microsoft word - l03_audjg_2007.pdf

5
THE ANNALS OF “DUNĂREA DE JOS” UNIVER SITY OF GALAłI FASCICLE V, TECHOLOLOGIES IN MACHINE BUILDING, ISSN 1221-4566 2007 15 Designing of a Reconfigurable Set of inverse Re-Drawing Dies Aided by FEM Simulation C. Maier 1 , V. Tabacaru 1 , M. Banu 1 , S. Bouvier 2 , V. Marinescu 1 1 Universita tea “Dunărea de jos” GalaŃi, Facultatea de Mecanică 2 University Paris13, LPMTM – 93430 Villetaneuse, France Abstract This paper deals with the methodology for developing a laboratory inverse re- drawing device. The drawing process is performed in two phases: a direct drawing of a circular blank followed by a second reverse re-drawing phase on the same device. Finite element simulations are carried out in order to i).define geometrical characteristics of the modular re-drawing device and to ii). estimate the punch  force evolution for different dimensions of punch, die and blankholder and for a large class of materials. Based on such FEM simulations, springs for the developed reverse deep drawing device are dimensioned. The use of springs gives the  possibility to deform the material with an imposed blank-holder force. Finally, a draw of the designed modular device is presented considering all the results of the  finite element simulation..  Keywords: finite element simulations, inverse re-drawing, strain path, modular device. 1. Introduction The analysis of the inverse re-drawing process  pr ov ides se ve ra l ad va nt ag es a s (i ) the im po sed strain path changes are severe and complex leading to a better analysis of the accuracy of  the finite element analysis, (ii) large amount of  deformation can be imposed where limitations due to the localization problems are reduced, (iii) the imposed strain path changes can determine the compensation of the bending- unbending effects (tensile stress and bending moment) due to the material flow over the tools radius during the first stage of t he deep-drawing  pr oc ess. In this study we propose to proceed with a direct drawing of a circular blank followed by a second inverse re-drawing stage using a laboratory device. These two stages must to be  pr og ress iv e in or de r to a vo id th e er ro rs du e to the positioning of the piece obtained in the first stage. 2. Design of the inverse re-drawing dies The laboratory device is designed considering these cases: -  material – AL5182, DP600, HSLA (table 1); -   pi ec es ty pe 1 and 2 (f ig .1, ta bl e 2) . Table 1 Material Y 0  [Mpa] R m  [Mpa] E [Mpa] ν   AL5182 130 340 72000 0.32 DP600 260 840 210000 0.33 HSLA 370 530 210000 0.33 Table 2 Type of the  p i e ce D [mm] T [mm] H [mm] R [mm] 78 1 70 8,5 1 74 1,2 70 10 70 1,5 70 11 2 60 1 70 8,5 52 1,2 77 10 This device has changeable tools (punch, die, blankholder) in order to assure the conditions to obtain all pieces, using all materials considered.

Upload: hussein-zein

Post on 03-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

7/28/2019 Microsoft Word - L03_AUDJG_2007.pdf

http://slidepdf.com/reader/full/microsoft-word-l03audjg2007pdf 1/5

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAłIFASCICLE V, TECHOLOLOGIES IN MACHINE BUILDING, ISSN 1221-4566

2007 

15

Designing of a Reconfigurable Set of inverse Re-Drawing Dies

Aided by FEM SimulationC. Maier1, V. Tabacaru1, M. Banu1, S. Bouvier2, V. Marinescu1

1Universitatea “Dunărea de jos” GalaŃi, Facultatea de Mecanică2University Paris13, LPMTM – 93430 Villetaneuse, France

Abstract

This paper deals with the methodology for developing a laboratory inverse re-

drawing device. The drawing process is performed in two phases: a direct drawing 

of a circular blank followed by a second reverse re-drawing phase on the same

device. Finite element simulations are carried out in order to i).define geometrical 

characteristics of the modular re-drawing device and to ii). estimate the punch force evolution for different dimensions of punch, die and blankholder and for a

large class of materials. Based on such FEM simulations, springs for the developed 

reverse deep drawing device are dimensioned. The use of springs gives the

 possibility to deform the material with an imposed blank-holder force. Finally, a

draw of the designed modular device is presented considering all the results of the

 finite element simulation..

 Keywords: finite element simulations, inverse re-drawing, strain path, modular 

device.

