model code 2010 - institution of structural engineers · this draft of the fib model code 2010 was...

312

Upload: duongdien

Post on 25-May-2018

312 views

Category:

Documents


19 download

TRANSCRIPT

  • Model Code 2010 First complete draft

    Volume 2

    April 2010

  • Subject to priorities defined by the Technical Council and the Presidium, the results of fibs work in Commissions and Task Groups are published in a series of technical publications called 'Bulletins'.

    category minimum approval procedure required prior to publication Technical Report approved by a Task Group and the Chairpersons of the Commission State-of-Art Report approved by a Commission Manual, Guide (to good practice) or Recommendation

    approved by the Technical Council of fib

    Model Code approved by the General Assembly of fib

    Any publication not having met the above requirements will be clearly identified as a preliminary draft. This Bulletin 56 is a draft Model Code; it has not yet been approved by the General Assembly of fib.

    This draft of the fib Model Code 2010 was prepared by fib Special Activity Group 5, New Model Code:

    Walraven (Convener; Delft University of Technology, The Netherlands) Bigaj-van Vliet (Technical Secretary; TNO-Built Environment and Geosciences, The Netherlands) Balazs (Budapest Univ. of Technology and Economics, Hungary), Cairns (Heriot-Watt University, UK), Cervenka (Cervenka Consulting, Czech Republic), Corres (FHECOR, Spain), Cosenza (Universita di Napoli Federico II, Italy), Eligehausen (Univ. Stuttgart, Germany), Falkner (Technische Univ. Braunschweig, Germany), Fardis (Univ. of Patras, Greece), Foster (Univ. of New South Wales, Australia), Ganz (VSL International, Switzerland), Helland (Skanska Norge AS, Norway), Hj (HOJ Consulting GmbH, Switzerland), van der Horst (Delft University of Technology, The Netherlands), Keuser (Univ. der Bundeswehr Mnchen, Germany), Klein (T ingenierie SA, Switzerland), Kollegger (Technische Univ. Wien, Austria), Mancini (Politecnico Torino, Italy), Marti (ETH Zurich, Switzerland), Matthews (BRE, United Kingdom), Menegotto (Univ. di Roma La Sapienza, Italy), Mller (Univ. Karlsruhe, Germany), Pinto (Univ. di Roma La Sapienza, Italy), di Prisco (Univ. of Milano, Italy), Randl (FHS Technikum Krnten, Austria), Rostam (Denmark), Sakai (Kagawa Univ., Japan), Schiessl (Technische Univ. Mnchen, Germany), Sigrist (TU Hamburg-Harburg, Germany), Taerwe (Ghent Univ., Belgium), Ueda (Hokkaido Univ., Japan), Wight (Univ. of Michigan, USA), Yamazaki (Nihon Univ., Japan) Invited experts who contributed substantially to the text: Bentz (Univ. of Toronto, Canada), Burkart (Univ. Karlsruhe, Germany), Cervenka (Cervenka Consulting, Czech Republic), Creton (ATS/BN Acier, France), Curbach (Technische Univ. Dresden, Germany), Demont (Trefileurope, Belgium), Dehn (MFPA Leipzig GmbH, Germany), Fernandez Ruiz (EPF Lausanne, Switzerland), Gehlen (Technische Univ. Mnchen, Germany), Glavind (Danish Technological Institute, Denmark), Matthys (Ghent Univ., Belgium), Mechtcherine (Technische Univ. Dresden, Germany), Muttoni (EPF Lausanne, Switzerland), Plizzari (Univ. Brescia, Italy), Reinhardt (Univ. Stuttgart, Germany), Triantafillou (Univ. of Patras, Greece), Vandewalle (Katholieke Univ. Leuven, Belgium), Vrouwenvelder (TNO-Built Environment and Geosciences, The Netherlands) Cover image: Grand Rapids Art Museum, Michigan, USA; one of the Special Mention recipients in the 2010

    fib Awards for Outstanding Concrete Structures, Buildings Category. Kulapat Yantrasast, design architect; Anton Nelson, structural engineer. Photo credit: Steve Hall, Hedrich Blessing

    fdration internationale du bton (fib), 2010 Although the International Federation for Structural Concrete fib fdration internationale du bton does its best to ensure that any information given is accurate, no liability or responsibility of any kind (including liability for negligence) is accepted in this respect by the organisation, its members, servants or agents. All rights reserved. No part of this publication may be reproduced, modified, translated, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from fib. First published in 2010 by the International Federation for Structural Concrete (fib) Postal address: Case Postale 88, CH-1015 Lausanne, Switzerland Street address: Federal Institute of Technology Lausanne - EPFL, Section Gnie Civil Tel +41 21 693 2747 Fax +41 21 693 6245 [email protected] www.fib-international.org ISSN 1562-3610 ISBN 978-2-88394-096-3 Printed by DCC Document Competence Center Siegmar Kstl e.K., Germany

  • fib Bulletin 56: Model Code 2010, First complete draft Volume 2 iii

    Contents Notations vii

    PART III: DESIGN

    7 Design 1 7.1 Conceptual design 1

    7.1.1 General 1 7.1.2 Methodology 1 7.1.3 Structural concept and basis for design 5

    7.2 Structural analysis and dimensioning 6 7.2.1 General 6 7.2.2 Structural modelling 7 7.2.3 Dimensioning values 16

    7.3 Verification of structural safety (ULS) for predominantly static loading 27 7.3.1 General 27 7.3.2 Bending with and without axial force 27 7.3.3 Shear 30 7.3.4 Torsion 43 7.3.5 Punching 45 7.3.6 Design with stress fields and strut and tie models 53 7.3.7 Compression members 59 7.3.8 Lateral instability of beams 64 7.3.9 3D Solids 65

    7.4 Verification of structural safety (ULS) for non-static loading 68 7.4.1 Fatigue design 68 7.4.2 Impact and explosion 76 7.4.3 Seismic design 85

    7.5 Verification of structural safety (ULS) for extreme thermal conditions 108 7.5.1 Fire design 108 7.5.2 Cryogenic design 125

    7.6 Verification of serviceability (SLS) of RC and PC structures 129 7.6.1 Requirements 129 7.6.2 Design criteria 129 7.6.3 Stress limitation 130 7.6.4 Limit state of cracking 132 7.6.5 Limit states of deformation 148 7.6.6 Vibrations 155

    7.7 Verification of safety and serviceability of FRC structures 157 7.7.1 Classification 157 7.7.2 Design principles 157 7.7.3 Verification of safety (ULS) 159 7.7.4 Serviceability Limit State (SLS) 165

    7.8 Verification of limit states associated with durability 167 7.8.1 General 167 7.8.2 Carbonation induced corrosion uncracked concrete 169 7.8.3 Chloride induced corrosion uncracked concrete 174 7.8.4 Influence of cracks upon reinforcement corrosion 177

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 56 is intended for use and/or distribution only within National Member Groups of fib.

  • iv fib Bulletin 56: Model Code 2010, First complete draft Volume 2

    7.8.5 Risk of depassivation with respect to pre-stressed steel 178 7.8.6 Freeze/thaw attack 178 7.8.7 Chemical attack 182 7.8.8 Alkali-aggregate reactions 184

    7.9 Verification of robustness 186 7.9.1 General 186 7.9.2 Specific methods to improve robustness by structural measures 188

    7.10 Verification of sustainability 190 7.10.1 Impact on environment 190 7.10.2 Impact on society 191 7.10.3 Aesthetics 192

    7.11 Verification assisted by numerical simulations 193 7.11.1 Purpose 193 7.11.2 Methods of numerical simulation 193 7.11.3 Safety formats for non-linear analysis 196 7.11.4 Resistance parameter identification 200

    7.12 Verification assisted by testing 202 7.12.1 Scope 202 7.12.2 Definition 203 7.12.3 Aims of verification assisted by testing 204 7.12.4 Requirements 205 7.12.5 Planning 205 7.12.6 Testing conditions and measurements 207 7.12.7 Laboratory report 208 7.12.8 Statistical analysis of test results 209 7.12.9 Verification procedure 210

    7.13 Detailing 213 7.13.1 Basic principles 213 7.13.2 Positioning of reinforcement 213 7.13.3 Prestressed structures 221 7.13.4 Bearings and joints 222 7.13.5 Structural members 223 7.13.6 Special aspects of precast concrete elements and composite structural members 229

    PART IV: CONSTRUCTION

    8 Construction 237 8.1 General 237 8.2 Execution management 237

    8.2.1 Assumptions 237 8.2.2 Documentation 238 8.2.3 Quality management 238

    8.3 Reinforcing steel works 239 8.3.1 Transportation and storage 240 8.3.2 Identification 240 8.3.3 Cutting and bending 240 8.3.4 Welding 242 8.3.5 Joints 244 8.3.6 Assembly and placing of the reinforcement 244 8.3.7 Construction documents reinforcement 245

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 56 is intended for use and/or distribution only within National Member Groups of fib.

  • fib Bulletin 56: Model Code 2010, First complete draft Volume 2 v

    8.4 Prestressing works 245 8.4.1 General 245 8.4.2 Packaging, transportation, storage and handling of materials and components 246 8.4.3 Prestressing works for post-tensioning tendons 247 8.4.4 Prestressing works for pretensioning tendons 252 8.4.5 Replacement of tendons 254 8.4.6 Construction documents prestressing 255

    8.5 Falsework and formwork 255 8.6 Concreting 255

    8.6.1 Specification of concrete 255 8.6.2 Placing and compaction 256 8.6.3 Curing 257 8.6.4 Execution with precast concrete elements 257 8.6.5 Geometrical tolerances 258

    PART IV: CONSERVATION AND DISMANTLEMENT

    9 Conservation 259 9.1 Conservation objectives 259 9.2 Conservation strategies and tactics 260

    9.2.1 General 260 9.2.2 Strategy using proactive conservation measures 261 9.2.3 Strategy using reactive conservation measures 263 9.2.4 Situations where conservation measures are not feasible 264

    9.3 Conservation management 264 9.3.1 Through-life conservation process 264 9.3.2 Conservation Plan 268

    9.4 Condition survey 269 9.4.1 Condition survey and monitoring activities 269 9.4.2 Locations for surveys and monitoring activities 271 9.4.3 Tools and techniques for surveys and monitoring 271 9.4.4 Gathering data for Condition Control purposes 272 9.4.5 General flow of condition survey process 275

    9.5 Condition assessment 277 9.5.1 Identification of deterioration mechanisms and prediction of damage 277 9.5.2 Identification of deterioration mechanism 277 9.5.3 Factors influencing deterioration 278 9.5.4 Determination of deterioration level and rate 278

    9.6 Condition evaluation and decision-making 278 9.6.1 General 278 9.6.2 Threshold levels for deterioration of material and / or structural performance 279 9.6.3 Judgment criteria 279 9.6.4 Selection of interventions 280

    9.7 Interventions 281 9.7.1 Maintenance interventions 282 9.7.2 Preventative interventions 282 9.7.3 Remedial interventions 283 9.7.4 Rebuild, reconstruction and replacement 283

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 56 is intended for use and/or distribution only within National Member Groups of fib.

