microwave and rf design case study amp1...

15
MICROWAVE AND RF DESIGN Based on material in Microwave and RF Design: A Systems Approach, 2 nd Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Amp1 Narrowband Linear Amplifier Design Presented by Michael Steer Reading: Chapter 17, Section 17.10 Index: CS_Amp1 Case Study Amp1: Narrowband Linear Amplifier Design Slides copyright 2013 M. Steer. Design of a stable 8 GHz pHEMT Amplifier 1 Design Specifications Gain: maximum gain at 8 GHz Topology: three two-ports (input and output matching networks, and the active device) Stability: broadband stability Bandwidth: maximum that can be achieved using two-element matching networks Source impedance: Z S = 50 Load impedance: Z L = 50 2 Block diagram of an RF amplifier including biasing networks. 3 M 1 M 2 TRANSISTOR INPUT MATCHING NETWORK OUTPUT NETWORK MATCHING RF INPUT RF OUTPUT GATE COLLECTOR OR DRAIN FILTER LOW-PASS FILTER LOW-PASS AMPLIFIER CONTROL CHIP BIAS OR BASE

Upload: others

Post on 27-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • MICROWAVE AND RF DESIGNMICROWAVE AND RF DESIGN

    Based on material in Microwave and RF Design: A Systems Approach, 2nd

    Edition, by Michael Steer. SciTech Publishing, 2014.

    Presentation copyright Michael Steer

    Case Study:Amp1Narrowband Linear Amplifier Design

    Presented by Michael Steer

    Reading:Chapter 17, Section 17.10

    Index: CS_Amp1

    Case Study Amp1:Narrowband Linear Amplifier Design

    Slides copyright 2013 M. Steer.

    Design of a stable 8 GHz pHEMTAmplifier

    1

    Design Specifications● Gain: maximum gain at 8 GHz

    ● Topology: three two-ports (input and output matching networks, and the active device)

    ● Stability: broadband stability

    ● Bandwidth: maximum that can be achieved using two-elementmatching networks

    ● Source impedance: ZS = 50 Ω

    ● Load impedance: ZL = 50 Ω

    2

    Block diagram of an RF amplifier including biasing networks.

    3

    M1 M2TRANSISTOR

    INPUTMATCHINGNETWORK

    OUTPUT

    NETWORKMATCHING

    RFINPUT

    RFOUTPUT

    GATE

    COLLECTOR OR DRAINFILTERLOW-PASS

    FILTERLOW-PASS

    AMPLIFIER

    CONTROLCHIP

    BIASOR BASE

  • Linear amplifier with input and output matching networks

    4

    S /[ ]

    INPUTMATCHINGNETWORK

    M1 INPUTMATCHINGNETWORK

    M2[S]

    21S

    12S

    NETWORKFEEDBACK

    ISTORTRANS-

    SOURCE LOAD

    AMPLIFIER

    SZ

    Z L

    S

    L

    General amplifier configuration

    5

    Transistor Choice

    A pHEMT is a JFET (jFET), junction field effect transistor.

    IEEE symbol Common symbol

    6

    JFET

    Semi-insulatingn-type substrate

    Reverse-biased junction

    GS Dn-type channel

    ● Applying a voltage at the gate (a gate-source voltage) closes off the channel by extending the space-charge region (i.e no charge region) of a reverse-biased junction.

    ● The GS voltage changes the resistance of the channel.– Not quite accurate as for high DS voltages it changes the drain current.

    ● This is called an depletion mode of operation.

    ● A GaAs jFET is called a MESFET (Metal-Epitaxy Semiconductor Field Effect Transistor.) Largely replaced by pHEMT.

    7

  • thV

    ID

    GV

    n-type channel

    Semi-insulatingn-type substrate

    Reverse-biased junction

    GS D

    Current-voltage characteristic of a depletion-mode JFET

    There are n‐type and p‐type JFETs but the performance of a pJFET is poor.  So designs mostly use only nJFETs.

