mm ztk 1a zoc ele cal 5004 rev a1_in

35

Click here to load reader

Upload: jazz9971

Post on 19-Jul-2016

41 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

ZAWTIKA DEVELOPMENT PROJECT PHASE 1A

EPCIC OF ZAWTIKA ONSHORE PIPELINE

CONTRACT NO. : IMO-EMP-CT-10-0018

ELECTRICAL EQUIPMENT SIZING CALCULATION FOR ZOC

A1 06-Jan -13 SZ Issued for Review GB WQL HJ SB

REV DATE BY DESCRIPTION CHECK APPR. CHECK APPR.

CPP APPROVAL

COMPANY APPROVAL

REVISION CODE: A = Issued for Review (IFR); B = Issued for Approval (IFA); C = Approved for Construction (AFC)

TOTAL OR PARTIAL AND / OR UTILIZATION OF THIS DOCUMENT ARE FORBIDDEN WITHOUT PRIOR WRITTEN AUTHORIZATION OF THE COMPANY

PTTEP INTERNATIONAL LIMITED

CPP

ZAWTIKA DEVELOPMENT PROJECT PHASE 1A EPCIC OF ZAWTIKA ONSHORE PIPELINE

MM-ZTK-1A-ZOC-ELE-CAL-5004

REV CLASS

A1 1

Page 2: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

PTTEP International Limited Page 2/21

Zawtika Development Project Phase 1A Document : MM-ZTK-1A-ZOC-ELE-CAL-5004

EPCIC of the Zawtika Onshore Pipeline Revision :A1 Date :06-Jan-13

Table of Contents 

1.0  SCOPE ......................................................................................................................................................... 4 

2.0  REFERENCE DOCUMENTS ...................................................................................................................... 4 

3.0  CODES AND STANDARDS ........................................................................................................................ 4 

4.0  SITE AND ENVIRONMENTAL CONDITIONS ........................................................................................... 4 

5.0  SIZING OF GENERARTOR ........................................................................................................................ 5 

5.1  GENERATOR CONFIGURATION ..................................................................................................................................... 5 5.2  ASSUMPTION OF CALCULATION ................................................................................................................................... 5 5.3  LOAD SUMMARY ...................................................................................................................................................... 5 5.4  GAS GENERATOR SIZING ............................................................................................................................................ 6 5.5  EMERGENCY ENGINE GENERATOR SIZING ...................................................................................................................... 7 5.6  TRANSIENT VOLTAGE DIP ANALYSIS ............................................................................................................................... 7 

5.6.1  Load Analysis ................................................................................................................................................ 7 5.6.2  Voltage drop calculation ............................................................................................................................... 8 

6.0  SIZING OF LOW VOLATGE SWITCHBOARD ....................................................................................................... 9 

6.1  SWITCHGEAR CONFIGURATION .................................................................................................................................... 9 6.2  LOW VOLTAGE SWITCHBOARD SIZING ......................................................................................................................... 10 

7.0  SIZING OF UPS ......................................................................................................................................... 10 

7.1  UPS  CONFIGURATION ............................................................................................................................................. 10 7.2  ASSUMPTION OF CALCULATION .................................................................................................................................. 10 7.3  DEFINITIONS AND FORMULA ..................................................................................................................................... 11 

7.3.1  Definitions ................................................................................................................................................... 11 7.3.2  Formula ....................................................................................................................................................... 11 7.3.3  Correction factors ....................................................................................................................................... 12 

7.4  CALCULATION ........................................................................................................................................................ 13 7.4.1  General ....................................................................................................................................................... 13 7.4.2  24VDC UPS .................................................................................................................................................. 13 7.4.3  230VACUPS ................................................................................................................................................. 13 

7.5  24VDC UPS CALCULATION ...................................................................................................................................... 13 7.5.1  Calculation for Battery cells ........................................................................................................................ 13 7.5.2  Load detailed .............................................................................................................................................. 13 7.5.3  Load Cycle ................................................................................................................................................... 14 7.5.4  Determine  K Factor .................................................................................................................................... 15 7.5.5  Determine  K Factor .................................................................................................................................... 15 7.5.6  Sizing Chart ................................................................................................................................................. 15 7.5.7  Charger sizing calculation ........................................................................................................................... 16 7.6.1  UPS Load Analysis ....................................................................................................................................... 17 7.6.2  UPS parameter: .......................................................................................................................................... 18 7.6.3  DC Link Voltage ........................................................................................................................................... 18 7.6.4  Calculation for Battery Cell ......................................................................................................................... 18 7.6.5  Load detailed .............................................................................................................................................. 18 7.6.6  Load Cycle ................................................................................................................................................... 18 7.6.7  Determine  K Factor .................................................................................................................................... 19 7.6.8  Sizing Chart ................................................................................................................................................. 19 7.6.9  Charger sizing calculation ........................................................................................................................... 20 

Page 3: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

PTTEP International Limited Page 3/21

Zawtika Development Project Phase 1A Document : MM-ZTK-1A-ZOC-ELE-CAL-5004

EPCIC of the Zawtika Onshore Pipeline Revision :A1 Date :06-Jan-13

8.0  CONCLUSION AND RECOMMENDATIONS ................................................................................................ 20 

9.0  ATTACHMENT........................................................................................................................................... 20 

Page 4: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

PTTEP International Limited Page 4/21

Zawtika Development Project Phase 1A Document : MM-ZTK-1A-ZOC-ELE-CAL-5004

EPCIC of the Zawtika Onshore Pipeline Revision :A1 Date :06-Jan-13

1.0 SCOPE

The scope of this report is to perform calculation for the sizing of the following main electrical equipment for ZOC.

Gas Generator

Diesel Generator

UPS including Battery

2.0 REFERENCE DOCUMENTS

This calculation report shall be on the basis of the following documents referenced herein: MM-ZTK-1A-ONEP-ELE-SPE-5011

Specification For Electrical Guidelines

MM-ZTK-1A-ONEP-ELE-SPE-5006

Specification For DC UPS

MM-ZTK-1A-ONEP-ELE-SPE-5005

Specification For AC UPS

MM-ZTK-1A-ONEP-ELE-SPE-5001

Specification For Gas Engine Generator

MM-ZTK-1A-ONEP-ELE-SPE-5002

Specification For Diesel Engine Generator

MM-ZTK-1A-ONEP-ELE-DTS-5006 Data Sheet For DC UPS

MM-ZTK-1A-ONEP-ELE-DTS-5005

Data Sheet For AC UPS

MM-ZTK-1A-ONEP-ELE-DTS-5001 Data Sheet For Gas Engine Generator

MM-ZTK-1A-ONEP-ELE-DTS-5002 Data Sheet For Diesel Engine Generator

MM-ZTK-1A-ZOC-ELE-LIS-5001 Electrical Load List and Maximum Demand Calculation for ZOC

3.0 CODES AND STANDARDS

The latest revisions of the following Codes and Standards referred to the UPS sizing calculation are as follows: IEEE 485 Recommended Practice for Sizing Lead Acid

Batteries for Stationary Applications

IEEE 946 Recommended Practice for the Design of DC auxiliary Power System for Generating Stations

IEEE 1184 Guide for Batteries for Uninterruptible Power Supply Systems

4.0 SITE AND ENVIRONMENTAL CONDITIONS

The site is located in a humid, tropical environment.

