model-predictive control (mpc) of an experimental sofc stack: a robust and simple controller for...

44
Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a a Laboratoire d’Automatique, EPFL b Laboratoire d’Énergétique Industrielle, EPFL

Upload: yadira-union

Post on 19-Jan-2016

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

Model-Predictive Control (MPC) of an Experimental SOFC Stack:

A Robust and Simple Controller for Safer Load Tracking

G.A. Bunina, Z. Wuilleminb, G. Françoisa,

S. Diethelmb, A. Nakajob, and D. Bonvina

a Laboratoire d’Automatique, EPFLb Laboratoire d’Énergétique Industrielle, EPFL

Page 2: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

The Goal of This Talk

To demonstrate that the transient SOFC control problem can be handled very simply, yet robustly, while requiring little control knowledge and only a very basic model of the process.

Page 3: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

The Goal of This Talk

To demonstrate that the transient SOFC control problem can be handled very simply, yet robustly, while requiring little control knowledge and only a very basic model of the process.

Page 4: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

Outline of the Talk

The System

Basic MPC Theory

Our “HC-MPC” Formulation

Experimental Validation

Concluding Remarks

Page 5: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

The System Inputs nH2: H2 flux

nO2: O2 flux I: current

Safety Constraints Ucell: cell potential ν: fuel utilization λ: air excess ratio

Performance πel: power demand η: electrical efficiency

FuelAir79% N2 21% O2

Power

Current

97% H2 3% H2O

Furnace

6-cellSOFCStack

2 2 2

Reaction:

1

2H O H O

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency

Control Objective

Track the specified power demand while maximizing the efficiency and honoring the safety constraints.

Page 6: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

Outline of the Talk

The System

Basic MPC Theory

Our “HC-MPC” Formulation

Experimental Validation

Concluding Remarks

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency

Page 7: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

Basic MPC Principles

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

πel (old)

πel (new)

t0

I = 0 A

I = 30 A

t0 Δt

a1a2

a3a4 a5 a6 a7 a8 ap

t0+pΔt

B = f(a1,…,ap)

Page 8: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

Basic MPC Principles

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

πel (old)

πel (new)

t0

I = 0 A

I = 30 A

t0 Δt

t0+pΔt

B = f(a1,…,ap)

t0+mΔt

implement! (…then do it all again)

πel = πel ,0 + BΔI + d

πel,0

d

Page 9: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

MPC with Optimization MPC objective function

Constraints: Ucell ≥ 0.79V, ν ≤ 0.75, 4 ≤ λ ≤ 7

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

2 2

2 22 2 2 2( ) ( ) ( )

el cell H OU n n IJ w w w w w w 2 2

newel el cell H Oπ π U .79 ν .75 Δn Δn ΔI

QP Transformation

2

2

2

T T

[ ]

, 2

,

,

1min

2NmL

s.t.: 3.14 1,...,min cm

4 2 7 1,...,

0A 30A

H i

O i

H i

i

n i p

ni p

n

I

H O2 2Δu Δn Δn ΔI

Δu HΔu c Δu

1,...,i p

Page 10: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

MPC with Optimization MPC objective function

Constraints: Ucell ≥ 0.79V, ν ≤ 0.75, 4 ≤ λ ≤ 7

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

2 2

2 22 2 2 2( ) ( ) ( )

el cell H OU n n IJ w w w w w w 2 2

newel el cell H Oπ π U .79 ν .75 Δn Δn ΔI

πel (low)

πel (high)

efficiency limited by ν

efficiency limited by Ucell

0cellUw

0w πel (mid)

Page 11: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

Outline of the Talk

The System

Basic MPC Theory

Our “HC-MPC” Formulation

Experimental Validation

Concluding Remarks

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

Page 12: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

The HC-MPC Formulation HC = “Hard Constraint”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

nH20

InH2 = 3.14mL

nH2 = 10.0mL

I = 30A

Ucell = 0.79Vν = 0.75

Page 13: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

The HC-MPC Formulation HC = “Hard Constraint”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

nH20

InH2 = 3.14mL

nH2 = 10.0mL

I = 30A

Ucell = 0.79Vν = 0.75

Page 14: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

The HC-MPC Formulation HC = “Hard Constraint”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

nH20

InH2 = 3.14mL

nH2 = 10.0mL

I = 30A

Ucell = 0.79Vν = 0.75

Page 15: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

The HC-MPC Formulation HC = “Hard Constraint”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