  • vi fib Bulletin 56: Model Code 2010, First complete draft Volume 2

    9.7.5 Strengthening or upgrading interventions 284 9.7.6 Other activities and measures 285 9.7.7 Execution of interventions 286

    9.8 Recording 287

    10 Dismantlement, recycle and reuse 288 10.1 General 288 10.2 Dismantlement and removal 288

    10.2.1 General 288 10.2.2 Consideration at design stage 288

    10.3 Recycle and reuse 288

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 56 is intended for use and/or distribution only within National Member Groups of fib.

  • fib Bulletin 56: Model Code 2010, First complete draft Volume 2 vii

    Notations

    Meaning of Roman capital letters A area B (void) C torsional moment of inertia D fatigue damage factor; diffusion coefficient E modulus of elasticity; earthquake action F action in general; local loading G permanent action; shear modulus H horizontal component of a force I second moment of a plane area J creep function K (permeability) coefficient L can be used for 'span; length of an element' in place of I M bending moment; coefficient of water absorption N axial force O (void) P force Q variable action R strength (resisting load effect); reaction at a support; resultant S load effect (M, N, I', T); static moment of a plane area T torsional moment; temperature U (void) V shear force, volume W modulus of inertia X reaction or force in general, parallel to x-axis Y reaction or force in general, parallel to y-axis Z reaction or force in general, parallel to z-axis

    NOTE: Roman capital letters can be used to denote types of material, e.g. C for concrete, LC for lightweight concrete, S for steel, Z for cement.

    Meaning of Roman lower case letters a deflection; distance; acceleration b width c concrete cover d effective height; diameter (see also h) e eccentricity f strength of a material g distributed permanent load; acceleration due to gravity h total height or diameter of a section; thickness i radius of gyration j number of days k all coefficients with dimension 1 span; length of an element m bending moment per unit length or width; mass; average value of a sample n normal (longitudinal, axial) force per unit length or width o (void) p prestressing q distributed variable load r radius s spacing; standard deviation of a sample t time; torsional moment per unit length or width; thickness of thin elements u perimeter

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 56 is intended for use and/or distribution only within National Member Groups of fib.

  • viii fib Bulletin 56: Model Code 2010, First complete draft Volume 2

    v velocity; shear force per unit length or width w width of a crack x co-ordinate; height of compression zone Y co-ordinate; height of rectangular diagram co-ordinate; lever arm

    Use of Greek lower case letters alpha angle; ratio; coefficient beta angle; ratio; coefficient gamma safety factor; density; shear strain (angular strain) delta coefficient of variation; coefficient epsilon strain zeta coefficient eta coefficient theta rotation iota (void) kappa (to be avoided as far as possible) lambda slenderness ratio; coefficient mu relative bending moment; coefficient of friction; mean value of a whole

    population nu relative axial force; Poisson's ratio xi coefficient; ratio omicron o (void) pi (mathematical use only) rho geometrical percentage of reinforcement; bulk density sigma axial stress; standard deviation of a whole population tau shear stress upsilon (void) phi creep coefficient chi (to be avoided as far as possible) psi coefficient; ratio omega mechanical percentage of reinforcement

    Mathematical symbols and special symbols S sum difference; increment (enlargement) diameter of a reinforcing bar or of a cable (apostrophe) compression (only in a geometrical or locational sense) e base of Naperian logarithms exp power of the number e ratio of the circumference of a circle to its diameter n number of ... w/c water/cement ratio not greater than: indicates the upper bound in a formula * not smaller than: indicates the lower bound in a formula * < smaller than > greater than *: These symbols placed at the end of an expression indicate that where the result to which it leads is higher

    (or lower) than the limit given, then the values given should be taken into account and not the result obtained from the formula.

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 56 is intended for use and/or distribution only within National Member Groups of fib.

  • fib Bulletin 56: Model Code 2010, First complete draft Volume 2 ix

    General subscripts a support settlement; additional; accidental load b bond; bar; beam c concrete; compression; column d design value e elastic limit of a material f forces and other actions; beam flange; bending; friction g permanent load h horizontal; hook i initial j number of days k characteristic value 1 longitudinal m mean value; material; bending moment n axial force o zero p prestressing steel q variable load r cracking s ordinary steel; snow; slab t tension;* torsion;* transverse u ultimate (limit state) v shear; vertical w wind; web; wire; wall x linear co-ordinate y linear co-ordinate z linear co-ordinate 1, 2, 3 particular values of quantities cc conventional asymptotic value

    NOTE: * When confusion is possible between tension and torsion, the subscripts tn (tension) and tr (torsion) should be used.

    Subscripts for actions and action effects a(A) support settlement; accidental action cc creep of concrete cd delayed elasticity of concrete cf delayed plasticity of concrete cs shrinkage of concrete ep earth pressure eg(E) earthquake; seismic ex explosion; blast eq (E) forces and other actions g(G) permanent load im impact lp liquid pressure m(M) bending moment n(N) axial force p(P) prestress q(Q) variable load s(S) snow load t(T) torsion; temperature v(V) shear w(W) wind load

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 56 is intended for use and/or distribution only within National Member Groups of fib.

  • x fib Bulletin 56: Model Code 2010, First complete draft Volume 2

    Subscripts obtained by abbreviation abs absolute act acting adm admissible, permissible cal calculated, design crit (or cr) critical ef effective el (or e) elastic est estimated exc exceptional est external fat fatigue inf inferior int internal lat lateral lim limit max maximum min minimum nec necessary net net nom nominal obs observed pl plastic prov (or pr) provisional (stage of construction), provided red reduced rel relative, relaxation rep representative req required res resisting, resistant ser serviceability, service sup superior tot total var variable

    Notation list

    Roman lower case letters

    1 / r curvature of a section of an element 1 /r(g) curvature due to g 1 /r(g+q) curvature due to g and q 1 /r0 (g+9) instantaneous (initial) curvature due to g and q 1 /r1 curvature of an uncracked concrete section (state I) 1 /r1 r curvature in state I under cracking moment 1 /r2 curvature of a cracked concrete section (state II) 1 /r2r curvature in state II under cracking moment 1 /rts tension stiffening correction for curvature a deflection ac elastic deflection (calculated with rigidity Ec Ie) b breadth of compression zone or flange bred reduced breadth of web bx smaller side dimension of a rectangular section by greater side dimension of a rectangular section bw breadth of web c concrete cover, concentration of a substance in a volume element cl column dimension parallel to the eccentricity of the load

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 56 is intended for use and/or distribution only within National Member Groups of fib.

  • fib Bulletin 56: Model Code 2010, First complete draft Volume 2 xi

    c2 column dimension perpendicular to the eccentricity of the load c m i n minimum concrete cover c n o m nominal value of concrete cover (= c m i n + tolerance) d effective depth to main tension reinforcement d effective depth to compression reinforcement d m a x maximum aggregate size e load eccentricity e0 first order eccentricity (= MSd / Nsd) e01 smaller value of the first order eccentricity at one end of the considered element e02 greater value of the first order eccentricity at one end of the considered element etot total eccentricity fbd design value of bond stress fc cylinder compressive strength of concrete fc* cylinder compressive strength of concrete under triaxial loading (confined strength),

    reduced concrete strength due to transverse tension fcc cylinder compressive strength of concrete under uniaxial stress fcd* design compressive strength of concrete under triaxial loading (confined strength),

    reduced design concrete strength due to transverse tension fcd design value of fc fcd1 average design strength value in an uncracked compression zone fcd2 average design strength value in a cracked compression zone fcd,fat design fatigue reference strength of concrete under compression fck characteristic value of fc fck,cf value of fck of confined concrete fck.cube characteristic value of cube compressive strength of concrete fck,fat fatigue reference compressive strength fcm mean value of compressive strength fc at an age of 28 days fct axial tensile strength of concrete (determined according to R1LEM CPC 7) fctd design value of fct fctk characteristic value of fct fctm mean axial tensile strength fct,fl mean flexural tensile strength (at T = 20C) fct,sp mean splitting tensile strength fd design value of strength fp0,1 0,1 % proof stress of prestressing reinforcement Fp0,2 0,2% proof stress of prestressing reinforcement fp0,1k characteristic 0,1% proof stress fp0,2k characteristic 0,2% proof stress fpt tensile strength of prestressing reinforcement fptd design tensile strength of prestressing reinforcement fptk characteristic tensile strength of prestressing reinforcement

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 56 is intended for use and/or distribution only within National Member Groups of fib.