Page 5: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

PTTEP International Limited Page 5/21

Zawtika Development Project Phase 1A Document : MM-ZTK-1A-ZOC-ELE-CAL-5004

EPCIC of the Zawtika Onshore Pipeline Revision :A1 Date :06-Jan-13

Maximum ambient temperature : 45 ºC Minimum ambient temperature : 18 ºC Seismic Zone : 2B Maximum relative humidity at 40 ºC : 100%

5.0 SIZING OF GENERARTOR

5.1 Generator Configuration

At ZOC station, main power is supplied from generator sets operating in an island mode. The power system includes three Gas Engine Generators (GEG) and one Emergency Diesel Engine Generator (EDG). Depending of the plant load, two GEGs shall be synchronised and parallel supply the power to the main bus, the total load shall be shared by these two generators. The third unit of GEG shall be served as a standby unit. While the EDG is used primarily for emergency, maintenance and plant start-up purposes.

5.2 Assumption of Calculation

The following assumptions are used for the calculation:

1. Two GEGs are considered as the main power supply for normal and emergency loads. The GEGs shall be synchronised and parallel supply the power to the main bus. Thus, each GEG shall be capable to supply 50% of the total load.

2. One EDG is considered as the alternative power supply in case of emergency or maintenance of the GEG, the EDG shall be capable to supply the emergency load.

3. All GEGs are applied for peak load application, then the GEGs shall be classified

as a prime duty operation.

4. The EDG is applied for emergency load application, then the EDG shall be classified as a standby duty operation.

5. The power generator and distribution system shall have at least 20% spare

capacity above the peak load.

6. The generators shall be designed to operate at the maximum ambient temperature of 45°C.

7. The 20% safety factor will be applied for Low Voltage Switchgear sizing.

8. Voltage drop during the starting of the largest motor in the system. This is checked

by using per unit impedance method of calculations and is limited to 15% of the nominal voltage at the connected busbar.

5.3 Load Summary

The detailed AC electrical load estimation is indicated in the MM-ZTK-1A-ZOC-ELE-LIS -5001.

Page 6: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

PTTEP International Limited Page 6/21

Zawtika Development Project Phase 1A Document : MM-ZTK-1A-ZOC-ELE-CAL-5004

EPCIC of the Zawtika Onshore Pipeline Revision :A1 Date :06-Jan-13

Under normal operation condition, the electrical power consumption is summarized as follows:

Area

Normal load Peak load Peak load+20% spare

kW kVAR kVA kW kVAR kVA kW kVAR kVA

ZOC 1057.51 534.32 1184.83 1136.13 566.85 1269.69 1363 680 1524

The above mentioned the load summary will be used as the basis for gas generator sizing. Under emgerncy operation condition, the electrical power consumption is summarized as follows:

Area

Emergency load Peak load Peak load+20% spare

kW kVAR kVA kW kVAR kVA kW kVAR kVA

ZOC 475.05 273.86 548.34 530.61 292.19 605.74 636.73 350.63 726.89

The above mentioned the load summary will be used as the basis for diesel generator sizing.

5.4 Gas Generator Sizing

Two GEGs shall be synchronised and parallel supply the power to all loads, each GEG shall be sized to handle the 50% of total peak load plus 20% spare capacity. The sizing of gas engine generator is summarized in the below table:

Gas Engine Generator Sizing Description

Area ZOC

Maximum or Peak load (kW) 1136.13 Peak load +20% Spare Load (kW) 1363 Generator size (kW) 2x725

Spinning spare (kW) 87 The ISO rating of generator is 906kVA on site considering temperature de-rating factor , which is sufficient for the total plant load power requirement. Load factor of generator under different conditions is summarized below: Two generators in service :

Generator (Cat 906kVA)

Load Factor in % @ Normal Load

Load Factor in % @ Peak Load

Load Factor in % @ Peal Load Plus 20% Spare

2 x 725kW 73% 78% 94%

Page 7: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

PTTEP International Limited Page 7/21

Zawtika Development Project Phase 1A Document : MM-ZTK-1A-ZOC-ELE-CAL-5004

EPCIC of the Zawtika Onshore Pipeline Revision :A1 Date :06-Jan-13

Actual contingency at maximum load = (2x725-2x725x73%)/(2x725) =27%

5.5 Emergency Engine Generator Sizing

Essential loads will be supplied by emergency diesel generator. At the same time ,the generator shall be sized to provide black start operation.

The emergency generator shall be sized to meet the following criteria :

The emergency generator shall be capable to supply power to peak electrical loads plus 20% for future.

The emergency generator shall be capable of starting large motor ;

Terminal voltage shall be less than 15% during starting of large motor.

The sizing of emergency engine generator is summarized in the below table:

Diesel Engine Generator Sizing

Description

Area ZOC

Maximum or Peak load (kW) 530.61 Peak load +20% Spare Load (kW) 636.73 Generator size (kW) 1x 720

Spinning spare (kW) 83.27

The ISO rating of generator is 900kVA on site considering temperature de-rating factor , which is sufficient for the total plant load power requirement. Load factor of generator under different conditions is summarized below: One diesel generators in service :

Generator (Cat 900kVA)

Load Factor in % @ Normal Load

Load Factor in % @ Peak Load

Load Factor in % @ Peal Load Plus 20% Spare

720kW 66% 74% 88% Actual contingency at maximum load = (720-720x66%)/720 =34%

5.6 Transient voltage dip analysis

5.6.1 Load Analysis

HVAC is the largest motor connected to bus of low voltage switchgear (LVSWGR-8100), rated as 41kW. During black starting period, the following loads shall start in sequence.

Ventilation fan of generator enclosure rated 4x6.5kW

Page 8: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

PTTEP International Limited Page 8/21

Zawtika Development Project Phase 1A Document : MM-ZTK-1A-ZOC-ELE-CAL-5004

EPCIC of the Zawtika Onshore Pipeline Revision :A1 Date :06-Jan-13

230VAC UPS with battery recharging rated 288kVA

24VDC UPS with battery float charging rated 5.5kVA

HVAC rated 41kW

Thus, Total emergency loads before starting the largest motor : Power consumption = 4x6.5/(0.85x0.9)+288+5.5 = 328kVA During normal starting period, the two gas GEGs shall be synchronised and parallel supply the power to normal loads rated 1057kW.

Typical Values chosen for the motor are:

Full Load Efficiency : 90%

Full Load Power Factor : 0.85

Ratio of Starting Current to Full Load Current for DOL start: 6 (Ist / Ifl)

5.6.2 Voltage drop calculation

Considered Base MVA=1

Selected GEG Rating: 0.906 MVA Selected EDG Rating: 0.9MVA Generator Impedance(per unit) converted to Base MVA Zg= Xd’ x Base MVA/rated MVA Generator Impedance is summarized as follows Description Impedance (per unit) Impedance

(base MVA) Gas Generator (906kVA) 0.16 0.18 Diesel Generator (900kVA) 0.16 0.18

Motor Impedance(per unit) converted to Base MVA                 

BaseMVA x Eff xPF x IFLMWRATING x Ist

                1x 0.9 x0.85 x IFL 0.041x 6xIFL

3.1

Page 9: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

PTTEP International Limited Page 9/21

Zawtika Development Project Phase 1A Document : MM-ZTK-1A-ZOC-ELE-CAL-5004

EPCIC of the Zawtika Onshore Pipeline Revision :A1 Date :06-Jan-13

Load Impedance(per unit) converted to Base MVA

               BaseMVA Load MVA

Under different conditions, Load Impedance is summarized as follows Condition Load Consumption

before starting HVAC Load Impedance

Diesel Generator in service 328kVA 3.1 Two Generators in service 1185kVA 0.84 Under different conditions, the Impedance is summarized as follows Condition Load

Impedance (Z1)

Motor Impedance

(Z 2)

Impendance ( Z )

Diesel Generator in service 3.1 3.1 1.55 Two Generators in service 0.84 3.1 0.66

               Source Impedance  Total Impedance 

Under different conditions, the voltage drop is summarized as follows

Condition Source Impedance (Zg)

Total Impedance

(Zg +Z)

Voltage drop (%)

Diesel Generator in service 0.18 1.73 11 Two Gas Generators in service

0.08 0.74 11

During starting of air conditioning , the generator terminal voltage dip is less than 15%. At the same time, The voltage drop estimated by this formula shall re-verified in motor starting study done by ETAP in dynamic model for final confirmation. The results shall be indicated in study report (refer to MM-ZTK-1A-ZOC-ELE-CAL-5001).

