems are disabled for one cycle.

49

Page 58: Modeling and analysis of a mail inserting machine drive system

-:;-:·,-- ;.; ,

VI. CONCLUSIONS

A model was developed of the power

transmission system and end-effect actuators of a

four-station "Mailstar 775" inserting.machine, operating

at its maximum speed of 10,000 cycles/hour. The results

for each component device were combined, in their proper Jj

phase relationship for one complete machine cycle.

Power consumption fluctuates greatly, between

-0.09 and 0.72 horsepower. Average power consumption

over the complete cycle is 0.18 horsepower.

Peak power consumption was determined to be

0.72 horsepower at 240° machine position. The three

similar transport devices consume all of the power at

this point. The envelope transport alone consumes 59%

of the peak power.

Significant power consumption is also due to

frictional loads caused by pulling inserts from ·the

stack, and pulling envelopes from the hopper. These

loads peak at 0.158 and 0.114 horsepower, respectively.

The moistener brush, insert hold-down device,

insert suction swing mechanism, and gripper arm opening

devices are also important. Each consumes 0.05 to 0.071

horsepower.

Design of the existing system should be

changed to reduce power fluctuations and peak loading.

50

Page 59: Modeling and analysis of a mail inserting machine drive system

Alternative architectures should be investigated for

future inserting machines.

' •

51

Page 60: Modeling and analysis of a mail inserting machine drive system

---------------...... --~-~----__,....-~~-~--·-·····

INSERTING "ACHINE QUALITATIVE ANALYSIS

Est. Magnitude Description Inc1tl Najor Effect ------.... ------~ -~------------~--~-----------~-~--- ------ ----... ---------~91 Large Envelope Chain Indexing n Inertia

&ripper Ar• Swing y Inertia Gripper Ara Opening (Release) y Spring &ripper Ar• Opening (Grasp) y Spring Insert Pusher Chain Indexing y Inertia

Nediu1 Center Envelope Gripper Jaw Opening n Spring Chain Takeaway Index n Inertia Envelope Flap Holder n Spring Envelope Sucker Bar (Plunger) n Inertia Insert Holddowns y Inertia Insert Pulling y Friction Insert Sucker Swing y Inertia LH Envelope Gripper Jaw Opening n Spring Moistener Brush n Inertia RH Envelope Gripper Jaw Opening n Spring Turnover Indexing Notion n Inertia Turnover Jaw Opening n Spring Upper Sucker Bar n Inertia

S1all Botto• Sucker n Spring Envelope Entering Fingers n Spring Envelope Flap Opener Sucker n Spring Envelope.Flap Closer n Inertia Envelope Flap Opener Butterfly n Friction Envelope Kicker n Friction Insert Separator Fingers y Inertia

TABLE 1 INSERTING HACHINE LOADS

52.

Page 61: Modeling and analysis of a mail inserting machine drive system

,.

\ . CAM ANGLE . C POWER DEGREES TN-LBf/SEC . o. 0·0-00 -o·:0000 .

5.0000 44.4642 10.0000 197.4192 15.0000 461.4540 20.0000 797.4158 25.0000 ·1138.9261 30.0000 . 1467.6862 35.0000 .··. 1777.5913 i 40.0000 ·-2059.9978:

. 45. 0000 . . 2307. 2700 l · 50. 0000 .·. -: .. _' 2513 •· 0885 l . 55. 0000 . 2672. 6966 :

60.0000 · 2783.0707 I 65~0000 · 2843.0077 70.0000 2853.1263 75.0000 2815.7807 80.0000 -. 2734.8952

- 85. 0000 - - ··. 2615. 7265 I

90. 0000 . · 2464. 5680 . 95.0000 .. · .. 2288.4127!

. . . ; . i

.. · 100 • 0000 -~ . ;_:,_2094. 5916 I . . 105 • 000() .. ~>~- 7--:··;..1·a·90 ·.-4078 I

_-:_ .. -·. 110·. ·oooo ·/:·??:?.:i6a2 ;·1as3 · . 11s.·oooo·.:~·)_·::1·477~9511

. . .120. 0000 ~: __ --.--~;~= ·1281 ~ 1663 · - - - . . . .

_ · 125.0000 ~-_· -----1096.5212 ·. . . -.

:. · . 130. 0000 _: - ._.·:.-" 926. 8024: · · -·135. 0000· -_._ :·.·._··>-·773. 4400 =

-- ·_ I · 140.0000 · .. -~- ·_636.5345.

• . : . • •• C . • I

145.0000 ,· _..-·· .. 514.9618 . . .. •• . . • . • I

- --1so ·oooo _ ..... ~;~:;>~-:~406 5494: . . ~. . . .. • . . . :· ~-~ .. ' -~---~-';l·.;·:~ :-: . • . . - ~ .. :·:-155 •· 0000 ?;.;--=~/:r;:;-.-308 ~-·3107 :··.:.·"".:i.::: 16·0 .. o· o· oo ·Af~~f~!~:;:i.220 .. 8843,

.. . ........ -- ··:~ .. . .

. ·: ~--/16s·. ooo·o ~:-~~--~:~:-~ti:_·.:·154 ~ 6880 . -. :: .· .. ·.-i 70. ooo·o ·_::.;~~-~ '\:-.~~ :.- 90 • 880 5 _:.~ ----~-175·. 0000 : .. ~/- -~~_:.-.~~·_·· ~ -29. 8516

. . . . - .

' TABLE 2

.

CAM. ANGLE ·oEGREE:S

POWER IN-LBf/SEC

- . ---- ------ _.. - --- ·---

. _ .. 180. 0000 :· · --' .. · · .: 0. 0000 . .. . ' - .- . .

.. · 185. 0000 - , - -·. -29. 8516 : 190. 0000 ~· - · -90. 8805 . -'195·~0000'":-_~_- ~ -154.-6880

···200 .:0000. · · . -220. 8843

205~0000 ·-:- •·· ---308.3107 : 21 o • : ·o o o o -· · -·: -:. -_-- ~ . .- 4 o 6 • s 4 9 4

. · 21 s. ·oooo ~-: .·} ··~-~ s14· .·9618 - -~ 220. 0-000 :-.;·~·:_·~·: ___ ~;;:636. 5345

._· 225. 0000 :~_··/, :· .. -:~---773 •· 4400 ••. 'i1 •• ,_ •.•. -.... •

230).· 0000 · ... -~···-~926. 8024 . . .

· 23s.oooo·: -1096.5212 240.0000 -1281.1663 245.0000 :· ~1477.9511

.. 250. 0000 :_ -1682. 7853 .. : 255. 0000 -~=- --_-. ---1890. 4078

. . . . • ,·· . . , . • . I

. - 260. 0000 /.. ~2094. 5916' .. -__ -265. o·o·oo ··::::_,,.-<;2288 ;4121: ~:-__ ::~"' 270 .·oooo ?:lt!j/~:2464: 5680 ·

·.:. ·: . _;··-~~·--i-:·.~ .. .. .. l

·. -_ ·_ ·275 .·oooo ·~.~~-~--:-~2615. 726s· ..:-.· ...... " . - .. . .. ..1.t~~-""'·-~·- .. ' •. . . .,. '

·- -· - - -- -•.•. • .. ··-~ .... -... ,'!(':' ... ·.-... ·~---·· .... --~

·: :r~_2ao .~oooo ::~\:.;-~~2734 ~·a9s2 . e·::-:-_:285 ~ (>"oo·o--.~2:.;;2·s~i~s·: 1807.~ _ < .. -~~- 2 9 0 • 0 0 0 0 . ~;:::· ;~ .. : :: 2 8 5 3 ~ 12 6 3 .

295 ~ 0000 ·- . -~?A43. 0077 - .

300.0000 -2783.0707 305.0000 -2672.6966 310 .· 0000 -2513. 0885 315 .·oooo -2307. 2100 320.0000 -2059.9978 325.0000 -1777.5913'. 330.0000 -1467.68621

I

335.0000 -1138.9261( I

340.0000 ·-797.4158: 345. 0000 = - · · -:. ~461. 4540 350.0000 -197.4192 355:0000 -44.4642

POWER CONSUMPTION ENVELOPE TRANSPORT DEVICE

&

53

....

Page 62: Modeling and analysis of a mail inserting machine drive system

·,f.

· · CAM ANGLE POWER DEGREES IN-LBf/SEC

- ·- ---- -- --- ------------ ----- --- -- -0.0000 0.0000 -5.0000 - 17.7564

10.0000 . 89.2189 15.0000 222~9312 20.0000 396.8049

. .

25.0000 568.5322 30.0000 730.3405 . . .

· .. · · 35. 0000. · · . _878 •· 9295 . ·- 40. 0000 --. .. >{~:~iooa. 6574 - .. - . ·. ---~-. ·: ..

··: . ~- · ·._ .. · •. · -4 5 ~ 0 0 0 0 . · .~ ~~ _:_ -· 1114 ;· 6 5 5 9 · ~ =; ~:. -~\--) s·o • o o o o ~-~~- -- ~~ :~ 1193 • o 6 4 2 -~ --.=~ -~:-~-=- ~;:~· s s ·: o;o·o o -~J~--~ ~~~~ 12 4-i- ~-212 o ~:: -~-:-~ -~-·; ·60 ~; 0 0 0 0 :~ ·;.- .::_::; 12 5 7-... 7 4"23· : . : . . :,. . .. . . . . . - .·· . ....:. . . - .. ·. .· I · · . · 65. 0000 · · · 1242 .·6679 · - .

- . 70. 0000 .. ·_. :·1197 .:3586 ·. ;

75.0000 . 1124~4593 - - ~

-. · ... · 80. 0000 ·. 1027 ~-7455 85.0000 .911.9212

. - . . .. - . . . . : ,: _··90~0000 ·-~782~'3724.

:. . . .\. .... . - . .. . ... . -

· ·.· - _._ .. 95. 0000 ·. ·.- _- · 644 .:8885 .. · . . -· -. .. . . . .. : . . ...

··:·· ··~ ·- 10 0 ._00_0 0 .. ·:. >. ·.: 50 5 ~--3659 ;1 o s :-o·o·o o /<-~::.~~-·:_ ... ~,~ 369 ~: s 113

I 1·10 :~oboo ·.:~·-~.:\~~,~~~242~.-·ss·a·o ,,:11 s· ·?:-o· o· ··o:o. --:j·~;:~.:~<;-129 -:·o 1· 2·· 3 :· ... ' • _ .. ~- ~: . '_1-:·-:. ..... : ... •

: ::1·2-0 -~:o·ooo··~~\{ ~~:~~-:·:~~---~·32·,;~4·420 .· 1 is··:~--o o <><> ~: ·_ -·, :· :_-:~_\:·4·4 -~--6a 09 :~·130 -~ .. ooo o ,- .. -·~- .-1··01 ~t-0·773

. . ... - . .... .

-135.0000 ~136;6903 :.:."140 ~ ·oooo ._ ~~:;·1s2 ~:64:as·. \145·~,:·oooo -~.: .· .·.;;~::.:..·1sl;;'·i.·6.29 I

. .. . .., .... -

:.-150. 0000 ~.::··-~_:_::.-135;':3680 ·- - . ,,,. •.•. · •• .,. .• ·. _., -;·..... --~ ... :,:, ·t

iss~oooo: ~109tl097: .'160 .·o·oo~o ~~ -~--~.:.·73···:: s474~'. -~:1~6s~:;~o-o o'ci""·.. -~ 2-7 -~(~38 i ·, ·:·110··1·0-00·0. '-~:2·;~301·3. :1 ·7 s·-; "<>·o·o· 0 -· . -~~5 ;--s-3 s·o

_ .TABLE 3

CAM ANGLE DEGREES ------------

POWER IN-LBf/SEC

-

·-180 ~ 0000 · .. ·. - . 0 ::"0000 - . . . .. . . . ... . . . .. .. .

185 ~ 0000 .. ·--·:..s·:a3so ·- - . .

.. _-i~o·.~~o_ooo .Ji2_~~~13_ . .. 195. 0000 . ./t.27. 3381

200 -~·oooo ::;<:.73·.·5474 . ~ . : - ,... . .. -·. . ...... - : . '.- . -

205 ~ 0000 _"109 ~:1097 ·210~:~o!o·c,o·· :~-135}3680' 22·1:s~~;;oo·o·o t1 s1···:·i.629 1

~~22oa:itcfooo ~~1s2.t·c;4a3 t22 s~?io:o o<>'. i1··3·6 ;~~e;g·<>"s :2 30~:~·o <>c,·o { ; ~i 0~1,z:01·1·s·;

. , .. 23s :ooc>·o :;.;.:44·.~}-6aog··

.: 240-~~ooo·o.-.- ·:·32 :·i.420 . _:_. :24 5 .:·oooo· ~_: __ ~·129~0123

. ... ,., . ~.. .

:. --~ 1 .. 2.50 '~·oooo ':_:·~242 :s·sao .; .. ;_ :2s's~:~oO<><>!- :~-~~-369.!~si:is

~260 -:·o·oo·o·· ~-=-~·-5·os~~.3659 , ~2-65 ;~()000 ~:~64"4··~·aaas ·21·0-~~oo·oo· ~~-1a·2i:3724 -· t21s··::~ooo·-<>,. ;~,9l~i--~·92·12; -:2a~ o··:~;o·o o o ~ :..: 1021~:-14·s s 1

2as:~o·ooo.. ~-:1·1·24·~--4593 729o?doo~o- -.:1· 1 97 .·3 sa·6 ~

r~7Ect:= iH::~-:~tJt; 305.0000 . -1241.2120 310.0000 ~1193.0642 315.0000 ~1114.6559 320.0000 -1008.6574· 325.0000 -878.9295 330.0000 -730.3405 335~0000· - ·_ -568.5322 340.0000 -396.8049 345.0000 -.-222.931_2i

... - . -. .. . 350. 0000 : -89. 2189 355.0000 -17 •. 7564

'

POWER CONSUMPTION INSERT TRANSPORT DEVICE

.,

Page 63: Modeling and analysis of a mail inserting machine drive system

. . • , II"

•

. . ..

CAM ANGLE DEGREES

POWER IN-LBf/SEC

------ -- - . -0.0000 ·· u.0000 5.0000 ·8.6772

10.0000 49.1745 ·15.0000 129.6999 20.0000 235.9940 25.0000 338.8966 30.0000 434.3595 35.0000 520.3069 40.0000 592.8056 45. 0000 "648. 4997 50. 0000 . 684. 7844 55.0000 699.9409

. .

. - 60.0000. ~93.2257 65. 0000 .· 664. 9099 70.0000 616.2658

· ·75. 0000 549. 5016 I

80.0000 .467.6481 85.0000 - 374.4030 90.0000 273.9410 95.0000 ~110.7005

_ _ _ 100. 0000 _ -_.-.· _ ~9. 1577 . ··.· 1os.oooo·: .--~26~4006 -.--.. · . · --11 0 •· 0 0 0 0 : -~ 112 • 0 914 -~ .. -.-~--------~_-··11 s ~-0000 ;:· :-:-~ _· .::1a4:; 6279 -~-, :·~- · .-120 .··oooo · ·; --~·24·1. 4 787 _

- .. - .. ..... . . ... .

- · 125. 0000 -: · '. . -280 ~ 9858 - 130.0000 -302.4346 --135.0000 -.--306.0735

140.0000 ~293.0814 _ 145.0000 -265~4857

. .

