mineral scales and deposits - · pdf filemineral scales and deposits ... magnesium-based...

12
Mineral Scales and Deposits Scientific and Technological Approaches Edited by Dr Zahid Amjad Walsh University USA Dr Konstantinos D. Demadis University of Crete Greece ELSEVIER AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO

Upload: dinhnhi

Post on 06-Mar-2018

218 views

Category:

Documents


2 download

TRANSCRIPT

Mineral Scales and DepositsScientific and Technological Approaches

Edited by

Dr Zahid AmjadWalsh UniversityUSA

Dr Konstantinos D. Demadis

University of Crete

Greece

ELSEVIER

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD

PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Contents

List of Contributors xvii

Preface xix

Biographies xxiii

Acknowledgments xxv

Section I

Fouling and Scaling Fundamentals

1. Water-Formed Scales and Deposits:Types, Characteristics, and Relevant

Industries 3

Jitka MacAdam and Peter Jarvis

1.1. Introduction 3

1.1.1. Background 3

1.1.2. Main Factors Affecting Scale

Formation 3

1.1.3. Main Industries Affected 5

1.2. Calcium Carbonate 9

1.2.1. Background and Chemistryof Calcium Carbonate 9

1.2.2. Factors and Conditions Affectingthe Formation of Calcium Carbonate 12

1.2.3. Relevant Industries 13

1.3. Calcium and Barium Sulfates 13

1.3.1. Background 13

1.3.2. Factors and Conditions Affectingthe Formation of Calcium Sulfate 13

1.3.3. Relevant Industries 14

1.3.4. Barium Sulfate 14

1.4. Magnesium-Based Scales 15

1.4.1. Background 15

1.4.2. Factors and Conditions Affectingthe Formation of Magnesium Scales 15

1.4.3. Relevant Industries 16

1.5. Silica Scales 16

1.5.1. Background 16

1.5.2. Factors and Conditions Affectingthe Formation of Silica Scales 16

1.5.3. Relevant Industries 17

1.6. Examples of Other Scales 17

1.6.1. Iron Scales 17

1.6.2. Struvite and Calcium Phosphate 18

1.6.3. Lead-Based Scale 20

1.7. Summary 20

References 21

2. Water Chemistry and Its Role

in Industrial Water Systems 25

Petros C. Koutsoukos

2.1. Water as the Universal Solvent 25

2.2. Thermodynamics of Solubility 26

2.3. Dissolved, Scale-Forming Cations

and Anions 29

2.4. The Formation of Ion Pairs 31

2.5. Suspended Solids and Their Effect

on Deposit Formation 32

2.6. The Nucleation Process 34

2.7. Factors that Affect Crystal Growth 36

2.8. Scale Deposition and Adhesion 41

2.9. Concluding Remarks 44

Acknowledgment 44

References 44

3. Mechanisms of Scale Formation

and Inhibition 47

Tung A. Hoang

3.1. Scale: Definition and Influence

on Industrial Processes 47

3.1.1. What Is Scale? 47

3.1.2. Influence of Scaling on Industrial

Processes 47

3.2. Theoretical Background of Scaling 48

3.2.1. Solid Crystals 48

3.2.2. Supersaturated Solution 49

3.2.3. Scaling Process 50

3.2.4. Mechanism of Scale Formation 51

3.3. Scaling in Flow Systems 56

3.4. Factors Affecting the Nucleation Rates 57

3.4.1. Supersaturation 57

3.4.2. Contact Time 58

3.4.3. Hydrodynamic Factors 59

3.4.4. Surface Roughness and Materials 60

3.4.5. Temperature 61

v

Contents

3.5. Scale Inhibition by Chemical Additives 63 6. Biofouling in Industrial Water

3.5.1. Effects of Additives on Scale Systems 123Formation 63

3.5.2. Effects of Additives on Scale Toleti Subba Rao

Morphology 66 6.1. Industrial Water Systems: An Overview 123

3.6. Scale—Inhibitor interface 67 6.2. Types of Cooling Systems 124

3.6.1. Location of Inhibitor at the 6.2.1. Once-through Cooling System 124

Surface 67 6.2.2. Open Recirculating Cooling3.6.2. Chemical Bonding of Inhibitors

System 125

at the Surface 69 6.2.3. Closed Recirculating Cooling3.7. How Is Inhibition Performance System 125