6.0 SIZING OF LOW VOLATGE SWITCHBOARD

6.1 Switchgear configuration

At ZOC stations, The switchgear shall be single bus bar with bus-tie breaker.

Page 10: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

PTTEP International Limited Page 10/21

Zawtika Development Project Phase 1A Document : MM-ZTK-1A-ZOC-ELE-CAL-5004

EPCIC of the Zawtika Onshore Pipeline Revision :A1 Date :06-Jan-13

6.2 Low Voltage Switchboard sizing

At ZOC stations, the normal of switchboard shall be sized to handle the maximum capability of two generators running in parallel plus 20% safety factor. The sizing of low voltage switchboard is summarized in the below table:

Low Voltage Switchgear Sizing

Description Area ZOC Generators size (kVA) 2 x 906 Generators current rating (A) 2 x 1307 Switchboard current rating (A) 2199 Selected Switchboard current rating (A) 3500 Percentage of Load (%) 63

7.0 SIZING OF UPS

7.1 UPS configuration At ZOC station, the AC and DC UPSs located in the control building shall be sized to feed the vital loads . 230VAC UPS shall be of redundancy dual type, comprising 2x100%rectifiers, 2x100%inverters, stabilized bypass supply, 2 x 50% batteries and battery circuit breakers, and AC distribution board. DC UPS shall be of redundancy dual type, comprising 2x100%rectifiers, 2 x 50% batteries and battery circuit breakers, and AC distribution board.

7.2 Assumption of calculation 1) The calculation based on 25°C average operating temperature

2) The valve-regulated gas recombination type lead-acid batteries (VRLA batteries)shall be used for the project.

3) The autonomy time for both AC and DC UPSs shall as follow

230V AC UPS= 6 Hours (For Communication, Instrument Loads)

24V DC UPS = 6 Hours (For Instrument Loads) & 1 Hour (For Switchgear Loads)

4) The Battery Design Margin shall be of 110%

5) The Battery Aging Factor shall be of 125%

6) 20% spare capacity above the peak load (from load list indicated in MM-ZTK-1A-

ZOC -ELE-LIS-5001) shall be provided for Battery Calculation.

Page 11: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

PTTEP International Limited Page 11/21

Zawtika Development Project Phase 1A Document : MM-ZTK-1A-ZOC-ELE-CAL-5004

EPCIC of the Zawtika Onshore Pipeline Revision :A1 Date :06-Jan-13

7) Rectifier rating shall be sized based on 125% of load in additional of charging

current, 10 hours charging time.

8) The crest factor of all equipments are less than or equal to 3.0

7.3 Definitions and Formula

7.3.1 Definitions

a) Crest Factor

The crest factor is the ratio of the peak value to the RMS value of the total periodic waveform. This ratio is also called the peak to RMS ratio.

b) Load classification

Continuous loads

Continuous loads are energized throughout the duty cycle.

Non-continuous loads

Non-continuous loads are energized only during a portion of the duty cycle.

Momentary loads

Momentary loads can occur one or more times during the duty cycle but are of short duration, not exceeding1 min at any occurrence.

7.3.2 Formula

Calculations are carried out using the formulas as following: a) Maximum DC Voltage

Maximum DC Voltage= Rated Voltage x% +Voltage Variation

b) Minimum DC Voltage

Minimum DC Voltage=(Rated Voltage x% -Voltage Variation) +Allowable Cable Voltage Drop

c) Number of cells

Number of cells   C   F    

d) Maximum Voltage across Battery Bank

Maximum DC Voltage  Number of cells x Boost Charge Voltage  

e) Uncorrected Cell Size

Cell Size required by each section

Page 12: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

PTTEP International Limited Page 12/21

Zawtika Development Project Phase 1A Document : MM-ZTK-1A-ZOC-ELE-CAL-5004

EPCIC of the Zawtika Onshore Pipeline Revision :A1 Date :06-Jan-13

FS AP A P KtP S

P

Uncorrected Cell Size (summarized all section)

F max FsSS N

Where

F = the cell size (uncorrected for temperature, aging, and design margin)

S = the section of the duty cycle being analyzed.(Section S contains the

first S periods of the duty cycle)

N = the number of periods in the duty cycle

P = the period being analyzed

AP= the amperes required for period P

t = the time in minutes from the beginning of period P through the end of

Section S

Kt = the ratio of rated ampere-hour capacity [at a standard time rate, at

25 °C and to a standard minimum cell voltage]

FS= the capacity required by each section.

f) Determination of rated output

         I1 Lc  1.1 x Ah

t

         I2 Lc Ln

         I3 max I1 ;  I2)

Where:

I1 = the minimum required charger rated output (in amperes)

I2 = The combination of continuous load and the largest of non-continuous

load (in amperes)

I3 = the recommended charger rated output (in amperes)

Lc = the continuous dc load (in amperes), including future load growth

Ln = the largest combination of non-continuous loads (as defined in IEEE

Std 4854.2.2) that would likely be connected to the bus

simultaneously during normal plant operation

1.1 = the constant that compensates for the battery losses

Ah = the ampere-hours discharged from the battery.

T = the time to recharge the battery to approximately 95% of capacity (in

hours).

7.3.3 Correction factors

Page 13: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

PTTEP International Limited Page 13/21

Zawtika Development Project Phase 1A Document : MM-ZTK-1A-ZOC-ELE-CAL-5004

EPCIC of the Zawtika Onshore Pipeline Revision :A1 Date :06-Jan-13

The correction factors for batteries sizing are considered as recommended in IEEE485 a) Temperature correction factor

@Design Temp. 25 ºC = 0.96

b) Selected Design Margin = 10%

c) Selected Aging Factor = 25%

7.4 Calculation

7.4.1 General

• Battery float charging voltage 2.25 V, battery charging voltage 2.35V.

• Final cell voltage 1.80 V

• Allowable Voltage drop in DC System from sources to distribution board is 2%

• Allowable Voltage drop in AC System from sources to distribution board is 2%

• Two batteries shall be foreseen in the UPS configuration ,and each battery shall be capable to supply 50% of the total loads.

