midterm on friday febr 19 6:30-8pm in 2060 review session...

19
EE141 1 EE141 EECS141 1 Lecture #9 Guest Lecturer: Andrei Vladimirescu EE141 EECS141 2 Lecture #9 Midterm on Friday Febr 19 6:30-8pm in 2060 Valley LSB Open book Do not forget your important class material nor calculator Covers from start of semester to optimization of complex logic – wires not included! Review session tomorrow Th 2/18 at 6:30pm Room to be announced on web-site No lab this week Hw 4 due next week Friday

Upload: others

Post on 19-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Midterm on Friday Febr 19 6:30-8pm in 2060 Review session ...bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s10/... · EECS141EE141 2 Lecture #9 Midterm on Friday Febr 19 6:30-8pm

EE141

1

EE141 EECS141 1 Lecture #9

Guest Lecturer: Andrei Vladimirescu

EE141 EECS141 2 Lecture #9

  Midterm on Friday Febr 19 6:30-8pm in 2060 Valley LSB   Open book   Do not forget your important class material nor

calculator   Covers from start of semester to optimization of

complex logic – wires not included!   Review session tomorrow Th 2/18 at 6:30pm

  Room to be announced on web-site   No lab this week   Hw 4 due next week Friday

Page 2: Midterm on Friday Febr 19 6:30-8pm in 2060 Review session ...bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s10/... · EECS141EE141 2 Lecture #9 Midterm on Friday Febr 19 6:30-8pm

EE141

2

EE141 EECS141 3 Lecture #9

 Last lecture  Wiring + first glimpse at transitors

(threshold)  Today’s lecture

  Transistor models  Reading (Ch 3)

EE141 EECS141 4 Lecture #9

What do digital IC designers need to know?

Page 3: Midterm on Friday Febr 19 6:30-8pm in 2060 Review session ...bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s10/... · EECS141EE141 2 Lecture #9 Midterm on Friday Febr 19 6:30-8pm

EE141

3

EE141 EECS141 5 Lecture #9

  With positive gate bias, electrons pulled toward the gate   With large enough bias, enough electrons will be pulled to "invert"

the surface (p→n type)   Voltage at which surface inverts: “magic” threshold voltage VT

EE141 EECS141 6 Lecture #9

 Threshold

 Fermi potential

2ΦF is approximately 0.6V for p-type substrates γ is the body factor VT0 is approximately 0.45V for our process

Depletion charge

Page 4: Midterm on Friday Febr 19 6:30-8pm in 2060 Review session ...bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s10/... · EECS141EE141 2 Lecture #9 Midterm on Friday Febr 19 6:30-8pm

EE141

4

EE141 EECS141 7 Lecture #9

EE141 EECS141 8 Lecture #9

Pinch-off

0< VGS - VT < VDS

Page 5: Midterm on Friday Febr 19 6:30-8pm in 2060 Review session ...bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s10/... · EECS141EE141 2 Lecture #9 Midterm on Friday Febr 19 6:30-8pm

EE141

5

EE141 EECS141 9 Lecture #9

  For (VGS – VT) < VDS, the effective drain voltage and current saturate:

  Of course, real drain current isn’t totally independent of VDS   For example, approx. for channel-length modulation:

EE141 EECS141 10 Lecture #9

Cutoff: VGS -VT< 0

Linear (Resistive): VGS-VT > VDS

Saturation: 0 < VGS-VT < VDS

Page 6: Midterm on Friday Febr 19 6:30-8pm in 2060 Review session ...bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s10/... · EECS141EE141 2 Lecture #9 Midterm on Friday Febr 19 6:30-8pm

EE141

6

EE141 EECS141 11 Lecture #9

Quadratic Relationship

0 0.5 1 1.5 2 2.5 0

1

2

3

4

5

6 x 10 -4

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

Resistive Saturation

VDS = VGS - VT

VDS (V)

I D (A

)

EE141 EECS141 12 Lecture #9

Linear Relationship

-4

0 0.5 1 1.5 2 2.5 0

0.5

1

1.5

2

2.5 x 10

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

Early Saturation

VDS (V)

I D (A

)

Page 7: Midterm on Friday Febr 19 6:30-8pm in 2060 Review session ...bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s10/... · EECS141EE141 2 Lecture #9 Midterm on Friday Febr 19 6:30-8pm