    = 0.0 V

    = -0.2 V

    = -0.3 V

    = -0.1 V

    VDS

    ID

    GSV

    8

    n-type channel

    Semi-insulatingn-type substrate

    Reverse-biased junction

    GS D

    Current-voltage characteristics of an enhancement-mode JFETs

    thV

    ID

    GV

    Special doping in channel that results in a built-in reverse bias that shuts that must be overcome by positive gate-source voltage.

    = 2.0 V

    = 0.25 V= 0.5 V

    = 1.5 V

    = 1.0 V

    VDS

    IDGSV

    9

    Current-voltage characteristics of depletion-mode and enhancement-mode JFETs

    thV

    ID

    GV

    thV

    ID

    GV

    Note the need for a negative gate voltage.

    = 2.0 VENHANCEMENT

    = 0.25 V

    = 0.5 V

    = 1.5 V

    = 1.0 V

    VDS

    ID

    GSV = 0.0 V

    = -0.2 V

    = -0.3 V

    = -0.1 V

    JFET DEPLETION

    VDS

    ID

    GSV

    10

    thV

    ID

    GV

    n-type channel

    Semi-insulatingn-type substrate

    Reverse-biased junction

    GS D

    Current-voltage characteristics of depletion-mode JFETs

    There is not a useful p‐type pHEMTbut there are p‐type JFETs but they do not work well.

    11

  • pHEMT pseudomorphic High Electron Mobility Transistor

    ● Generally depletion-mode

    ● Enhancement-mode possible

    ● Only n-type

    12

    n-type channele.g. AlGaAs Semi-insulating e.g. GaAs

    Reverse-biased junction

    GS D

    = 0.0 V

    = -0.2 V

    = -0.3 V

    = -0.1 V

    VDS

    ID

    GSV

    JFET summaryTwo modes of operation

    Enhancement modeDepletion mode

    n-type channel

    Semi-insulatingn-type substrate

    Reverse-biased junction

    GS D

    13

    Circuit model of fundamental operation

    Scattering parameters of an enhancement mode pHEMT transistor biased at VDS = 5 V,ID = 55 mA,VGS = −0.42 V.

    Extract from the data sheet of the FPD6836P70 discrete transistor.

    14

    Current-voltage characteristic of pHEMT

    15

    = 0.0 V

    = -0.4 V

    = -0.6 V

    = -0.2 V

    VDS

    ID

    GSV

    5 V

    55 mA

    VDD

    VDD

    R L

    L D

    DS, min

    VD

    DDV2

    V

  • Amplifier classes

    16

    Input characteristic

    AB

    AA

    A

    C B

    AB

    B

    ABB

    C

    C

    ID

    IG

    VGS

    Output characteristic

    Conventionalload line

    High efficiencyload line

    BC

    A AB

    VDS

    ID

    AB

    A

    Extract from Manufacturer’s Datasheet

    17

    S parameters of pHEMT transistor at VDS = 5 V, ID = 55 mA,VGS = −0.42 V.

    18

    Definition of power measures

    19

    M1 M2SOURCE

    1 2

    LOAD

    PORT 1 PORT 2

    POWERINPUT SIGNALAVAILABLE

    POWER POWER POWER

    ACTUALACTUAL

    DEVICEINPUTMATCHINGNETWORK

    OUTPUTMATCHINGNETWORK

    ACTIVE

    INPUT SIGNALACTUAL DEVICE

    OUTPUT SIGNALAVAILABLE DEVICE

    OUTPUT SIGNALAVAILABLE

    OUTPUT SIGNALPOWER

    INPUT SIGNALPOWER

    AMPLIFIER

    n1

    Vin

    n4

    n5n2

    n3ZS

    Z L

    PAi Pin PADo Ao

    PLPin

    PD

    So many definitions are needed as it is necessary to describe the amplifier before the matching networks have been designed and to know the ultimate performance at different stages.