7.4.2 24VDC UPS

• Rated DC voltage of 24V

• Minimum DC voltage of 22V

• Maximum DC Voltage of 26.4V

7.4.3 230VACUPS

• Rated DC voltage of 220V

• Minimum DC voltage of 175V

• Maximum DC Voltage of 245V

7.5 24VDC UPS Calculation

7.5.1 Calculation for Battery cells

                  Number of cellsMinimum DC Voltage Final cell voltage

                   221.80

= 12.2

≈ 12 cells

7.5.2 Load detailed

Page 14: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

PTTEP International Limited Page 14/21

Zawtika Development Project Phase 1A Document : MM-ZTK-1A-ZOC-ELE-CAL-5004

EPCIC of the Zawtika Onshore Pipeline Revision :A1 Date :06-Jan-13

24VDC UPS shall be sized to feed the switchgear supply load requirements for a back-up time of 1 hours and instrumentation load for back-up time of 6 hours. According to MM-ZTK-1A-ZOC-ELE-DWG-5010, The electrical consumptions in the switchgear shall consist of the follows: • Incoming ACB (Nos 4)

• Bus tie ACB (Nos 1)

• Motor feeder with MCU (Nos 16)

• Outgoing feeder with FCU (Nos 49)

A worst case is that trip coils of three incoming ACBs and bus tie ACB shall be considered in the first minute.

Closing coils of three incoming ACBs, bus tie ACB and their spring charge motors shall be considered in the last minute.

The electrical load consumer is summarised as follows: Electrical 24VDC Loads summary:

Load Summary Control supply for switchgear Nos Description Quantities

(Nos) Rated power

(W) Rated current

(A)Total Current (A)

Duration

1 Tripping Coil 4 200 8.5 34 First 1 min. 2 Closing Coil 4 200 8.5 34 Last 1 min. 3 Spring motor 4 500 21 84 Last 1 min 4 Indicator lamp

(2 per breaker) 80x2 2.4 0.1 16 60 min

5 IPR for incoming and bus tie

5 4.8 0.2 1 60 min

6 MCU 25 8 0.4 10 60 min 7 FCU 50 8 0.4 20 60 min 8 Lockout relay 5 4.8 0.2 1.0 First 1 min. 9 Trip circuit supervision

relay 5 4.8 0.2 1 60 min

10 Control supply supervision relay

2 4.8 0.2 0.4 60 min

11 Auxiliary relays/Contact(3 per breaker)

75 2.8 0.1 22.5 60 min

12 Redundant Central Control unit

2 120 5 10 60 min

Control supply for instrumentation 13 Metering Panel 1 620 25.83 25.83 360 min 14 Analyser House 1 40 1.67 1.67 360 min 15 Spare 1 60 2.5 2.5 360 min

7.5.3 Load Cycle Period Loads Total ampere(A) Total ampere+ 20%

spare (A) Duration(min)

1 A1 35 +81 140 1 2 A2 81 97 58

Page 15: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

PTTEP International Limited Page 15/21

Zawtika Development Project Phase 1A Document : MM-ZTK-1A-ZOC-ELE-CAL-5004

EPCIC of the Zawtika Onshore Pipeline Revision :A1 Date :06-Jan-13

3 A3 118+81 239 1 4 A4 33 40 360

Note:

The current in the figure shall be including 20% spare.

7.5.4 Determine K Factor

                   KtAH capacity of 1.80 V Cell⁄  @ 25  

Battery Discharge Rate in A @ 25  at autonomy

                   KtAH capacity of 1.80 V Cell⁄  @ 25  

Battery Discharge Rate in A @ 25  at autonomy

                        490275

                      5.65

   

7.5.5 Determine K Factor

The Kt factor for time t is calculated in the following formula:

                                                   = 2 1 22 1 (IEEE 1115)

Where:   K Capacity rating factor for time t

  K Capacity rating factor for time t1

  K Capacity rating factor for time t2 t Discharge time 1

t1 Discharge time t1

t2 Discharge time t2

7.5.6 Sizing Chart

Page 16: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

PTTEP International Limited Page 16/21

Zawtika Development Project Phase 1A Document : MM-ZTK-1A-ZOC-ELE-CAL-5004

EPCIC of the Zawtika Onshore Pipeline Revision :A1 Date :06-Jan-13

Each battery shall be capable to supply 50% of the total loads. Each battery

bank capacity shall be as follows:

CELL SIZING WORKSHEET

(1) (2) (3) (4) (5) (6) (7) Period

Load (amperes)

Change in Load(amperes)

Duration of Period(minutes)

Time to End of section Values

Capacity at T Min Rate K Factor (Kt)

Required Section Size(3)x(6)=Rated Amp-Hrs Pos. Values

Neg.Values

Section 1- First Period Only- if A2 is greater than A1, go to section 2 1 A1= 140 A1-A0= 140 M1= 1 T= 1 1.06 148

Section 1 TOTAL 148 Section 2- First two Periods Only- if A3 is greater than A2, go to section 3 1 A1= 140 A1-A0= 140 M1=1.0 T= 59 1.77 248 2 A2= 97 A2-A1= -43 M2= 58 T= 58 1.76 -76

Section 2 TOTAL 172 Section 3- First two Periods Only- if A4 is greater than A3, go to section 3 1 A1= 140 A1-A0= 140 M1= 1 T= 60 1.78 249 2 A2= 97 A2-A1= -43 M2= 58 T= 59 1.77 -76 3 A3= 239 A3-A2= 142 M3= 1 T= 1.0 1.06 151 Section 3 TOTAL 324 Section 4- First two Periods Only- if A4 is greater than A3, go to section 4 1 A1= 140 A1-A0= 140 M1= 1 T= 360 5.65 791 2 A2= 97 A2-A1= -43 M2= 58 T= 359 5.64 -242.52 3 A3= 239 A3-A2= 142 M3= 1 T= 301 4.91 697 4 A4= 20 A4-A3= -219 M4= 300 T=300 4.90 - 1073 Section 4 TOTAL 173

Uncorrected Amp-Hour capacity of Battery =324 Ah

Considering ageing and design margin factors, corrected size =324x0.96 x1.1x1.25

=427Ah

Hence each battery bank (7OPzV 490AH) are selected. The UPS has 2 nos Battery bank.

7.5.7 Charger sizing calculation

From Project Specification, The UPS configuration is Redundancy. Each charger unit shall be capable to handle 125% of continuous load in additional to fully recharge the 2x50% battery. The following loads shall be considered as non-continuous load:

Tripping coil

Close coil

Spring charging motors

The minimum required charger rated output(I1)  

Page 17: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

PTTEP International Limited Page 17/21

Zawtika Development Project Phase 1A Document : MM-ZTK-1A-ZOC-ELE-CAL-5004

EPCIC of the Zawtika Onshore Pipeline Revision :A1 Date :06-Jan-13

                    I1 Lc1.1 x Ah

t

                          1.25x 97 40  1.1xAh

t

                         1.25x137  1.1x2x 490AHx99%

10 HRS

                      278 A

The combination of continuous load and the largest of non-continuous load (I2)

   I2 Lc Ln

The non-continuous current required for closing coils of three incoming ACBs,

bus tie ACB and their spring charge motors shall be considered in the last

minute.

Thus

   I2 Lc Ln

= (97+40) + 118

=255

The charger rated output (I3)

  I3 max I1 ;  I2)

Hence 2 nos. 315A Charger or the nearest available rating may be selected.

Input capacity of internal charger based on the following table of calculation is

• P.F (Power factor at full load) = 0.85

• η(Efficiency) = 0.9

• UPS input Capacity (kVA) = output power/(P.F xη)

= 10kVA

Hence 2 nos. internal charger rated 10kVA (input) or above may be selected.