Quantified? 71 6.3. Industrial Implications of Biofilms

3.7.1. Inhibiting Effects 71 and Biofouling 125

3.7.2. Factors That Influence Scale 6.4. Fundamentals of Biofilm Formation 126

Inhibition 71 6.5. What Is Biofouling? 129

3.7.3. Langmuir Adsorption Isotherms 76 6.6. Biofouling at a Coastal Power Plant 131

Nomenclature 78 6.7. Biofouling Control in IndustrialGeneral 78

Systems 135

Greek Symbols 79 6.7.1. Biofouling Control 135

References 79 6.7.2. Macrofouling Control

6.7.3. Target Chlorination

135

137

Corrosion Inhibitors in Cooling 6.7.4. Pulse Chlorination 137

Water Systems 85 6.7.5. Microfouling/SIime Control 138

6.8. Conclusion 138Alexander Chirkunov and Yurii Kuznetsov

Acknowledgment 138

4.1. Introduction 85 References 138

4.2. Inorganic Corrosion Inhibitors 86

4.3. Organic Corrosion Inhibitors 89 7. Particulate Matter: Interfacial

4.4. Industrial Aspects of Corrosion Properties, Fouling, and ItsInhibitors 100 Mitigation 141

4.5. Conclusion 101

Nomenclature 101 Salim N. Kazi

References 101 7.1. Introduction 141

7.2. Fouling7.2.1. Categories of Fouling

142

The Mineralogy of Microbiologically 143

Influenced Corrosion 107 7.3. The Fouling Process 144

Brenda J. Little, Tammie L Gerke,7.3.1. Initiation 144

Richard 1. Ray and Jason S. Lee7.3.2. Transport 144

7.3.3. Attachment 145

5.1. Introduction 107 7.3.4. Removal 145

5.2. Passive Alloys 108 7.3.5. Aging 145

5.2.1. Titanium 108 7.3.6. Change in Deposition Thickness

5.2.2. Ni-Cr-Mo Alloys 108 with Time 145

5,2.3. Stainless Steels 108 7.3.7. Composite Fouling 145

5.2.4. Aluminum and Aluminum 7.4. Effects of Fouling 145

Alloys 111 7.4.1. Effect of Fouling on Heat

5.3. Active Metals 112 Exchanger Design 146

5.3.1. Iron and Low-Alloy Steel 112 7.4.2. Fouling Effect on Heat Transport 147

5.3.2. Copper and Nickel 117 7.4.3. Effect of Fouling on Pressure

5.4. Case Studies 118 Drop 148

5.5. Summary 119 7.5. Conditions Influencing Fouling 148

Acknowledgment 119 7.6. Particle Transportation, Adhesion,References 120 and Fouling Interface 149