· · ··150. 0000 -226. ·0350 . . . . . - -.· .

_·--~-::<-~--- 155 ~ oo~~-- : __ . _ -~ 7-:175:;_-0_3~7 · _ -.. : . . · _- ·160 ~ 0000 .·. · - ,-.~.- 122 .:8082 -~ ~.-· ~_: =· :::~·-·:16 s· ~- o o o o >~: :- ·· _:·:/.;s_;~6 i ·:-2 i. 4-7 ::~;·-.-.~--.~~--···170 ~ 0000· ~ .. - ·,.:·~c/';;~.~17 ~;~1295 ~-

.·-~·. :_·-~·: · ·11s. 0000 ·_ : ·r-~o -~··4169

TABLE 4

CAM ANGLE DEGREES

POWER _ IN-LBf/SEC

' . . . . . . .

160. 0000 · · ~ · >--~~-:! 0. 0000 16 s •· o o o o . · .. ·: .. .. : · · : : ~o ~ 416 9

. 1 ~o ~ 0000 ·__ . - ···:.- ·17 ~ 1295 . . - 1 9 5 • 0 0 0 0 -·. · -- .. ·. , :. 61 ~ 214 7

200.0000 _142.8082 205. 0000 . . . 178. 0337 .210.0000 - 226.·0350 215. 0000 ~ ·. :·'..·265·~-4857

·- ·, . 220. 0000 : .. --~--- 29"3·~~0814 . . - ; - - . .. .

_ 225. 0000_. --.-· ._ .. /·~-.306 ;,0735 ·. ·_ .... · 230 .-0000· .· ·_?~)_.3·02·;4346 .. ~ .... 235. 0000 '. ~;: ::~~;?2·80 -~~-9858

240. 0000 .... ··.·:· 24·1 :··4757 - . . .. ·. . - .

245. 0000 ·_. 184. 6279 250. 0000 : . . · : 112. 0914

.: . -255 ·• oo·oo ·. :·: /-)26 ~-:4006 ~- _.· · -260 ~·oooo··.. : -:- ~-.::_/=69 ~----1577

- - .• . • - . •• · ...... !', ·-.:. •

· · . 2 6 5 ~: 0 0 0 0 ~·~-:.170 ~ ·7 0 0 5 • . l- • •

· · 210.0000.· '. ~~273.9410 . ·275 ~'.0000 ·. ~~374·-~--·4030

. 280 ~·oooo··; ~~~:467 ::---6481 -2 8 s· :::-c>OC>0~ ~-~ 54 9 ;'"S ·o 16 . 29o';ioo .. o·o~~ ·~61 .. 672.658. . .

. 295·; o'oc>"c>'· :-664"·~ 9099 ~~66:006~ ~6~3:~2si 305.0000 -699.9409 310. 0000 - -684. 7844 . 315.0000 -648.4997 320.0000 -592.8056 325.0000 -520~3069 330.0000 -434.3595 335.0000 -338.8966 340.0000 -235.9940 345.0000 -129.6999 350.0000 -49.1745 355.0000 ~8.6772

POWER CONSUMPTION ENVELOPE TAKEAWAY DEVICE

55

Page 64: Modeling and analysis of a mail inserting machine drive system

...---------------------------~- -----

..

DRIVER LINK POSITION _c;o INCREMENTS

·- -- - ---···---+ 1 • C><)C>C>(>(>E +(>() .. .... . . . .

, . -. +2. (><)(><)0()E+(>C) _ _ .. --;3.0000bbE~OO

TABLE 5 TORQUE VALUES GRIPPER ARM W/PRODUCT

DRIVER TORQUE IN-LBf

-- -1 ~-21 <:>(>-9(> E +<:>'1 -:2. 45876<~>E+C:> 1 -~ -,"666C E+f)1 ·_·: ~. ' - J . -4. 99(>97()E+<:> 1 .

. --.. -

MACHINE POSITION INPUT TORQUE DEGREES IN-LBf

0 10 20 30 40 50 60 · ..

0.00 22.35

·40.84 53.79 59.91 59.04

-·52.45· 42.27

•,;

. 30:62 .. . -· ..

70 -80 90 · ··.-·· ·. · .. 19 .08

100 110

TABLE 6 TORQUE VALUES

'

- 8 .69 3.86

GRIPPER ARK, W/PRODUCT, ADJUSTED

5(,

Page 65: Modeling and analysis of a mail inserting machine drive system

\

•

. ~ ' . . .

\

DRIVER LINK POSITION DRIVER TORQUE DRIVER LINK . DRIVER TORQUE 5° INCREMENTS IN-LBf 5o INC~MENT~ IN~LBf

-+O.OOOOOOE+OO +3.766660E-06 +l.OOOOOOE+OO .. +l.056010E+OO +2.000000E+OO +2.297250E+OO +3.000000E+OO +3.561880E+OO +4.000000E+OO +4.629590E+OO +5.000000E+OO +5.286410E+OO

• .. + •

+6.000000E+OO +5.397760E+OO +7.0000~0E+_OO +4.950710E+OO +8.00000QE~OO +4.045030E+OO +9.000000E+OO +2.849440E+OO +l.OOOOOOE+Ol. +l.547790E+OO +l.lOOOOOE+Ol: +2.981250E-Ol +l.200000E+Ol' --7.883310E-Ol +l.300000E+Ol •· -l.650280E+OO +l .400000E+Ol · ·-2.269060E+OO +l.SOOOOOE+Ol. -2~656720E+OO +l.600000E+Ol -2.843840E+OO +l.700000E+Ol _ -2.870070E~OO +l.800000E+Ol -2.7766iOE+OO

,+ 1. 900000E+Ol .. -2 .- 601870E+OO ~2.000000E+Ol -2.379060E+OO _ +2 ._ lOOO~OE+Ol : -2 .134890E+OO

- +2 ._200000E+Ol -l .·889680E+OO _-+_2 ~ 3~~000E+,Ol .- -1 •. 657560E+OO

+2.400000E+Ol; -l.447360E+OO ~2.SOOOOOE+Ol I -l.263060E+OO · +2.~0QOOOE+Ol - -l.104790E+OO. +2.700000E+Ol. -9.692330E-Ol +2.800090E~Ol _ -a~·so8406E-Ol -+~. 900009E+_Ol _ ·. -7. 4.21430£-01 +3. 0090~0~+01. :.: ~6. 35016-0E-Ol .

-~3 ~-lOOOOOE:t-01 · --5. 214120E-Ol . ~3.200090E+Ol -3~946080E~Ol +3.3_oooo~E~·o1 -2.soo6ioE-01 +3. 400000E+Ol·· · .. -8. 6.43040E-02 +3.S~OOOOE+Ol- +9~392710E~b2 · +~.606000E~Ol +2.849600E-O.l , ..

TABLE 7 TORQUE VALUES

•

+3~700000E+Ol +4.774790E-Ol -+3.800000E+Ol . +6.603510E-Ol +·3. 900000E+Ol +8 .·221180~·01 +4;0600~0E~Ol -:+~~526270E-oi· +4~100000E+Ol ·+i:044570E+OO ~4.2d~QOOE+Ol +1~094260E+OO +4. 30~000E+Ol . +l .102040E+_OO +4~400000E+Ol +l.071930E+OO +4.SOOOOOE+Ol +l.010620E+OO +4.600000E+Ol +9.263450E-Ol +4.700000E+Ol +8.-279290£-01 +4.800000E~Ol :+7.233450E-Ol ~-4 • . 9C>OOOOE+Ol : +6 .191730E-Ol +5.000000E+Ol +5.1998~0E-Ol -~5~·100000E+Ol ·. +4.283300E-0·1 :+5~~£2-00000E+Ol -~ +3 .. 444890E-Ol _j5~-3-oqoo·9E+.Ol .~- +2.6693.30E-Ol. ~+ 5 :;40·000·0E+·o1- : __ ·+1-. 924660E-O 1- ··

--~S~SOOOOOE+Ol. +l.169180E-Ol +5. 600000E+Ol ·+3. 522460E-02 +5.700000E+Ol -5~752550E-02 +-5.800000E+Ol -l.6600.90E-Ol +S.900000E+Ol -2.939520E-Ol +6~000000E+Ol -4.435630E-Ol

+6.lOOOOOE+Ol -6.150090E-Ol +6.200000E+Ol -8.058080E-Ol +6.300000E+Ol -l.010210E+OO ·+6. 400000E+Ol -l .218690E+OO

+6.SOOOOOE+Ol -l.416970E+OO +6.600000E+Ol -l.585450E+OO +6.700000E+Ol -l.697770E+OO +6.800000E+Ol -l.720200E+OO +6.900000E+Ol -1~610290E+OO +7.000000E+Ol -l.318180E+OO +7.lOOOOOE+Ol -7.933680E-Ol +7.200000E+Ol -9.568530E-06

'.

GRIPPER ~RN U/0 PRODUCT

57

Page 66: Modeling and analysis of a mail inserting machine drive system

:,' ··· .. ,.·.,,.,, . '.,

GRIPPER ARM·TORQUE --- ADJUSTED •

MACHINE -POSITION INPUT-TORQUE DEGREES IN-LBf

0 · 0 .00 10 22.35 20 40.84 30 53.79 40 ' 59.91

. . so .S9 .04

.. _ 60 . 52.45· 70 . 42.27 80 30.62 90 19.08

. - 100 8.69 110 ·3 .86 120 - . 1 .45 130 .1.10 140 0.85 150 0.64 160 0 ;39 170 0.09 180 - -0 .28. 190 -0.66 200 -0.95 ;

;

210 · -1 .09 · 220 -1.07 _ 230 -0.93

...... ~ :240 - . -0.72 : ... - .

- · 250 .. - -0 .52 . .

. ·... . -

- -~ .. :. :260 ·_ .. -0.34 _:_ .· . · - --~270· -.---~ . - -. -0 .19

. ·- . ·- . . . - . . - .

·: - .:_ .·... -:.. . ·,. 2 8 0 ._~;J >- ·: -i _ . - 0 • 0 4 290 _: . . ... I . 0 • 0 .17

• a. • -

: · · 300-· · · · ,-: :· . ----~-: ·_ ··-o • 44 -

_ 310 .. - 0 .81 · . 320 .. t - ·. 1 . 21

. .. . . - 330 · .. ; .· - . 1 . 59

-340 1.72 ·350 1.32 360 -. o ·.oo

. -TABLE 8 TORQUE VALUES GRIPPER ARH ( COMPOSITE)

58

' l . :

; ' !

' ' I i

I

•

Page 67: Modeling and analysis of a mail inserting machine drive system

. -. . '

-·

.. - ... ·-

•

· MACHINE .. .CAM .. : ___ . CAM RELATIVE ·l=•OWER POSITION,~POSITION,· ·TORQUE, VELOCITY,: LBf-IN/· ~DE~G~R~E~E~S=----=D~E~G~R~E~E~S--· ~IN~-~L~B~r~--·~R~A~D~/~S~E~C-- SEC HP

108 18 0 0 0

110 19 2.76 &.56 18.1 ·0.003

113 . - 20 9. 12 &.31 57.5 0.009 ..

. 11& 21 15.67 &.08 . 9 C'. 9"\ ·. 0. 014 .. ,:,. ~

119 22 21.65 5.8 1--.~ 6 0.019 . . . . .::.~ . . - - . .. 122 · 23 . 2&.7'3 5.5 . 147. 3 .,·- 0.022 ..

...

. . , .... - . . .. • - . . . . ·- . . . . .

125 24 30.87 5 ~ 160.5 0. 024. . .-;;., . - . ..... ·- ..... . . . - . .. . - . . ..

. , 128 25 . . 7 2 7 1 4. Cj 1sa.·3 0.023 . . . ,;;, • w

·177 - 2& 2g.45 4.5 132.5 0.02 .,;;,.,,;;,

. . .

..

13& "='7 23.64 4.1 9&.92 ·0.014 . a;;. . .

140 28 17.68 3.72 65.77 0.010 -

14& ,..g . 12.67 3. 1 7 9 "='7 0.00& C' . . - ... - ...... . w • ~

lC'.7 30 8.39 2. e, 21.81 0.003 ;:J.,,;;,

160 31 4.6 1. 45 &.67 0.001

170 32 . - - 1. 36 . . . 0. 29 0.3g 0.000

180 -- 0 .

0 0 . -..::,~ .

. . . .

. . . - . . D .. _ ... - . .. . - . ,. ....... . .

• •• ~-- •"'- .-· - - ·.'" • • • r

--,._ .. .

- . .. . ..... ,--·-:·-------------· . ,. .•. . . .

- . .

- ._ •- .

; - - '. - TABLE 9

GRIPPER ARM RELEASE CAM POWER

... ~ ·. -

. . .... . . . . - . -. . . . . ... - -

~ . . .

\

59

Page 68: Modeling and analysis of a mail inserting machine drive system

.•.

•

________ ..... __ ...... _____ ,...........,,.~_ =··, ,.

,,

NACHINE. POUER (IN·LBf/SEC & HP)

MACH ENV CHN INSRT 6.A. 6.A. GENEVA INSRT INS MOIST ENY

POS., XPORT TKUY XPORT S11IN6 · OPEN . TRNVR HLDDN SUCTN BRUSH SUCKR DE& POUER POWER · POUER POUER POUER POWER POWER. POUER POWER POWER

0 0.00 0.00 0.00 0.00 0.00 0.00 418.~~ 0.00 20.27 298.63

10 0.00 0.00 0.00 390.16 0.00 0.00 9.93 615.09 0.1-ar.6 20 0.00 0.00 0.00 712.71 0.00 0.00 9.62 0.00 0.00 428.30

.. 30 0.00 o .• oo 0.00 938.80 0.00 27.05 6.17 0.00 0.00 11.19 ,.

40 0.00 0.00 ~ 0.00 1,045.69 0.00 71.21 0.00 0.00 0.00 50.24

so 0.00 0.00 0.00 1,030.44 0.00 130.73 -8.26 0.52 0.00 23.04

60 0.00 0.00 0.00 70 0.00 0.00 0.00 80 0.00 0.00 0.00 90 0.00 0.00 0.00

100 0.00 0.00 0.00 110 0.00 0.00 0.00 120 0.00 0.00 0.00 130 0.00 0.00 0.00 140 0.00 0.00 0.00 150 0.00 0.00 0.00 160 0.00 0.00 0.00 I,.