  • xii fib Bulletin 56: Model Code 2010, First complete draft Volume 2

    fpy tension yield stress of prestressing reinforcement fpyd design value of tension yield stress of prestressing reinforcement fpyk characteristic value of tension yield stress of prestressing reinforcement fR relative (or projected) rib area ft tensile strength of non- prestressing reinforcement ftk characteristic value of tensile strength of non- prestressing reinforcement fy tension yield stress of non- prestressing reinforcement fyc strength of steel in compression fycd design strength of steel in compression fyd design value of tension yield stress of non- prestressing reinforcement fyk characteristic value of tension yield stress of non- prestressing reinforcement gd design value of distributed permanent load h overall depth of member, total height; notional size of a member (2 Ac/u; u: perimeter

    in contact with the atmosphere) hb depth of beam hf depth of flange hw height of water column i radius of gyration l design span, effective span, length of an element, thickness of a penetrated section l measured elongation between two measuring points 10 design lap length, effective length (of columns); distance between measuring points lb basic anchorage length lbp basic anchorage length of pretensioned reinforcement lbpd design anchorage length of pretensioned reinforcement lbpt transmission length of pretensioned reinforcement lb,min minimum anchorage length lb,net design anchorage length lch characteristic length (fracture parameter) lp development length for prestressing reinforcement lpl plastic length (region in which tensile strain is larger than yield strain) lpl residual elongation after unloading lp,max length over which the slip between prestressing steel and concrete occurs ls,max length over which the slip between steel and concrete occurs lt transmission length m moment per unit width (out-of-plane loading); mass of substance flowing: degree

    of hydration n number of bars, number of load cycles; force per unit width (in-plane-loading) nRi number of cycles leading to failure at stress levels Si,min and Si,max, respectively nSi number of cycles applied at constant minimum and maximum stress levels Si,min

    and Si,max, respectively p local gas pressure

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 56 is intended for use and/or distribution only within National Member Groups of fib.

  • fib Bulletin 56: Model Code 2010, First complete draft Volume 2 xiii

    q distributed variable load qd design value of distributed variable load r radius s slip (relative displacement of steel and concrete cross-sections), shear slip (at

    interfaces); spacing of bars smax maximum bar spacing sr distance between cracks; radial spacing of layers of shear reinforcement sr,m mean spacing between cracks t time, age, duration; thickness of thin elements t0 age at loading ts concrete age at the beginning of shrinkage or swelling tT effective concrete age u length of a perimeter; component of displacement of a point u0 length of the periphery of the column or load ul length of the control perimeter for punching uef length of the perimeter of Aef un length of the control perimeter for punching outside a slab zone with shear

    reinforcement v shear force per unit width (out-of-plane loading), component of displacement of a

    point w crack width; component of displacement of a point wc crack width for ct = 0 wk calculated characteristic crack width wlim nominal limit value of crack width x depth of compression zone, distance z internal lever arm

    Greek lower case letters

    coefficient, reduction factor e modular ratio (Es / Ec) e ,p modular ratio (Ep / Ec) e ,sec secant modular ratio (Es,sec / Ec,sec) ST coefficient of thermal expansion for steel T coefficient of thermal expansion in general coefficient characterizing the bond quality of reinforcing bars c(t,t0) coefficient to describe the development of creep with time after loading safety factor c partial safety factor for concrete material properties c,fat partial safety factor for concrete material properties under fatigue loading F partial safety factor for actions G partial safety factor for permanent actions Q partial safety factor for variable actions s partial safety factor for the material properties of reinforcement and prestressing steel

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 56 is intended for use and/or distribution only within National Member Groups of fib.

  • xiv fib Bulletin 56: Model Code 2010, First complete draft Volume 2

    s,fat partial safety factor for the material properties of reinforcement and prestressing steel under fatigue loading

    jj node displacement strain c concrete compression strain c* concrete compression strain under triaxial stress cm average concrete strain within ls,max c0 concrete strain at peak stress m compression cc(t) concrete creep strain at concrete age t > t0 ci(t0) stress dependent initial strain at the time of stress application cn(t) total stress independent strain at a concrete age t (= cs(t) + cT(t,T) ) cs(t,ts) total shrinkage or swelling strain at concrete age t (t in days) c(t) total stress dependent strain at a concrete age t (= ci(t0) + cc(t) ) ct concrete tensile strain cT(t,T) thermal strain at a concrete age t cu ultimate strain of concrete in compression d0 strain of prestressed reinforcement corresponding to Pd0 pu total elongation of prestressing reinforcement at maximum load r strain at the onset of cracking s steel strain s1 steel strain in uncracked concrete s2 steel strain in the crack sm mean steel strain sr increase of steel strain in cracking state sr1 steel strain at the point of zero slip under cracking forces sr2 steel strain in the crack under cracking forces (ct reaching fctm) sT thermal strain of steel su strain of non-prestressing reinforcement at maximum load ts increase of strain by the effect of tension stiffening u total elongation of reinforcing steel at maximum load uk characteristic total elongation of reinforcing steel at maximum load yd design yield strain of non - prestressing reinforcement (= fyd / Es) transverse contraction ratio of bond strength of prestressing steel and high-bond reinforcing steel viscosity of gas angle between web compression and the axis of a member; rotation f angle between inclined compression in a flange and the axis of the member slenderness ratio (= l0 / i) coefficient of friction, relative bending moment relative axial force c Poisson's ratio of concrete s Poisson's ratio of steel sd relative design axial force (= NSd / Ac fcd) ratio of (longitudinal) tension reinforcement (= As/bd) s,ef effective reinforcement ratio (= As/Ac,ef) t relaxation after t hours w ratio of web reinforcement (= Asw/bws sin) stress

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 56 is intended for use and/or distribution only within National Member Groups of fib.

  • fib Bulletin 56: Model Code 2010, First complete draft Volume 2 xv

    1 , 2 , 3 principal stresses c concrete compression stress cd design concrete compression stress ct concrete tensile stress c,ef compression stress of confined concrete c,max maximum compressive stress c , m i n minimum compressive stress p0(x) initial stress in prestressing reinforcement at a distance x from anchorage device p0,max. maximum tensile force in prestressing reinforcement at tensioning pcs tendon stress due to prestress after all losses (due to creep and shrinkage) pd tendon stress under design load Rsk(n) stress range relevant to n cycles obtained from a characteristic fatigue strength function s steel stress s 2 steel stress in the crack sE steel stress at the point of zero slip s r 2 steel stress in the crack under crack loading (ct reaching f c t m) S s steel stress range under the acting loads b local bond stress b m mean bond stress f u , d ultimate design shear friction capacity m a x maximum value of bond stress R d resistance to shear stress (design value) S d applied shear stress (design value) (t,t0) relaxation coefficient mechanical reinforcement ratio s w mechanical ratio of stirrup reinforcement v volumetric ratio of confining reinforcement w volumetric mechanical ratio of confining reinforcement wd design volumetric mechanical ratio of confining reinforcement

    Roman capital letters

    A total area of a section or part of a section (enclosed within the outer circumference) A1 section area in state I (taking into account the reinforcement) Ac area of concrete cross section or concrete compression chord Ac,ef effective area of concrete in tension Acore effectively confined area of cross-section in compression Aef area enclosed by the centre-lines of a shell resisting torsion Ap area of prestressing reinforcement As area of reinforcement As' area of compressed reinforcement Ash area of hoop reinforcement for torsion Asl area of longitudinal reinforcement Ast area of transverse reinforcement Asw area of shear reinforcement As,cal calculated area of reinforcement required by design As,ef area of reinforcement provided As,min minimum reinforcement area D fatigue damage, diffusion coefficient

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 56 is intended for use and/or distribution only within National Member Groups of fib.

  • xvi fib Bulletin 56: Model Code 2010, First complete draft Volume 2

    Dlim limiting fatigue damage E modulus of elasticity Ec reduced modulus of elasticity for concrete Ec(t0) modulus of elasticity at the time of loading t0 Eci tangent modulus of elasticity at a stress i (at T = 20C) Ec,sec secant modulus of elasticity at failure for uniaxial compression

    (Ec,sec= fcm / |c0| ) EP modulus of elasticity of prestressing steel Es modulus of elasticity of steel Es,sec secant modulus of elasticity of steel F force, applied load or load effect Fb bond force transmitted along the transmission length Fc strut force (compression force) Fd design value of action Fpt tensile load of prestressed reinforcement Fp0,1 characteristic 0,1 % proof -load FSd,ef effective concentric load (punching load enhanced to allow for the effects of moments) Ft tie force (tension force) Fud ultimate dowel force G permanent action GF fracture energy of concrete GF0 base value of fracture energy (depending on maximum aggregate size) Ginf favourable part of permanent action Gsup unfavourable part of permanent action H horizontal force, horizontal component of a force I second moment of area I 1 second moment of area in state I (including the reinforcement) I2 second moment of area in state II (including the reinforcement) Ic second moment of area of the uncracked concrete cross-section (state I) J(t,t0) creep function or creep compliance representing the total stress dependent strain per

    unit stress Kg coefficient of gas permeability Kw coefficient of water permeability L span, length of an element M bending moment; maturity of concrete Mr cracking moment MRd design value of resistant moment MSd design value of applied moment Mu ultimate moment My yielding moment N axial force, number of cycles to failure (fatigue loading) Nr axial cracking force NRd design value of resistance to axial force NSd design value of applied axial force Pd0 design value of prestressing force (initial force) Pk,inf lower characteristic value of prestressing force Pk,sup upper characteristic value of prestressing force Pm mean value of prestressing force

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 56 is intended for use and/or distribution only within National Member Groups of fib.

  • fib Bulletin 56: Model Code 2010, First complete draft Volume 2 xvii

    Q variable single action; volume of a transported substance (gas or liquid) R resistance (strength); bending radius; universal gas constant Rd design resistance RH ambient relative humidity RH0 100% relative humidity S load effect (M, N, V, T); absorption coefficieni Scd stress range under fatigue loading Scd,max design value of maximum compressive stress level (fatigue loading) Scd,min design value of minimum compressive stress level (fatigue loading) Sc,max maximum compressive stress level (fatigue loading) Sc,min minimum compressive stress level (fatigue loading) Sd design load effect (M, N, V, T) T temperature, torsional moment T temperature change TRd design value of resistance to torsional moment TSd design value of applied torsional moment TSd,eff effective design value of applied torsional moment V shear force; volume of gas or liquid VRd design value of resistance to shear force VSd design value of applied shear force Vu ultimate shear force W1 section modulus in state I (including the reinforcement) W2 section modulus in state II (including the reinforcement) Wc section modulus of the uncracked concrete cross-section (state I) Wc,cf volume of confined concrete We external work Wi internal work Ws,trans volume of closed stirrups or cross-ties

    Others

    nominal diameter of steel bar n equivalent diameter of bundles containing n bars p diameter of prestressing steel (for bundles equivalent diameter) (t,t0) creep coefficient 0 notional creep coefficient pl plastic rotation capacity U total perimeter of rebars

    Statistical symbols

    Roman lower case letters

    fx(x) probability density function (of normal distribution) fr(r) probability density function (of log-normal distribution) fR(r) probability density function of resistance fS(s) probability density function of action k normalised variable or fractile factor mx mean (same meaning as x ) mR mean of resistance

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 56 is intended for use and/or distribution only within National Member Groups of fib.