Contents vii

7.7. Heat Exchanger Type, Geometryand Process Fluid influencing Fouling 152

7.8. Fouling Models 152

7.9. Cost Imposed due to Fouling 153

7.10. Fouling Mitigation 154

7.10.1. Use of Additives in FoulingMitigation 155

7.10.2. Mitigation of Fouling by Other

Methods 160

7.10.3. Fouling Mitigation on Different

Heat Exchanging Surfaces 162

7.11. Summary 163

Nomenclature 163

References 164

8. Water Treatment Chemicals: Types,Solution Chemistry, and Applications 169

Radisav D. Vidic, Wenshi Liu, Heng Li

and Can He

8.1. Introduction 169

8.2. Role of Antiscalants 169

8.2.1. Effect of Antiscalants on Mineral

Precipitation 169

8.2.2. Effect of Antiscalants on Mineral

Deposition 172

8.3. Antiscalant Selection 172

8.3.1. Static Beaker Test 173

8.3.2. Water Recirculating System 173

8.3.3. Water Recirculating Systemwith Heated Surface 174

8.3.4. Electrochemical Impedance

Spectroscopy 175

8.3.5. Dynamic Tube-Blocking Test 176

8.4. Scale Formation and Growth 176

8.4.1. Nucleation 176

8.4.2. Inhibition of Nucleation 179

8.4.3. Inhibition of Scale Growth 179

8.4.4. Inhibition of Particulate Fouling 181

8.5. Case Studies 183

8.5.1. Cooling Towers: Mineral Scaling

Mitigation in Cooling Systems

Using Secondary-Treated MWW 183

8.5.2. Oil and Gas Industry: Inhibition

of Barium Sulfate Scaling on the

Production Casing duringUnconventional Shale Gas

Extraction 186

8.5.3. Water Treatment: Scaling Control

in RO Desalination 187

8.6. Summary 187

Nomenclature 188

References 189

9. Nonchemical Methods to ControlScale and Deposit Formation 193

Young I. Cho and Hyoung-Sup Kim

9.1. Introduction 193

9.2. Mechanism of PWT—Bulk Precipitation 193

9.3. Magnetic Water Treatment 196

9.4. Laboratory Tests 198

9.5. Field Tests 202

9.6. Water Treatment Using Solenoid Coils 206

9.7. Laboratory Tests 207

9.8. Field Tests 209

9.9. Water Treatment Using RF Electric

Fields 212

9.10. Water Treatment Using High-VoltageCapacitor System 215

9.11. Validation Field Tests 216

9.12. Water Treatment Using Catalytic Metals 216

9.13. Validation Studies 218

9.14. Conclusions 219

Nomenclature 219

References 219

10. New Product Developmentfor Oil Field Application 223

Tao Chen, Ping Chen, Harry Montgomerieand Thomas Hagen

10.1. Introduction 223

10.1.1. Scale Inhibitor Chemistry 225

10.2. Experiment Procedures 225

10.2.1. Formation Water and Seawater

Compatibility Tests 225

10.2.2. Dynamic Loop Tests 226

10.2.3. Dynamic Core Flood Tests 227

10.2.4. Scale Inhibitor Return Analysis 228

10.3. Results and Discussion 228

10.3.1. Formation Water and Seawater

Compatibility Tests 228

10.3.2. Dynamic Loop Tests 229

10.3.3. Dynamic Core Flood Tests 231

10.3.4. Development of Scale

Inhibitors for Field Squeeze

Application—EnvironmentalData 232

10.3.5. Field Application—ScaleInhibitor SI-D in Well-A 233

10.3.6. Field Application—ScaleInhibitor Sl-E in Well-B 234

10.4. Summary 235

10.5. Conclusions 235

Nomenclature 236

References 237

viii Contents

11. Patent Review Related to Scale

and Scale Inhibition 239

Zahid Amjad and Konstantinos D. Demadis

11.1. Introduction 239

Patent 1 239

Patent 2 240

Patent 3 242

Patent 4 242

Patent 5 242

Patent 6 243

Patent 7 243

Patent 8 244

Patent 9 246

Patent 10 246

Patent 11 247

Patent 12 247

Patent 13 252

Patent 14 252

Patent 15 253

Patent 16 253

Patent 17 254

Patent 18 254

Patent 19 257

Patent 20 257

Patent 21 258

Patent 22 258

Patent 23 261

Patent 24 261

Patent 25 263

Patent 26 263

Patent 27 263

Patent 28 264

Patent 29 264

Patent 30 264

Patent 31 265

Patent 32 265

Patent 33 266

Patent 34 266

Patent 35 268

Patent 36 269

Patent 37 269

Patent 38 271

Patent 39 272

Patent 40 273

Patent 41 273

Patent 42 273

Patent 43 274

Patent 44 278

Patent 45 284

Patent 46 287

Patent 47 288

Patent 48 288

Patent 49 289

Patent 50 290

Patent 51 290

Patent 52 291

Patent 53 293

Patent 54 293

Patent 55 295

Patent 56 297

Patent 57 300

Patent 58 301

Patent 59 301

Patent 60 301

Patent 61 304

Patent 62 304

Patent 63 304

Patent 64 305

Patent 65 309

Patent 66 310

Patent 67 312

Patent 68 313

Patent 69 314

Patent 70 315

Patent 71 315

Patent 72 315

Patent 73 315

Patent 74 316

Patent 75 316

Patent 76 318

Patent 77 318

Acknowledgment 319

Section II

Biological, Environmental and Home

Care

12. Scaling Problems in Home Care

Applications 323

Somil Mehta, Jan Shulman and Alain Dufour

12.1. Introduction 323

12.2. Fundamentals of Scaling 323

12.2.1. Introduction to Scale/Deposit 323

12.2.2. Basics of Water Chemistry 325

12.2.3. Type of Scales 327

12.3. Methods for Avoiding Scale

Formation 328

12.3.1. Inorganic Builders 329

12.3.2. Organic Builders 329

12.3.3. Polymeric (Co-)Builders 333

12.3.4. Ion Exchange 334

12.3.5. Precipitation 334

Contents ix

12.4. Examples of Scaling and Control

in Home Care Applications12.4.1. Laundry (Automatic and

Hand Laundry)12.4.2. Dishwashing (Automatic

and Hand Dish)12.4.3. Hard Surface Care

12.4.4. Industrial and Institutional

Cleaners

Recent Trends in Environmental

Considerations

SummaryReferences

12.5.

12.6.