170 0.00 0.00 0.00 180 0.00 0.00 0.00 190 197.40 49.20 89.20 200 797.40 235.90 396.80 210 1,467.70 434.60 730.30 220 2,059.90 592.80 1,008.70 230 2,513.10 684.80 1,193.10 240 2,783.10 693.20 1,257.70 250 2,853.10 616 .30 1,197.40 260 2,734.90 467.60 1,027.70 270 2,464.60 273.90. 782.40 280 2,094.60 69.20 505.40 290 1,682.80 -112.00 242.60 300 1,281.20 -241.50 32.40 310 926.80 -302.40 -101.00 320 636.50 -293.10 -152.60 330 406.50 -226.00 -135.40 340 220.90 -122.80 -73.50 350 90.90 -17.10 2.30 360 0.00 0.00 0.00

915.35 0.00 186.58 -23.59 27.92 0.00 0.00 737.73 0.00 193.91 -44.27 76.98 0.00 0.00 534.36 0.00 111.18 -61.83 126.90 0.00 0.00 333.07 0.00 -40.14 -77.81 179.45 0.00 0.00 151.62 0.00 ·165.46 -93.26 282.26 -14.59 0.00 67.30 18.10 -199.84 -117.97 197.98 -41.94 0.00 25.31 134.00 -160.92 -136.99 84.50 -67.28 0.00 19.20 150.00 -99.13 -129.23 27.75 -87.28 0.00 14.84 65.77 -46.43 -102.16 25.80 -103.87 0.00 11.17 29.00 -11.52 -76.06 20.55 -131.16 0.00 6.81 6.67 0.00 -51.50 12.88 -132.94 0.00 1.57 0.39 0.00 -28.00 6.24 -97.31 0.00

-4.89 0.00. 0.00 -6.88 0.00 -63.88 0.00 -11.52 0.00 0.00 0.00 -4.79 -35.80 0.00 -16.58 0.00 0.00 0.00 -6.76 -10.92 0.00 -19.02 0.00 0.00 0.00 -,.os· 0.00 0.00 -18.68 23.61 0.00 0.00 -7.72 0.00 0.00 -16.23 77.56 0.00 . 0.00 ~23.07 0.00 0.00 -12.57 170.23 0.00 0.00 -169.89 0.00 0.00 -9.08 318.56 ·0.00 0.00 -283.67 0.00 . 0.00 -5.93 352.57 0.00 0.00 -231.37 0.00 0.00 -3.32 95.36 0.00 0.00 -160.84 0.00 0.00

.

-0.70 0.00 0.00 0.00 -93.92 0.00 -23.04 2.97 0.00 0.00 0.00 -28.26 0.00 -50.24 7.68 -95.77 0.00 0.00 0.00 0.00 -11.19

14.14 -352.71 0.00 0.00 21.12 -318.32 0.00 0.00 27.75 -170.10 0.00 3.72 30.02 -77.51 o.oo 150.36 23.04 -23.60 0 .00 330 .10 · 0.00 0.00 0.00 418.50

-- .. . - -· TABLE 10 POWER CONSUMPTION COKPLETE ltACHINE MODEL

0.00 0.00 -428.30 0.00 41.09 -507.51 0.00 242.05 -240.56 0.00 444.58 -31.95 0.00 29.05 42.08 0.00 20.27 298.63

TOTAL

HORSE-POWER

0.11 0.16 0.17 0.15 0.18 0.18 0.17 0.15 0.11 0.06 0.02

-0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.01 0.04 0.21 0.39 0.55 0.67 0.72 0.71

· 0.66 0.52 0.39 0.26 0.15

-0.04 -0.09 f.

-0.01 0.08 0.07 0.11

Page 69: Modeling and analysis of a mail inserting machine drive system

\

1·

' • ~

•. '·

. ' . , •

..

' .. • -·

. .

. , ';. . ··~

I.

'' . : . .

G' - ...

,· . .

.... · ' .

' \._

' .

. ,

• •

. .

.....

•

•

•

• • •

. .

. ,. '

'~ . . .. •',/' .. •, . . .

i ~-. • • P"

•

... ,,

' ,I ....

. .

'

.,

... •

.

' . ., . ~ •

•

,· . •

..

. . . ..

..

•,

·'

',

,·

• •'

.-. 1

. ' . , ; . · . ...

•

·'') ' . /.

• : f ..

.,. . ~ . .. .. : •.

... • -~"

. . .• • A

. . • ··:i.: • • ..... i

. . .... ! . ~.

• . ·, ·, I • •• ·.·•l . • ••

• • • • . ' . . . ' . . . ' ..

) .· . ., .. . , •' ~ . ... . ....... ~ . .. ...

"J •, • •. • • •• .• . t •.• :: .... "·· • . •• :~· .~ :·,·~. i

• . . . . . ; . . : ... . .•. ... • • . •

. . '•·'!. . . .. , .. ~

- ., .. ·.·.• .. ' .. ,,:·· _,.

. . . I \· . . ;,

.. •

... ' • ••• . .. . ,., .

• • • ·• i .. ' •••• • • • I • . . . . ...

• •

• . . . . .'

\

... ·

.. ..

•·

I

•• . .. . . .

•

., \

•·

•

. .

• . • , .. ,. • .

• . • . .

. •

.. . • . .

•

...

• ., .. •

~ ..

• •

. .

. .

• r· I

. .

• .

i•, ,, .

• ) . • -• • •

-~. ···-

• Q; .. ,, ,, •

I ·, ' ., •,

: . . . . • '

. . t.,'

',; I ••• \ ' . ... f · r '·· . . . . . ! ...... FIGURE l ' I • , .. .. ., ' . '

• I

•

. .. '

.. • • '' .

•

..

.. . . .

. .. INSERTING MACHINE ~

' •.'.

.

,.

,•· . .. . .. ... . .. . . .•.

... . ,:- --1 I

:. :• ,• .

• •

.. • . .. .. .. . .. •

.. • • • I ••• • I

• .

..

. ..... . .

•.: r

:-

. . . .

• •

. .

~

.. l!·

. .

..

...

I '

":) .

..

.. ... .

•

• •

..

...

· .

..

•

• • .....

,

. . • •

..

·-'

.,

. '

. •..

..

..

. .

.. . . ...

. •. . • . . •r '·•t ·'

• • . .

. ..

• . I

..

• • •

..

..

• • .. . .. . . .

. • • . , .

• ••

.. .. ..

. ~ •,

.•

i • .. . . ,; . . .

•

·: . • •

•

.. • I ..

•

Page 70: Modeling and analysis of a mail inserting machine drive system

• •

• • •

•

.... /~,- • •

• • •

• • •

• • •

• • • . . .

.. . . •

c,..JvnoPe '

//V:5£/lllN~ ..

• sTJ4-noJJ 1Nsca:r • . .

• • #IJOU/.£ • .. .:5n,noAI.S •

• •

• . . . • •

! • • .. • . -·. : • • I

., •

ENVe:u:,Pc .· • . . • . • •

• • •

• .. •

. . . •

Tit xGYt wA, Y: '

. I . . . . .

• • . . . . ~

. . ' , . . . .. •

• •

• • • .,. •

• • •

• •

• . - •. . • . .

• ' I

• . . ••

• . . . •

' .. • • • •

•

• • . ... ' •. : . .. \ . • • t • • • I

•

I . . . • t • • •

•

. . •

•

.. • • • •• •

• • I • •• • • .

CS' •

•

•

('\) •

• • •

. • •• . •

• • • I

• •

. •

• •

•

• • ·, •

. •

. •

c)JV£l.l)Pe 1 AAAI.SP0/J.1 •

• •

' . •

' .

6AT1-lcn1Nt; ..;

I IJS£/l.T •

• . . .. •

. . . . ....... ~ :.. .. _. . . . . '

•• ••

. • .. I

.. . . .

I • ..

I I .. . , • • I FIGURE 2

• • . •· 1

•

:1 •

.. INSERTING NACHINE MODULES. •

• . . •

· i I '. • ' ..

. ' ~ : .

• .. if • •

. . •

I' •

• \ . I•. ·., . . . . ' . •• ... . .

' I

. • I

. •' •

• I I ' I'

•

' . • ' • •

• I ' ••

•

• • . . • • • • .

•

Page 71: Modeling and analysis of a mail inserting machine drive system

•

• • <I

• • • •• •

• •

•

•

•

•

.

•

. . •

•

• •

•

-:

•

• ...

/NSER.r ~i71CI< . .

•

. . . .,. s u·e n·e N·

CUP

•

; . .,

•

•

-

•

• • .

·• 'I

• .

•

•

• • •

-. • • . .

• • • . . .

• . . . . .. • . . • •

,. . •

• (I

' .

. • •• • • .. •

.--~ •

• • • '» •

GR1PPcR I • •

ARM . • • • ..

• . •• .

•

•• •

' •

. . . . . • . •

- . .• - • • • .. ' . .

•

•

• •

•

JAW •

•

.. • •

•

• FIGURE 3

INSERT STATION MODULE •

...

Page 72: Modeling and analysis of a mail inserting machine drive system

..

•

•

.. •

•

-.

•

•

•

..

..

•

.. t•

•

. ;.,,, ".· ..• \. .. '

• •

·" .... ~.: ·! ,. .... ~~,' i .. .

. .• . .. ·· .. •

•

. . -· • ..

• ... . ..

• •

• •· .. .

.

..

•

•

. • •

.

• •

•

•

•

-· . . .

. . .•

. .

. ... ~

• . ..

• : -~ .

- ...

' ..

•

. . . • . . -. ·- . -.

-.. . .. ..... -. . ..

· .

~

..

•

• . . .

•

.. . . . . .

• .. . •

•.

. •

..

. : . . .. ·

•

:I

..

~· . ::. ··-

. -: -· ~ ..,-:. !. • .. • -

•. .. - ~ ·•· ·.:.·. ·-· . - .

•

.. . ............ _ .

.1R_Ack. ··- ~---..

-~.

-. -. -·· . . --... -· . . ..

. .

. , ·' ·.•

.,

. a

I

'

.. •

•

•

• •

. . -. . .. '\· .. \ .

_ ... ·-: .. •· . .. - . - ... ·• •.

: •.... .. .. ., .·

.· . ,

•

FIGURE 4 r . INSERT 6ATHERIH6 MODULE .

•

..

.. •

--------~------------~--~---------

•

-

•

•

LU6S • I

•

•

•

• . . •

.. .• ,. ,

..

•

·~

. . . . .

•

•

. . •

.. .. •

. .

r.· ..

Page 73: Modeling and analysis of a mail inserting machine drive system

•

••••

• ••••

• • • • .. ,· •

·•

• :,

' . .. • . •.

•

• '•

•

•

• .. •

• • •

. .

•• •

.. . I

•

•

•

'

•

•

•

• •

•

...

• • •

• • • .

•• ..

•• • •

•

• •

•

'

• • ..

• o a I

•

•

•

• •

•

• •

• • • I

-...suc:noN cvP

•

•

I

. .

. ,, .

• .•

•

•

•

• • "• I

' I

• • , • • ... .

I••

.. . .•

•

• I

• •

. .

.• I . .

•

. . •

. . .. ', . . . • • -..

I. . . .. ..

•

I

.. •

' u •

• . • .

•

•

•

•

. . .

• •

.. . . . . ' .. . . ...

• • •• .. ~·

•• "'· . . . . . . • .. . . .

• •

• ••• .

• •

.. •

• ·­, . •

• • ••

.·-.·:

• . • i. . . . . .. . •

t I I t

• I • . .. : •.. • .. ... . ... .. . ....... ..

•

• •

. -t I

•· ., .. ,•,, I

• I

•• ., o I

•~I"•' ! .,

• •

. .. • .. -. • • I . •

' • •

• . . , ,, .

• ....

..

. . .. .. . . . ' . . . .

, . ·. •

• •' ..... •• •

-• •

• •

•

• • •

•

... • .... ~- . • I •• • •

• • • • • .... • .

• •

•••• •• • •• • :,

. .. . • .. .. ' • •••• •

• •, I o

• . .

•

. . .. ' : ...• :• .• ·l ·

• • • I •. ... .. .

• • ·• . . •• •

• ·, •. • • •

• • • •.'

• .·· .. \ I • .. ... . •. •• ~

•

.. ..

: . •

•, .... •

• •

..

•• •

• • .. . · . . •• . , .

.. •

.,

I . .

•

••

. . •. ... . ... .... • . ....

•

..

•

. .

•

•

••

• • •

•• •

• I 0 .• • •

I '

• • .

•

• .

•

•

fl

• •••

'. I

I •

•

•

• • •

. .

•

•

•

. .

•• •

FIGURE 5

••• •

•

• • ,

'

ENVELOPE STATI.ON MODULE

. , . •

•. .

• ..

'

I ' .

,' . . •• I ,t .

•

.• .

. .. • •• .... ~

.• ~· •

•

. -· • • "t' •

. . ..

• •• . . •

. .

•

•• • . .

• •

• • •

. . •

•••

•

•

.I

•

• •.

•

•

. ..

•

' . .

.. I I

. -..

. .

• ••

. •, •

. '

. . ... .•

•

• . • , . •

. . • .. • • • • • •

• • • • • ~·· ·-

•

•

•

-· ~ ... .. • • I

I

. . •

•

I ' '

I

• •

•

. .

.•

• ..

I

..

•

• • I

•

•

• • .

• •

.. ••

. ,,

•

..

• • • •

t

'•

••

...

•

. .

•

•

,-·.

•

•

•

. .. • • ..

•

... I . .

•

•

,. •'

• •

I

•

,· • I

• .. ..... . .

•

•

•

..

• •

. . • . I

•

•

•

•

. .

. :

•

•• •

• •

.... . ".. . . ..... .. .,

" . . ...... • .. . •. • . • .. ... \ .. . . .,, .. ,. •

.. .. •

'•

. . ,. . • I .

1, I ... ••

• • • • . . • • . . .

. . ;. . . . . .

... •• • . . • . ' ... • . .. ~ ... . •· • .~ . . • • .. . ... ...

Io' •

· .... .• • ...... • ... "' • ••

• .. .. ... ~ .. . . . . .

• '

• .. ..

• • • •

•

• ••

•• • . ·'

•

• • .. . . . . .. . .... , .. .. . .... . .. . . • .

I .. •

...... • . I

•• "t

•. •

•

• • • • • ••••• • • .r• Io t t It .. .. ! • .

• • . ...... . • •• .....

. .

.. . .. ..

•

•

•

· .

•

. ..

.. . .... I•

• .

.• . t.•.. •

•

•

•

•

• •

.. \

.. · .

. .

•

'•

.•

•

•

•

•

• ..

•

•

•

•

·,

f •

•

. .

•

•

,'

•

l

•

•

Page 74: Modeling and analysis of a mail inserting machine drive system

_____ .. ____ _

i ! I • I I l

,

• •

•

•

•

..

•

. . •

•

•

•

•

... ..... -........ ·. . ....

•

•

•

-• . .

- ... •• 499••

,

•

..

. I

I

- . . .

•

Suc .. :r,o/J CtJP ~ DPE>JE/1...

•

• •

•

•

•

. . Hov1NG . Bi.lfut C.LosEll-

•

•

•

..

•

. . •

••

•

,,. . . .

. . . . ..

,.

• --.---~--­• • • •

•

•

•

•

•

•

•

•

•

------~---·· • ------.---:-- ... - .... - * - - ----------__ ___.

I •

•

•

• .. -·-- - .

•

-...

.JAW OPEtJJIJ{:,

•

.. -

. ..

MoVJA/G BLAPE oPEN€R

•

'

...... . .... --

• • • •

•

I .

• •

•

•

•

/ ~we 1 ,-E:D

.. BRtJSH •

•

•

FIGURE 6 ENVELOPE TRANSPORT IIOOULE ·

•

. .:\ . •

• • •

.. . ·~ ...

• •

•

•

•

. - .

•

•

-

•

• •

•

•

·- - --

...

•

•

....

- --~ -- .. -· - --- ---..-----:~~--::-----.·--- -- •·

- ,1·. ·- . .,...-.-. - . . . .- ...

. .

- ..

•

Page 75: Modeling and analysis of a mail inserting machine drive system

•

. .

•

• . .

. .

•

•

•

• •

. .

. .

. .

. •

•

•

..

\ . . . . ....... ..:Tl'Jw oP~ER .