nH20

InH2 = 3.14mL

nH2 = 10.0mL

I = 30A

Ucell = 0.79Vν = 0.75

Page 16: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

The HC-MPC Formulation HC = “Hard Constraint”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

nH20

InH2 = 3.14mL

nH2 = 10.0mL

I = 30A

Ucell = 0.79Vν = 0.75

Page 17: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

The HC-MPC Formulation HC = “Hard Constraint”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

nH20

InH2 = 3.14mL

nH2 = 10.0mL

I = 30A

Ucell = 0.79Vν = 0.75

Page 18: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

The HC-MPC Formulation HC = “Hard Constraint”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

nH20

InH2 = 3.14mL

nH2 = 10.0mL

I = 30A

Ucell = 0.79Vν = 0.75

Page 19: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

The HC-MPC Formulation HC = “Hard Constraint”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

nH20

InH2 = 3.14mL

nH2 = 10.0mL

I = 30A

Ucell = 0.79Vν = 0.75

Page 20: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

The HC-MPC Formulation HC = “Hard Constraint”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

nH20

InH2 = 3.14mL

nH2 = 10.0mL

I = 30A

Ucell = 0.79Vν = 0.75

Page 21: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

The HC-MPC Formulation HC = “Hard Constraint”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

nH20

InH2 = 3.14mL

nH2 = 10.0mL

I = 30A

Ucell = 0.79Vν = 0.75

Page 22: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

The HC-MPC Formulation HC = “Hard Constraint”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

nH20

InH2 = 3.14mL

nH2 = 10.0mL

I = 30A

Ucell = 0.79Vν = 0.75

Page 23: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

The HC-MPC Formulation HC = “Hard Constraint”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

nH20

InH2 = 3.14mL

nH2 = 10.0mL

I = 30A

Ucell = 0.79Vν = 0.75

Page 24: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

The HC-MPC Formulation HC = “Hard Constraint”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

nH20

InH2 = 3.14mL

nH2 = 10.0mL

I = 30A

Ucell = 0.79Vν = 0.75

Page 25: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

The HC-MPC Formulation

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

4

6

8

10

510

1520

2530

35

0

5

10

15

20

25

30

nO2

nH2

I

λ = 4λ =

7

ν = 0.75

Ucell = 0.79V

Page 26: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

The HC-MPC Formulation

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

4

6

8

10

510

1520

2530

35

0

5

10

15

20

25

30

nO2

nH2

I

λ = 4λ =

7

ν = 0.75

Ucell = 0.79V

Page 27: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

The HC-MPC Formulation

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

4

6

8

10

510

1520

2530

35

0

5

10

15

20

25

30

nO2

nH2

I

λ = 4λ =

7

ν = 0.75

Page 28: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

The HC-MPC Formulation

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

4

6

8

10

510

1520

2530

35

0

5

10

15

20

25

30

nO2

nH2

I

λ = 4λ =

7

ν = 0.75

Page 29: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

The HC-MPC Formulation

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

4

6

8

10

510

1520

2530

35

0

5

10

15

20

25

30

nO2

nH2

I

λ = 4λ =

7

ν = 0.75

Page 30: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

The HC-MPC Formulation

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

4

6

8

10

510

1520

2530

35

0

5

10

15

20

25

30

nO2

nH2

I

λ = 4λ =

7

ν = 0.75

Page 31: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

The HC-MPC Formulation

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

4

6

8

10

510

1520

2530

35

0

5

10

15

20

25

30

nO2

nH2

I

λ = 4λ =

7

ν = 0.75

Page 32: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

The HC-MPC Formulation

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

4

6

8

10

510

1520

2530

35

0

5

10

15

20

25

30

nO2

nH2

I

λ = 4λ =

7

ν = 0.75

Ucell = 0.79V

Page 33: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

Side-by-Side Standard MPC Issues

Weight Tuning Only partially intuitive Requires a good model Need validation

Active Constraint? Must know πel (mid) Degradation!

πel (mid) changes

Violations Norms are directionless Constraints are “soft”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

HC-MPC Solutions Weight Tuning

Completely intuitive Practically no tuning Minimal validation

Active Constraint? ν kept active Degradation?

Doesn’t matter

Violations Inequalities have direction Constraints are “hard”

Page 34: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

Intuitive Weight Scheme Sufficient to normalize

weights into 3 categories High Priority (w = 10)

e.g.: power demand Standard Priority (w = 1.0)

e.g.: efficiency (tracking active constraint)

Low Priority (w = 0.1) e.g.: penalties on input

moves (controller behavior)

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

Bias Filter α

1 (1 )

: convergence

criterion (0 to 1)

: sampling time

: time to converge

c

t

t

c

c

c

t

t

Page 35: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

Side-by-Side Standard MPC Issues

Weight Tuning Only partially intuitive Requires a good model Need validation

Active Constraint? Must know πel (mid) Degradation!