  • xviii fib Bulletin 56: Model Code 2010, First complete draft Volume 2

    mS mean of action pf failure probability x! median x modal value x mean (same meaning as mx) xp p-%-fractile

    Greek lower case letters:

    sensitivity factor reliability index (partial) safety factor x2 scattering or variance x standard deviation R standard deviation of resistance S standard deviation of action

    Roman capital letters:

    Fr(r) probability distribution function (of log-normal distribution) Fx(x) probability distribution function (of normal distribution) R resistance S action Vx coefficient of variation Z safety zone (difference of R and S)

    Others

    (k) normalized function

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 56 is intended for use and/or distribution only within National Member Groups of fib.

  • fib

    Bu

    llet

    in 5

    6:

    Mod

    el C

    od

    e 20

    10

    , F

    irst

    co

    mp

    lete

    dra

    ft

    Volu

    me

    2

    1

    7

    Des

    ign

    7

    .1

    Co

    nce

    ptu

    al

    des

    ign

    7.1

    .1

    Gen

    era

    l

    The

    conce

    ptu

    al d

    esig

    n st

    age

    is th

    e m

    ost

    im

    port

    ant

    phas

    e of

    a pro

    ject

    .

    Wit

    hout

    an i

    dea

    , w

    ith

    out

    a p

    rop

    er s

    olu

    tio

    n t

    o t

    he

    pro

    ble

    m u

    nder

    stu

    dy t

    her

    e is

    no

    es

    tabli

    shed

    sa

    fety

    co

    nce

    pt,

    n

    o

    adeq

    uat

    ely

    def

    ined

    beh

    avio

    ur

    and

    esse

    nti

    ally

    no s

    olu

    tio

    n t

    o t

    he

    def

    ined

    pro

    ble

    m,

    wit

    hout

    whic

    h a

    succ

    essf

    ul

    const

    ruct

    ion p

    roje

    ct c

    anno

    t b

    e b

    rou

    gh

    t in

    to b

    eing.

    T

    he

    conce

    ptu

    al

    des

    ign

    st

    age

    is

    wh

    en

    iden

    tifi

    ed

    nee

    ds

    are

    exam

    ined

    ,

    requir

    emen

    ts

    for

    po

    ten

    tial

    so

    luti

    on

    s ar

    e def

    ined

    , po

    tenti

    al

    solu

    tio

    ns

    are

    eval

    uat

    ed a

    nd a

    suit

    able

    str

    uct

    ura

    l co

    nce

    pt

    for

    furt

    her

    des

    ign

    is

    dev

    elo

    ped

    .

    Man

    y i

    tera

    tion

    s of

    the

    des

    ign

    pro

    cess

    are

    com

    monly

    req

    uir

    ed t

    o r

    efin

    e th

    e

    des

    ign c

    once

    pts

    to

    acc

    ord

    wit

    h t

    he

    fun

    ctio

    nal

    req

    uir

    emen

    ts a

    nd a

    ssoci

    ated

    finan

    cial

    / o

    ther

    co

    nst

    rain

    ts.

    The

    anal

    yti

    c to

    ols

    appli

    ed a

    t th

    is s

    tage

    to t

    he

    inves

    tigat

    ion of

    the

    pro

    ble

    m

    and

    ev

    alu

    atio

    n

    of

    pote

    nti

    al opti

    ons

    may

    be

    rela

    tivel

    y c

    rude.

    T

    he

    bas

    ic ap

    pro

    ach

    to

    d

    esig

    n re

    lies

    o

    n d

    eco

    mp

    osi

    tio

    n an

    d in

    tegra

    tio

    n.

    Sin

    ce d

    esig

    n p

    roble

    ms

    are

    larg

    e an

    d c

    om

    ple

    x,

    they

    hav

    e to

    be

    dec

    om

    po

    sed

    into

    su

    b-p

    roble

    ms

    that

    ar

    e sm

    all

    eno

    ugh

    to

    so

    lve.

    T

    her

    e ar

    e n

    um

    ero

    us

    alte

    rnat

    ive

    way

    s to

    dec

    om

    po

    se d

    esig

    n p

    roble

    ms,

    su

    ch a

    s d

    eco

    mp

    osi

    tio

    n b

    y

    funct

    ions

    of

    the

    faci

    lity

    , b

    y s

    pat

    ial

    loca

    tio

    ns

    of

    its

    par

    ts,

    or

    by l

    inks

    am

    on

    g

    var

    ious

    funct

    ions

    or

    par

    ts.

    So

    luti

    ons

    to s

    ub

    -pro

    ble

    ms

    mu

    st b

    e in

    tegra

    ted

    into

    an o

    ver

    all

    solu

    tio

    n.

    Th

    e in

    tegra

    tio

    n a

    nd

    rat

    ion

    alis

    atio

    n p

    roce

    ss o

    ften

    cre

    ates

    conce

    ptu

    al c

    onfl

    icts

    whic

    h m

    ust

    be

    iden

    tifi

    ed a

    nd

    res

    olv

    ed.

    Var

    ious

    idea

    s fo

    r so

    lvin

    g t

    he

    pro

    ble

    m u

    nd

    er s

    tud

    y a

    re p

    rod

    uce

    d d

    uri

    ng t

    he

    conce

    ptu

    al d

    esig

    n s

    tage,

    wit

    h o

    ne

    that

    co

    mp

    lies

    in

    an

    op

    tim

    al m

    ann

    er w

    ith

    the

    spec

    ifie

    d r

    equir

    emen

    ts.

    Th

    ese

    idea

    s, e

    ven

    th

    ou

    gh

    lac

    kin

    g i

    n d

    etai

    l, m

    ust

    des

    crib

    e th

    e so

    luti

    on

    fr

    om

    th

    e p

    oin

    ts

    of

    vie

    w

    of

    fun

    ctio

    nal

    ity

    , st

    ruct

    ura

    l

    bea

    ring c

    apac

    ity,

    const

    ruct

    ion

    an

    d e

    con

    om

    y.

    Th

    is p

    has

    e sh

    ould

    id

    enti

    fy t

    he

    more

    cri

    tica

    l as

    pec

    ts w

    hic

    h n

    eed

    to

    be

    mo

    re t

    horo

    ugh

    ly d

    evel

    op

    ed i

    n t

    he

    foll

    ow

    ing s

    tages

    of

    the

    des

    ign

    pro

    cess

    .

    7.1

    .2

    Met

    ho

    do

    log

    y

    Conce

    ptu

    al d

    esig

    n i

    s a

    crea

    tive

    act

    for

    whic

    h i

    t is

    not

    easy

    to

    est

    abli

    sh a

    met

    hodolo

    gy.

    Fig

    ure

    7

    .1-1

    il

    lust

    rate

    s a

    pro

    cess

    w

    hic

    h m

    ay p

    rovid

    e so

    me

    insi

    ght

    and b

    e of

    assi

    stan

    ce w

    ith

    th

    is a

    ctiv

    ity.

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 56 is intended for use and/or distribution only within National Member Groups of fib.

  • 7

    Des

    ign

    2

    Fig

    ure

    7.1

    -1:

    Met

    ho

    dolo

    gic

    al

    flo

    wch

    art

    for

    conce

    ptu

    al

    des

    ign

    7.1

    .2.1

    In

    pu

    t

    Init

    ial

    info

    rmat

    ion

    mu

    st b

    e es

    tab

    lish

    ed w

    ith

    reg

    ard

    to

    :

    bas

    ic e

    xte

    rnal

    in

    pu

    t dat

    a,

    serv

    ice

    crit

    eria

    ,

    per

    form

    ance

    req

    uir

    emen

    ts.

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 56 is intended for use and/or distribution only within National Member Groups of fib.

  • fib

    Bu

    llet

    in 5

    6:

    Mod

    el C

    od

    e 20

    10

    , F

    irst

    co

    mp

    lete

    dra

    ft

    Volu

    me

    2

    3

    Basi

    c ex

    tern

    al

    inp

    ut

    data

    If t

    he

    bas

    ic e

    xte

    rnal

    in

    pu

    t d

    ata

    is n

    ot

    avai

    lable

    to t

    he

    des

    igner

    , a

    pro

    cess

    wil

    l nee

    d t

    o b

    e es

    tab

    lish

    ed s

    o t

    hat

    it

    can b

    e obta

    ined

    eit

    her

    fro

    m t

    he

    ow

    ner

    ,

    the

    arch

    itec

    t, th

    e au

    thori

    ties

    or

    som

    e o

    ther

    so

    urc

    e, or

    via

    an

    ap

    pro

    pri

    ate

    pro

    cess

    inst

    igat

    ed b

    y t

    he

    des

    ign

    er.

    Bas

    ic d

    ata

    shal

    l be

    clea

    rly s

    pec

    ifie

    d i

    n t

    he

    Ser

    vic

    e C

    rite

    ria

    Agre

    emen

    t, s

    ee s

    ub

    clau

    se 3

    .5.2

    .2.5

    .

    bas

    ic d

    ata

    appli

    cab

    le,

    incl

    ud

    ing t

    hir

    d p

    arty

    inte

    ract

    ion

    s (g

    eote

    chnic

    al

    dat

    a, m

    eto

    cean

    d

    ata,

    to

    pogra

    ph

    ical

    an

    d b

    ath

    ym

    etri

    cal

    dat

    a, cl

    imat

    o-

    logic

    al

    dat

    a,

    envir

    on

    men

    tal

    dat

    a (e

    arth

    qu

    ake,

    h

    urr

    ican

    es),

    m

    ater

    ial

    pro

    per

    ties

    , ac

    cess

    ibil

    ity

    and

    tr

    ansp

    ort

    fa

    cili

    ties

    , lo

    cal

    const

    ruct

    ion

    rule

    s, e

    tc.)