. . . . . .- . -... . :

• • ••• - 4'

•

. . ·--

FIGURE 7 · INSERTING MODULE

- . . .· - .. . -- - .. . ..

•

•

•

<

. . •

•

SucnoAJ cµP· DEY1CE

· _. (Low ec · ·NoT ~1-10:w'J.i) •

•

• .

. - . . •

. .

•

. .' - . . ... - - ... -- ___ .... •

•

•

•

• • . - - . ----------- - --- -------- --- -

-- --- -... . . .

Page 76: Modeling and analysis of a mail inserting machine drive system

•

•

..

•

..

•

•

•

•

•

TURNOVE/l ..:JAw5-

--,;1~,1 wAY Tf<ANSPaR7 · ·

CHAJN . •

•

•

•

.. . . . . - .

•

•

•

•

FIGURE 8

•

• ENVELOPE TAKEAWAY MODULE

. . . .

•

•

~~EvA pR1vC

(Nol SH(?W":'_) ~· •

•

• •

-TR.AAJsPoflr . J It W ~Pe/st · . ·

. . . . . -·-·-··----- -

•

. .

•

Page 77: Modeling and analysis of a mail inserting machine drive system

I • '

'l ' )

' t

! I . j I f ' ' I !

• • • • •

• .. • . .. . . . . ' .. ·. . . .

: • • • • I • , ; . ... .

. . .... .. . . ·, .. \ ' ........ t . • . ...,. .

t' ., ~· ••• ... ... .. . . .. , . • • • •• .. •.

• .. 'ii• • ..

• : . : . ·' .. ; .•.... . ' ,. ,. . . ··r ......

~ . : I • ~~. . . . ' .... . . ·.-; . ' ...

~ ..... .,"I. . '. . .. . . . . . . . . ... . ,

'. ,• . . . . ': . . . . . . . . . • • . . . . . . ... .

•

·• . . ... • . . • •• • I

~· . . •

e I

. . ' .

~ .... .' . . . . • • • ... . . .

• •• • ,•• I • . . . ..

' • . ..

• • . . . . . ... · . . " . .. . . . '~ • • • ' .. .,... ,; • . ·' l . . ...... : .. • . •, .. . . . . . . .

• • .. ., . • . . • • . . . •

I •

. . . . .,· .. . . ..

.

• .. . • ·j . '. • • •

• ... . '• • • • . ... ' • • • ,, '· . .. . ,. . .. . '

. . . . . • •• . . . . . . . ... •: .. .. . '. . ' •' I .. ,; • • • .. . ' ' . . . . . .

• . . .... •

. •. .. ' . .. . \ • •

'•

• • .

• . . •

. .

' I

I

• I .

•

•

•

I

! •

• •

I I I

f •• I .. .. ··-·····-----------~··-- .. . .. ........ ........... - . :·:. o o o o o. 2 1 o.: ! = = ! s: =I·: I -.. 0 : g • ..... s s·i·1_2_i_!_r~-i-i-1·

• - . N ,. .. "' .- • - - - - - - - - - - N ... N .. N N N M " ii .. ~ ii "

I

.. . - I I I I I ,, '

'

'

ARM G!L"SP C.AM GRIPPER I ,.

'

. '

. '

- • I

eNV. FLAP HDLPER CAM* I

,' '

w • I

I ' I

',

: ,'

'

' •

•

• P'O • • • t·

UPPER SUC.KE9RCAM * I . . . ,: -.·

' -••••••••• I I I I '

'

'

' I . '

'

.. • I

FLAP C.\..OSER '""' * 11111111 ••••

. . .. ··

. ,', ,·

• I I

1 •••••••• 1~ •••• ~ •••• ~~ •• ·~······~······~····· • ' I I •-,-I I

Lo\NfR SUCKEtl CAM~ ii I I' I I I I I I --. I ; I .I I I I I I I I I I I I T I .,I I I I I' 1 1 ... 1 I I I 1 ·t ·I I I ·1 I

,11.·1'11

f . · ll1llll1111l~IJll~••11lll~I . . .

r111111111111111~•~•••~•11 ' '

STRotc.E STDP t:AM* I

' '

' '

• :

' I I W • I · a a •, • • · I ·1 _-_ t , -t · 111 - • . a • .. - .. t-t I I I I I I I l I .I _I 1• I I I · . I • I 1 I , , .

E"N \I. ;r ,-.vv O'?ENf.R--R,'1-\, * 11 I I • I I

• . • '

' I ' ' ' : I • I • . 1 l I . . 1 I I I ·1 I

Et-JV, svc.,n 0,-.1 Dt:VtCe CAM ,I I I. I I I

I • 1T'1.II· I 1. I I I I I

l. I I I I I I I I· I I

. .· '

I I I I I~

Ktc"-eR ~ 111·11111111

'

• • I I I I I

cNV,

' '

~

I I • ----.- • I I I I • • ,.. I I

11T1111111111

• • .

'

FLAP oJ>El-/Eft CAM,. I I

I I T I I I I ,I I I

,111111111

I• ... '

cNTI:-ftJNG FING.ER CAM* l ' 111111111•• 11111 •••••••• ~

MOl!S1NR .6Rll.S~t CAM 11111111111111111111,1111

' . .

111•••1111111

Dt:lccr CAM* •111111111111 . • • • .

.

JNS, SEPAR.I\To1t. CAM* I • I

I I I , .. •

HoLD •t,ov/tJ D~ICe- CAM : : t-tf ~r · ·H t tt I I I I I ' I I I

E/JV.

. . .. I I I ! • · . . . .

:r,-w '*ENSZ. -crR.-t'- ' I '

II Ill 11111'11Tall I I '

'

INS. STATION VAc..uuM JJ I I 111•111 r I I I

!1 I I . T I I

I a, I a I "I

111111

E.,JV, 57>\,,0N VACUUM~ I I I . I f

I I

I - ., .

IN:5, ~TION VACJ.JUM~ t . ' I I I I I a I .I I I I I I ,J-t-t-1 I

, .. ,, . -

1111111 ••• •

- 1111111111111 II I I I -".' I I I I t-r • I

INS, Su c:.11 oftJ DeV1Cc CAM

!

' . I •

.

.,\JRNoVEtt ::rAW C.At-,\"9 I I I

. . . I ·1 I 1""911

. . • •

'I I I I I I I I I I

• '

"

P£~\PHEAAl- 1\t-1\ 1JJG~ -. I I 111111,

I I I I I I .1 I l

i I I I I i ..... J.~

1111111

• • • • .. ,. '9 ~

-

•

DETEC,Toa... 1 IMl"'G* -;~ 7 . ' = 1 r ~i ~; 1 I i .

, I • .. I ! • I • !!! :. • 11111 I

TURNOVER... .. Gae-tJEV/\ t>EVICt ..

It,,

r • . . I I I , I . l • I

FLAP oPE:NEll.. BLAbE'··. CAM* • I t I I • ' '

• • I

i I ! i • • • . t • • I • a.1 I I • •

I I

I I ..... . .. . . •• 9' ~

,.. ~

·.

FL.AP nPEN~ .SuC"ON C.AM1' . • • •

I I

.. - ..~ . ~ • I : . I & - - .. •. • . • I

·. FLAP oP~tJ,:;(t VACUUM ,tMIN(aa il-. ... •••••••••

•

TAA"1SPoRT' INOEX DD/ICES --

I I •

. • . ' .

*NaT ANAL'l":ecD IN THIS STUDY • . FIGURE 9 . •

· TI HING D IAGRAH I

I

• .

I • .. • ........... ......--- _ ........... •·• f ... ·IL.. 1• .. r I_., •• •. • • • • • r • • • • • • • • ••

... . ... .... . .. . .. " . I ,: ......................... -.................... :··•:···:·· ... . . '

.. . .

M • • •e 111"¥• e t • • •• • •·

." •. , ••• , • • • •.,, • • ·"'r • • . ·~ : . • • • • •. • •. •·.• . .

. . . \ ... . . .

•

Page 78: Modeling and analysis of a mail inserting machine drive system

• •

I'.

.....J 0

\

:P

•

I

• •

• I .

•

.. ' .

•

; . I ot

•'

. . . ... ~ . . . . . .

• •

...

-··· ......

.. . . . . .

••

• V

..

.. • • ·'

•

I .. . . ' . .. .. ..

• I . .

• ..

..

. •

.. • • I . ... •, ••

I

. ' XC , '

• r

•

•

•-. •

• •

.. . • • '\'

. .. -. :

. . .. .. .

i

•

i

. •.

•

..

•

.' I .. . . . , •

...

•..

' ... .. . ,·

• • • I . ~ ... . ,

••

. . .

••

#

I •

{

CA~ , .

. .

•

'

•

..

. ·

,• .

. . ·'

, .... •, I

•

t .' .

• r .

,.

• • • ..

'·

. .

• • ,•

0 I

. ..

I

•

·'

•

,

.. . . . .. ; . . .. . . ,_ ...... • ! . ~-. . .

• -•• . t . . ' ,· ..

' .... .. . • .... . • •

.. . . .. I •. : ... i •

~ ... .; . . . . . .•

.. . .. ...... .7' •• .•

,• -.

• • • . . . ...

• ·. : • •, I·

•

I II .•I • I a 1- • • I

I ., . 1• i I

•

' •

,. ... • .. .. . ' •.: .... . . . . . . _, •:. . .. ·~·- .. '/!.· _1-;'··· • •

·~ •· .... . . . :. . : . . :,

'I • • ' ...... •.• •••••••. • ., r!c.• ,,. I 'f.' I , "''

• ,. ·~ • •:-., :i· • I

... ""

..... a,' a'•. . .......

' ' . . . . . . . . ..... , .;. "' .. •. f • •. ·> .. ' •.

.. • i '... . -~. • . . .. .. .. . .. -~ .. ~. •·

·,. ·~· ...... ... . . . . . . ~ ;. ~ ... , r·> ..

.. ' ' ..... i • . I ,19_. 1.;:. .... ~, I

• I .,., ••. • • • • •

• • • • • ••

·,. .. 1;. : . : .. •

• •

• • •

. . ' '

.• . • r• . , ... . . ' ... . . . ,

:

. ... I

• 1· .. • . ... • .. . ' . . .. :-

. . .

·• ..

.. '

. ."

• • .... .. . • I

•

•

..

. . . •

•

•• • i.

..

r

• . . .

• •

. .

I . • •

I .

•

•

FIGURE 10 MODEL.OF TRANSPORT DEVICE

I• ••

..

..

.. '

..

• ., . ..

. . . ....

.. I .• ,• :. ,A .. ' . . ~ • .

. ; ·, ... ....

..

. .

•

•

, ..

..

' • .. .•

• ,.

•

• .

..

l

•

-..

•

•

1'

. . . .

. ..

• •

. .

~ .. ~­.. ~ .

•

•

•

•

•

• ..

·, .

. . . .. ·- :,. • I f •

.: · J>No1". · Pb,~r . ..

.. ' ..

• • •• I • • .. . •

•

I •

. .

n I

. ..

,.

·-•. . ,

' . ..

. .

• .

•

I• ,' i

.. . .

; .

.. • •

•

... •

,. '

•

••

y

..

; .

. .

. . . . . . .. .. o ' I

•

' . ..

•

•

....

. .. X·. .. .. .. ~ •• • ·= •.. .-. . ~ .. ..

•

• .

•

•

• • •

. ~ •

•

' . : . ~­• • ~ ·,

•• • . :

..

•

•

•

•

Page 79: Modeling and analysis of a mail inserting machine drive system

I

I l t ' •

, . 1

-I I

l : , I ' I • l I

I . ' ' ,., I • 1

. l

. ' ·l .

. : I . : . ·1

I

•

..

• •

• •

•

. .

•

.. ..... -··---·

-

' ·• ..

I •

• I

". I • '

• .

•

•

' .

• • ' '•

• •

•

.Su PPon:r .. T({lfU.S ( z.)

• •

•

. . . 1 •••• 'I ~·. ••• '. ·: ti

• . I

• I • ;

• ' . ...

.

•

Q. I

• •

•

•

,..:.''--' -

I

' ... • •

. ..

-·

' \

'

FIGURE 11

•• •

•

•

I . I ~NVELOPE TRANSPORT DEVICE

·,

I

.. I

' ... . .

, . . . .

.....

. .. .

... ••

. '~·. •

I • j • ' I

• ••

• • . . .

. ·-. .

•

·,

•

• • • •• • • • ...

• ' . -- \

I

• • . . . ~.' .

. .... .... • I

-... ..

. I

t!J •

. .

• . ..

. .

•

, I ... ,

•

. . •

.. I • •

•

•

. .

•

' ' I

I I

•

•

•

•

.• ... : I ... •

•

. .

'

• ' ..

•

....

•

•

Page 80: Modeling and analysis of a mail inserting machine drive system

i •

• . I . .

•

• •

•

. .

•

•

•

~-~· • I

7 -•

!·3?00. -[C

UJ --:,-0 n. 1000.

~ •

_,.

~ . ' <· • a: • I- • •

• • • •

•

•

•

.. ..

•

. . . .. . .

: • . •

r .. •.· •. .

,. •

. . .

•

•

I

•

'

• ..

'· ·• . . ..

• • ••

. . •

' .

. . I \

-~ . . . . ,' . ' .. • l •.

. .. ' .

'.

' •

•

• I •

. . . . . •

~' ·. C,\U . Af'1 . ..\L '15 I 5 • •

. .•. • • •

• • . . • . . ....

..

• . • . ,,r_ . . • • •

I ., . •• . ,;, . .. .

aaanaaaaaaaaaaa=aaoaoaaaaaaa ••

• . . •

' • .. . . . • • • •

.... • •

I . .. •

• • •

• • • •

• • . •

• . • • • • .. • ' . .. .. . . ..

. . •• • • . • I

•. I

• • l ;., • .c. ~a • • • •

,. . . • '

• TC~.,- SE"C.. • ,.

• I I

. .

. . ,•

• I'

,·

! I •: ~ ..

• . . .. .. •,

..

, I

:

•

.

.. .

.. . . •

•

••

•

•

.. : . • •

• •

I·.!

....

•

•

.

•

• '

a aa a.::,ao·a a:, a aaa '3t3a a<1a aa g ~\., . . . /

./ • • - t

• • , .

. .

• I

•

•

• • . . • • . .

•

• ~....R . ,11tJ v=-2855 •

~ AT x: .2910~ • . . . J.1,\~ \':2855 • • i .AT x- ;.;:::,&000 . : .-• •

• . •

• •

• •

• •

-- - -- ,----·-----------.- ..... -·-- ---· ... ,-.:~ --~ ..-:_:_ --~--:..__·_:. __ ....,; _ _;. .;.:_· __ : _ __:__~---·_-::.-·::-: ---_-- ... "":._·_ =:::.-:-! ... ~-=~_.:___-=-----==---==---_:::___ ~-- -

•

•

' .

FIGURE 12 ENVELOPE TRANSPORT POWER CURVE •

. . . . .

• • • •

•

.

-.

•

•

Page 81: Modeling and analysis of a mail inserting machine drive system

•

•

. .• . . . . -...

•

•

.;. . -

•

•

•

•

•

• #

..

''

•

-AuJMIWUM GUIOt:.. -

•

'

_, -'-~-

• •

•

•

•

•

•

•

•

. . . •

•

• . .

FIGURE 13

.

PU.$1/EI< J.tl' (rt PICAL) •

• • • ..