  • Definition of gains

    ● The input and output matching networks are lossless so that the actual device input signal power, PinD, is the power delivered by the source.

    ● Similarly, the actual output signal power delivered to the load, PL, is the power delivered by the active device.

    20

    M1 M2SOURCE LOAD

    POWERINPUT SIGNALAVAILABLE

    POWER POWER POWER

    DEVICEINPUTMATCHINGNETWORK

    OUTPUTMATCHINGNETWORK

    ACTIVE

    INPUT SIGNALACTUAL DEVICE

    OUTPUT SIGNALAVAILABLE DEVICE

    OUTPUT SIGNALAVAILABLE

    PAi Pin PADo Ao

    PLPin

    PD

    Definition of powers

    21

    M1 M2SOURCE LOAD

    POWERINPUT SIGNALAVAILABLE

    POWER POWER POWER

    DEVICEINPUTMATCHINGNETWORK

    OUTPUTMATCHINGNETWORK

    ACTIVE

    INPUT SIGNALACTUAL DEVICE

    OUTPUT SIGNALAVAILABLE DEVICE

    OUTPUT SIGNALAVAILABLE

    PAi Pin PADo Ao

    PLPin

    PD

    Most useful gains

    22

    Transducer GainPower GainSystem Gain

    Power actually delivered to the load relative to the input power delivered by the source.

    G but with the effect of M1removed. G with optimumM1.

    M1 M2SOURCE LOAD

    POWERINPUT SIGNALAVAILABLE

    POWER POWER POWER

    DEVICEINPUTMATCHINGNETWORK

    OUTPUTMATCHINGNETWORK

    ACTIVE

    INPUT SIGNALACTUAL DEVICE

    OUTPUT SIGNALAVAILABLE DEVICE

    OUTPUT SIGNALAVAILABLE

    PAi Pin PADo Ao

    PLPin

    PD

    Most useful gains

    23

    Transducer Gain Available Gain

    G with optimumM1.

    M1 M2SOURCE LOAD

    POWERINPUT SIGNALAVAILABLE

    POWER POWER POWER

    DEVICEINPUTMATCHINGNETWORK

    OUTPUTMATCHINGNETWORK

    ACTIVE

    INPUT SIGNALACTUAL DEVICE

    OUTPUT SIGNALAVAILABLE DEVICE

    OUTPUT SIGNALAVAILABLE

    PAi Pin PADo Ao

    PLPin

    PD

    G with optimumM1and M2

  • Most useful gains

    24

    Transducer Gain

    G with optimumM1.

    M1 M2SOURCE LOAD

    POWERINPUT SIGNALAVAILABLE

    POWER POWER POWER

    DEVICEINPUTMATCHINGNETWORK

    OUTPUTMATCHINGNETWORK

    ACTIVE

    INPUT SIGNALACTUAL DEVICE

    OUTPUT SIGNALAVAILABLE DEVICE

    OUTPUT SIGNALAVAILABLE

    PAi Pin PADo Ao

    PLPin

    PD

    Unilateral Transducer Gain

    GT with S12 = 0.

    GTU

    Maximum Unilateral Transducer Gain

    GTU with optimumM1 and M2

    GTUmax

    Development of gain expressions

    ● Developed using generalized scattering parameters (which can be defined different and complex load and source impedances).

    ● Then refer back to using transistor’s 50- S parameters

    ● Different gains useful at different stages of design.

    ● E.G. GTUmax used in selecting transistor, estimating design challenge.

    25

    Amplifier Gain in Terms of Transistor S Parameters

    ● Transducer Gain

    ● For a unilateral two-port S12 = 0– Unilateral transducer gain

    – Maximum unilateral transducer gain

    – GTUmax IS THE MOST IMPORTANT FIGURE OF MERIT THAT GUIDESINITIAL DESIGN (design is very hard if required gain is greater).