1. Introduction

The analysis of the inverse re-drawing process

 provides severa l advantages as (i ) the imposedstrain path changes are severe and complexleading to a better analysis of the accuracy of the finite element analysis, (ii) large amount of deformation can be imposed where limitationsdue to the localization problems are reduced,(iii) the imposed strain path changes candetermine the compensation of the bending-unbending effects (tensile stress and bendingmoment) due to the material flow over the toolsradius during the first stage of t he deep-drawing

 process.In this study we propose to proceed with

a direct drawing of a circular blank followed bya second inverse re-drawing stage using alaboratory device. These two stages must to be

 progress ive in order to avoid the errors due tothe positioning of the piece obtained in the firststage.

2. Design of the inverse

re-drawing dies

The laboratory device is designed consideringthese cases:

-  material – AL5182, DP600, HSLA (table1) ;-  pieces type 1 and 2 (f ig .1, table 2) .

Table 1

Mater ia l Y 0  [Mpa]

R m  [Mpa]

E[Mpa]

ν    

AL5182 130 340 72000 0 .32

DP600 260 840 210000 0 .33

HSLA 370 530 210000 0.33

Table 2

Typeof the piece

D[mm]

T[mm]

H[mm]

R [mm]

78 1 70 8,51 74 1 ,2 70 10

70 1 ,5 70 112 60 1 70 8 ,5

52 1 ,2 77 10

This device has changeable tools (punch,

die, blankholder) in order to assure theconditions to obtain all pieces, using allmaterials considered.

7/28/2019 Microsoft Word - L03_AUDJG_2007.pdf

http://slidepdf.com/reader/full/microsoft-word-l03audjg2007pdf 2/5

FASCICLE V THE ANNALS OF ‘DUNĂREA DE JOS” UNIVERSITY OF GALAłI 

Figure 1.

The definition of the tool-sets (punch,die, blankholder, clearence) and choice of 

 process parameters (number of forming stages ,forces to apply) must be performed for everytype of the piece and material co nsidered.

Improvement of design and tryout procedures using numerica l simulation mayhave a significant impact on the cost of thetools and on the reduction of the total time fromdesign to manufacture, also with the possibilityto provide better solution than those determinedfrom purely experimental tryout procedures.

Following the preliminary design, thetools must have the geometry presented infigure 2 in order to perform t he deep-drawing intwo stages on the same device.

Figure 2

3. Finite element simulation

Finite element simulations using a static-explicit finite element code STAMP3D,released within Integrated V-CAD ResearchSystem Program in RIKEN Institute, Japan, and

an implicit code MARC Mentat 3.2 are carriedout in order to estimate the punch forceevolution for different dimensions of punch, dieand blankholder, and for a large class of materials.

We considered the symmetry of thesystem and its result, in order to model onlyhalf of it (figure 3).

Figure 3 .  Equ ivalent p last ic s tra in

dis tr ibut ion during the second s tage .

The type of the f in i te e lement used i s plane s tress quadrat ic (4 nodes) e lement inMARC Mentat 3 .2 Hardening lawconsidered i s Swif t ( i so t ropic hardenind)for s teels (DP600 and HSLA) and Voce( iso t ropic hardening) for a luminium al loy .

Table 3 . Swif t law ( iso tropic hardening) parameters [1] .

Parameter DP600 HSLA

0Y    308.3 367.7

0ε    0 .00082 0.07157

n   0 .132 0.139

C   720.2 530.9

Table 4 . Voce law wi th k inemat ic

hardening parameters [1]  Parameter Value

0Y    148 .5

 RC    9 .7

 sat  R   192 .4

The s imulat ion wi th the in i t ia l parameter s has two problems: f ir s t ly the

simulat ion doesn’ t reach the end andundulat ions appear .

7/28/2019 Microsoft Word - L03_AUDJG_2007.pdf

http://slidepdf.com/reader/full/microsoft-word-l03audjg2007pdf 3/5

THE ANNALS OF ‘DUNĂREA DE JOS” UNIVERSITY OF GALAłI FASCICLE V

General ly when the s imulat iondoesn’ t reach the end i t ’s due to the nodes

 posi t ions when they enter in contact , or fas t s t ress increases a t an increment of thesimulat ion .

These problems could be so lved by

some geometr ical modif icat ions , o r punchspeed modif icat ion .The parameters are modif ied one by

one in order to keep revers ib i l i ty i f thesimulat ion doesn’ t wel l run .

The f i rs t modif icat ions were made tomake the s imulat ion reach end . The f i rs tidea i s to decrease s t ress due to the f i rs t

 pass by modifying the f irs t pass geometry.But the so lu t ion was to change the secondstep clearance.