•

_ ..... -• • •

~ . . • •

; .. • . .,,.

•

.

f111CH1 Ale 171.;. ,-!,,f £ ··---

' . • ,

. -

•

•

INSERT TRANSPORT DEVICE •

•

73

•

•

•

•

•

Page 82: Modeling and analysis of a mail inserting machine drive system

•

• •

• •

I •

I

•

• • • • •

•

•

•

• •

' . . • •

•

•

~ •

CAM ANALYSIS •• • .. •

~ .-.------------------------------~

I

•~

I

. . .. • • . • . •

. . . . • .

• I

-:f!t . . • •

. . . .

•• ..

h • .. . • :..J · I 000. .....

.... .

··a: · llJ 13: O· 0..

. ' •

. . •••

. . •

• •

. .

• • I • • :

•

• • • .

. . •• . . •

• . . • YC •• • •

• . • I

• . . • • .

,

I

•

'

.. .. . . ..

• •

• •

aaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaa

• •

• • ' ..

•

,. •

• •

. . •

• •

.

•

.... '

•

• • I ' • •

• •

.. •

•

, .. • •

. . .. •

• ••• .• • I 00 . ••

• •• • •

• .. . . .. i t'

• . . • ..

, · . .

• . •

'· ' . •

' I • •

. . ... ' •

.2 00 • 00 . . •

• T.l li1E , SEC

•

..

(I/

•

I

I .

•

I POWER UIN V=• 1257.7-4 .

• • AT X= .300000 • • .. ·.MAX V= 1257.7-12

• AT X= .060000 .. • • •

• • . • •

•

•

•

- -:: - --~ ----=--- -- - - - - - -- -------- ---------- - -------- -------- -~-- _:. ______ - - -- - --- -- -- - - ... -- --- -·-·- - . - - -- ---=----=- _ __J

. . •

•

FIGURE 14 INSERT TRANSPORT POYER CURVE

.. ··--·····

•

• ' •

•

Page 83: Modeling and analysis of a mail inserting machine drive system

'I '..!

• I . .

•

. •. • • •

•

• • ' ,: ~-· "-' . . .

w· BOO. Ya •• ~--

" a: w :11: 300. 0 a. 0 ··. w t­t-- •

. • ••

•

:2. -200 l/) •

a: t- .

I

•

• ••

. , • t • ... . ••

.. ' . . i

•

-700 • • •• • •

'

• •

•

•

•

. • ·~ •

• . . • • • .. • • .

.

• . • •

•

• •

• . • •

• •

DDDDDDDDDDDDDDDDDD

..

•

• •

• • •

•

•

• •

•

..

•

• •

10

•

•

•

•

• . ..

•

I

•

• . .

.o •

• •

• • •

•• • • • CAM ANALYSIS

' •• ..

•

•

• •

. .

~

•

••

•

...

•

. . ,

•

: • ...

• .. . • •

•

•

• • • •

• •

,·

• .. •

.. . •

• . -: • •. ••• . • • . . . . • . • • •

•

i . •

·1· . • • . • I

'• . -~

I .. . .... • . • . ~- .

·' I

• • ... • • . . ' •

' .. • • • • •

t • ••

• • . . . • •

•

• • • •

20 .o

· ANGLE , . t> £"tit •• • •

-• ..

FIGURE 15

•

•

'

•

• •

•

•

•

•

•

.. • •

. .

a DDIJ('cD a

• . .

•

• •

• • • .

..

•

ENVELOPE TAKEAUAY POUER CURVE

..

•

• •

•

• •

•

•

I

•

.. •

•

•

•

. .

•

. . •

•

•

•

• • •

•

. .

aaaaaaaaaaaaaaaaaa

•

•

•

• •

.o •

•

• •

..

. .

•

•

. .

•

•

•

•

•

•

' ..

•

. POWER MIN Ys-700.354

AT X•304.0000 MAX Y:700.35313

AT X:58.00000

•

•

•

'

•

•

•

Page 84: Modeling and analysis of a mail inserting machine drive system

•

•

•

•

---BE.LL cf<ANK

•

•

•

•

• •

•

•

•

. " -

t

- Rocl(£R ARM

•

•

I

,....__, . ·- .-...... . •

-

• . •

,

• •

•

•

-r- --. I

J -

FIGURE 16

.

. ..

..

•

• .

. .. .. . • ~ - . .

&RIPPER ARN DRIVE MECHANISM

-GRIPPfR ARM SHAFT

:--~R\PPER

ARrv\

(TYP)

LFAAME

I ··-• . I

--.L

•

. . . . . ...

' .

.,

.

I i • .

J . I .

. ~CRANK

I

I

'\.

' .

- . r

. ' ' •

Page 85: Modeling and analysis of a mail inserting machine drive system

•

. . .

. ~-,

•'

.. • • . , .. . . . .. ••

• •

• •

. . .

•

•

. . ••

. . •

•:

.. •

f , .. . .

:

. . ..

..

-. ... . -

. . .. . . ·•· r • . • •• ,.. .. · ....... -.:

. _ .. • .... • •

• .,

. . ,· ..

•

..

•

. ,

•

...

• . .; •·

.· . ... .,. ...

.. •

..

•

. .

...

.. -.

•

·.

.. . -.

,_ .

•

•

• •• •· ....

.. . · ,

•

'

..

. . .. .. .. • ... ..

-· . .. . .. .. .

. ..

• •. •!,. .... -~ . . .·•.

· ••••• -~ !' •• :, ..... ·:~-

. . . . ..... ·-=-· ··.-. ~- -- __ .,.._ .. _

•. ,.. • . ..

. . ~ . .

•

• .. ... . . •

- • .. . . -·--.. .....

;-. . • --· • •

• •

LI"IK 4-

. .:.. . •

. . ·-··

. --. ·-·

·-·

• r

.•

•,

..

. . .

.. •

. .. . .

•

.:

. .

. ' ..

-.. . .-. ...

ti!'• • • • •

. .. -· ..

•

..... .. ..... . . . --. ... - .,, .. _._ ...... -;.. -. .;, :· · .. :.··-~·-· -• .. •

• ... r p ·-.~- -, : ... . ..

... .;.. ....

· . :.:..-. . ; ·:· . •

• •

•

• •

-· .-•.

··-~· ..... -"· .• . - . '\ ~ ... -._ ..... ·; .. . -:- . .. . ... • :-· .. · - ,·. ·-.-- ... - ·::- ·:... :.• ..,; ~-... ~ -...... .--...... ,-.. •-•"":·.--I!-·'·

;.· .. --· ·· --"!·. t • ~ - --- ~ -- I • • . .

• •

-. , .•. ···.:-~:~ .•. ... . .. •... • -·· . . -·~.· ... •

•

.. -.

• . • •

.. • •

·-

· . .• •

...

. . • •

· .. • •

..

•

. ..

•

. · . . .

•

•

. -"' • • • -.

• •

•• •

•

•

• .. . . . •••

• •

••

• . . ..

. · .

•

... .:.· . .. I

.-

•

..

..

.. .. . . _. .

. .

•

. . ·. •

-··. • -- ..... '·-:.:. • • .. f ••• •• ,. . . . ·.• . ·. ~ . : -··-·-· .· -~·-.. ·:·--·· ··:: ... · . . . . . ....... .. . . ... ... . . . : ·-. . •. ~-

- .. • ..

. . .. . . ~~ ..... ·:. .. · ... . . - ~

• . . .. . . . . "· . ..

•·

.. . •

•

. . .. ···-.. · . • •

•

. .. . .. • • . •. . .. • -··'I ..... ~ .. . ..

Llf\l(

. .

.. ·: .

. .

., . . . . . .-.... • ...

. -... •

• . .

-. .· ·' .. .,

' . . . .

' • . . . -. . .

. . • • .·.

• ' ..

• ...

·-

•

. .... ... • .. .. . .. • •

. . . .. .

• .. ,•

• • •

,·

.~-

. •

.. •

•

..

• •

. . · ..

•.

.. . . . . •"' . . ..

•

•.

.. ..

•

.. '

•

... •

•

· .. . ..

'

. ... .. . -- ._, . .• ..

. ..... .. ..

. . .

-..

-.-. . . . . '· .. , . .

• • . . .

-· .

-· .. . . .. . . .. . -.• .•.

. . • .. •

, .

• ..

.. : .

p •

•.

. ..

I•

..

. .

•

'

•

. .. · ... ...

.. . ... . . • ....

. · ..

~ ...

•

. .

• · ... . .

.•

. ... .. . . . .. · .. ....... -. . ........ ...

• .

•

'. . .

•

•

. . ...

•

• • .

,._LINK

• . ·• .. . .

FIGURE 17 ARK DRIVE MODEL

.•

•

•

•

•

•

•

LINK s~

•

. .

•

.-

. .

2 .. •

-

·-· ---.•

•

.-.

. . ..

_, .. • . -. ..... .

•

-­,# .• .

XC .

~m&..L~s1S PT

•

•

• Llt\l< 1

• •

•

• • . •

• • •

.... "' .... •

• .

•

. . • . . • .. 11 •

• • . .

• : i,. .. ·• .. :.., • ... : .. • •

• • .. •• . . . ... ·~ : : ..

• •

• • • •

. .. •

.

• .. .. ·.~ .. .... , •

•• ~lit • .. . .. . .. .. . .

. •

•

-·· ,

.... .. .. • • .. . , •..

-- . . . . :,·. i • .

. . . . . . . . .. ... . . - .. . -- . . . -- . .. . .. .. •. \,,-· ••• ·~ • ,.· ·: ·.1. •. ::. .... ··\.• •

·. . . . . . . . . - -. •""" . . . . . '.. . ... . . • .. .. • . .

. . ·• . . • • . ... ' .

•

• .. ... ·-

. -... ,.... , .. . : . . -:'.' ,:: .... .. • -t ·;.d. :- -'~ ·-,.

• t • . -•. • . : . ' • • •

• .. • .

•

... . . .. . . .. , . . • . , ..

.. ... . •.

• . .. . . . . ~ • .. · .. . •. -. . .. . .,_ ,,. . : '"·· .. .

\ - .. . .. -. ~· •.. ·. . ......... " --... . •·:· . . . .... . .

• •

::· • ... . . .. ... .. . .. . . • JI, •• .. .-: . . . ' ...... ~. .. .

:.1.. ~·~~··.~- .·!';• • .. . . . . . ~

. ·~ ......... .. .. , .• .. "'

t"·.--.·.·­• • ••

. . . ..• -· ... . : ·.; ••• '!";:. -

. . • ..__. •· •• • I : •

•

. . . .... ..

• ... .. •

-

•

..

-' --•

•

•

. -\-. . . . . ,·. . ·•

'-: .. . ....

•;.• .,. -, •. •

•

. . .

•

..

.. .-- .. .

...

• • . ..

• •

-DINT 7

•

.•

.. -

•

•

•

· . . .

. . . . ---. .

-. ! ...

·- ... - ~ . - .. - -. . . .

1

•

• • . .

•

~ ....... .

...

.. --

. .

..

•

• . .

•

• • .. ~ . I• . • • .. ~ .~ \ -. .... , .... · . -. . ..;:... .. ... -,_ ... .

•

.. ... -... . . . . .. -. . ... Ji...JI' ... - ,. ... . . .. ...

-. ..... •

' . .

•

•

•

Page 86: Modeling and analysis of a mail inserting machine drive system

' I .. . . .. ; -:i ~ .. . ' .

I I ' ,· l . . . · ... ~ .. ',,

·;: : . '··· ""' . . . • • !, . ,; • . . . •,

f •, •'

· .. . ... . . . ·• • I

.. " I . ; ..

' i , . .. • . :t

4!" •••• " .. ,, . .

. 'I . " . , ..

. ,. .. •., .. . •• . . .

', I

, ..

.. .. ' .....

..

.. •

'• ~ . ' . .

•• 'I

' .. . •,

'I

·,

~ I

' . , I• I

; I

·.1 I • I I

• ,I

. . •

' ,· i • t

. ',•

' . : f

I . I

I I i

. .

•

•

. .

•

•

•

•

•

I

•

• -2.00

"2 • -,,.

llJ .... ~

I N •52. ... ~ •

<

••

-IDZ

... .,

,·

• •• •'

•

'

•

•

..

• •

..

•

• • \

•

•

•

•

..

. .

•

•

•

• • ..

•• . .

. ,.

..

•

•

•

•

•

•

•

•

•

•

•

·­.

•

•

•

.•

.. ••

·,

• •

. '

•

•

• I

•

·,

•

. •.

•

.. ·'

•

• ·• I

·,

•

• . .

•

....

. .

•

•

. .

•

. .

• . '. \ • : .. . . .

..

• •

• • : :•• •. .. ·, .•

· .. • • . .. .. • • •

. .. .• ..

7 • • • • I

MECHANISM ANALYSIS •

• •

. • • •

,,

. . .

•

•

• ·,

' .. •

.. • •

•

. , ... .. • •

• •

• • •

.. .. • • . :

• •

•

• •

YC ~-- ..

• •

•

• •

• ·.

• XC • •

..

.. . \'

...

' .

.. .

'. \ . I

•

•

.. . •

• . .

'

•

•

•

• •

•

I

•

•

•

• •

• •

... •

\ • .

•

• •

•

P0ST.TION1 DE~ • •

..

FIGURE 18 ARN DRIVE TORQUE CURVE (UITH PRODUCT)

•

. .

•

•

..

.. .. . • ..

•

• •

. .

• •

•

•

. . . .

• .; ..

•

•

..

• ,

• ... • . .

•

•

•

• •

•

•

. ... ..

•

•

I

0'

,, #

•

• •

•

• •

I

• •

•

•

•

·IOC •

. ......

.• •

. .

. . . .. .. ••• h

•

•

I

. .

•

..

•

.-•

•

•

•

•

•

..

JOOI MIN Y•-118.513 AT X•t3.00000

UAX Y:-12. 1008 AT X: 1.000000

•

• • •

• •

•

•

•

•

. ·-·-· ...... •

'

•

•

..

-I i

•

'

• • . • I i •

•

•

Page 87: Modeling and analysis of a mail inserting machine drive system

•

'

;

r

•

'2 .

-~. aJ .J .. (I) -~.

• N • ...

::, 0 ID < w •

i.-2, . • .

• ••

. . • \

..

. .

' . . . • . . .. .

• . '. : • • . ~ • . . .. ' to

• .. I

. ~ .

. .. •• . . . . . .

.. •

. . ,•·

·•·

. .,. . . .....

~

I .. ..

.. •

•

I ',~'

•

. '·

.. . .. . . . . .

..

• •

...

. . , . . . ..

.. ,.,_., µ

. .'·~· ~.. . . ..

MECH,\N(SM:ANALYSJS

. . . . . ... . .• .

I • . . : . .. -: • .· . . .. . . . .

• . .. ... • ~ • .. .

YC . . . . . •

•. • . ·', ,• ,. .. • .. .

' . .

' • 'I,

• • • . . ...

• • . . . . . J . . . .. ,· . .. . •. . . .

'• . . . ·~ ( .. ! . • • . • • . . . . . . . .. I • .. • .. . ....

: I .• • . , .. .. . . .

---- .. -·· ---··

. . .. . . . . I

I • . J

., • ·.

•

• I • •

•

•

.. I

~.nr1~------------.------------,.------------..------------,.------------..------------.,------------..--

• ... :•

.. . . . . ••

100 I•. •

•

\

• .. 2.00 • .. .