6.6 230VAC UPS Calculation 7.6.1 UPS Load Analysis

230VAC UPS sizing is calculated based on the vital loads. The electrical load consumer is summarised as follows:

Electrical AC Loads summary at ZOC Description Consumption

(kW) Consumption

(kVar)Consumption

(kVA) Total connected load(kW)

66.52 (C)+ 13.30(S) 34.87(C)+6.45(S) 79.82(C)+ 41.32(S)

Total normal load 66.52 34.87 75.11

Total peak load 67.86 35.52 76.59

Page 18: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

PTTEP International Limited Page 18/21

Zawtika Development Project Phase 1A Document : MM-ZTK-1A-ZOC-ELE-CAL-5004

EPCIC of the Zawtika Onshore Pipeline Revision :A1 Date :06-Jan-13

Total peak load including Design Margin rated 1.20 92 Select UPS rating 100 Notes: C : Continuous load I : Intermittent load S : Stand by load

7.6.2 UPS parameter:

Parameter shall be based on the manufacture (CUTOR) UPS Size : 100kVA Power Factor : 0.80 Inverter efficiency : 0.90 Output voltage 230VAC (single phase )

7.6.3 DC Link Voltage

Intermediate DC operating range and conditions: • Rated voltage: 220VDC

• Maximum rectifier boost voltage : 254VDC

• Minimum inverter low voltage cutoff: 194VDC

7.6.4 Calculation for Battery Cell

                                         Number of cellsMinimum DC Voltage Final cell voltage

                  1941.80

= 107.7

≈108 cells

7.6.5 Load detailed

The inverter input power is as follows:

 Inverter input powerInverter outout power Inverter effenciency 

 

                                           100x0.80 0.90  

                                                           88.88kW

The above mentioned inverter input power will be used as the basis for battery sizing.

7.6.6 Load Cycle

Page 19: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

PTTEP International Limited Page 19/21

Zawtika Development Project Phase 1A Document : MM-ZTK-1A-ZOC-ELE-CAL-5004

EPCIC of the Zawtika Onshore Pipeline Revision :A1 Date :06-Jan-13

L1 = (Maximum inverter input load)/ discharge voltage = 88888W/ (108x1.8V)

= 457A

L1 457A (Maximum inverter input load) for 6 hours ,continuous load

7.6.7 Determine K Factor

                 KtAH capacity of 1.80 V Cell⁄  @ 25  

Battery Discharge Rate in A @ 25  at autonomy

                 KtAH capacity of 1.80 V Cell⁄  @ 25  

Battery Discharge Rate in A @ 25  at autonomy

                        2000304

                         6.58

7.6.8 Sizing Chart

Each battery bank capacity shall be as follows:

CELL SIZING WORKSHEET (1) (2) (3) (4) (5) (6) (7) Period

Load (amperes)

Change in Load(amperes)

Duration of Period(minutes)

Time to End of section Values

Capacity at T Min Rate K Factor (Kt)

Required Section Size(3)x(6)=Rated Amp-Hrs Pos. Values

Neg.Values

Section 1- First Period Only- if A2 is greater than A1, go to section 2 1 A1= 228.5 A1-A0= 228.5 M1= 360 T= 360 6.58 1504

Section 1 TOTAL 1504

Uncorrected Amp-Hour capacity of Battery =1504 Ah

Considering ageing and design margin factors, corrected size =1504x0.96x1.1x1.25

=1985AH

Hence each battery bank (Model 16OPZV2000AH) are selected. The UPS has 2 nos Battery bank.

Page 20: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

PTTEP International Limited Page 20/21

Zawtika Development Project Phase 1A Document : MM-ZTK-1A-ZOC-ELE-CAL-5004

EPCIC of the Zawtika Onshore Pipeline Revision :A1 Date :06-Jan-13

7.6.9 Charger sizing calculation

From Project Specification, The UPS configuration is Redundancy. Each charger unit shall be capable to handle 125% of peak loads in additional to fully recharge the 2x50% battery, following a discharge at peak load for the autonomy time of 6 hours. The minimum required charger rated output(I1)

                         I1 Lc1.1 x Ah

t

                             Inverter Input Load  

Voltage 1.1xAh

t

                        88888W  220V

 1.1x2x 2000AHx99%

10 HRS

                      840 A

Hence 2 nos. 1000A Charger or the nearest available rating may be selected.

Input capacity of internal charger based on the following table of calculation is

• P.F (Power factor at full load) = 0.85

• η(Efficiency) = 0.9

• UPS input capacity (kVA)= output power/(P.F xη)

= 288 kVA

Hence 2 nos. internal charger rated input 288kVA or above may be selected.

8.0 CONCLUSION AND RECOMMENDATIONS

Based on the above calculation result, the proposed equipment sizing are as follows:

Minimum rating of gas engine generator is 906kVA /725kW on site. The GEGs shall be classified as continuous duty operation. Minimum rating of emergency diesel engine generator is 900 kVA /720kW. The EDG shall be classified as a prime duty operation The rated output power of 24VDC shall be estimated as 7.5kW. The 24VDCUPS comprise 2 sets of battery banks (Model 7OPZV490AH) and 2 sets of battery charger which output current is 315A.

The rated output power of 230VAC UPS shall be estimated as 100kVA. The 230VACUPS comprise 2 sets of battery banks (Model 16OPZV2000AH) and 2 sets of battery charger which output current is 1000A.

9.0 ATTACHMENT

Attachment 1 Reference battery Vendor Data

Page 21: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

PTTEP International Limited Page 21/21

Zawtika Development Project Phase 1A Document : MM-ZTK-1A-ZOC-ELE-CAL-5004

EPCIC of the Zawtika Onshore Pipeline Revision :A1 Date :06-Jan-13

Attachment 2 Reference DC UPS Vendor Data

Attachment 3 Reference AC UPS Vendor Data

Page 22: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

Zawtika Development Project Phase 1A Document : MM-ZTK-1A-ZOC-ELE-CAL -5004

EPCIC of the Zawtika Onshore Pipeline Revision : A1 Date :06 -Jan -13

ATTACHMENT 1 REFERENCE BATTERY VENDOR DATA

Page 23: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

OPzVValve regulated lead-acid battery

Sim

ilar

to t

he il

lust

ratio

n

Typical applicationsof HOPPECKE OPzV

■ Telecommunications Mobile phone stations, BTS-stations, off-grid/on-grid solutions

■ Traffi c systems Signalling, lighting

■ Security lighting

Motive Power Systems

Reserve Power SystemsSpecial Power Systems

Service

Your benefi ts with HOPPECKE OPzV

■ Maintenance-free regarding water refi lling - due to innovative Gel-technology

■ Very high expected service life - due to optimized lead-calcium alloy

■ Very high cycle stability - due to tubular plate design

■ Maximum compatibility - design according to DIN 40742

■ Optimal space utilization - due to horizontal arrangement and stacking

■ Higher short-circuit safety even during the installation - based on HOPPECKE system connectors

Page 24: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

HOPPECKE Batterien GmbH & Co. KG

P.O. Box 1140 · D-59914 Brilon · GermanyBontkirchener Straße 1 · D-59929 Brilon-Hoppecke

Phone: + 49 (0) 29 63 61-3 74 Email: [email protected]: + 49 (0) 29 63 61-2 70 Internet: www.hoppecke.com

Design life: up to 18 yearsEndurance in cycles: up to 1200 discharges at 80% DOD

Optimal environmental compatibility - closed loop for recovery of materials in an accredited recycling system.