Once the s imulat ion reach the end , wetry to reduce undulat ion by reduce thesecond s tep clearance. The opt imized value

of the second s tep clearance i s 1 ,22 mm(calcu late by the Kaszmarek relat ionship but we arr ived to obtain resu lts for c learance a few b i t in fer ior to that (1 ,2mm).   The Fi rs t s tep clearance was alsoenlarge to decrease s t ress .

Chronology of geometr icalad justment i s p resented in the tab le 5 .

Table 5

Simulation #    I  n  c  s   t  o  p   (   l  a  s   t

   i  n  c  =   1   0   1   4   )

   D  r  a  w   i  n  g   d  e  p   t   h

   C   l  e  a  r  a  n  c  e   1

   C   l  e  a  r  a  n  c  e   2

   P  u  n  c   h   R  o  u  n   d

   R  a   d   i  u  s

   1 D   i  e   R  o  u  n   d   R  a

   d   i  u  s   1

   P  u  n  c   h   R  o  u  n   d

   R  a   d   i  u  s

   2 D   i  e   R  o  u  n   d   R  a

   d   i  u  s   2

   R  e   l  a   t   i  v  e  s   l   i   d   i  n

  g

  v  e   l  o  c   i   t  y

0 593 30 1,3 5,2 5,5 8 8,5 5,5 1

10 809 58,5 1,3 5,2 5,5 8 8,5 5,5 1

20 924 54,5 1,3 5,2 5,5 8 8,5 5,5 1

Seek optimized first passparameters

21 802 58,5 1,3 5,2 5,5 8 8,5 5,5 1

22 809 58,5 1,3 5,2 6 8 8,5 5,5 1

23 419 58,5 1,3 5,2 6,5 8 8,5 5,5 124 413 58,5 1,3 5,2 5,5 8,5 8,5 5,5 1

25 417 58,5 1,3 5,2 5,5 9 8,5 5,5 1

26 840 58,5 1,3 5,2 6 8,5 8,5 5,5 1

31 407 58,5 2,1 5,2 6 8,5 8,5 5,5 1

32 289 58,5 3,7 5,2 6 8,5 8,5 5,5 1

Seek optimized second passparameters

40 1000 58,5 1,3 2,2 6 8,5 8,5 5,5 1

41 1014 58,5 1,3 2,2 5,5 8 8,5 5,5 1

Reduction of theundulation

50 787 58,5 1,31,5

5,5 8 8,5 5,5 160 1005 57,5 1,5 1,5 5,5 8 8,5 5,5 1

70 1014 57,5 1,5 1,5 5,5 8 8,5 5,5 0,075

80 910 58,5 1,5 1,3 5,5 8 8,5 5,5 0,075

81 1014 58,5 1,5 1,3 6 8 8,5 5,5 0,075

90 783 58,5 1,5 1,2 6 8 8,5 5,5 0,075

91 1014 58,5 1,5 1,22 6 8 8,5 5,5 0,075

100 1014 58,5 1,5 1,2 5,5 8 8,5 5,5 0,075

Following the finite element analysis weobtain the punches force evolution (fig. 4)necessary to define the final dimensions of thetools and to select the optimum necessary press-

machine. We represented in figure 4 theevolution of the punchs force in the

intermediary state during the second stage, thesame state like in figure 3. Maximum forces toapply are obtained for first stage (on the punch1) of the process. This values is used to define

the final dimensions of the tools.

7/28/2019 Microsoft Word - L03_AUDJG_2007.pdf

http://slidepdf.com/reader/full/microsoft-word-l03audjg2007pdf 4/5

FASCICLE V THE ANNALS OF ‘DUNĂREA DE JOS” UNIVERSITY OF GALAłI 

Figure 3 .  Punch 1 and punch 3 force

evolution  

DP600 Punch diameter 82.3 mm

0

20

40

60

80

100

120

0 10 20 30 40 50

Punch stroke [mm]

 P u n c

  h

  f o r c e

  [  k N

  ]

 F igure 4 .  Punch 1 force evolu t ion for 

 DP600 .

On the figure 5 we can notice the earingeffect due to the anisotropy (fig. 6) of thematerial and we use this one in order to check the height of the piece obtained in the firststage of the process.