    Ser

    vice

    cri

    teri

    a

    The

    serv

    ice

    crit

    eria

    sh

    all

    be

    dis

    cuss

    ed a

    nd e

    stab

    lish

    ed w

    ith t

    he

    ow

    ner

    or

    the

    arch

    itec

    t; i

    t sh

    all

    be

    app

    roved

    by a

    ll a

    nd

    shal

    l be

    clea

    rly s

    pec

    ifie

    d i

    n t

    he

    Ser

    vic

    e C

    rite

    ria

    Agre

    emen

    t, s

    ee s

    ub

    clau

    se 3

    .5.2

    .2.5

    .

    gen

    eral

    aim

    s fo

    r th

    e u

    se o

    f th

    e co

    nst

    ruct

    ion

    wo

    rks

    (eff

    icie

    ncy

    , co

    mfo

    rt,

    safe

    ty,

    etc.

    ),

    oper

    atio

    nal

    an

    d m

    ainte

    nan

    ce r

    equ

    irem

    ents

    (ef

    fici

    ency

    , ec

    on

    om

    y,

    etc.

    ),

    spec

    ial

    req

    uir

    emen

    ts o

    f th

    e st

    akeh

    old

    ers

    (up

    gra

    din

    g,

    rep

    lace

    men

    t, e

    tc.)

    ,

    obje

    ctiv

    es o

    f pro

    tect

    ion a

    nd s

    pec

    ial

    risk

    s,

    load

    ings

    and

    lo

    adin

    g c

    om

    bin

    atio

    ns,

    envir

    onm

    enta

    l co

    ndit

    ions

    codes

    and r

    egu

    lato

    ry r

    equ

    irem

    ents

    .

    Per

    form

    ance

    req

    uir

    emen

    ts

    The

    per

    form

    ance

    re

    qu

    irem

    ents

    sh

    all

    be

    esta

    bli

    shed

    , pro

    pose

    d

    and

    expla

    ined

    by t

    he

    des

    ign

    er,

    in c

    onju

    nct

    ion

    wit

    h t

    he

    ow

    ner

    , an

    d s

    hal

    l be

    clea

    rly

    spec

    ifie

    d i

    n t

    he

    Ser

    vic

    e C

    rite

    ria

    Agre

    emen

    t, s

    ee s

    ubcl

    ause

    3.5

    .2.2

    .5.

    per

    form

    ance

    cri

    teri

    a fo

    r se

    rvic

    eabil

    ity a

    nd

    saf

    ety (

    incl

    ud

    ing d

    ura

    bil

    ity

    and r

    obust

    nes

    s),

    serv

    ice

    life

    co

    nst

    rain

    ts (

    tem

    po

    rary

    , re

    pla

    ceab

    le,

    evo

    luti

    ve,

    lo

    ng t

    erm

    ),

    reli

    abil

    ity c

    onst

    rain

    ts,

    per

    form

    ance

    req

    uir

    emen

    ts f

    or

    sust

    ain

    abil

    ity.

    7.1

    .2.2

    A

    ctiv

    itie

    s

    In g

    ener

    al,

    acti

    vit

    ies

    per

    form

    ed d

    uri

    ng t

    he

    stag

    e of

    conce

    ptu

    al d

    esig

    n o

    f

    const

    ruct

    ion w

    ork

    s ar

    e re

    late

    d t

    o:

    T

    he

    conce

    ptu

    al d

    esig

    n p

    roce

    ss c

    an b

    e ch

    arac

    teri

    zed

    by a

    ser

    ies

    of

    inte

    r-

    acti

    ve

    acti

    vit

    ies,

    des

    crib

    ed a

    s fo

    llo

    ws:

    const

    rain

    t an

    alysi

    s an

    d c

    lass

    ific

    atio

    n,

    envir

    onm

    ent

    anal

    ysi

    s (i

    ncl

    ud

    ing l

    oca

    l poli

    tics

    and l

    oca

    l tr

    adit

    ions)

    ,

    form

    ula

    tio

    n,

    whic

    h r

    efer

    s to

    th

    e d

    efin

    itio

    n o

    r d

    escr

    ipti

    on

    of

    a d

    esig

    n

    pro

    ble

    m

    in

    bro

    ad

    term

    s,

    thro

    ugh

    th

    e sy

    nth

    esis

    o

    f id

    eas

    des

    crib

    ing

    alte

    rnat

    ive

    con

    cep

    ts,

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 56 is intended for use and/or distribution only within National Member Groups of fib.

  • 7

    Des

    ign

    4

    gen

    eral

    co

    nce

    pti

    on

    ,

    choic

    e of

    mat

    eria

    ls (

    con

    sider

    ing e

    con

    om

    y a

    nd e

    ner

    gy c

    onsu

    mpti

    on f

    or

    pro

    duct

    ion

    and

    eli

    min

    atio

    n),

    stru

    ctura

    l co

    nce

    pt

    (str

    uct

    ura

    l lo

    gic

    , d

    imen

    sions)

    ,

    inte

    gra

    tion

    an

    d

    aest

    het

    ics

    (leg

    ibil

    ity,

    sim

    pli

    city

    , pro

    port

    ions,

    equil

    ibri

    um

    , sh

    apes

    , det

    ail

    ph

    ilo

    sop

    hy),

    const

    ruct

    ion

    met

    ho

    d (

    seq

    uen

    ces)

    ,

    rough c

    ost

    est

    imat

    e,

    com

    par

    ison

    of

    alte

    rnat

    ives

    ,

    succ

    essi

    ve

    pre

    sen

    tati

    on

    , ex

    pla

    nat

    ion

    and d

    iscu

    ssio

    ns

    wit

    h t

    he

    ow

    ner

    (arc

    hit

    ect)

    ,

    afte

    r ac

    cep

    tan

    ce b

    y th

    e ow

    ner

    -

    pre

    par

    atio

    n of

    the

    bas

    is f

    or

    des

    ign

    (dra

    win

    gs,

    no

    tes,

    rep

    ort

    s).

    anal

    ysi

    s,

    wh

    ich

    re

    fin

    es

    the

    pro

    ble

    m

    def

    init

    ion

    or

    des

    crip

    tio

    n

    by

    separ

    atin

    g

    imp

    ort

    ant

    from

    p

    erip

    her

    al

    info

    rmat

    ion

    and

    b

    y

    pu

    llin

    g

    toget

    her

    th

    e es

    sen

    tial

    det

    ail.

    In

    terp

    reta

    tio

    n a

    nd

    pre

    dic

    tio

    n a

    re u

    sual

    ly

    requir

    ed a

    s p

    art

    of

    the

    anal

    ysi

    s,

    sear

    ch,

    whic

    h

    invo

    lves

    gat

    her

    ing

    a se

    t o

    f po

    ten

    tial

    so

    luti

    on

    s fo

    r

    per

    form

    ing

    the

    spec

    ifie

    d

    funct

    ion

    s an

    d

    sati

    sfyin

    g

    the

    use

    r

    requir

    emen

    ts,

    dec

    isio

    n,

    wh

    ich

    mea

    ns

    that

    eac

    h o

    f th

    e p

    ote

    nti

    al s

    olu

    tio

    ns

    is e

    val

    uat

    ed

    and c

    om

    par

    ed t

    o t

    he

    alte

    rnat

    ives

    unti

    l th

    e b

    est

    solu

    tio

    n i

    s o

    bta

    ined

    ,

    spec

    ific

    atio

    n,

    wh

    ich

    is

    to d

    escr

    ibe

    the

    cho

    sen

    solu

    tio

    n i

    n a

    form

    wh

    ich

    conta

    ins

    eno

    ugh

    det

    ail

    for

    imp

    lem

    enta

    tio

    n,

    modif

    icat

    ion

    , w

    hic

    h r

    efer

    s to

    the

    chan

    ge

    in t

    he

    solu

    tion

    or

    re-d

    esig

    n i

    f

    the

    solu

    tion

    is

    foun

    d t

    o b

    e w

    anti

    ng o

    r if

    new

    info

    rmat

    ion

    is

    dis

    cover

    ed

    in t

    he

    pro

    cess

    of

    des

    ign

    .

    7.1

    .2.3

    T

    he

    role

    of

    exp

    erti

    se, in

    sigh

    t an

    d t

    ools

    Att

    ribute

    s an

    d t

    oo

    ls s

    uch

    as

    the

    foll

    ow

    ing m

    ay b

    e em

    plo

    yed

    duri

    ng t

    he

    conce

    ptu

    al d

    esig

    n s

    tage:

    exper

    ience

    , plu

    s in

    sigh

    t fr

    om

    bac

    kgro

    und,

    feed

    bac

    k,

    dat

    abas

    e so

    urc

    es,

    intu

    itio

    n, fe

    elin

    g, se

    nsi

    tivit

    y f

    or

    the

    circ

    um

    stan

    ces,

    crea

    tivit

    y, im

    agin

    atio

    n,

    c

    apac

    ity o

    f si

    mu

    ltan

    eou

    s an

    alysi

    s an

    d i

    nte

    gra

    tion o

    f d

    iver

    se c

    rite

    ria

    and c

    onst

    rain

    ts t

    akin

    g i

    nto

    acc

    ou

    nt

    thei

    r re

    lati

    ve

    wei

    ghts

    ,

    quic

    k p

    re-d

    esig

    n m

    eth

    od

    s,

    dev

    elopm

    ent

    of

    idea

    s,

    con

    cepts

    an

    d

    des

    ign

    det

    ails

    by

    sket

    chin

    g

    (ran

    gin

    g f

    rom

    ro

    ugh

    fre

    ehan

    d s

    ket

    ches

    to a

    ccura

    te d

    raw

    ings)

    ,

    vis

    ual

    izat

    ion

    to

    ols

    .