13. Tartar and Plaque Control

Kosuke Nozaki, Noriko Ebe,

Kimihiro Yamashita and Akiko Nagai

13.1. Oral Cavity13.1.1. Tooth

13.1.2. Periodontium

13.2. Dental Plaque13.2.1. Composition13.2.2. Structure

13.2.3. Dental Plaque Formation

13.2.4. Resistance to Antimicrobial

Agents13.3. Dental Calculus

13.3.1. Distribution

13.3.2. Composition13.3.3. Structure

13.3.4. Mineralization Mechanism

13.4. Plaque Control

13.4.1. Significance of Plaqueand Calculus for the Disease

Process

13.4.2. Supragingival Plaque Control

13.4.3. Calculus Prevention

13.4.4. Calculus Removal Methods

and Their Efficacy13.5. Summary

References

14. Calcium Pyrophosphate DihydrateDeposition Disease

Orestis L Katsamenis and Nikolaos

Bouropoulos

334

334

337

342

344

350

351

351

353

353

353

353

353

354

355

355

356

357

357

358

361

361

363

363

363

365

366

369

369

373

375

378

378

378

379

379

380

14.1.

14.2.

Physiological and PathologicalMineralization in the Human Body 373

The Nature and Composition of CPPD 375

14.2.1. Calcium Phosphates and

Pyrophosphates 375

14.2.2. Crystal Structure of CPPD 375

14.3. Mechanism of CPPD Calcification 375

14.3.1. Generation and Supersaturationof Inorganic Pyrophosphatein the Human Body

14.3.2. Nucleation and Growth

of CPPD Crystals14.4. Pathological Deposition of CPPD

in the Human Body14.4.1. Historical Note

14.4.2. Nomenclature

14.4.3. Clinical Manifestation,

Morphology, and Anatomica

Locations of CPPD Crystal

Deposits14.4.4. Coexistence with Other

Pathologies14.4.5. Implications on the Mechanical

Properties of the Tissue 381

14.4.6. Treatment and Managementof CPP Crystal DepositionDisease 384

14.5. In vitro Synthesis and Characterization

of CPPD Crystals 384

14.5.1. Synthesis of t- and m-CPPD

Crystals 384

14.5.2. In vitro Dissolution and

Growth Properties of CPPD

Crystals 385

14.5.3. Characterization of t- and

m-CPPD in PathologicalDeposits 385

14.5.4. In vitro Model Systems for

the Study of Pathological

Cartilage Calcification 387

14.5.5. Inhibitors 387

Acknowledgments 388

References 388

15. Importance of Calcium-BasedScales in Kidney Stone 393

Mualla Oner, Aslam Khan and

Saeed R. Khan

15.1. Introduction 393

15.2. Crystallization Kinetics 393

15.2.1. Supersaturation 393

15.2.2. Nucleation 396

15.2.3. Crystal Growth 397

15.2.4. Crystal Aggregation 398

15.2.5. Calcium Oxalate Crystals 398

15.3. Effect of Additives on Calcium Oxalate

Crystallization, Results of In vitro

Studies 400

x Contents

15.4. Calcium Oxalate in Kidney Stones 402

15.4.1. Prevalence and Economic

Impact 402

15.5. Composition and Structure

of Stones 402

15.5.1. Stone Matrix 404

15.6. Crystallization Modulators 404

15.6.1. Glycosaminoglycans 404

15.6.2. Osteopontin 405

15.6.3. Matrix Gla Protein 406

15.6.4. Urinary Prothrombin

Fragment-1 406

15.6.5. Tamm—Horsfall Protein 406

15.6.6. Jnter-a-Jnhibitor 407

15.6.7. Lipids and Cellular

Membranes 409

15.7. Concluding Remarks 410

Acknowledgment 410

References 410

16. Calcification of Biomaterials 417

Stamatia Rokidi, Dimosthenis Mavrilas

and Petros G. Koutsoukos

16.1. Introduction: Implants—Problemsof Their Functionality 417

16.2. Phase Changes in Solutions. The

Formation of Crystals of Minerals

from Aqueous Solutions. Homogeneousand Heterogeneous Nucleation 418

16.3. Thermodynamics and Kinetics of the

Formation of Mineral Phases.