' POS~TIO~,.~ OEG • • •

FIGURE 19 ARN DRIVE TORQUE CURVE (UITHOUT PRODUCT)

•

·300

• • ,·

IA •

. .

. '

.. •

..

•

• I

- JOOI MIN Y=-2.97007

AT X:17.00000 MAX Y:5.397760

AT X:6.000000

• • . .

. .

• . .

• • .,

. . •

Page 88: Modeling and analysis of a mail inserting machine drive system

•

•

Q) D

. . •

.. . . -. . . •

•

• •

' . . . . . .

. .

ARM DRIVE TO-R ·uE. CURVE . .

. . :

IN-LBf

I

•

• . . ~ -

. . .

(COMPOSITE •

•

80 -----------------------------------------------------------------------.

• •

I

; . . .

• •

.

60 ----------~--· ---------------· -----------------------------------------1

• •

•

•

40 • •

•

• •

20 '

•

-20 0 50 · 100 · ISO

•

. · · MACHINE POSITION~ DEGREES . . . ~ .

. • • .. • • • - 4 • • • • • .•

FIGURE 20 · · · ·

ARN DRIVE TORQUE CURVE (COMPOSITE) ·

. . •

•

• •

•

,

.

. •

•

Page 89: Modeling and analysis of a mail inserting machine drive system

,· .

'

- . .. ... . •

·• . •. . .

. - . . .. .. . . . .... . .

. . .·

• . . . ". . ·.. ' . . • •

. . . . . .. • . .

. . . .

• • • . .

•

•

•

- . •

•

-·

-

. . . . .. • .... -.. ., ..

. . - . .. ..

. .

· . ·.. _.· · . GR;\~~-.: .

. . .

C~M · ..

•

• •

,--------~--~- ,_ __ .._ ___________ _J

..

-~ ARC· -· L\NK .

.

. ·c::,·RlPPER

• •

•

.

RELEASE . '

CAM

•

. . . '

,

- EXT£1JSION SP1l1NC., .

. -·. ·_··ARM--.:---· -~~

. . . . . L.-~ - :- . . · ...

~,;_-_. .. 1'~10 \/ AB.Lt

FIGURE 21 ARH GRASP AND RELEASE DEVICES

•

• 81 · . . .

. .. .. .. .

·:!AW .

•

. . ..

....

Page 90: Modeling and analysis of a mail inserting machine drive system

•

'

. .

INJTIAL SPRlMB L8'k3TH : 2.1947

•

JAW CLO,SED WHEN ARM IS FULL IN POSITION= 0 DEGREES

FIGURE 22 ARN GRASP MECHANISN MODEL

rSPR1"8 LEU3TH : 2.4202

•

JAW JUST FULL OPEN ARM POSITION= -26 DEG MACHINE TIME= -85 DEG

Page 91: Modeling and analysis of a mail inserting machine drive system

•.

•

•

•

..

• ..

-· •

..

• •

. . . . . .

•

·.

. . ..

...

• I

• I . •

! . . • i I I • l •

..

• -· :

I . • . . .

f • •

• . •

:

.. .......

•

•.

•

I

•· - . , .. ·•

•

.... .. • . --

-•

• •

·. . • .· - . .

I •

..

... . •

- .

.. •.

• . .

•

•

• .. '

• • • .

.. • , ••

• •

•

. .

... ..: .... •

•

•

' .

•

. •

•

..

..

.. . .

•

•

•

•

( •

•

•

- . .. . . .. . . - : .·... . . .... -------·-· ... ·.- . ·-· _,._ .. - . . ... . -~:·· ... .. ~--· .. . . ,,;• .. -.. . . . • • . :- . , . . ........ ... . . .. ....... -· .... _ ... ••. . . . .. • • • •• -·· ...... 6, ........ .-·· ...... -·,. ·--· - .. . , - ·. . • ..... -.. . .

•

·• .

•

.. . . ... . . . .• ...... · ,,.,.. ... :, . -·· . , . . . . . . . . -·. . :.. - -..: . -· ·~·- ' ~--· ··: .•• - • . • • • ...... · •. w. : . .. .. ... .,

:.-..;. II • • • • • -:• • I . . • • :• • ;.• \. :- •• • • • • •

·- • 4 ... • ••• • •• • • ...... : • • . .. ,,.-.·, . -~- ..... .,. ....• ··-... ,,. -... - .· --.·· :-- ... - • - . ••1r • • • • • • -- • ... • • : • . . .. • • • .----.. . : ';JI • • •

- tt·· :. • ~. • . • •• • • • ... • • ... • -

• .. . . ~ ..• -

.. ... - . ~ -·.

• .. . ..... .

1- •• • •. •. i· • . . . , ....

• • • .

• .. ... ... , •

• •• . .. .

• .. • .. . ...

.,

.. ... . . -

... ~: -:.-...:· -·: ·'· .-... •· ... . . . .. . : . . .. .. . - . . .

. .. -. -... . . . . . . • - .. .:.._. ... . . .... ,_.. . .. . .....

• - .... ·: .. . -:.~· . . .. • -· • .. • .. •· -· • • ..

• • ...... . . . . . .. ... ., ..... . :. . ., ... ·.·· .......... •- ,. . . .. . ·· .. :.· - . . - . . . r • • .:·. • •.. •·· :· • . . . . .. . .. .-. . .. "".. . ..

.. · • ·._,.-.~: •••• ~ .... .• -· · •• -~ •':' • ... ,. • . • •• ·r· "-• . . . . . . . .. -- .. ~-- .__. . . ......... - ...... --·· ... .. • -·· • . • . .I • .. •• • • ·: • .:_--: •• •• - ~- • ... · • ··-· • • • • ·-.. ... • •

• - ••• "'_.,,, ---- :.---~-:, - ~·' •• ... --- .# . -. .•- . - .. • .... -. . . . .-.::---- ... . ... . -

.. ..

..

. ... . •

•

9

• •

. .. . •

. . .. • .. :. ... . . ,.· .. · .. - .. . .:....:.-· "·-··.:.: . -.. .· . .,. . . •... - . . . . . . ....... -... · -·=· :,. 7 .... ., ·-·· • •. ,._. --- • • .. • 911\--, =-" . -• • '! • • : ... .• _ .. _ • .... _,,,,,,.... • . ' •• . ~ . . . . . . . . . • • #: •• :. • • • ... --~:.-.: ... •. • • -~ • • .• •• ·

. . . .. . . •

•

. .. . .. . . • -· - .... - .. ~·-... .... - . -... --· I'. ••

_ ... ··-. . . .... ..

. ••

. ~-- . . ~-. -·· , -· •• . -· . . . ~ . . . . . ..

' ... ·-· -• • . . •

. ~ . . .~ . •.:. - ' . ...... • • .... • -.. ... · ,_' .-.,. ...

• • .. . . . . . .. .... _ •.. ·= . . . .: . ,,_., ... . . . ••

• ..

- . -.. .. .

. -.

.. :

•

. -. •..

• •

: .;

. .. .•

... . . ..

• .

•

. . ,, - _,.. ,· . . ·-., . ... ..... -- . - . ...... .. . . • . .. : .. ·-. -: -..... . . -· . ...... - ·- . •• ...... . .

• . . •

.:

·­.

..

. . •

-.

. .

. .• •

• •

• . .

•

•

:

• -. . . . ~. . ~ . .. . . . . . .. .. -.-·-...... ~: :.:-.·. .-.~.:=~~-.. -.: .. ·.---.. -. . ..... ~- .. .,• • • %,• • ,-- --.• ;.. : _.. .P _. t• . • ... :•:.:••. -:_. --.-·~ ;:

. . ... . . · .. . . . . ... · .

•

·•

.. ., •

. • ..

~ .

• _•.; .-:,r. •••• •• •• •,•• • I • ........ •••· • • •: ·• :.- . . .. ....... .. . . . .... .. ...

. . .. • . . . . . . '-'.. . .. . -· . ._.. . " .. -. . . . .. ...

• . . .• .. .. . ..... . . ·-.... . . .. - .• .

'· • '"-• .. ~- ... . ....- . ·. . -- ·~- ......... - ·-· . -.. . -.: : ._ ,~ . .... : . . . ..

• . -• ..•.

... •

. . .. .· ·='.

• • ·­·· · . . . .... .. _ ,: ..... •. -.

• .

l .• ..• •

• •

.. • ;

•

•

FIGURE 23

. . . . . ........ • •

. .

.. . .. . • • -. -:

• .... . . . . . ..

\ ~- ... 4\ ,: • .. --··- .•. ;•... . .. :

• •

. . .. --· •

; ··- .· . . . ... . ..

.. ··' • -. . ... . . . .. . - . .. ....

.. ....

..... . . --.. •. ·!?·-. . .

!·· .. ·- - . ·-r

. ..........

. . .. • .

·: ·-.

,. ·­...

.. •,

-•

.. . -. . -··

•

• ..... -·

. . • : ..

• .. . • . . .

. . ..

• •

..

... .. .. . .. .. ..

..

•

• . '

:~ .

..

..

.. •• •'!'> • -- . ..

•.

· .. .-.. .. · .. .... - . , ...... . .. . .. ..

.... • .. ··-:t .. - .. .. -.. -· -

. .. -.. • .. . ...... . . - . . ..

.: : .. . . . . -·· . ... , • .... •• .. • • 41!. . •

• ,-

..

. .

•

..

. -. .. ... . . ~.

. ·

•

•

.. -. -~ -:- . . . . .

;

.• ..

•

•

.ARN DRIVE CAM KOOEL ..

•

•

•

•

•

. :

•

. .

.. .•

.,. - - • .. . . . ., . .­•

•

• ... .• .. . . ., - ... . . . . .. • : ! • •

• •

-. .

. .:• .. •' . - -·. . -:, .... " . ... -~ . .. ... ... .

. . .... ..... • .... ~ ....... : .

-. •

..

.. ,. -

·-.

. .

. -

· .

- ... . . . . ... ·- ·­. .. • "a,

• • . . .. • ...

.. ..

•

•

. -. ..

.. .

Page 92: Modeling and analysis of a mail inserting machine drive system

. '

' ' . ~· ' i

i . '

. • i

. .

. l :

•:

.

d' u V)

-.....-400. '2 -,... In _..

.._ a: zoo • • w ~ 0 a. 0 w • • oo t-... .. ... ~ l/) z . <

. -200 a: ...

. (X) ..b

-.fOO •

•

GRAPH -···· ···- .

•'

. . I

• •

•

• • •

• . •

•• •

• oaaaaaaaaa ..

• •

•

• •

I .o ' •

•

•

. . ' ..

•

. '

. CAM ANALYSIS·

•

.

. . • •

.. • ...

• • YC

.. .. . . .

~ ~

! • •

~

•

•

•

•

Y-··.

.o

~NGLE; PEG,

FIGURE 24 ARN GRASP POWER CURVE

• •

.. .

•

. . . . • . ..

. .

. .

• •

•

•

•

•

' .... _.: · .. - .

. . ·,:·· -

. .

30 .o

..

\

. .

. . ' .· .. ·-

•

POWER MIN Y•-3"3.819

AT X• 18.00000 MAX Y:393.6761

AT x:azz.0000

•

•

. .

'

,.

•

•

-

Page 93: Modeling and analysis of a mail inserting machine drive system

•

• • . -· . . ...• •· . . . . . . ·• . . . . .. . . . ....... '. .. . .. ...... . .. . ..

•

. ~

00 . 01

•

•

•

..

..... -.. • • ••

• . \ . . . . .

. .

• .,

.. '

. . ' . . .

• • I • ' . . . . . . . . . . . . ;

. : ·t . .· . . . ~ ...

. . .• • 0 I . •. . .

. . . '. .

. . . . .

. . - • •

. . .

•

. . . .

· ARM REL·EASE POWE/R .CURVE • •

. · ... IN-LBf/SEC ·

. . .

• . •

. . • ••

I• • . .. •

·200 ...---------------------------

--

150 -------------------------------------------------~--------------------

1

.. ' . •

100 ---------.-------------------------------·-------~----------------·

50 a-------------------------------------------1~----------~----------------1 ,.

. .

0 '--'-_..__.__..._,..__,.__.,_...__.__. ___ ...__-"-_.._-'-_,___.__.__....;;ae._.._,

0. so Joo ISO 180

. . .

MACHINE POSITION, DEGREES • FIGURE 25

.ARN RELEASE POUER CURVE

1 . . .

• •

. , : . I• •·, .

Page 94: Modeling and analysis of a mail inserting machine drive system

I I I

.1 i

00

"'

. '·.

.. -~ ..... , ·,

•

.. ,.

._ __ ._ ________ .,J._i

GE:NEVA PRlv'ER

E.ND v,r.w

'• .

• ~

.. ... . .. • . .. . . . . . .

. . ,, .

•

""

-----WHEEL A:SSEtv\BLY----. ---....

.• . ,,, .

"--CLAMP ~A\AIS.

-----~

_;.~ ; .

·,

---t.! ... ... --

..•..

-

' . ~-· •. ~rl1'6.a ' ... .... • ....

·•

I .... . . .

. ~

. .

FIGURE 26 TURNOVER DEVICE

..... , ..,. ..: ,,

. .I • . .: I :· . ,11',;; . ,,. {

. . :• .. . --.... .... ..

. . ~ • • .. \ f"

• •' • ·~•.• -~ • • J' I'. t t •: . • ...... .,' '\:-~, .. !,. .. ?'. -··· . • w p ··_!._:~ • . . ...

.• • -~• :i.·-v. I•·• •'••· of· . -,, . • •. ,. . ~l'h . ,J:.:;r.\.'(..:.,;. t f iv.: -'•' ... ,~: .... ~!'"'1 ; •. · .... • :.- . . . ; . . . . . . : ... .

- .

I

• .. •

• • .. _

-• .. .

•• -· . . ,. . , ... .. . . 'i

-:--: •• p • ,t ... -~ . .

- .

Ill

~

•

. . ..'( ....... • l . . . ~.

.. ,· . .. .

--

. ·-:· •: . ......

. . • •

'• ·~ •.' .

.

. . . ...._, .. ., ',iv .. t•'" ____ ....... _:· . ... .

.• !'1 . · .. 1: ... ~ • ... r

.. :;., '· . • :.,:.i., .... ~ .... iJi ·,.•4• :J ~ .,, .,... ., : .

.; ~' • I f

. . ::;1.: · . ., : ;, .. t .

. .

. . . ~·- ..

.;

.:; -~ .. ,. . ,., · ... . :···'

SIDI:. VIEW

I ~

•

,. ;..~ · .. : .~ • (... . •• t •• • :--• • . ·.•I ;\.

•

• --·

.. . •'

i

:•

Page 95: Modeling and analysis of a mail inserting machine drive system

•

"" ........ t .. !

•

•

•

t

I·~ .. '

~. '• .

•· ..... •

1~

•: . ..

I

..

"'. :

. l·

I

. . , ..

•

. '

:,

; .

'I ·,

.. ••

• .

\ •

l

•.

. . •. · . •

... • . .. •: . . . . . .. •

• . .. •

• ,

•

•

•

.t • .. ... .

..

. . • .. . . .. .. ,. •·, .. . ,:: . . . ,

• . . . . ~·

• • • •

. .

.. ,

..

FRONT IIORt -

...

• •

•

•

. .

;. ,. . . . , . -.