    T

    he

    conce

    ptu

    al d

    esig

    n p

    roce

    ss a

    ims

    to f

    ind

    acc

    epta

    ble

    solu

    tio

    ns

    for

    the

    def

    ined

    req

    uir

    emen

    ts,

    const

    rain

    ts a

    nd

    th

    e as

    soci

    ated

    op

    po

    rtu

    nit

    ies

    pro

    vid

    ed

    by t

    he

    circ

    um

    stan

    ces.

    Th

    e p

    roce

    ss i

    s gu

    ided

    by t

    he

    exp

    erie

    nce

    gat

    her

    ed i

    n

    com

    par

    able

    const

    ruct

    ion

    wo

    rks,

    alo

    ng w

    ith

    in

    sigh

    t an

    d i

    ntu

    itio

    n o

    bta

    ined

    in

    oth

    er r

    elev

    ant

    circ

    um

    stan

    ces.

    A v

    arie

    ty o

    f to

    ols

    an

    d a

    ids

    may b

    e u

    sed

    to

    ass

    ist

    the

    pro

    cess

    , in

    clu

    din

    g

    tho

    se

    for

    vis

    ual

    isat

    ion

    of

    can

    did

    ate

    sch

    emes

    an

    d

    alte

    rnat

    ive

    opti

    on

    s, b

    asic

    dim

    ensi

    on

    ing o

    f el

    emen

    ts,

    pre

    lim

    inar

    y e

    val

    uat

    ion

    of

    econom

    ic o

    utc

    om

    es,

    etc.

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 56 is intended for use and/or distribution only within National Member Groups of fib.

  • fib

    Bu

    llet

    in 5

    6:

    Mod

    el C

    od

    e 20

    10

    , F

    irst

    co

    mp

    lete

    dra

    ft

    Volu

    me

    2

    5

    7.1

    .3

    Str

    uct

    ura

    l C

    on

    cep

    t a

    nd

    Ba

    sis

    for

    Des

    ign

    The

    Str

    uct

    ura

    l C

    once

    pt

    der

    ived

    fro

    m t

    he

    conce

    ptu

    al d

    esig

    n i

    ncl

    ud

    es:

    the

    chose

    n s

    tru

    ctura

    l sy

    stem

    ,

    info

    rmat

    ion

    on

    the

    mo

    st i

    mp

    ort

    ant

    dim

    ensi

    on

    s, c

    onst

    ruct

    ion

    mat

    eria

    l

    pro

    per

    ties

    an

    d c

    on

    stru

    ctio

    n d

    etai

    ls,

    com

    men

    ts o

    n t

    he

    envis

    aged

    met

    ho

    ds

    of

    con

    stru

    ctio

    n.

    The

    Str

    uct

    ura

    l C

    on

    cept

    der

    ived

    fr

    om

    th

    e co

    nce

    ptu

    al

    des

    ign

    sh

    all

    be

    des

    crib

    ed i

    n t

    he

    Bas

    is o

    f D

    esig

    n,

    incl

    ud

    ing t

    he

    bas

    es a

    nd

    req

    uir

    emen

    ts f

    or

    the

    subse

    quen

    t des

    ign

    , ex

    ecu

    tio

    n,

    use

    an

    d c

    on

    serv

    atio

    n.

    The

    Bas

    is f

    or

    Des

    ign

    des

    crib

    es:

    The

    exte

    nt

    and

    co

    nte

    nt

    of

    the

    bas

    is of

    des

    ign sh

    all

    be

    adap

    ted to

    th

    e

    import

    ance

    of

    the

    con

    stru

    ctio

    n

    wo

    rks

    and

    the

    asso

    ciat

    ed

    haz

    ards

    and

    envir

    onm

    enta

    l ri

    sks,

    bu

    t it

    mu

    st a

    lway

    s ex

    ist

    no m

    atte

    r h

    ow

    min

    or

    the

    pro

    ject

    mig

    ht

    be

    consi

    der

    ed t

    o b

    e.

    the

    des

    ign

    wo

    rkin

    g l

    ife,

    the

    serv

    ice

    situ

    atio

    ns

    con

    sid

    ered

    ,

    the

    haz

    ard

    sce

    nar

    ios

    con

    sider

    ed,

    the

    requir

    emen

    ts

    of

    stru

    ctu

    ral

    safe

    ty,

    serv

    icea

    bil

    ity

    and

    du

    rab

    ilit

    y

    toget

    her

    w

    ith

    th

    e m

    easu

    res

    nee

    ded

    to

    gu

    aran

    tee

    them

    , in

    clu

    din

    g

    div

    isio

    n

    of

    resp

    on

    sibil

    itie

    s,

    pro

    cess

    es,

    contr

    ols

    an

    d

    corr

    ecti

    ve

    mec

    han

    ism

    s,

    the

    assu

    med

    gro

    un

    d c

    ond

    itio

    ns,

    the

    import

    ant

    assu

    mp

    tio

    ns

    in t

    he

    stru

    ctu

    ral

    and

    anal

    yti

    cal

    mo

    del

    s,

    the

    acce

    pte

    d r

    isks,

    oth

    er c

    ond

    itio

    ns

    rele

    van

    t to

    th

    e des

    ign

    .

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 56 is intended for use and/or distribution only within National Member Groups of fib.

  • 7

    Des

    ign

    6

    7.2

    S

    tru

    ctu

    ral

    an

    aly

    sis

    an

    d d

    imen

    sio

    nin

    g

    7.2

    .1

    Gen

    era

    l

    In s

    om

    e ca

    ses,

    this

    mo

    del

    may b

    e b

    ased

    on e

    xper

    imen

    tal

    test

    s m

    ade

    for

    the

    par

    ticu

    lar

    des

    ign

    o

    r o

    n

    a co

    mb

    inat

    ion

    of

    test

    ing

    and

    anal

    yti

    cal

    calc

    ula

    tions.

    S

    truct

    ura

    l an

    alysi

    s co

    mp

    rise

    s th

    e d

    eter

    min

    atio

    n o

    f act

    ion

    eff

    ects

    su

    ch a

    s

    inte

    rnal

    forc

    es a

    nd

    mo

    men

    ts,

    sup

    port

    rea

    ctio

    ns

    and d

    efo

    rmat

    ion

    s ca

    rrie

    d o

    ut

    on t

    he

    bas

    is o

    f a

    stru

    ctu

    ral

    mo

    del

    . T

    o t

    hat

    aim

    th

    e st

    ruct

    ure

    can

    be

    sub

    div

    ided

    into

    com

    ponen

    ts,

    like

    bea

    ms,

    sla

    bs,

    wal

    ls a

    nd

    sh

    ells

    and

    co

    nn

    ecti

    ng a

    reas

    .

    Anal

    yse

    s sh

    all

    be

    carr

    ied

    ou

    t u

    sin

    g i

    dea

    lisa

    tion

    s o

    f b

    oth

    th

    e geo

    met

    ry a

    nd

    the

    beh

    avio

    ur

    of

    the

    stru

    ctu

    re.

    Th

    e id

    eali

    zati

    on

    s sh

    all

    be

    appro

    pri

    ate

    to t

    he

    case

    consi

    der

    ed.

    The

    effe

    ct

    of

    geo

    met

    ry

    and

    th

    e p

    rop

    erti

    es

    of

    the

    stru

    cture

    an

    d

    its

    beh

    avio

    ur

    at e

    ach

    sta

    ge

    of

    con

    stru

    ctio

    n a

    nd s

    ervic

    e sh

    all

    be

    con

    sid

    ered

    in

    des

    ign.

    Sec

    ond o

    rder

    eff

    ects

    shal

    l b

    e ta

    ken

    in

    to a

    cco

    unt

    wher

    e th

    ey a

    re l

    ikel

    y t

    o

    affe

    ct t

    he

    over

    all

    stab

    ilit

    y o

    f a

    stru

    cture

    sig

    nif

    ican

    tly a

    nd

    for

    the

    atta

    inm

    ent

    of

    the

    ult

    imat

    e li

    mit

    sta

    te a

    t cr

    itic

    al s

    ecti

    on

    s

    Impose

    d

    def

    orm

    atio

    ns

    can

    re

    sult

    fr

    om

    dif

    fere

    nti

    al

    sett

    lem

    ents

    ,

    tem

    per

    ature

    gra

    die

    nts

    or

    dif

    fere

    nce

    s in

    hu

    mid

    ity o

    r fr

    om

    sei

    smic

    act

    ions.

    T

    he

    inte

    rnal

    forc

    es a

    nd

    mo

    men

    ts i

    n a

    str

    uct

    ure

    foll

    ow

    fro

    m a

    syst

    em o

    f

    load

    s or

    from

    im

    po

    sed

    def

    orm

    atio

    ns

    or

    fro

    m a

    co

    mb

    inat

    ion

    of

    bo

    th.

    Wit

    h

    regar

    d to

    th

    e th

    eory

    o

    f pla

    stic

    ity

    both

    th

    e upper

    an

    d

    the

    low

    er

    theo

    rem

    of

    pla

    stic

    ity c

    an b

    e ap

    pli

    ed.

    The

    appli

    cati

    on

    o

    f th

    e lo

    wer

    th

    eore

    m of

    pla

    stic

    ity im

    pli

    es th

    at a

    safe

    bea

    ring m

    ode

    is f

    ou

    nd

    , if

    a s

    tati

    call

    y a

    dm

    issi

    ble

    bea

    ring s

    yst

    em a

    ppli

    es i

    n

    whic

    h,

    under

    th

    e ac

    tio

    ns

    def

    ined

    , th

    e ad

    mis

    sible

    st

    ress

    es

    are

    now

    her

    e

    exce

    eded

    . E

    xam

    ple

    s o

    f su

    ch s

    yst

    ems

    are

    stru

    t an

    d t

    ie m

    odel

    s an

    d t

    he

    stri

    p

    met

    hod,

    use

    d f

    or

    the

    des

    ign

    of

    slab

    s. T

    he

    solu

    tions

    found c

    an b

    e m

    ore

    or

    less

    econo

    mic

    , but

    rep

    rese

    nt

    a lo

    wer

    bo

    und

    for

    the

    bea

    ring c

    apac

    ity.