Experimental Methods for the

Investigation of ImplantsMineralization 420

16.4. The Case of Calcium Phosphates 423

16.5. Mineralization of Calcium Phosphatesof Heart Valve Tissues 425

16.6. Calcification of Biocements 430

16.7. Encrustation of Catheters by Calcium

Oxalates 438

16.8. Conclusions 439

References 440

17. Removal of Toxic Materials

from Aqueous Streams 443

Anastasios I. Zouboulis, Efrosyni N. Peleka

and Petros Samaras

17.1. Introduction 443

17.2. Toxic Materials 444

17.2.1. Definitions 444

17.2.2. Inorganic Substances 444

17.2.3. Organic Substances 445

17.2.4. Toxic Materials in Water 445

17.2.5. Toxic Materials in Wastewater 446

17.3. Removal Methods 446

17.3.1. Chemical Precipitation 447

17.3.2. Electrochemical Treatment 447

17.3.3. Coagulation—Flocculation 449

17.3.4. Flotation 450

17.3.5. Membrane Filtration 452

17.3.6. Adsorption and Ion Exchange 453

17.3.7. Catalytic Degradation 455

17.3.8. Biological Degradation 458

17.4. Disposal Issues 459

17.4.1. Waste Minimization 459

17.4.2. Recycling 461

17.4.3. Degradation 462

17.4.4. Stabilization/Solidification

and Vitrification 463

17.5. Selected Case Studies—Applications 463

17.5.1. Management of Arsenic

Minerals at the Yerranderie

Mine Site 463

17.5.2. New Media Reduces Copperand Zinc at HydrocarbonProcessing Facility 464

17.5.3. Microfiltration SystemReduces Waste by Two-Thirds 464

References 464

Section III

Scaling and Fouling Issues by Industry

18. Membrane-Based Desalination

Processes: Challenges and

Solutions 477

Mark Wilf

18.1. Introduction 477

18.2. The RO Process 477

18.3. Permeate Recovery Rate (Conversion

Ratio) 478

18.4. Net Driving Pressure 479

18.5. Salt-Water Separation in RO Process 479

18.6. Water Transport 480

18.7. Salt Transport 480

18.8. Salt Passage and Salt Rejection 481

18.9. Temperature Effect on Transport Rate 481

18.10. Average Permeate Flux 481

18.11. Specific Water Permeabilityof a Membrane 482

18.12. Commercial RO/Nanofiltration

Membrane Technology 482

18.13. CA Membranes 483

Contents xi

18.14. Composite Polyamide Membranes 484

18.15. Membrane Module Configurations 484

18.16. Spiral Wound Elements 484

18.17. Spiral Wound Element Categories 486

18.18. RO System Configuration 488

18.19. Membrane Assembly Unit 489

18.20. Concentrate Staging 489

18.21. Permeate Staging (Two-Pass Systems) 490

18.22. Membrane Elements Fouling 492

18.22.1. Membrane Elements FoulingProcess 492

18.23. Membrane Performance Restoration 493

18.23.1. Chemical Cleaning 493

18.23.2. Direct Osmosis Cleaning 495

18.24. Challenges and Potential for

improvement of the RO Process 495

18.24.1. Brackish Water Desalination 495

18.24.2. Seawater Desalination 495

18.24.3. Municipal Wastewater

Reclamation 495

18.24.4. Membranes and Membrane

Modules 496

18.24.5. Feed Water Quality and

Membrane Pretreatment 496

References 496

19. Cooling Water Systems: An

Overview 499

Salvador Avila Filho and

Jose Rafael Nascimento Lopes

Context and Paradigms 499

19.1.1. Climate Change and Water

Economy 499

19.1.2. Energy Integration in

Production 500

Cooling Systems and CoolingTower 501

19.2.1. Types of Cooling Systemsof Thermal Fluids 501

19.2.2. Operation and Process

of Cooling Systems 502

New Technologies and Projects 506

19.3.1. New Industrial Project and

Energy 506

19.3.2. Automation and Process

Control Projects 508

19.3.3. Research on EnergyManagement in the