• .. . : •

'

•

,.

•

• .. . ., ...

•

•·'-I•. "

-·

. •

--- -

• .. . . •

. •

. .. • • . .

. .

•

I

•

..

•

...

.. • • ..

. .

• • • ..

.. .. - .

· ... ~ .

... .,. .. . . : • :: . • .

•

..

••

-

..

•

.. , .•

'

··-

•

...

.. ,

:i .,. ....

-

r '

' . •• . • • -

··1

. .

. . . .. . f • • . '.· .. ,.

• •

..

. . - .. . . . .. . . .. . . ......

.. • •

.. ..

•

• .. ,: ..

•

FIGURE 27

• . .. •• .... . . . "' ... . •;;.• . .,. ~ ·•

..

: .... • •

: tC t. • "'I,.

:-. . . . . . :,;..

•

• 1. • • . . ·.: !~

• . ~·.. . ........ •

• • .. • .. • . -• •

.• . .. . •

• ... . • . • •

.. . . i• ·:

• • •

..

. ..

. : . . • . . •.

-~ \. -.

•

. .

•

•

..

. . .•

•

... .

•

•

•

• :

•

. .

. .. ,

.. . . ..

• ••• .

•

TURNOVER DEVICE NECHANISK KOOEL

87 •

•

•

'o.·

. .

•

•

•

..

• •

•

•

... • ••

•

• .• • • •

•

' .. • •• • • • • • . ...• : .

• • . • •• •. •

;·. . .• •

ii! ....

• .. . , .. . . .... . . ,· ~.: ... . .. • • ... •• • •• . . •. •

•

.• . . . • • ....

. ~ .... . • • ..

• •

. - .. : .. · .

•

.. ·. '

,

..

•••• . ... . ,,. •• ; fa . ....

·• • .-, ... .. -~ ..• ~- -·: . . : .. • . . . .. ... : . .

, .. : . . . . ... ~

•

. . ••

" • ~--• ... . • • •

. .

.• .

•• • . . •

. -­' . 'Ir ,: . • . .

•

•

•

• •

' •. . • ...

• . ..

. . • • •

. .. • • .. ... • . .• . •• . .. . . ... . . . ....

.• . . . ... •

.. •

.. . .

• ..

. . . . . . . . . .

• • ... -· •

• .. ... . . . . . . ·. •• =:. • . •.· ~· .

.. . • . ,. .. ··.:. . •

. ,., .... . :• .. . . ... . . . . . . ., . • • . .

• ~-~

. . . .

•

•

•

...

•

•

•

•

'

•

• ..

• •

•

•

••

• • •

-~

•

:

•

•

•

•

,. ..

•

• ...

•

• • .•

...

. . .. • •

• • • . .. ••

. .

•

•

• .• ..