16 OPzV 2000 20 OPzV 2500 - 24 OPzV 3000

W

L

W

L

4 OPzV 200 - 6 OPzV 600

8 OPzV 800 - 12 OPzV 1500

W

L

W

L

Fig. AFig. B

Fig. CFig. D

H

Type OverviewCapacities, dimensions and weights

Form

OPz

V EN

/05.

11/2

K

Prin

ted

in G

erm

any

A

ll de

tails

in t

his

broc

hure

are

bas

ed o

n st

ate-

of-t

he-a

rt t

echn

olog

y. O

ur p

rodu

cts

are

subj

ect

to c

onst

ant

deve

lopm

ent.

We

ther

efor

e re

serv

e th

e rig

ht t

o m

ake

chan

ges.

OPzV

Cnom = nominal capacity at 10 h discharge according to DIN 40742C10, C5, C3 and C1 = Capacity at 10 h, 5 h, 3 h and 1 h discharge(*) = horizontal operation possible* according to DIN 40742 data to be understood as maximum values

Type Cnom/1.80 V C10/1.80 V C5/1.77 V C3/1.75 V C1/1.67 V max.* Weight max.* Length L max.* Width W max.* Height H Fig. Ah Ah Ah Ah Ah kg mm mm mm

4 OPzV 200 (*) 200 213 199 183 141 18.3 105 208 420 A 5 OPzV 250 (*) 250 267 248 228 177 22.3 126 208 420 A 6 OPzV 300 (*) 300 320 298 274 212 26.5 147 208 420 A 5 OPzV 350 (*) 350 412 365 324 236 29.9 126 208 535 A 6 OPzV 420 (*) 420 494 438 387 283 35.1 147 208 535 A 7 OPzV 490 (*) 490 577 510 453 330 42.1 168 208 535 A 6 OPzV 600 (*) 600 718 625 543 388 48.7 147 208 710 A 8 OPzV 800 (*) 800 958 835 723 517 65.9 215 193 710 B10 OPzV 1000 (*) 1000 1200 1040 906 646 80.5 215 235 710 B12 OPzV 1200 (*) 1200 1440 1250 1086 775 94.6 215 277 710 B12 OPzV 1500 (*) 1500 1570 1315 1146 795 110.0 215 277 840 B16 OPzV 2000 2000 2090 1750 1530 1059 152.9 215 400 815 C20 OPzV 2500 2500 2620 2190 1911 1324 186.5 215 490 815 D24 OPzV 3000 3000 3140 2625 2295 1589 222.3 215 580 815 D

Page 25: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

Discharge current in A / Entladestrom in A / Ток разряда в А / Courrant de décharge in A

V1.2 / 16.03.2011

Vorlage (Template): V1.8 (11.05.2011) O P Q R S T U V W X Y Z AA AB AC AD AE AF AG AH

Battery /

Batterie /

Элемент /

La batterie

10' 15' 20' 25' 30' 35' 40' 45' 50' 55' 1 h 2 h 3 h 4 h 5 h 6 h 7 h 8 h 9 h 10 h

4 OPzV 200; 1,8V/Z 224,0 208,0 193,0 177,0 165,0 155,0 146,0 138,0 131,0 125,0 119,0 78,1 58,4 46,7 38,9 33,4 29,3 26,0 23,5 21,3

5 OPzV 250; 1,8V/Z 280,0 260,0 242,0 221,0 206,0 194,0 183,0 173,0 164,0 156,0 149,0 97,6 73,0 58,4 48,7 41,8 36,6 32,6 29,3 26,7

6 OPzV 300; 1,8V/Z 336,0 312,0 290,0 265,0 248,0 232,0 219,0 208,0 197,0 188,0 179,0 117,0 87,5 70,0 58,4 50,1 43,9 39,1 35,2 32,0

5 OPzV 350; 1,8V/Z 329,0 329,0 304,0 281,0 264,0 249,0 236,0 224,0 214,0 205,0 196,0 134,0 103,0 83,9 71,2 62,0 54,9 49,4 44,9 41,2

6 OPzV 420; 1,8V/Z 395,0 395,0 365,0 337,0 316,0 299,0 283,0 269,0 257,0 246,0 236,0 160,0 123,0 101,0 85,4 74,3 65,9 59,3 53,9 49,4

7 OPzV 490; 1,8V/Z 461,0 461,0 425,0 393,0 369,0 348,0 330,0 314,0 300,0 287,0 275,0 187,0 144,0 117,0 100,0 86,7 76,9 69,1 62,9 57,7

6 OPzV 600; 1,8V/Z 467,0 467,0 439,0 415,0 393,0 373,0 360,0 347,0 336,0 330,0 317,0 222,0 173,0 143,0 122,0 107,0 95,1 85,7 78,1 71,8

8 OPzV 800; 1,8V/Z 622,0 622,0 585,0 553,0 523,0 498,0 479,0 463,0 449,0 435,0 423,0 296,0 231,0 191,0 163,0 142,0 127,0 114,0 104,0 95,8

10 OPzV 1000; 1,8V/Z 778,0 778,0 731,0 691,0 654,0 622,0 599,0 579,0 561,0 544,0 529,0 371,0 289,0 238,0 204,0 178,0 158,0 143,0 130,0 120,0

12 OPzV 1200; 1,8V/Z 933,0 933,0 877,0 829,0 785,0 746,0 719,0 695,0 673,0 653,0 635,0 445,0 347,0 286,0 244,0 214,0 190,0 171,0 156,0 144,0

12 OPzV 1500; 1,8V/Z 935,0 935,0 883,0 837,0 797,0 760,0 728,0 699,0 673,0 648,0 625,0 450,0 357,0 299,0 257,0 228,0 204,0 186,0 170,0 157,0

16 OPzV 2000; 1,8V/Z 1247,0 1247,0 1178,0 1116,0 1062,0 1014,0 971,0 932,0 897,0 864,0 834,0 600,0 476,0 399,0 343,0 304,0 272,0 248,0 227,0 209,0

20 OPzV 2500; 1,8V/Z 1559,0 1559,0 1472,0 1395,0 1328,0 1267,0 1213,0 1165,0 1121,0 1079,0 1042,0 750,0 595,0 498,0 429,0 380,0 340,0 310,0 284,0 262,0

24 OPzV 3000; 1,8V/Z 1871,0 1871,0 1767,0 1674,0 1593,0 1521,0 1456,0 1398,0 1345,0 1295,0 1250,0 899,0 714,0 598,0 515,0 455,0 408,0 372,0 341,0 314,0

Copyright HOPPECKE Batterien GmbH & Co. KG 9

Page 26: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

Zawtika Development Project Phase 1A Document : MM-ZTK-1A-ZOC-ELE-CAL -5004

EPCIC of the Zawtika Onshore Pipeline Revision : A1 Date :06 -Jan -13

ATTACHMENT 2 REFERENCE DC UPS VENDOR DATA

Page 27: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

SDC Rectifier / Battery Charger> 24 – 220 V> 25 – 1200 A

Technical Data Sheet

Page 28: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

Technical data SDC

Voltage 3x380 / 400 / 415VInput voltage tolerance: DC in tolerance +/-10 % for function +15 % / -25 % (below -15 % the battery might begin to discharge)Frequency 50 / 60 HzFrequency tolerance +/- 8 %Power factor: at nominal line power and float voltage ~ 0.83 at -10 % line power and float voltage ~ 0.90 at +10 % line power and float voltage ~ 0.75