πel (mid) changes

Violations Norms are directionless Constraints are “soft”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

HC-MPC Solutions Weight Tuning

Completely intuitive Practically no tuning Minimal validation

Active Constraint? ν kept active Degradation?

Doesn’t matter

Violations Inequalities have direction Constraints are “hard”

Page 36: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

Outline of the Talk

The System

Basic MPC Theory

Our “HC-MPC” Formulation

Experimental Validation

Concluding Remarks

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

Page 37: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

0 10 20 300.25

0.3

0.35

0.4

0.45

Time (min)

e

l(W/c

m2)

0 10 20 3015

20

25

30

Time (min)

I (A

)

0 10 20 300.6

0.65

0.7

0.75

0.8

Time (min)

0 10 20 300

5

10

15

Time (min)

Flu

xes

(Nm

L/m

in/c

m2)

0 10 20 3035

40

45

50

55

Time (min)

0 10 20 300.75

0.8

0.85

Time (min)

Uce

ll (V)

H2

air

Experimental Validation

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

η ≈ 42%

η ≈ 42%

η ≈ 38%

0 10 20 300.25

0.3

0.35

0.4

0.45

Time (min)

e

l(W/c

m2)

0 10 20 3015

20

25

30

Time (min)

I (A

)

0 10 20 300.6

0.65

0.7

0.75

0.8

Time (min)

0 10 20 300

5

10

15

Time (min)

Flu

xes

(Nm

L/m

in/c

m2)

0 10 20 3035

40

45

50

55

Time (min)

0 10 20 300.75

0.8

0.85

Time (min)

Uce

ll (V)

H2

air

Standard MPC HC-MPC

0 10 20 300.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Time (min)

0 10 20 300.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Time (min)

standard

HC

Page 38: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

0 10 20 300.25

0.3

0.35

0.4

0.45

Time (min)

e

l(W/c

m2)

0 10 20 3015

20

25

30

Time (min)

I (A

)

0 10 20 300.6

0.65

0.7

0.75

0.8

Time (min)

0 10 20 300

5

10

15

Time (min)

Flu

xes

(Nm

L/m

in/c

m2)

0 10 20 3035

40

45

50

55

Time (min)

0 10 20 300.75

0.8

0.85

Time (min)

Uce

ll (V)

H2

air

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

η ≈ 42%

η ≈ 42%

η ≈ 38%

0 10 20 300.25

0.3

0.35

0.4

0.45

Time (min)

e

l(W/c

m2)

0 10 20 3015

20

25

30

Time (min)

I (A

)

0 10 20 300.6

0.65

0.7

0.75

0.8

Time (min)

0 10 20 300

5

10

15

Time (min)

Flu

xes

(Nm

L/m

in/c

m2)

0 10 20 3035

40

45

50

55

Time (min)

0 10 20 300.75

0.8

0.85

Time (min)

Uce

ll (V)

H2

air

Standard MPC HC-MPC

0 10 20 300.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Time (min)

0 10 20 300.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Time (min)

0 10 20 300.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

Time (min)

Uce

ll (V

)

0 10 20 300.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

Time (min)

Uce

ll (V

)

input regionexpansion

input regioncontraction

standard

HC

Page 39: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

Outline of the Talk

The System

Basic MPC Theory

Our “HC-MPC” Formulation

Experimental Validation

Concluding Remarks

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

Page 40: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

Concluding Remarks The proposed HC-MPC is very effective as it:

does NOT require a good model only four experimental step responses were used here

has only one decision variable for tuning which is very intuitive

minimizes oscillatory behavior and overshoot Potential Applications

The above should hold for more complex systems + gas turbine + steam reforming + heat-load following

Page 41: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

Thank You!

Questions?

Page 42: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

Extra Slides

Page 43: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François

Experimental Validation

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

0 5 10 15 20 25 30 35 40 45 50 55 600.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

el(W

/cm2

)

0 5 10 15 20 25 30 35 40 45 50 55 600.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Time (min)

0 5 10 15 20 25 30 35 40 45 50 55 600.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

Time (min)

Ucell (V

)

Page 44: Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a, Z. Wuillemin b, G. François