•

~~~···--- -.

•

•

Page 96: Modeling and analysis of a mail inserting machine drive system

i

•

•

• . i

' I • j

'

•

• en en

•

•

•

•

• •

•

~ r.rt ..J ... ._

•

•

u, 10.0 -~ • >-. ... ::, 0 r.o < w

g I-

•

•

• 10.

GRAPH

•

. •

<

•

•

'

·•

•

'.

•

' .

•

•

•

• •

•

•

..

... . .

•

•

•• • •

•

:

•

•

. ' . •

•

•

•

•

. .

•

•

•

. .

•

•

•

•

•

•

~

•

•

•

• •

. ..

. .. .•. . . . ~ . . .... ._, .. ,, ..... __ ..

..

•

.....

.. • .. · .

.• ·' '

---·"·-·-· ....

•

. ..

..

. .

•

•

I •

• .

'• ·,

•

•

. ,, ,,: ;. J.•

·- ......... .

•

. . • ••

. '

•

•• MECHAf'1 l SM '-NJ\L 'f 5 J 5

\

•

• .. ·- ' .

. '

•

• •

• - .. ................................................................................................... . •

; ..

• •

•, / • f . •

• I • . •• • •

•

. • • • • ••

• ,. . . • • • • •

• • • XC H ..

• • . • • ..

•• • . .. • •• . • • • C • ..

I • • .. • I

. . . • . . • r I . ~· •• I •· . ' . • • I

I •I•·, ... .... ... • I ., • • • •., .• .. • •

• • . . . ~ •• • • • •

• .. 50

,o;, • POSJTJON Dl:G ) •

I

• • • •

••

. .. . .

''

• ..

•

• •

-· - IA JOOI • "ltJN V: •II • .f618

AT X =9. 00000,) ·l·IAX Y= I I , 4141660

AT ~:: 18,').))l)Q

•

•

•

•

~--------- - ---- -- -_-----_-- _-------~ .. - - - . :--::.-:·-- - __ --_-_ __:: -__ :__--~_-_:__:=:-_~--=----:_----_-::.:··: _ _;-_.::___· __ -- - - -- __ -_ -- ---:~- _-;- __ --:-~. -~- .-.• -- ·- .. - - - - -- ---- ----- ____ -:_ - - ..:_ __ - -_:_- __ - :...=--

..

FIGURE 28 TURNOVER DEVICE TORQUE CURVE

. . •

•

•

Page 97: Modeling and analysis of a mail inserting machine drive system

. ·. : .

·, ·' ., . . . . .

. . . '

)

•

•

•

Q)

"'

•

J

•

• . .

• •

•

. .

.•

•

.. -0 Iii, •

• • . . .

•

• . . . . -

. .

•

I e • '!,.,-

. . . . . .

• . • .. . .

•

•

•

•

•

• • •

. . .

---------------------------------·---------·-------,--· ~ .......

• •

•• • • • ,

'Z ...------·--------------·-,-··---·,----·-----··-·------- ......... ·---·· -~ 200. ,. "' a: lU a: 0 a.

.o

... ~ •200 • < a: I-

•

-~oo • • D

•

GRAPH

• •

•

•

• •

• •

• •

.

• • • . •

• • .

• •

•

• • . • • • • • •

• • • • . •

•• •

• 'IC . . I

~1-8,t~~t-lHffllol~~HH~Rofl,ft'C)Daa~~aaaaaaaaaaaaa r,

• •

. . .

. . . . •

•

•

•

• •

•

.. .

· ANGLE) DEG

'

•

• .

. . •

,

•

..

3D .o

•

•

. '

•

•

•

POWER l~JN V: •283.8741

AT X:70.00000 MAX Y=232,2S73

AT X:280,0000

>- - -- -- - - - - - - - - -- -- ~ - - - .. - - • - - - - • ~

-

,I

. . • . .

•

. . •

. . .

•

. . . • • I

· FIGURE 29 INSERT SUCKER SUING POUER CURVE

. ....

. . .

' . ' .

. .

..... •

•

•

• . .

•

..

•

•

•

•

Page 98: Modeling and analysis of a mail inserting machine drive system

u •u \I)

-.._ :z aco. -ti" .J .. a: LU :IC

300. 0 Q.

- -ax> i •

• •

'· •"700

• • •

•

•

•

. ,• · .

. (:

. '

: .....•. ' .

•

• • 1 /'

•

• • •

• • •

• CAM• A~Ji\LYS IS

..

• • •

.. ------------------------------·---·---------------------------------------··---··----------

•

• • . . •

• . .... , . ~ ...

• . :.,•. .. • . : . . ' ' . . . . .•. •• . . .~ •

• ..; ' .. • • . . • ,·. ...

. •.. •

..

I

•

. ,. I

. ,

• • I •~ •

... I f

.. I

' ' I . • .. ··~ ' . . •

..

f

' . • ':,' • • • • •

',

,J . ....

.. t:

"

. . •

,,

..

i

1 · I

•• •• • .

. •

. . •• •

• • ,,. .

, I

•

• . . ,. • • ••

'" • .

. ' • ..

• .. .,

I .o

..

•

I . . , ·:. . I . . .

, .. , . . • • • . ..

. . .. . . ..

I 4

... ,, •• •

. . . . ... .. : . .. . . . . • , . . . . . ' .... :; • . . 1..t":•·· • . . . . " . ,. .

,, .,. . ., .... . ... \ ., 'I ..

•

. i•. .. • I • .

•• • ' •

. . • ... -.. • .

• • . l •• •• • ti,'1 •

,·

•

••

. . • ..

• •

' ••

• 4:

•

. " ' ... . ' ... ~ I'" • •. ...... j' ... : .... 1 • . . . . ... ,

I '

\ •

• fl' t •

• . . _. . .... . . ..

t I ., .. I . . ..... .~ ••

~. . .. ··. ' ' . . . .

YC . ' ..

•

. .• ·.. ~ .. ~.... ~

·.;, ...... · 1···· ... .. . . . .. ' . . .. . . . . . . '•, ·., ·;·· •.•• ,., ........ •'c~,· ... . . . . .... . . .. ..

• •

..

..

.. I

,• . . .• , I • ' ,• • , I • .. • •I•' t I It, '

I . 'i I • •• • :, •. • ,· '

'1 ~-.· t • '• a:, "•! ,. ... -'" •.•' I • ••' • ·~ •,: ·'·· . .. .. .. , .. · .......... . .• •' •., •. \I, r.••,•.: ••

? • •1 e •, • ' t t • • ' ' • • • • •• I •

I • • I .. . ., . • • • . • t I

I r.•1·,. ,' : .. ·. •'

!

I 1• ,• ,.f, I "e.•.llllt e"1 1 .. t ... I .... ,. °"• I ·,•l' I ... •_,.., t • ,• •• • •J • • ./1 •

••• 0'\ •• •'• i\' ,. • •. • , · ·1· ••

• ••

.. I • • •• ;. . • • I . . : ..... •· •. . .., .. • • • : ' . •\ \.,. ~· . .. . .•• r ~·· ..

.. . :

. .

1

f •t! t . '• • : I i1 • • • •" J# • I • ~t t

1 t J, I • • • • ',, .. ' 1 • • t , • t , 1 • •

.. , ..• , .. , ····· ... ,•. ··, ·,, ...... . . • .. ••. f •.•. , \ . . . I• ' . • ~ •.• • . • •• - t

• • • • . • . Ii. • • • .. • •• • '· ._.. •. .. . • ' t ,· •

• : •' • . . • • . . • • •i ... ~ • :

. ••. , .. ·, .•• -i .. " . ~ ,. : •. ,i • o .-; • I 'Io "I •, ~ el

t

..

. .

; FIGURE 30 ENVELOPE SUCKER DEVICE POIIER CURVE

. . ' .

••

·'

.· •

:• • .. \

• .~

j •

. . . \ •• • < .. • ........ . .. ·, ,. . .

. ,· • .. 4 •• ..

• . •. '

,·

,·. ,. . . ... • . • ..

' • ' '• ; ,. ',•

.. ... \ . . . .. ; • t • • . . . . • •

• •

• •

. ,'

·.; ...

POWER tJIN "f• •75l.!5CJQ

AT X•42.0DQOO MAX Y•750.5087

AT X: 102.0tJOO

.. •

.. ... . '·

• .

•

I

•

Page 99: Modeling and analysis of a mail inserting machine drive system

\.0 -

l! -Y! -z: -\,a

~ 400. a: ..... UJ 3: 0 0.

~~· -j_ < a:. t- .

•• 1· ' ~::~ . . . . . ( . . .. _,:'-_.. .. . . ~

,~ ;., ;.I ' \:•- .. ' : ' ,,

. '~ ; ' . .

. .

. . . . .. . . .. . . •• • I , I

. .

. . .

/

•

, ...

. ;-:;.-.:-: . :;.,: . .... . . . '

. . .

. . .

. . .

. .

. . : '·

CAM · ,\NAL 'fS I S . .

. . .

. . : .

.. .

Ye-·.

. . . . . .

. . \. ' . . ' ~ . . ..

. .. . .

.. ·· .. '

,· · ..... . . . •• ·!- .. ..

. . •

•

• • .. - .. . .

•

• I• •

'~ ; . . - .. '·

.. : . '·; .

. . . .

'

. .

. .

•

·200-+-----------...----------.,----------,----------r-----------.-----------.-----------,--

10 .a • 0 I ' ·. 20 .a •

ANGLE I DE'~

GRAPH

' . '

· .. . . . ~' .. .. '

. . . '' '·· .' . ··., •. .

' I • I. • I

. .

.. POWER ·. 1•1N V= • 137.878 · AT x=ee.00000

MAX Y:41'441,5763 AT X:250,0000

•

. . . .. . . .. ,.

. .

~-------~- - - .. --- - -__ -_ --,- -.--- - ::· - . ---·~-:- .... --=--·--=-=--- ----=------ ------ - -- -~-- - - -----~ ._ -- ----- -- - - _- - - -

FIGURE 31 MOISTENER BRUSH POUER CURVE

Page 100: Modeling and analysis of a mail inserting machine drive system

. .

'° f') I I I

,, ; .

. ..•' ' I

ti-' . • . '

•

. :.

•

•

' ..

------------------------------------------------------------· •

~'

"' ---'Z -1-

~ 400.

er." UJ 3:: 0 a.

~ 200.

-f. a: t- . ' . . .

• . .

~ ' . ... . .

. . . ' . '1 . . . .. '. •

..... ;," . . ' . • • • . I • t • ·.

. . . ·. . . . . • ... : I-:.

I • ~

• •• t'

. " . . . .

• ' .. . . ! -

,. . •

• • . . . : '. ' . . .

-. .. '

•

·.

• • . '

oN ... . .

. .

I .: •. I

' . ·:. .. • • • ·• . •. .• f . ~ I •. • • •• • • . ' : ..

; . . !·.

I •.• ,• ' '• . .

•

... , .

,

• •

. . . . . . . '.

.. . • .

. .

. ' . . . .. . . .,

.. . . ~· . .. ·"'· . . ' .

. .

·'

• ' I •

, I •

•' ..

. ' .. ' . .

; ' . . . .

. .

. .. ...

YC

'·

. .

XC

• .

·200__..---------...--------------------------------.----------------------------------

GRAPH

·,

. . . . ~· .

' :. .. . .

. . •

. ·,·· ... I .o . · .. ' . · 2 .o . . . •. . ; .. . •·. ~ . . : .. . . ' .

: .·· ~· ANGLE:;· DE& . ,· '

; . . . . . .. , ..

{ I ,,

FIGURE 32 INSERT HOLDOOUN POUER CURVE

. ,, ·--·····. . .

. POWER L~JN V: • 138.989

AT X:80.00000 l-lAX Y: 425, 5655

AT X:315,0000

•

Page 101: Modeling and analysis of a mail inserting machine drive system

•

• •

. . . ' ' '.. . ' . --~ ' -~.; __ .:.. '": - .. ,· ' ' ;, '

•

.- ' • •• _. ...... • •• ••' •·• • ...... • • .. •• • ••· • • • • " ... • ..... ~ .... , • .._... ............... • ... ._ ..... ._. ...............

..... ____ ._ ....... · •• -- I aa ...... • ............. ·- ......... , • ............... •••• I a .............. •• .......................

. ..._ • .... .. •• ..... • ... ....;.. ........ -

•

•

•

•

•

•

•

.

•

' .

•

. . .

• •

•

•

• •

•

• •

•

.. .

•

• •

.

. . .

4. S-TATION MACHINE POWER •

• •

. : • ••

. • ONE .MAC.HINE CYCLE ..

• • •

•

• • •

. I • •

• •

HORSEPOWER· •

. .

0.8

•

• • •

. • •

•• •

. . •

•

• . .

• •

. '

• • • .

• •

0.6 ------------...-------------------------------------------,i"---.......----~-------------------------·

,• . . . .

•

•

0.4·---------------------------------------------------------·-------------

---,---------------------

•

•

. . • • . .

• •

•

'

•

• .

I '

•

• •

•

'

. •

... • •

• • . . . •

• •

' • . : • . •

• • .

• • • •

...

' • • •

• . . • .

.:..0.2 0 ·so 100 ISO zoo 150 I 350

• .

•

• • •

• •

•

• . •

•

• . . .

. ' . . .

• . ~

. ,.

. . . .

· MACHINE POSITION; DEGREES • . . . . . .. . .. . . . . . . . . . . . . . . . . . .... •· ' ...

• . . . .

I . . .

. . ' , . FIGURE 33 ·. • • •

TOTAL MACHINE POUER CURVE •

'

. . ,

I •

•

•

• •

o . I

.

•

• •

•

• •

• •

• •

'(

Page 102: Modeling and analysis of a mail inserting machine drive system

' I

•

. . • •• • • ·• •• • ••• ...... ••••• •••, ....... _ • • • -··~ ...... .,_.. .. _ •• ..,. ......................... , ...

I ,......... SD•_....•w·- a I IE d OM aa --···•. . .............. _. .. --·•·•• a..... __ ...,..._ ___ ........_.....,.

•

. .

•

• . .

• •

•

. • • • •

••

. .

. .. '·

•

•

• •

4 STATION·MACHINE .. TOR UE

IN-LBf •

•

. • . . . . .

ONE MACHINE· .. CYCLE •

. . . . . . .

.

. . .

40 ...------------------------------------------------------------------------------...

• • •

30 -------------------------------------------------------------

-----------· • I

-. . .

•

20 ......._ _________________________________ _,, _______ ~---------------.----------·

•

•

10 t----------------------------------~--------------~--------------------t

-10 O 50

..

100 . · 150 zoo

• • . . .

·'

2.SO . . '

. . 300

MACHINE POSITION,· DEGREES . . . . . .

FIGURE 34 . . · · . :

TOTAL MACHINE.'TORQUE··cuRYE . ·. . ..

. . ·• . •

. . '. .

•

350

•

•

• • ,•

•

•

•

•

•

•

•

Page 103: Modeling and analysis of a mail inserting machine drive system

CAM CONTACT FORCE I.Bf

8 '

6

4

2

0

-2 .....................•....•......•............................................•...................................• .•.•.••...•.•.••........•••.•....•..•..•.•..•....•..•.•......•...•.•.•.

-4 .............................................................................................................................. ·····························································

.. -6

CAM POSITION, DEG

INERTIAL FORCE I SPRING FORCE * RESULTANT

FIGURE 35 EQUIVALENT INERTIA OF CAM MODEL

~5

Page 104: Modeling and analysis of a mail inserting machine drive system

REFERENCES

.1. Chen, F.Y. Mechanics and Design of Cam Mechanism~ • • I

New York: Pergamon Press Inc.·, 1982.

2.. Rothbart, H. A. Cams: and Accur

New York: John Wiley and Sons,

3. Jensen, P.W. Cam Design and Manufacture. New York:

Marcel Dekker, Inc., 1987.

4. Shearer, J. L., Murphy, A. T.,

Intfgductign tg §y&tsm Dynamip&. and Richardson, H. H. Raading, MA: Addison-

Wesley Publishing Company, 1967.

·,

5. ~M•~iam, J. L. Dynamics. New Va~k• John Wiley and

Sons, 1971.

6. Lentz, K. W. Jr. Design of Automatic Machinery. New

York: Van Nostrand Reinhold Company, 1985. ,

7. Moon, C. H. Cam Design. Farmington, CN: AMCAM

Corporation, 1961.

8. Neklutin, C. N. "Trig-Type Cam Profiles" Machine

Design, Oct. 15, 1959, ·pages 175-187.

· 9. McDonnell Douglas Manufacturing Information

Company. Mechanisms: Operational Description.

CA: January, 1985

10. McDonnell Douglas Manufacturing Information

Company. Machine Elements/Cams: Operational

Description. Cypress, CA: April, 1987.

Systems Cypress,

Systems

11. Brong, D. and Palmer, S. M. "A Manufacturing Work

Cell for the Design and Production of Cams in an

Int~grated CAD/CAM Environment 11 Paper read before the

Unigraphics Users Group Annual Mee~ing, Anaheim, CA.,

February, 1988.

12. Eagle, R. C. Machine Elements Cams Tutorial Manual.

Report prepared for Department of Mechanical Engineering

and Mechanics, Lehigh University, Bethlehem, PA, 1988.

13. Eagle, R. C. and Lucas, R. A. Mechanism Tutorial

Manual. Report prepared for Department of ·Mechanical

Engineering and Mechanics, Lehigh University, Bethlehem,

PA, 1988.

..

.. '"'. -:__!.... - ... - ... ·- ... ~ - -··----~----..... ----

. ..:

Page 105: Modeling and analysis of a mail inserting machine drive system

.",

( '

14. Palmer, s. M. Computer program for cam design. & Howell Phillipsburg Company, 1982.

Bell

15. Commercial Cam Division Emerson Electric Company. \ 11 CAMCO Catalog #103", October, 198&.

1&. Fuller, D. D. "Friction", Standard Mechanical En·gineers, New York: McGraw Company, 1978, pages 3-24 to 3~32.

<l>

Handbook for Hill·Book

17. Oberg, E., Jones, F., and Horton, H. Machinery's Handbook. New York: Industrial Press Inc., ·1~81.

18. Be 11 & Howe 11 Phi 11 i psburg Company. "Phi 11 i psburg Inserters Basic Timing Instructions 11

, Manual TP 50025-R e v i s i on F, 19 8&.

19. Bell & Howell Phillipsburg Company. "Operator's Manual Mailstar 775 Modular Inserting System", 1989.

20. Bennett, R. A., 11 Business Technology Advances: Neither Rain nor Snow can Halt Inserts" New York Times, Oct. 7, 1987

97

- - ~ • - - .k~ - - ' • - ... - • ~ ...

..

.. -. . ·. ~- - , : .. -·

Page 106: Modeling and analysis of a mail inserting machine drive system

APPENDIX 1

The following is an analytical verification of

the computer-aided analysis results, for the empty

envelope transport device.

Parameters:

Displacement of cam rise: 10.5 in.

Cam rotation during rise: 180°

Cam speed: 10,000 rev/hr

Weight of follower system: 3.0 lb

Frictional force on follower: 24.0 lbf

Cam acceleration curve: Modified Sine

From the computer-aided analysis, the power peak occurs

at a cam angle of approximately 70 degrees. From

reference (1), the velocity at·this point

where:

V = Cv h ( 6N/ ~ )

Cv = velocity coefficent

h = total displacement of ·follower,

N = cam speed, rev/min

• 1n.

~=angular displacement of cam, deg.

98

"

Page 107: Modeling and analysis of a mail inserting machine drive system

------.... --------------.,....---,,-------c-·cc····, , -,

At 70°, follower velocity is: ~

Va 1.626 X 10.5 X (6.X 166.7/180)

= 94.85 in/sec

Pow~r consumed due to friction at this point is:

Pf= Ff XV

-= 24 lbf x 94.85 in/sec

Pf= 2276 in-lbf/SeC

Follower acceleration (reference 7) is:

a = Ca h ( 6N/ ~ )2

where:

Ca= acceleration coefficient

At 70~ cam rotation, this is:

a= 2.4233 X 10.5 X (6 X 166.7/180)2

= 785.6 in/sec2

The contact .force at this point is:

Fe= ma

= 3.0 lb x 785.6 in/sec2 /

386 in/sec2

= 6.11 lbf

The power consumed due to inertia at this point is:

Pi= Fe XV

= 6.11 lbf x 94.85 in/sec

P1 = 579.1 in-lb~/sec

Total power is the sum of power due to friction and

power due to inertia:

Pt= Pf+ Pi

99

I'

•

I I

•

Page 108: Modeling and analysis of a mail inserting machine drive system

•,' I

.. \

'

Pt= 2276 + 579 ~-, 2855 in-lbf/sec I

L

= 2855/6600 = .43 horsepower

This is in agreement with the result obtained using

''Machine Elements/Cams". <

100

.,~ '

Page 109: Modeling and analysis of a mail inserting machine drive system

.APPENDIX 2 Q

Testing was performed to verify the accuracy

of the calcµlated spring rate for the jaw of the gripper

arm, described in Section III.C.1.b. An arm assembly, .. -- ..

complete with springs and properly adjusted, was tested '

by gripping a shim of known thickness. A spring scale

was used to apply a torque to release the shim from the

jaw. The test was repeated, -using no shim, to determine - '

'

the torque required to open the jaw when empty.

For a shim thickness of .186 in resulted in a

jaw displacement of 20.2°. A force of 11 lbf was

required, at a distance of 1.75 in from the jaw pivot,

to release the shim. The applied torque is 19.25 in­

lbf. With no shim, a force of 5.33 lbf at 1.75 in was

required to open the jaw, corresponding to 9.33 in-lbr.

The equivalent _torsional spring rate of the two

combined springs is then: ·

Keq = (19.25 - 9.33) in-lbf / 20.2 deg

= ·.491 in-lbf/deg

The spring constant found by the analytical

methods employed in Section III .. C.1.b was .511 in­

lbf/deg, which agrees within 4% with the experimental

value.

'

101

Page 110: Modeling and analysis of a mail inserting machine drive system

APPENDIX 3

The method of calculation of power from known

torque and angular velocity, and conversion to

horsepower units, can be found in reference (5)

For the motion of the gripper arms described

in Section III.8.3, peak torque is 59.91 in-lbf (see

Table 8), which acts on the drive crank operating at

10,000 cycles/hr (17.45 rad/sec). Peak power is: \\_ P'- · = TW

= 59.91 in-lbf x 17.45 rad/sec

= 1045.6 in-lbr/eec

= 1045.6/6600 = 0.158 horsepower

For the geneva device described in Section

III.D.3, the peak input torque is 11.5 in-lbf, acting

at 10,000 cycles/hr (17.45 rad/sec). Peak power is:

P = 11.45 in-lbf x 17.45 rad/sec

= 199.8 in-lbr/sec

= 0.03 horsepower

102

Page 111: Modeling and analysis of a mail inserting machine drive system

·APPENDIX 4

The following are measurements and

calculations utilizing the energy method described in

Section II.F.

Measurements for the ~oistener brush device

were made at the location of the brush itself, which

undergoes a displacement of 1.574 in. With the follower

positioned on the cam major circle {high point), the

force applied at the brush to separate the follower from

the cam was 7 lbf. The required force at the brush when

the follower is on the base circle (lowest point) was 3

lbf. The cam has. a rise of 60°, or 1.047 rad. The

average power at.the brush location, from Section II.F.,

Pavg = l/2wAx (F2 + F1)/

= 1/2 x (17.45 rad/sec) x (1.574 in)

x (7 + 3) lbf/1.047 rad

= 131.1 in-lbf/sec (0.02 HP)

The equivalent spring at the cam follower consumes the

same power, over a follower displacement of 0.56 in.

The ratio of maximum to minimum spring force is. equal to

this ratio at the brush, so:

F2 follwT = 7/3 F1 follwr = 2.333 F1 follwr

103

Page 112: Modeling and analysis of a mail inserting machine drive system

• and:

(

P avg follwT = 131.1 in-lbf/sec

= 1/2 x (17.45 rad/sec) x 0.56 in

X (3.333 X F1 follwr)/1.047 rad

which yields:

F1 fo1lwT = 8.43 lbf

F2 follwr = 19.674 lbf

and the equivalent spring constant is:

Keq = (19.674 - 8.43) lbf / 0.56 in

= 20.07 lbf/in

•

The equivalent inertia, acting at the cam

follower, is found at the point of maximum deceleration.

From reference (7), the follower has a displacement at

this point of:

y = K h

where K is the displacement coefficient and his the

total displacement of the rise. This is:

y = 0.26767 (0.56 in)

= 0.15 in

The contact force generated by the equivalent spring at

the follower, at this displacement, is:

~= 19.674 lbf - 0.15 in (20.07 lbf/in)

= 16.66 lbf

104

Page 113: Modeling and analysis of a mail inserting machine drive system

The acceleration of the follower at this point (from

reference 7) is:

where:

a = Ca n ( 6 N/ ~ )2

Ca= coefficient of acceleration

N = cam speed, rev/min

~=duration of rise motion, deg

For this case:

a= 4.8881 x (0.56 in) x

(6 x 166.7 rev/min/ 60 deg)2

a= 760.7 in/sec2

The equivalent inertia is found by equating the contact

force provided by the equivalent spring, to the

mass-acceleration at this point:

Meq = Fe eq spr / a

= 16.66 lb x 386 in/sec2

./ 760.7 in/sec2

= 0.022 lb~-sec2/in

These values were used in a "Machine

Elements/Cams•• model of the moistener brush cam, to

obtain an appr_oximate power curve as de~cribed in !!_

Section II.F.

105

Page 114: Modeling and analysis of a mail inserting machine drive system

Measurements and calculations for the insert . .

suction, insert hold-down, and envelope suction devices ,,

follow:

Insert suction device:

Fhish = 11 lbf (measured)

F1ow = 7.2 lbr (measured)

b.. x = 1.12 in (measured)

Pavg = 77.19 in-lbf/sec

F1 follwr = 7.95 lbf

F2 follwr = 12.15 lbr

Keq ~ 4.142 lbf/in

y = 0.2714 in

Fe eq spr = 11.03 lbf

a= 344.2 in/sec2

Meq = 0.032 lbf-sec2/in

Measurements for the insert hold-down device were made

directly at the cam follower, hence the equivalent

spring cna be found directly from these measurements:

Fhish = 24 lbf (measured)

F1ow = 17 lbf (measured)

Ax= .468 in (measured)

Keq = 14.96 lbr/in

y = 0.3427 in

Fe eq epr = 22.16 lbf

106

Page 115: Modeling and analysis of a mail inserting machine drive system

a= 441 in/sec2

Meq = 0.05 lbf-sec2/in

Envelope suction device:

Fhigh = 11.5 lbf (measured)

Flow= 1.75 lbf

b.x = 1. 97 in

(measured)

(measured)

Pavg = 181.5 in-lbf/sec

F1 follwr = 5.51 lbf

F2 follwr = 36.18 lbf

Keq ~ 49 lbf/in

y = 0.167 in

Fe eq spr = 27.99 lbf

a= 588.5 in/sec2

Meq = 0.0475 lbf-sec2/in

107

Page 116: Modeling and analysis of a mail inserting machine drive system

VITA

Samuel Mark Palmer was born March 22, 1956, in

Danville, Pennsylvania to Samuel Nelson and Ethel

Stecker Palmer. He received a Bachelor of Science

degree in Mechanical Engineering from the Pennsylvania

State University in June, 1978.

He is currently employed at the Bell & Howell

Phillipsburg Division in Allentown, Pennsylvania, as a

Senior Mechanical Project Engineer, where he is involved

in design and analysis of mail inserting machinery. He

is a member of A.S.M.E. and C.A.S.A./S.M.E.

Mr. Palmer was previously employed by the

Procter & Gamble Company, Cincinnati, Ohio, and Mack

Trucks, Allentown, Pennsylvania.

' ,,

108