    The

    appli

    cati

    on

    of

    the

    up

    per

    th

    eore

    m o

    f pla

    stic

    ity r

    equir

    es t

    he

    adopti

    on o

    f

    a pat

    tern

    of

    yie

    ld l

    ines

    , gen

    erat

    ing a

    kin

    emat

    ic m

    echan

    ism

    . T

    he

    pat

    tern

    that

    fail

    s at

    th

    e lo

    wes

    t lo

    ad

    rep

    rese

    nts

    th

    e b

    eari

    ng

    capac

    ity.

    This

    m

    ethod

    is

    par

    ticu

    larl

    y v

    aluab

    le f

    or

    find

    ing t

    he

    bea

    rin

    g c

    apac

    ity o

    f ex

    isti

    ng s

    truct

    ure

    s.

    In

    tern

    al

    forc

    es,

    mo

    men

    ts

    and

    d

    eform

    atio

    ns

    in

    stat

    ical

    ly

    ind

    eter

    min

    ate

    stru

    cture

    s m

    ay b

    e d

    eter

    min

    ed b

    ased

    on:

    theo

    ry o

    f li

    nea

    r el

    asti

    city

    ,

    theo

    ry o

    f li

    nea

    r el

    asti

    city

    wit

    h l

    imit

    ed r

    edis

    trib

    uti

    on

    ,

    theo

    ry o

    f pla

    stic

    ity,

    nonli

    nea

    r m

    eth

    od

    s.

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 56 is intended for use and/or distribution only within National Member Groups of fib.

  • fib

    Bu

    llet

    in 5

    6:

    Mod

    el C

    od

    e 20

    10

    , F

    irst

    co

    mp

    lete

    dra

    ft

    Volu

    me

    2

    7

    The

    effe

    ct

    of

    cree

    p

    and

    sh

    rin

    kag

    e o

    f co

    ncr

    ete

    and

    re

    lax

    atio

    n

    of

    pre

    stre

    ssin

    g

    stee

    l gen

    eral

    ly

    hav

    e to

    b

    e ta

    ken

    in

    to

    acco

    unt

    in

    ver

    ifyin

    g

    serv

    icea

    bil

    ity.

    Typic

    al

    of

    D-r

    egio

    ns

    are

    the

    area

    s w

    her

    e st

    ruct

    ura

    l co

    mponen

    ts

    are

    connec

    ted (

    e.g.

    bea

    m c

    olu

    mn

    , lo

    ad i

    ntr

    od

    uct

    ion a

    reas

    and s

    upport

    s).

    In

    ord

    er t

    o c

    arry

    ou

    t d

    imen

    sio

    nin

    g,

    the

    stru

    cture

    an

    d i

    ts c

    om

    po

    nen

    ts c

    an

    be

    subdiv

    ided

    into

    B-

    and

    D-

    regio

    ns.

    In

    B-r

    egio

    ns

    the

    forc

    es a

    nd

    mo

    men

    ts

    var

    y g

    radual

    ly.

    In D

    -regio

    ns

    the

    forc

    es a

    nd

    mo

    men

    ts v

    ary d

    isti

    nct

    ly.

    Exce

    pt

    for

    tho

    se

    due

    to

    the

    seis

    mic

    ac

    tio

    n,

    the

    effe

    ct

    of

    imp

    ose

    d

    def

    orm

    atio

    ns

    may

    be

    negle

    cted

    in

    ver

    ifyin

    g s

    tru

    ctu

    ral

    safe

    ty i

    f an

    adeq

    uat

    e

    def

    orm

    atio

    n c

    apac

    ity i

    s en

    sure

    d f

    or

    all

    par

    ts o

    f th

    e st

    ruct

    ure

    .

    If d

    etai

    led i

    nves

    tigat

    ion

    s ar

    e n

    eces

    sary

    for

    the

    det

    erm

    inat

    ion

    of

    forc

    es a

    nd

    mo

    men

    ts i

    n t

    he

    serv

    icea

    bil

    ity l

    imit

    sta

    te,

    an a

    nal

    ysi

    s ca

    n b

    e ca

    rrie

    d o

    ut

    wit

    h

    adeq

    uat

    ely r

    educe

    d s

    tiff

    nes

    s o

    f st

    ruct

    ura

    l ar

    eas

    du

    e to

    cra

    ckin

    g.

    7.2

    .2

    Str

    uct

    ura

    l m

    od

    elli

    ng

    7.2

    .2.1

    G

    enera

    l

    The

    stat

    ic a

    nd g

    eom

    etri

    cal

    bo

    un

    dar

    y c

    on

    dit

    ions

    as w

    ell

    as t

    he

    tran

    smis

    sio

    n

    of

    support

    re

    acti

    on

    s sh

    all

    be

    taken

    in

    to

    acco

    unt

    wh

    en

    idea

    lisi

    ng

    and

    del

    imit

    ing t

    he

    syst

    em.

    Soil

    str

    uct

    ure

    inte

    ract

    ion

    shal

    l b

    e co

    nsi

    der

    ed a

    pp

    ropri

    atel

    y.

    7.2

    .2.2

    G

    eom

    etri

    c im

    per

    fecti

    on

    s

    Dev

    iati

    ons

    in c

    ross

    -sec

    tio

    nal

    dim

    ensi

    ons

    are

    norm

    ally

    tak

    en i

    nto

    acc

    ount

    in

    the

    mat

    eria

    l sa

    fety

    fa

    cto

    rs.

    Thes

    e nee

    d

    ther

    efore

    not

    be

    incl

    uded

    in

    stru

    ctura

    l an

    alysi

    s.

    T

    he

    unfa

    voura

    ble

    eff

    ects

    of

    po

    ssib

    le d

    evia

    tio

    ns

    in t

    he

    geo

    met

    ry o

    f th

    e

    stru

    cture

    an

    d t

    he

    po

    siti

    on o

    f th

    e lo

    ads

    shal

    l b

    e ta

    ken

    in

    to ac

    cou

    nt

    in th

    e

    anal

    ysi

    s of

    mem

    ber

    s an

    d s

    tru

    cture

    s.

    Imper

    fect

    ions

    shal

    l b

    e ta

    ken

    in

    to

    acco

    unt

    for

    the

    ver

    ific

    atio

    n

    of

    the

    ult

    imat

    e li

    mit

    sta

    te f

    or

    per

    sist

    ent

    and

    acc

    iden

    tal

    des

    ign

    sit

    uat

    ion

    s. I

    n t

    he

    case

    of

    slen

    der

    com

    pre

    ssio

    n m

    em

    ber

    s, t

    he

    seco

    nd

    ord

    er e

    ffec

    ts a

    nd

    th

    e in

    flu

    ence

    s

    of

    cree

    p o

    f co

    ncr

    ete

    shal

    l be

    taken

    in

    to a

    cco

    un

    t (s

    ub

    clau

    se 7

    .3.7

    ).

    Imper

    fect

    ions

    nee

    d

    no

    t b

    e co

    nsi

    der

    ed

    for

    the

    ver

    ific

    atio

    n

    of

    the

    serv

    icea

    bil

    ity l

    imit

    sta

    te.

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 56 is intended for use and/or distribution only within National Member Groups of fib.

  • 7

    Des

    ign

    8

    In

    the

    case

    o

    f b

    rid

    ge

    pie

    rs

    or

    hig

    hly

    st

    ress

    ed

    buil

    din

    g

    colu

    mns,

    th

    e

    incl

    inat

    ion re

    sult

    ing fr

    om

    th

    e b

    ase

    rota

    tio

    n ca

    n be

    of

    import

    ance

    fo

    r th

    e

    dim

    ensi

    onin

    g o

    f th

    e b

    raci

    ng s

    tru

    ctura

    l m

    em

    ber

    s (e

    .g.

    floor

    slab

    s, b

    raci

    ngs

    of

    bu

    ildin

    gs,

    bri

    dge

    bea

    rin

    gs)

    . T

    he

    effe

    ct o

    f th

    e m

    isal

    ignm

    ent

    shal

    l be

    esti

    mat

    ed

    and i

    f nec

    essa

    ry t

    aken

    in

    to c

    on

    sid

    erat

    ion

    in

    th

    e ca

    lcula

    tions.

    U

    nle

    ss s

    pec

    ifie

    d o

    ther

    wis

    e in

    th

    e b

    asis

    of

    des

    ign

    , th

    e u

    nin

    tend

    ed b

    ase

    rota

    tion o

    f ver

    tica

    l co

    mp

    ress

    ion

    mem

    ber

    s am

    ou

    nts

    to

    1

    200

    i

    0.0

    1 l

    1

    300

    (l

    in

    m)

    (7.2

    -1)

    wher

    e:

    l den

    ote

    s th

    e h

    eigh

    t o

    f th

    e co

    mp

    ress

    ion

    m

    em

    ber

    o

    r co

    mp

    ress

    ion

    mem

    ber

    s st

    and

    ing o

    n t

    op

    of

    on

    e an

    oth

    er.

    In

    buil

    din

    gs,

    th

    e av

    erag

    e m

    isal

    ign

    men

    t

    im

    of

    a gro

    up

    o

    f ver

    tica

    l

    com

    pre

    ssio

    n m

    em

    ber

    s ca

    n b

    e es

    tim

    ated

    wit

    h t

    he

    equ

    atio

    n

    1.0

    0.5

    (1.0

    )im

    im

    (7

    .2-2

    )

    wher

    e:

    m

    den

    ote

    s th

    e n

    um

    ber

    o

    f co

    mp

    ress

    ion

    m

    emb

    ers

    wh

    ich

    h

    ave

    to b

    e

    incl

    uded

    in

    det

    erm

    inin

    g t

    he

    effe

    ct o

    f th

    e m

    isal

    ign

    men

    t, s

    ee F

    igu

    re

    7.2

    -1.

    Fig

    ure

    7.2

    -1:

    Geo

    met

    rica

    l im

    per

    fect

    ion

    s

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 56 is intended for use and/or distribution only within National Member Groups of fib.