Cooling Tower 509

19.3.4. Management of Water

Availability 509

19.3.5. Reuse and Quality of the

Waste Water 512

19.4. Audit in Cooling Towers 513

19.4.1. Audit and Inspection in

Industrial Plants 514

19.4.2. Data and Procedures 519

19.4.3. Mass and Energy Balance

Calculations 522

19.4.4. Maintenance of CoolingTowers 523

19.4.5. Operational Routines and

External Influences 524

19.5. Cooling System: Capability, Control

and Performance 525

19.5.1. Effects of Losing OperationControl in Cooling Systems 525

19.5.2. Analyze the Current Projectin Operation 527

19.5.3. Management, Maintenance

and Operation 527

19.6. Guidelines for Control of CoolingTowers 528

19.6.1. Design Criteria 529

19.6.2. Interaction with Environment 529

19.6.3. Process Control, Water Balance

(Cycles), and Thermal

Distribution 529

19.6.4. Water Treatment and

Corrosion 530

19.6.5. Maintenance and Operationof Cooling Systems (Structure/

Materials) 530

19.6.6. Transfer of Heat and Mass

(Water and Air) 530

19.6.7. Solution for Testing and

Cooling System 530

19.6.8. Water Supply and Availabilityin Sources 530

19.6.9. Water Demand and QualitySources and Necessities 530

Acknowledgments 531

References 531

Fouling in Dairy Processes 533

Trinh Khanh Tuoc

20.1. Introduction 533

20.1.1. Definition of Fouling 533

20.1.2. Importance of Foulingfor the Industry 533

20.1.3. Chapter Organization 533

20.2. Mechanism of Fouling by Milk

and Milk Components 534

20.2.1. Overarching Mechanism 534

20.2.2. Activation of Different

Components of Milk 534

xii Contents

20.3. Composition, Types, and Structures

of Fouling 536

20.3.1. Types and Composition 536

20.3.2. Occurrences in Different

Manufacturing Processes 537

20.3.3. Types and Structures 537

20.4. The Measurement of Fouling 538

20.4.1. Mass Measurement 538

20.4.2. In-line Measurements 538

20.4.3. Stages of Thermal

Fouling 539

20.5. Factors Affecting Fouling by Milk 540

20.5.1. Milk Composition 541

20.5.2. Seasonal Variation and

Environment Factors 541

20.5.3. Milk Quality 541

20.5.4. Temperature 543

20.5.5. Geometry and Flow Rate 543

20.5.6. Surface Condition 544

20.5.7. Dissolved Gases 545

20.5.8. Pressure 546

20.6. Equipment Fouling in Milk Powder

Plants 547

20.6.1. The Milk Powder Process 547

20.6.2. Location of Deposits byType and Mechanism 548

20.7. How to Limit Fouling 550

20.7.1. Start-up Procedure 550

20.8. Cleaning-in-Place 552

20.8.1. CIP Protocol 552

20.8.2. Factors Affecting CIP 552

20.8.3. Microbial Deactivation

and Sanitation 554

20.9. Conclusions 554

References 555

21. Scaling in Alkaline Spent PulpingLiquor Evaporators 557

22. Control of Silica-Based Scales

in Cooling and Geothermal

SystemsDarrell L Gallup and Paul von Hirtz

22.1.

22.2.

22.3.

22.4.

Introduction

Thermodynamic and Kinetic

Impacts on Geothermal Scale

DepositionGeothermal Scale Types and

Formation Mechanisms

22.3.1. Amorphous Silica

Metal Silicates and ClaysCarbonates

Sulfides

Sulfates

Fluorite and Halite

Corrosion Products

Control of Silica-Based Scales

22.4.1. Hot Brine InjectionAcidified Brine InjectionAging Brines

Crystal I izer Reactor-

Clarification

Metal Salt Treatment

573

573

22.3.2.

22.3.3.

22.3.4.

22.3.5.

22.3.6.

22.3.7.

22.4.2.

22.4.3.

22.4.4.

22.4.5.

22.4.6.

22.4.7.

22.4.8.

22.4.9.

574

574

575

577

577

577

578

578

578

578

579

579

579

579

579

Cationic Surfactant Treatment 579

580

580

22.5.