Figure 5 .  Earing ef fect for DP600 at 50

mm height obta ined a f ter the f i rs t s tage  

0 10 20 30 40 50 60 70 80 900

0.2

0.4

0.6

0.8

1

1.2

DP600 (1.0 mm) : Variation of Hill's coefficient of anisotropyDP600 (1.0 mm) : Variation of Hill's coefficient of anisotropyDP600 (1.0 mm) : Variation of Hill's coefficient of anisotropyDP600 (1.0 mm) : Variation of Hill's coefficient of anisotropy

Orientation of the tensile axis with respect to RD, in degree sOrientation of the tensile axis with respect to RD, in degree sOrientation of the tensile axis with respect to RD, in degree sOrientation of the tensile axis with respect to RD, in degree s

   C  o  e   f   f   i  c   i  e  n   t  o   f  a  n   i  s  o   t  r  o  p  y  r

   C  o  e   f   f   i  c   i  e  n   t  o   f  a  n   i  s  o   t  r  o  p  y  r

   C  o  e   f   f   i  c   i  e  n   t  o   f  a  n   i  s  o   t  r  o  p  y  r

   C  o  e   f   f   i  c   i  e  n   t  o   f  a  n   i  s  o   t  r  o  p  y  r

Experimental valuesTheoretical values

 F igure 6 .  Anisotropy o f DP600  

4. Conclusions

For the reverse re-drawing simulation thegeometry of the dies is defined. The DP600 andHSLA steel have the abilities to support the

severity of reverse re-drawing process. In thesame time theses steels are designed for thiskind of operation. The evaluate draw ratio (β2lim =1,75 ) on the second pass is very good(superior to the draw ratio on the first pass).

5. Acknowledgements

This work has been material and logisticfunded by the National Excellence ResearchProject -CEEX contract no. 22/2005.

References

1. . M. Banu, C. Maier, S. Bouvier, H. Haddadi, C.

Teodosiu Data Preprocessing and Identification of the Elastoplastic Constitutive Models - WP3, Task 1, 18-MonthsProgress Report, Digital Die Design Systems (3DS) IMS 199000051, (2001), 22-29.

2. R. E. Dick, J. W. Yoon, F. Barlat, Convolute Cut-Edge

 Design for an Earless Cup in cup Drawing, In: NUMISHEET 

2005, Eds. L.M. smith, F. Pourbograth, J.W Yoon, T.B. Stoughton,(2005), 713-718.

3. A. Baptista, J. L. Alves, M. Oliveira, D.M.

Rodrigues, L. F. Menezes,  Application of the Incremental Volumetric Remapping Method in the Simulation of Multi-Step

 Deep Drawing Processes, In: NUMISHEET 2005, Eds. L.M.smith, F. Pourbograth, J.W Yoon, T.B. Stoughton, (2005), 173-178  

7/28/2019 Microsoft Word - L03_AUDJG_2007.pdf

http://slidepdf.com/reader/full/microsoft-word-l03audjg2007pdf 5/5

THE ANNALS OF ‘DUNĂREA DE JOS” UNIVERSITY OF GALAłI FASCICLE V

Proiectarea unui echipament tehnologic reconfigurabil

pentru ambutisarea inversa, utilizand simularea cu EF

Rezumat:

 Aceasta lucrare are ca obiectiv dezvoltarea metodologiei de proiectare a unui

echipament tehnologic de laborator pentru ambutisare inversa, avand elemente

active schimbabile. Procesul de deformare se realizeaza in 2 etape: ambutisarea

directa a unui semifabricat plan de forma circulara, urmata de a doua ambutisare

 pe acelasi echipament, in sens invers sensului de deplasare a materialului de la

 prima ambutisare. Simularea cu elemente finite s-a realizat cu scopul: i). definiriicaracteristicilor dimensionale ale echipamentului modular si ii). estimarii evolutiei

 fortei de deformare pentru diferite dimensiuni ale poansonului, placii active si placii

de retinere, pentru o gama larga de materiale. In final, echipamentul tehnologic de

laborator este dimensionat pe baza rezultatelor simularilor numerice. 

Conception d’un équipement de laboratoirepour l’emboutissage inverse, en utilisant la simulation EF

Résume:

Ce papier a comme objectif le développement de la méthode de conception

d’un équipement de laboratoire pour l’emboutissage inverse, ayant le couple

 poinçon - matrice changeable. Le processus de mise en forme se déroule pendant 

deux étapes : l’emboutissage directe d’un ébauche plan de forme circulaire, suite

 par le deuxième emboutissage réalisé sur le même équipement, dans le sens inverse

de déplacement du matériau que le premier emboutissage. La simulation EF a été

réalisée au but de : i). définir les characteristiques dimensionales des différents

modules de l’équipement ; ii). évaluation de l’évolution de la force du poinçon pour 

différents dimensions des modules de l’équipement et différents matériaux del’ébauche. A la fin, la conception de l’équipement de laboratoire est faite à base des

résultats de la simulation numérique