  • fib

    Bu

    llet

    in 5

    6:

    Mod

    el C

    od

    e 20

    10

    , F

    irst

    co

    mp

    lete

    dra

    ft

    Volu

    me

    2

    9

    7.2

    .2.3

    S

    tru

    ctu

    ral

    geo

    met

    ry

    For

    the

    stru

    ctura

    l an

    alysi

    s, t

    he

    stru

    ctu

    re s

    hal

    l b

    e id

    eali

    sed

    usi

    ng s

    uit

    able

    model

    s;

    exam

    ple

    s ar

    e p

    lan

    e o

    r sp

    ace

    fram

    es

    and

    B

    - an

    d

    D-r

    egio

    ns

    of

    stru

    ctura

    l co

    mpon

    ents

    .

    In t

    he

    case

    of

    T-b

    eam

    s, t

    he

    effe

    ctiv

    e sl

    ab w

    idth

    dep

    end

    s o

    n t

    he

    web

    and

    the

    flan

    ge

    dim

    ensi

    on

    s, t

    he

    typ

    e o

    f ac

    tio

    n,

    the

    span

    , th

    e su

    pp

    ort

    co

    ndit

    ion

    s an

    d

    the

    tran

    sver

    se r

    ein

    forc

    emen

    t. T

    he

    effe

    ctiv

    e s

    lab

    wid

    th m

    ay b

    e es

    tim

    ated

    wit

    h

    the

    equat

    ion (

    see

    Fig

    ure

    7.2

    -2):

    bb

    bb

    wi

    eff

    eff

    ,

    (7.2

    -3)

    wher

    e

    bef

    f,i

    0.2

    b i

    0.1

    l 0

    0.2

    l 0

    (7.2

    -4)

    The

    dis

    tance

    l0 b

    etw

    een

    th

    e p

    oin

    ts o

    f ze

    ro m

    om

    ent

    may b

    e d

    eter

    min

    ed f

    or

    usu

    al c

    ases

    acc

    ord

    ing t

    o F

    igu

    re 7

    .2-3

    , b

    ased

    on

    th

    e f

    oll

    ow

    ing a

    ssu

    mp

    tio

    ns:

    - th

    e ca

    nti

    lever

    len

    gth

    is

    smal

    ler

    than

    hal

    f th

    e ad

    jace

    nt

    span

    ,

    - th

    e ra

    tio b

    etw

    een

    adja

    cen

    t sp

    ans

    is b

    etw

    een

    1 a

    nd

    1.5

    .

    Fig

    ure

    7.2

    -2:

    Eff

    ecti

    ve s

    lab

    wid

    th

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 56 is intended for use and/or distribution only within National Member Groups of fib.

  • 7

    Des

    ign

    10

    Fig

    ure

    7.2

    -3:

    Rel

    eva

    nt

    dis

    tan

    ces

    l 0

    for

    the

    det

    erm

    inati

    on

    of

    the

    effe

    ctiv

    e sl

    ab

    wid

    th

    7.2

    .2.4

    C

    alc

    ula

    tion

    meth

    od

    s

    7.2

    .2.4

    .1

    Anal

    ysi

    s bas

    ed o

    n l

    inea

    r el

    asti

    city

    This

    appro

    ach

    im

    pli

    es t

    hat

    th

    e r

    esp

    on

    se r

    elat

    ionsh

    ip

    is l

    inea

    r, a

    nd t

    he

    assu

    mpti

    on o

    f re

    ver

    sib

    le d

    efo

    rmat

    ion

    s is

    ret

    ained

    . T

    he

    resu

    lts

    are

    real

    isti

    c

    on

    ly u

    nder

    that

    act

    ion

    s ar

    e lo

    w a

    nd

    mem

    ber

    s ar

    e uncr

    acked

    .

    A

    nal

    ysi

    s of

    elem

    ents

    bas

    ed o

    n t

    he

    theo

    ry o

    f li

    nea

    r el

    asti

    city

    may b

    e u

    sed

    for

    both

    the

    serv

    icea

    bil

    ity a

    nd

    th

    e u

    ltim

    ate

    lim

    it s

    tate

    s.

    For

    UL

    S v

    erif

    icat

    ions

    exis

    tin

    g p

    ract

    ice

    allo

    ws

    the

    use

    of

    linea

    r el

    asti

    c

    anal

    ysi

    s w

    ithout

    dir

    ect

    ver

    ific

    atio

    n o

    f su

    ffic

    ient

    duct

    ilit

    y.

    This

    is

    bas

    ed o

    n t

    he

    assu

    mpti

    on t

    hat

    th

    ere

    is d

    uct

    ilit

    y e

    no

    ugh

    to

    bal

    ance

    the

    lack

    of

    com

    pat

    ibil

    ity.

    The

    met

    hod i

    s norm

    ally

    use

    d w

    ith

    th

    e gro

    ss-s

    ecti

    on o

    f co

    ncr

    ete

    mem

    ber

    s;

    ther

    efore

    it

    re

    quir

    es

    def

    init

    ion

    of

    geo

    met

    ry

    of

    the

    stru

    cture

    , but

    not

    nec

    essa

    rily

    of

    the

    rein

    forc

    emen

    t.

    F

    or

    the

    det

    erm

    inat

    ion

    of

    the

    acti

    on

    eff

    ects

    , li

    nea

    r el

    asti

    c an

    alysi

    s m

    ay b

    e

    carr

    ied o

    ut

    assu

    min

    g:

    uncr

    acked

    cro

    ss s

    ecti

    ons,

    linea

    r st

    ress

    -str

    ain r

    elat

    ion

    ship

    s,

    the

    mea

    n v

    alu

    e of

    the

    mo

    du

    lus

    of

    elas

    tici

    ty.

    Cra

    cked

    cro

    ss-s

    ecti

    on

    s m

    ay,

    ho

    wev

    er,

    be

    use

    d i

    f in

    the

    lim

    it s

    tate

    under

    consi

    der

    atio

    n a

    fu

    lly d

    evel

    op

    ed c

    rack

    pat

    tern

    can

    be

    expec

    ted.

    The

    resu

    lts

    of

    a li

    nea

    r an

    alysi

    s ar

    e al

    so u

    sed

    in

    th

    e ver

    ific

    atio

    n f

    or

    the

    serv

    icea

    bil

    ity l

    imit

    stat

    e.

    F

    or

    det

    erm

    inin

    g t

    he

    effe

    ct o

    f im

    po

    sed

    def

    orm

    atio

    ns

    at t

    he

    ult

    imat

    e li

    mit

    stat

    e a

    reduce

    d s

    tiff

    nes

    s co

    rres

    po

    ndin

    g t

    o c

    rack

    ed s

    ecti

    ons

    may

    be

    assu

    med

    .

    For

    the

    serv

    icea

    bil

    ity l

    imit

    sta

    te a

    gra

    dual

    evo

    luti

    on

    of

    crac

    kin

    g s

    ho

    uld

    be

    consi

    der

    ed.

    7.2

    .2.4

    .2

    Anal

    ysi

    s ac

    cord

    ing t

    o l

    inea

    r el

    asti

    city

    wit

    h l

    imit

    ed

    redis

    trib

    uti

    on

    Lin

    ear

    anal

    ysi

    s w

    ith

    lim

    ited

    red

    istr

    ibu

    tio

    n m

    ay b

    e ap

    pli

    ed t

    o t

    he

    anal

    ysi

    s

    of

    stru

    ctura

    l m

    em

    ber

    s fo

    r th

    e ver

    ific

    atio

    n a

    t th

    e U

    LS

    .

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 56 is intended for use and/or distribution only within National Member Groups of fib.

  • fib

    Bu

    llet

    in 5

    6:

    Mod

    el C

    od

    e 20

    10

    , F

    irst

    co

    mp

    lete

    dra

    ft

    Volu

    me

    2

    11

    If r

    edis

    trib

    uti

    on

    of

    mo

    men

    ts i

    s ap

    pli

    ed i

    n d

    eter

    min

    ing t

    he

    rein

    forc

    emen

    t

    this

    may

    hav

    e an

    in

    fluen

    ce o

    n d

    efle

    ctio

    n a

    nd

    cra

    ck w

    idth

    .

    T

    he

    infl

    uen

    ce o

    f an

    y r

    edis

    trib

    uti

    on

    of

    mo

    men

    ts o

    n o

    ther

    asp

    ects

    of

    des

    ign

    shal

    l be

    consi

    der

    ed.

    The

    mo

    men

    ts a

    t th

    e U

    LS

    cal

    cula

    ted

    usi

    ng a

    lin

    ear

    elas

    tic

    anal

    ysi

    s m

    ay b

    e

    redis

    trib

    ute

    d,

    pro

    vid

    ed t

    hat

    th

    e re

    sult

    ing d

    istr

    ibuti

    on

    of

    mo

    men

    ts r

    emai

    ns

    in

    equil

    ibri

    um

    wit

    h t

    he

    appli

    ed l

    oad

    s.

    Red

    istr

    ibuti

    on o

    f b

    endin

    g m

    om

    ents

    wit

    ho

    ut

    exp

    lici

    t ch

    eck o

    n t

    he

    rota

    tio

    n

    capac

    ity i

    s al

    low

    ed f

    or

    con

    tinu

    ou

    s b

    eam

    s o

    r sl

    abs

    wh

    ich

    are

    pre

    do

    min

    antl

    y

    subje

    cted

    to f

    lex

    ure

    an

    d h

    ave

    a ra

    tio

    of

    the

    len

    gth

    s o

    f ad

    jace

    nt

    span

    s in

    the

    range

    of

    0.5

    to 2

    . In

    th

    is c

    ase

    the

    foll

    ow

    ing r

    elat

    ion

    s sh

    ou

    ld a

    pp

    ly:

    dx

    kk

    u/

    21

    fo

    r M

    Pa

    f ck

    50

    (7.2

    -5)

    dx

    kk

    u/

    43

    fo

    r M

    Pa

    f ck

    50

    (7.2

    -6)

    and

    5k

    wher

    e C

    lass

    B,

    Cla

    ss C

    or