    26

    Maximum unilateral transducer gain, GTUmax, of the pHEMT transistor

    27

  • Even more gains

    28

    M1 M2SOURCE LOAD

    POWERINPUT SIGNALAVAILABLE

    POWER POWER POWER

    DEVICEINPUTMATCHINGNETWORK

    OUTPUTMATCHINGNETWORK

    ACTIVE

    INPUT SIGNALACTUAL DEVICE

    OUTPUT SIGNALAVAILABLE DEVICE

    OUTPUT SIGNALAVAILABLE

    PAi Pin PADo Ao

    PLPin

    PD

    Maximum Available Power Gain

    GT with optimum M1 and M2

    Maximum Stable Gain

    GMA at edge of stability k = 1.

    Transducer Gain

    G with optimumM1.

    21

    12MS

    SGS

    22112

    1MASG k kS

    2 211 22

    12 21

    12

    S Sk

    S S

    Stability consideration

    29

    Activedevice

    LS IN OUT

    IN

    S

    NOISE

    Unstable if |S IN | > 1.

    L

    NOISE

    OUT

    Unstable if |L OUT | > 1.

    Input Output

    Amplifier stability

    ● For stable amplification– |SIN| must be less than one at all frequencies– |LOUT| must be less than one at all frequencies– For passive source and load |S| < 1, |L| < 1– Thus for unconditional stability require

    – |IN| < 1– |OUT| < 1

    IN

    S

    NOISE

    Unstable if |S IN | > 1.

    L

    NOISE

    OUT

    Unstable if |L OUT | > 1.

    30

    Amplifier Stability

    ● Amplifier is unstable if

    ● Unconditional stability if (as long as source and load are passive)

    ● Note: magnitudes of complex numbers describe circles in the complex plane.

    ● Formulas have been developed for a stability circle (center and radius).

    ACTIVEDEVICE

    LS IN OUT

    or

    and

    31

    OutputInput

  • Amplifier Stability● Amplifier is unstable if● Output stability circles on the L plane:

    STABLEin

    LcrL

    UNSTABLE in

    L

    UNSTABLE

    cLr

    STABLE

    |S11|  1

    32

    Representations of stability circles

    using shading to indicate the unstable region

    using a dashed line to indicate the unstable region

    stability circle of an unconditionally stable two‐port

    33

    Output stability circles for |S11| < 1

    34

    8 GHz. 16 GHz.1 GHz.

    inSTABLE

    UNSTABLE

    inSTABLE

    inSTABLE

    UNSTABLE

    L must be in stable region for amplifier to be stable

    Input stability circles for |S22| < 1

    35

    8 GHz. 16 GHz.1 GHz.

    outSTABLE

    UNSTABLE

    STABLEout

    STABLEout

    UNSTABLE

    S must be in stable region for amplifier to be stable

  • Unconditional stability criterion

    36

    The amplifier is stable for any source and load (provided that |S11| 1 for unconditional stability,The greater the more stable.

  • 40

    Input and output factor of pHEMT

    Summary of stability considerations● If an amplifier is unconditionally stable design is considerably

    simplified.● Even if an amplifier is not “unconditionally stable” it could still be

    stable. Design is then tricky and is only done in special circumstances.

    – E.g. very high frequency operation.– Consider a cell phone power amplifier connected to an antenna

    ● Must be stable– When antenna is covered by hand.– Phone is placed on a metal surface.

    ● Severe price if amplifier goes unstable– In a communication system the whole EM spectrum could be polluted.– Amplifier could self-destruct (thermal runaway).

    41

    Back to design of the amplifier

    42

    M1 M2TRANSISTOR

    INPUTMATCHINGNETWORK

    OUTPUT

    NETWORKMATCHING

    RFINPUT

    RFOUTPUT

    CONTROLCHIP

    GATE

    COLLECTOR OR DRAINFILTERLOW-PASS

    FILTERLOW-PASS

    AMPLIFIER

    BIASOR BASE

    43

    GMS = GMA but with k set to 1 (at edge of stability.

    GT = G with optimum M1.