Brine Dilution

Reducing Agents

Organic Inhibitors and

Dispersants22.4.10. Chelating Agents22.4.11. Caustic Soda Treatment

Review of Silica Inhibitors Tested

References

23. Thermal Desalination: Current

Challenges

Christopher M. Fellows and Ali Al-Hamzah

580

580

580

580

581

583

Maria Cristina Area and23.1. Introduction 583

Fernando Esteban Felissia23.2. Thermal Desalination Processes 584

21.1. The Kraft Chemical Recovery 23.3. Seawater Chemistry 585

Process 557 23.4. Scale Characterization 586

21.2. Types of Scale Deposits in 23.5. Thermodynamics and Kinetics

Alkaline Spent Pulping Liquor of Scale Formation 586

Evaporators 559 23.5.1. Soft Scale—Calcium Carbonate

21.3. Why Does Scale Form? 561 and Magnesium Hydroxide 586

21.4. Mitigation Methods, Including Scale 23.5.2. Hard Scale—Calcium Sulfate

Inhibition 564 and Magnesium Hydroxide 589

21.5. Modeling Fouling Processes and Case 23.5.3. Physical Factors in Kinetics 590

Studies 566 23.6. Control of Scale Formation 590

21.6. Conclusions 568 23.6.1. Acid Treatment 591

References 568 23.6.2. Electrolytic Treatment 591

Contents xiii

23.6.3. Magnetic Treatment 591 25.3. Case Studies of Evaporator Scale 624

23.6.4. Pre-Precipitation 591 25.3.1. Scale Formation in Australian

23.6.5. Nanofiltration 592 Sugar Mill Evaporators 624

23.6.6. Scale Inhibitors 592 25.3.2. Scale Formation in South

23.6.7. Phosphates and African Sugar Mill

Polyphosphates 594 Evaporators 625

23.6.8. Phosphonates and 25.3.3. Scale Formation in Fiji Cane

Polyphosphonates 594 Mill 626

23.6.9. Polymaleic Acid and 25.3.4. Scales Formed in Beet SugarDerivatives 596 Evaporators 627

23.6.10. Polyacrylic Acid 596 25.3.5. New Developments in Scale

23.6.11. Other Polycarboxylic Acids 597 Analysis 628

23.6.12. Polysulfonates 597 25.4. Scale Management 632

23.7. Inhibitor Mixtures 598 25.4.1. Scale Inhibitors 633

23.8. Future Directions 598 25.4.2. Evaporator Cleaning 634

References 599 25.5. Conclusion 636

References 636

Oil Field Mineral Scale Control 603

26. Boiler Water Treatment 639Ping Zhang, Amy T. Kan and Mason B. Tomson

24.1.

24.2.

603

603

Bhabani Shankar Panigrahi andIntroduction

Common Oil Field ScalesKrishnamurthy Ganapathysubramanian

24.2.1. Carbonate Scales 604 26.1. Introduction 639

24.2.2. Sulfate Scales 604 26.2. Silicate Deposits 640

24.3. Scale Control Strategies 606 26.3. Corrosion in Boilers 642

24.4. Scale Inhibition by Use of Scale 26.4. Effects of Scale/Deposits in

Inhibitors 607 Steam Generating Systems 643

24.4.1. Common Oil Field Inhibitors 607 26.5. Production of High Pure Water 643

24.4.2. Scale Inhibition—How Does 26.6. Pretreatment of Raw/Source

It Work? 608 Water 643

24.5. Scale Inhibition Treatment 609 26.6.1. Chlorination 643

24.5.1. Continuous Injection 610 26.6.2. Clarification and Softening 644

24.5.2. Squeeze Treatment 610 26.7. Water Purification Processes 644

24.5.3. Retention Mechanism of the 26.7.1. Reverse Osmosis 644

Squeezed Inhibitors: Adsorption 26.7.2. Ion Exchange 646

or Precipitation 611 26.8. Types of Boilers 647

24.5.4. Adsorption Mechanism 611 26.8.1. Condenser 647

24.5.5. Precipitation Mechanism 26.8.2. Condensate Polishingand Precipitation Squeeze 612 Unit 647

24.5.6. Recently Developed Squeeze 26.9. pH 649

Treatment Techniques 612 26.9.1. Sources of Alkalinity 649

24.5.7. Nonaqueous Scale Inhibitors

Development 613

26.10. Dissolved Oxygen26.10.1. Effect of Excess Hydrazine

650

24.6. Scale Removal Methods 614 in FeedWater 651

Glossary 615 26.10.2. Oxygenated Treatment 651

References 615 26.11. Conductivity 652

26.12. Silica 653

Scale in Sugar Juice Evaporators: 26.13. Copper 653

Types, Cases, and Prevention 619 26.14. Iron 653

26.15. Chloride 654

Christopher P. East Christopher M. Fellows26.16. Sodium 654

and William OS. Doherty 26.17. Conclusion 654

25.1. Introduction 619 References 654

25.2. Types and Sources of Scale 621

xiv Contents

27. Scale Formation in TungstenHydrometallurgical Process

Raj P. Singh Gaur

657

27.1. Introduction

27.2. Purpose27.3. Experimental Section

27.3.1. Scale Samples27.3. Analytical Methods

27.4. Section 1: Tantalum—Niobium Scale:

Nai4CTao.7i5Nb0^85)i2037.31H20 and

Na3Tao.7i5Nbo.28504 Form in the Filter

Press

27.4.1. Background27.4.2. Chemical Characterization

of Tantalum—Niobium Scale

27.4.3. Chemistry of Scale Formation

27.4.4. SEM Analysis27.4.5. Infrared Spectroscopy27.4.6. Dehydration and Analysis

of Heated Scale Sample27.4.7. Mechanism of Scale

Formation

27.4.8. Summary of Section 1

27.5. Section 2: Magnesium Hydroxide-TypeTungsten-Containing Scale

27.5.1. Previous Literature

27.5.2. Background27.5.3. Genesis of the Scale

27.5.4. Chemical Composition and

Phase Identification of Scale

27.5.5. Morphology of the Scale

27.5.6. Driving Force for the

Formation of Scale

27.5.7. Mechanism of Scale Formation

27.5.8. Summary of Section 2

AcknowledgmentReferences

657

658

658

658

659

659

659

660

661

662

663

664

665

666

667

667

667

668

670

672

674

675

676

676

676

28.2.3.