Voltage 24 / 48 / 110 / 125 / 220VDCSetting range: Float voltage at -10 / +10 % line power voltage 100 –120 % Float voltage at 0 / +10 % line power voltage 100 –130 % Boost voltage at nominal line power voltage 100 –130 % Initial charge voltage up to maximum 150 %DC voltage tolerance +/-1 %Dynamic behavior: 10 –100 % and 100 –10 % load step maximum +/-10 %Vrms regulation time < 100 ms +/-2 %DC ripple voltage Standard with parallel battery capacity of 3x nominal current: Optionalwithoutbattery ≤2%rms Optionalwithoutbattery ≤1%rms Optionalwithoutbattery(24/48V) ≤2mV(at800Hz,psophometric)DC current according to type rangeSetting range: Total output current limitation 50 –100 % Battery current limitation 0 –100 %DC current tolerance +/-2 %Characteristic I-V according to DIN 41773DC overcurrent capability 150 % for 2s

Ambient conditions Storage temperature range from -20 to +70 °C Operating temperature range from -10 to +40 °CAltitude above sea level 1000 mAllowable air humidity <95 % (non condensing)Noise level standard n+1 fans 55 – 65 dBANoise level 100 % redundant fans 65 – 70 dBADegree of protection IP20 according to IEC 60529Paint Pebble gray, RAL 7032 structuredStandards: Safety IEC / EN 62040-1-2 EMC IEC 62040-2, EN 50091-2 Performance IEC / EN 62040-3, IEC 60146-1-1Conformity CE-LabelEfficiency up to 94 % depending on typeCooling Natural convection up to 100A / 220V and

top forced-air ventilation with redundant n+1 monitored fans

Data subject to change

Rectifier input

DC output

General data

Page 29: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

Specification SDC

Typical single-line drawing

Output voltage & output current

Standard configuration

Single systemRectifier input voltage 3x400V +10 / -10Rectifier input frequency 50 Hz + / -8 %Ripplefilter ≤2%rmswithparallelbattery6-pulse Rectifier with Isolation TransformerRectifier input switchFixed charging voltage IU characteristicSystem front panel w. mimic and add. LEDs for direct alarm displayLCD display unit with keyboard External connection board: Common alarm 2x NO / NC Charger failure NO / NC Remote ON / OFF Emergency stop (internal or external power supply) Input to activate boost charge Input to activate initial charge Input to inhibit boost and initial charge Connection for battery temperature sensor Input for signaling battery fuse / MCCB Connection for remote display RS232 Interface (event log download)Battery capacity test (full discharge with current load)DC ground fault alarm

Bottom cable entryGround terminal N+1 monitored two-speed fans (above 100A)Ambient temperature range from -10 to +40 °C

Options

Parallel redundant configuration with load sharingOther input voltages (190 – 690 V)Rectifier input frequency 60 Hz +/-8 %Ripple filter ≤1%rmswithoutbattery ≤2%rmswithoutbattery ≤2mV(at800Hz,psophometric)12-pulse rectifier with isolation transformerRectifier input MCCBSensor & cable for temperature-dependent battery charging, recommended for sealed VRLA batteries and widetemperature rangeBattery temperature alarm (with above sensor and cable)Serial diode (for parallel rectifiers)Rectifier output isolatorRectifier output circuit breakerBattery fuse in rectifierBattery fuse boxBattery MCCB in rectifierBattery MCCB boxAdditional analog meters 96x96, cl. 1.5Relay board, 16 failsafe NO / NC contacts: Charger ON 4x programmable Boost charge ON Fan fault Line power failure DC current overload DC out of tolerance Internal PSU fault Battery discharged DC ground fault Battery disconnected Overtemperature DC fuse blown

Extended overloadAdvanced battery monitor (programmable battery data)Battery asymmetry supervisionRS-485 InterfaceRJ-45 Ethernet port for Web browser based monitoringRS-485 MODBUS Protocol (slave)External time synchronizationTop cable entryTop and bottom cable entryVentilation 100 % redundantSpace heaters Panel lightingAmbient temperature maximum +55 °CAllowable altitude < 4000 m above sea levelAir filters at air inletProtection up to IP52 (NEMA 12)Seismic designAging testsOther colors

Additional options are available on request

Output voltage (VDC) 24 48 110 125 220

- - - - 25

- - 50 50 50

DC

Out

put c

urre

nt (

A)

- 100 100 100 100

- 125 125 125 125

- 160 160 160 160

200 200 200 200 200

250 250 250 250 250

315 315 315 315 315

400 400 400 400 400

500 500 500 500 500

630 630 630 630 630

800 800 800 800 800

1000 1000 1000 1000 1000

1200 1200 1200 1200 1200

Page 30: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

OfficesBrazil > Canada > China > Germany > IndiaJapan > Malaysia > Mexico > Russia > Saudi ArabiaUnited Arab Emirates > USA

GUTOR Electronic LLCHardstrasse 72 – 74 5430 WettingenSwitzerlandP +41 (0)56 437 34 34F +41 (0)56 437 34 [email protected] Q

410.

125

Rev

. 7

The front panel, which is identical for both AC and DC Systems, includes a comprehensive and flexible human-machine interface.It is divided into four sections:

Operational parameters

Selectable second display languageAuto startCharge mode (float / boost / initial)Auto boost chargeBattery capacity testAdvanced battery monitor test (optional)Set date / time

Indication & measurements

Operating mode (float / boost / initial)DC total currentBattery voltage and currentAC Rectifier line power voltage and current Battery temperature (with optional sensor)Time left in battery operation with current load (option only with advanced battery monitoring)Event log with date / time (operating mode changes and alarms)

Human-machine interface (front panel)

The system panel shows the system’s current state of operation (which part of the system is currently supplying the load and which is in stand-by mode). LEDs also indicate possible faults.

Operations for turning on and off the system and a lamp test button for checking whether all LED indi-cations are functioning properly. To shut down the system, you have to press the ON and OFF buttons at the same time.

The display unit consists of an LC display, an alarm LED, an acoustic alarm and a keypad. From here, the user can set operational parameters, obtain current measurement data, and access the event and alarm logs.

On the alarm indication panel, the respective LEDs light up to indicate a possible fault or after an alarm has occurred.