EE141

7

EE141 EECS141 13 Lecture #9

ξ (V/µm)

υ n

( m / s

)

υ sat = 10 5

Constant mobility "(slope = µ)

Constant velocity

ξ c

  Velocity saturates due to carrier scattering effects

EE141 EECS141 14 Lecture #9

I D Long-channel device

Short-channel device

V DS V DSAT V GS - V T

V GS = V DD

Page 8: Midterm on Friday Febr 19 6:30-8pm in 2060 Review session ...bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s10/... · EECS141EE141 2 Lecture #9 Midterm on Friday Febr 19 6:30-8pm

EE141

8

EE141 EECS141 15 Lecture #9

0 0.5 1 1.5 2 2.5 0

1

2

3

4

5

6 x 10 -4

V GS (V)

I D (A

)

0 0.5 1 1.5 2 2.5 0

0.5

1

1.5

2

2.5 x 10 -4

V GS (V) I D (

A) quadratic

quadratic

linear

Long Channel"(L=2.5µm)

Short Channel"(L=0.25µm)

EE141 EECS141 16 Lecture #9

Approximate velocity:

Continuity requires that:

Integrating to find the current again:

Page 9: Midterm on Friday Febr 19 6:30-8pm in 2060 Review session ...bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s10/... · EECS141EE141 2 Lecture #9 Midterm on Friday Febr 19 6:30-8pm

EE141

9

EE141 EECS141 17 Lecture #9

-4

0 0.5 1 1.5 2 2.5 0

0.5

1

1.5

2

2.5 x 10 VGS= 2.5 V VGS= 2.0 V VGS= 1.5 V VGS= 1.0 V

0 0.5 1 1.5 2 2.5 0

1

2

3

4

5

6 x 10 -4 VGS= 2.5 V

VGS= 2.0 V VGS= 1.5 V VGS= 1.0 V

Resistive Saturation VDS = VGS - VT

VDS (V) VDS (V)

I D (A

)

I D (A

)

Resistive Velocity Saturation

Long Channel"(L=2.5µm)

Short Channel"(L=0.25µm)

W/L=1.5

VDSAT VGS-VT

EE141 EECS141 18 Lecture #9

  Exact behavior of transistor in velocity sat. somewhat challenging if want simple/easy to use models

  So, many different models developed over the years   v-sat, alpha, unified, VT*, etc.

  Simple model for manual analysis desirable   Assume velocity perfectly linear until υsat

  Assume VDSAT constant

Page 10: Midterm on Friday Febr 19 6:30-8pm in 2060 Review session ...bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s10/... · EECS141EE141 2 Lecture #9 Midterm on Friday Febr 19 6:30-8pm

EE141

10

EE141 EECS141 19 Lecture #9 19

ξ (V/µm)

υ n

( m / s

)

υ sat = 10 5

Constant velocity

  Assume velocity perfectly linear until hit υsat

ξ c = υsat/µ

EE141 EECS141 20 Lecture #9

VGS-VT (V)

  Assume VDSAT = ξcL when (VGS – VT) > ξcL

ξcL

V DSA

T (V)

ξcL

Actual VDSAT

Page 11: Midterm on Friday Febr 19 6:30-8pm in 2060 Review session ...bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s10/... · EECS141EE141 2 Lecture #9 Midterm on Friday Febr 19 6:30-8pm

EE141

11

EE141 EECS141 21 Lecture #9

B

D

G

ID

S

for VGT ≤ 0: ID = 0

with VDS,eff = min (VGT, VDS, VD,VSAT)

for VGT ≥ 0:

define VGT = VGS – VT

EE141 EECS141 22 Lecture #9

-4

0 0.5 1 1.5 2 2.5 0

0.5

1

1.5

2

2.5 x 10

Velocity Saturation

VDS (V)

I D (A

)

VDS = VGT

VGT = VD,VSAT

Saturation

Linear

VDS = VD,VSAT

  Define VGT = VGS – VT, VD,VSAT = ξc·L

Page 12: Midterm on Friday Febr 19 6:30-8pm in 2060 Review session ...bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s10/... · EECS141EE141 2 Lecture #9 Midterm on Friday Febr 19 6:30-8pm

EE141

12

EE141 EECS141 23 Lecture #9

0 0.5 1 1.5 2 2.5 0

0.5

1

1.5

2

2.5 x 10 -4

V DS (V)

I D (A

)