28.2.4.

28.2.5.

28.2.6.

28.2.7.

28.2.8.

28.2.9.

28.2.10.

28.2.11

Scanning Electron

Microscopy 684

X-ray Diffraction 685

X-ray Fluorescence (XRF) 685

X-ray Photoelectron

Spectroscopy (XPS) 686

Fourier Transform Infrared

Spectroscopy (FTIR) 687

Raman SpectroscopyThermal Gravimetric Analysis(TGA)

inductively Coupled Plasma

Optical Emission Spectroscopyand Mass Spectrometry(ICP-OES and -MS) 688

Atomic Absorption and

Emission Spectroscopy(AAS/AES)

Other Analytical TechniquesPower Plant Scrubber

689

28.2.12. Other Analytical Techniques 689

28.3. Case Study 1

Scale 689

28.4. Case Study 2—Membrane Technology 693

28.4.1. Membrane Autopsy—EuropeanPower Station 694

28.5. Case Study 3—Blocked Cooling Systemin Polyethylene Plant 696

28.6. Case Study 4—Heat Exchangersin the Oil and Gas Industry 696

28.7. Case Study 5—Sugar Cane Juice

Evaporator 697

Acknowledgments 698

References 698

29. Removal/Dissolution of Mineral

Scale Deposits

Kalpana Chauhan, Poonam Sharma and

Ghanshyam S. Chauhan

29.1.

701

Section IV

Systems Support and Maintenance

28. Analytical Techniques to

Characterize Scales and Deposits 681

Christopher P. East, Tara L Schiller,

Christopher M. Fellows and

William OS. Doherty

28.1. Introduction 681

28.2. Analytical Techniques and Analysis 681

28.2.1. Visual Inspection and LightMicroscopy 682

28.2.2. Wet Chemical Analysis 682

29.2.

29.3.

Introduction 701

29.1.1. Scale 702

29.1.2. Scale Formation 703

29.1.3. Chemical Background of

Scale Formation 703

29.1.4. Nucleation and Particle

Growth 705

29.1.5. Mechanism of Scale

Formation 706

Scale Removal and Inhibition/

Dissolution 706

29.2.1. Removal Techniques 707

29.2.2. Preventing Measures 710

Mechanisms of Dissolution and

Inhibition 712

29.3.1. Threshold Inhibition 712

29.3.2. Chelates 712

Contents xv

29.4.

29.5.

29.6.

29.7.

29.3.3. Crystal Distortion 713

29.3.4. Crystal Dispersion 713

Scale Inhibitor Chemistry 714

29.4.1. Competent Polymeric Structures

in Scale Dissolution/Inhibition 715

"Green" Solutions

New Green Alternatives

Future ProspectiveReferences

30. Scaling Indices: Typesand ApplicationsRobert J. Ferguson

30.1. Introduction

Ion Association (Minimizing

Assumption 1)

Rigorous Carbonic Acid

Calculations (MinimizingAssumption 2)

Activity Coefficients

Calculation (MinimizingAssumption 3)

pH Variation with Temperature

(Minimizing Assumption 4)

Criticism of Indices

Specialized and Derivative

Indices

30.1.7. Application Guidelines

30.1.1

30.1.2.

30.1.3.

30.1.4.

30.1.5.

30.1.6.

716

717

717

718

721

721

723

725

727

728

729

731

731

30.2. Applications30.2.1. Oil Field Brines

30.2.2. Scale Inhibition by Induction

Time Extension

30.3. Summary and Recommendations

Appendix 1: Derivation of a SimpleIndex

References

31. On-Line Monitoring of Water

Treatment Chemicals

Barbara E. Moriarty

31.1.

31.2.

31.3.

31.4.

31.5.

31.6.

31.7.

31.8.

Index

732

732

732

733

733

734

737

Water Quality 737

Complete Water Analysis for Scale

Control 738

Analysis of Individual Scale

Components 739

Analysis/Monitoring of Scale

Control Product 742

Product Monitoring—Individual

Component 742

Biocide Monitoring and Control 743

Corrosion Control Products 744

On-line and At-line Analyzes 744

References 745

747