Page 31: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

Zawtika Development Project Phase 1A Document : MM-ZTK-1A-ZOC-ELE-CAL -5004

EPCIC of the Zawtika Onshore Pipeline Revision : A1 Date :06 -Jan -13

ATTACHMENT 3 REFERENCE AC UPS VENDOR DATA

Page 32: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

PxW AC UPS System> PEW 5 – 200 kVA single phase> PDW 10 – 220 kVA three phase> Higher ratings on request

Technical Data Sheet

Page 33: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

Technical data PEW single phase / PDW three phase

Rectifier input voltage 3x380 / 400 / 415VVoltage tolerance DC in tolerance +/-10 % for function +10 / -15 %Bypass input voltage single phase 1x220 / 230 / 240V + / -10 % three phase 3x380 / 400 / 415V + / -10 %Frequency 50 / 60 Hz + / -6 %Inrush current <10x IN (input current)

Voltage 110 / 125 / 220 / 400VDCRectifier voltage tolerance + / -1 % I-V characteristicFloat voltage range at -10 % line power 100 – 115 % programmableBoost voltage range at nominal line power 100 – 125 % programmableBoost charge time 1-24h programmableCharging current limitation depending on battery, programmableInverter input range (Output tolerance + / -1 %) +20 / -15 %Inverter maximum input range (Output tolerance + / -10 %) typical +/-25 %

Nominal UPS rating kVA at 0.8 lagging PFVoltage single phase 1x 220 / 230 / 240V three phase 3x380 / 400 / 415VVoltage tolerance: static within 0-100 % load +/-1 % dynamic at 100 % load surge +/-4 % regulation time < 25 msOverload: Inverter 1 min 150 % Inverter 10 min 125 % Bypass 100 ms 1000 %Short-circuit inverter 50 –100 ms 200 %Frequency 50 (60) HzFrequency stability, free running < 0.01 %Synchronization range 0.5 / 1 / 2 / 4 / 6 / 8 %Slew rate single unit 0.25 / 0.5 / 1 / 2 / 4 Hz / s programmableSlew rate redundant system 4.0 Hz / sWave form sinusoidalAdmissible output crest factor unlimitedDistortion factor: Linearload ≤3% Non-linearloadaccordingtoIEC62040-3 ≤5%Allowable power factor 0.4 lag – 0.9 leadFault clearing capability 30 % of UPS nom. current rated gG fuse

(IEC 60269) within 10 ms and bypass available

Ambient temperature range for storage from -20 to +70 °CAmbient temperature range for operation from -10 to +40 °C (100 % nominal load)Altitude above sea level 1000 m without load de-ratingAllowable air humidity <95 % (non condensing)Noise level standard n+1 fan system 60 – 70 dBA depending on typeNoise level 100 % redundant fans 65 – 75 dBA depending on typeDegree of protection IP20 according to IEC 60529Paint pebble gray, RAL 7032 structuredEfficiency up to 93 % depending on typeCooling forced ventilation with redundant n+1

monitored fansStandards: Safety IEC / EN 62040-1 EMC IEC 62040-2, EN 50091-2Performance IEC / EN 62040-3UPS classification VFI-SS-111 acc. to IEC 62040-3Conformity CE-Label

Data subject to changes

UPS input

Intermediate DC circuit

UPS output

General data

Page 34: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

Typical single-line drawing

Single phase drawing

Battery voltage & UPS ratings

Higher ratings and other voltages on request

■ single phase ■ three phase

Standard configuration

Single UPSUPS output voltage single phase 1x230V three phase 3x400 / 230VRectifier input voltage 3x400V +10 / -10 %Bypass input voltage single phase 1x230V +10 / -10 % three phase 3x400 / 230V +10 / -10 %Frequency 50 Hz + / -6 %Six-pulse Rectifier with isolation transformerRectifier sized for output PF = 0.8Rectifier input switchFixed charging voltage I-V characteristicStatic switch EN Bypass (line power side) with additional backfeed protectionLC display unit with additional alarm LEDsAlarm relays for battery operation and common alarmBottom cable entryGround terminalN+1 monitored two-speed fansAmbient temperature range from -10 to +40 °CProtection IP20Painting pebble gray, RAL 7032 structured Battery MCCB in UPSManual Bypass Switch 3 pos in UPS

Specification PEW single phase / PDW three phase

Options

Parallel redundant configurationOther input voltages single phase 190 – 690V three phase 190 – 690VOther output voltages single phase 110 – 288V three phase 190 – 690VFrequency 60 Hz + / - 6 %12-pulse Rectifier with isolation transformerOversized rectifierRectifier fuseBypass input switch or MCCBRectifier input MCCBSensor for temperature dependent battery charging voltage,recommended for sealed batteries and wide temperature rangeBattery temperature alarmDiode for reverse polarity protectionRectifier output isolator / circuit breakerBattery fuse in UPSBattery fuse boxBattery MCCB boxInverter input isolator / circuit breakerOversized inverterStatic Switch EA (Inverter side)Battery Monitor (programmable battery data)Battery asymmetry supervisionAC and DC ground fault alarmRS-232 / 485 interface (event log download)RJ-45 Ethernet port for WEB browser based monitoringRS-485 MODBUS Protocol (slave)External time synchronizationTop and / or bottom cable entrySpace heatersVentilation 100 % redundantPanel lightingAmbient temperature maximum +55 °CAllowable altitude up to 4000 m above sea levelProtection up to IP52Other colorsBypass isolation transformerBypass stabilizer with isolation transformerBlack start facilityKey switch on front panel

Additional analog meters 96x96, cl. 1.5Set with VM DC, AM Bat & output FM, VM & AMSet with Input VM & AM with select switchkW of outputPower factor

Relay board A077, 16 fail-safe NO / NC contacts:Rectifier line power fault Ground fault DC Inverter fuse blownDC out of tolerance 5x options Bypass line power faultRectifier fuse blown Fan failure Power supply unit faultBattery discharged Overtemperature

Relay board A078, 16 fail-safe NO / NC contacts:EA inhibited Battery disconnected Inverter ONEN inhibited Battery Boost charge operationManual Bypass ON Rectifier failure Rectifier ONAsynchronous EA ON External hornInverter fault EN ON Overload Inverter / Bypass

Additional options are available on request

Voltage (VDC) 110 125 220 400

UP

S r

atin

gs (k

VA

)

5 – 5 – 5 – – –

10 10 10 10 10 10 – –

15 15 15 15 15 15 – –

20 20 20 20 20 20 – –

40 40 40 40 40 40 – –

– – – – 50 – – –

– 60 – 60 60 60 – –

– 80 – 80 80 80 – –

– – – – 100 100 – –

– – – – – 120 120 120

150

– – – – – 160 – 160

– – – – – – 200 –

– – – – – – – 220

Page 35: Mm Ztk 1a Zoc Ele Cal 5004 Rev a1_in

OfficesBrazil > Canada > China > Germany > IndiaJapan > Malaysia > Mexico > Russia > Saudi ArabiaUnited Arab Emirates > USA

GUTOR Electronic LLCHardstrasse 72 – 74 5430 WettingenSwitzerlandP +41 (0)56 437 34 34F +41 (0)56 437 34 [email protected] Q

410.

053

The front panel includes a comprehensive and flexible human-machine interface. It is divided into four sections:

Operational parameters

Selectable second display languageAuto startBypass operationBoost chargeAuto boost (charge)Battery capacity testBattery monitor test (optional)Set date / time

Measurements

Load in % of nominal kVA ratingAC rectifier line power 1 voltage and currentAC bypass line power 2 voltageDC total current, battery voltage and currentBattery temperature (with optional sensor)AC Inverter currentAC output voltage, current and frequencyAC output peak currentTime left in battery operation with current load (optional with programmed battery data)Event log with date and time (operating mode changes and alarms)

Human-machine interface (front panel)

The system panel shows the system’s current state of operation (which part of the system is currently supplying the load and which is in stand-by mode). LEDs also indicate possible faults.

Operations for turning on and off the system and a lamp test button for checking whether all LED indi-cations are functioning properly. To shut down the system, you have to press the ON and OFF buttons at the same time.

The display unit consists of an LC display, an alarm LED, an acoustic alarm and a keypad. From here, the user can set operational parameters, obtain current measurement data, and access the event and alarm logs.

On the alarm indication panel, the respective LEDs light up to indicate a possible fault or after an alarm has occurred.