    GMA = G  with optimumM1, M2

    U = GMA with S12 = 0 .

    GTUmax = G with S12 = 0, optimum M1, M2.

    GT and GMA are the only gains that do not modify the device.

  • Gain circles of the pHEMT at 8 GHz

    44

    12.96 dB

    11.96 dB

    10.96 dB

    9.96 dB

    13.96 dB

    Plotted on the S plane 

    G with optimum M2

    GMA = Gwith optimumM1 and M2

    ACTIVEDEVICE

    Z L

    L

    VS

    Z S

    S IN OUT

    Output matching network design● Design nearly always commences

    with the output matching network.

    ● The first design step is to choose an output matching network that will provide the appropriate impedances to ensure stability below 5 GHz and above 11 GHz.

    ● To do this the stability circles must be considered, as the device is only conditionally stable below 5 GHz and above 11 GHz.

    45

    > 1 for unconditional stability.

    Output stability circles for |S11| < 1

    46

    8 GHz. 16 GHz.1 GHz.

    inSTABLE

    UNSTABLE

    inSTABLE

    inSTABLE

    UNSTABLE

    L must be in stable region for amplifier to be stable

    Capacitive at low frequency or perhaps open or short circuit.

    Unconditionally stable at operating frequency of amplifier.

    Look like a resistor or short at high frequencies.

    pHEMT at 8 GHz

    47

    Ignore S12

    OutputMatchingNetwork

    Z = R +jXOUT S S

    Z = RLL Transistor

    However the output of the transistor really looks like a resistor in parallel with a capacitor.

    So RS =  RL =

    RS > RL

  • Consider output stability circles.

    48

    8 GHz. 16 GHz.1 GHz.

    inSTABLE

    UNSTABLE

    inSTABLE

    inSTABLE

    UNSTABLE

    Consider output stability circles

    49

    8 GHz. 16 GHz.1 GHz.

    inSTABLE

    UNSTABLE

    inSTABLE

    inSTABLE

    UNSTABLE

    Alternative design.

    Almost certainly will be unstable

    Output matching network design

    50

    LoaddeviceActive

    CxXSR L RL

    CxXSR RLLxX

    Activedevice o

    o

    Load

    CL RL

    CLSR

    SX

    PXRL

    Xp = 152.4

    Input matching network design

    51

    Now consider S12 and loading

    InputMatchingNetwork

    ZIN

    TransistorRS

    Appropriate choice:

  • Input stability circles for |S22| < 1

    52

    8 GHz. 16 GHz.1 GHz.

    outSTABLE

    UNSTABLE

    STABLEout

    STABLEout

    UNSTABLE

    S must be in stable region for amplifier to be stable

    S

    Input matching network design

    53

    Xx

    deviceActive

    Source

    CSR R LL

    CR L

    xXxX

    SR L

    Activedevice

    Source

    iiC

    LR SCL

    SR

    SX

    PXR L

    Xp = 34.23

    Final amplifier schematic.

    ● 10 nH has a reactance of approximately 500 Ω at 8 GHz.

    ● 100 pF provides an RF short circuit at 8 GHz.

    ● Simulated transducer gain is 13.2 dB– Compare to maximum available gain of 13.96 dB

    – Error is because S12 was ignored in synthesizing the output matching network.

    ● Design could also target a specified gain.54

    RF OUTRF IN

    VDD

    L2L3

    C1C2

    L1

    VGC3

    Design for a specific gain at 8 GHz

    55

    12.96 dB

    11.96 dB

    10.96 dB

    9.96 dB

    13.96 dB

    Gain (gain circles) plotted on the Splane with optimum M2

    GMA = Gwith optimumM1 and M2

    Recall that simulated gain of design here is 13.2 dB.

  • Final amplifier

    ● This is a surprisingly simple circuit.

    ● Bias circuit integrated into matching networks.

    56

    RF OUTRF IN

    VDD

    L2L3

    C1C2

    L1

    VGC3