VDS=VD,VSAT

VDS=VGT

EE141 EECS141 24 Lecture #9

  If device always operates in velocity sat.:

  “VT*” model:

  Good for first cut, simple analysis

Page 13: Midterm on Friday Febr 19 6:30-8pm in 2060 Review session ...bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s10/... · EECS141EE141 2 Lecture #9 Midterm on Friday Febr 19 6:30-8pm

EE141

13

EE141 EECS141 25 Lecture #9 25

Textbook: page 103

V

EE141 EECS141 26 Lecture #9

-2.5 -2 -1.5 -1 -0.5 0 -1

-0.8

-0.6

-0.4

-0.2

0 x 10 -4

V DS (V)

I D (A

)

•  All variables negative

•  I prefer to work with absolute values – makes life easier.

VGS = -1.0V

VGS = -1.5V

VGS = -2.0V

VGS = -2.5V

Page 14: Midterm on Friday Febr 19 6:30-8pm in 2060 Review session ...bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s10/... · EECS141EE141 2 Lecture #9 Midterm on Friday Febr 19 6:30-8pm

EE141

14

EE141 EECS141 27 Lecture #9

EE141 EECS141 28 Lecture #9

= CGCS + CGSO = CGCD + CGDO

= CGCB = Cdiff

G

S D

B

= Cdiff

Page 15: Midterm on Friday Febr 19 6:30-8pm in 2060 Review session ...bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s10/... · EECS141EE141 2 Lecture #9 Midterm on Friday Febr 19 6:30-8pm

EE141

15

EE141 EECS141 29 Lecture #9

 Capacitance (per area) from gate across the oxide is W·L·Cox, where Cox=εox/tox

EE141 EECS141 30 Lecture #9

 Distribution between terminals is complex  Capacitance is really distributed

– Useful models lump it to the terminals   Several operating regions:

– Way off, off, transistor linear, transistor saturated

Page 16: Midterm on Friday Febr 19 6:30-8pm in 2060 Review session ...bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s10/... · EECS141EE141 2 Lecture #9 Midterm on Friday Febr 19 6:30-8pm

EE141

16

EE141 EECS141 31 Lecture #9

 When the transistor is off, no carriers in channel to form the other side of the capacitor. – Substrate acts as the other capacitor terminal – Capacitance becomes series combination of gate

oxide and depletion capacitance

EE141 EECS141 32 Lecture #9

 When |VGS| < |VT|, total CGCB much smaller than W·L·Cox – Usually just approximate with CGCB = 0 in this region.

  (If VGS is “very” negative (for NMOS), depletion region shrinks and CGCB goes back to ~W·L·Cox)

Page 17: Midterm on Friday Febr 19 6:30-8pm in 2060 Review session ...bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s10/... · EECS141EE141 2 Lecture #9 Midterm on Friday Febr 19 6:30-8pm

EE141

17

EE141 EECS141 33 Lecture #9

 Channel is formed and acts as the other terminal – CGCB drops to zero (shielded by channel)

 Model by splitting oxide cap equally between source and drain – Changing either voltage changes the channel charge

EE141 EECS141 34 Lecture #9 34

 Changing source voltage doesn’t change VGC uniformly – E.g. VGC at pinch off point still VTH

  Bottom line: CGCS ≈ 2/3·W·L·Cox

Page 18: Midterm on Friday Febr 19 6:30-8pm in 2060 Review session ...bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s10/... · EECS141EE141 2 Lecture #9 Midterm on Friday Febr 19 6:30-8pm

EE141

18

EE141 EECS141 35 Lecture #9

 Drain voltage no longer affects channel charge – Set by source and VDS_sat

  If change in charge is 0, CGCD = 0

EE141 EECS141 36 Lecture #9

Cgate vs. VGS (with VDS = 0)

Cgate vs. operating region

Page 19: Midterm on Friday Febr 19 6:30-8pm in 2060 Review session ...bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s10/... · EECS141EE141 2 Lecture #9 Midterm on Friday Febr 19 6:30-8pm

EE141

19

EE141 EECS141 37 Lecture #9 37

Off/Lin/Sat CGSO = CGDO = CO·W

EE141 EECS141 38 Lecture #9

 COV not just from metallurgic overlap – get fringing fields too

  Typical value: ~0.2fF·W(in µm)/edge

n + n +

Cross section

n + n +

Cross section

Fringing fields