microscopic description of the breathing mode and nuclear compressibility

1

Click here to load reader

Upload: jereni

Post on 17-Jan-2016

32 views

Category:

Documents


0 download

DESCRIPTION

Microscopic Description of the Breathing Mode and Nuclear Compressibility By: David Carson Fuls, Stephen F. Austin State University REU Cyclotron 2005, Mentor: Dr. Shalom Shlomo. - PowerPoint PPT Presentation

TRANSCRIPT

  • Microscopic Description of the Breathing Mode and Nuclear CompressibilityBy: David Carson Fuls, Stephen F. Austin State UniversityREU Cyclotron 2005, Mentor: Dr. Shalom Shlomo

  • Introduction

    We use the microscopic Hartree-Fock (HF) based Random-Phase-Approximation (RPA) theory to describe the breathing mode in the 90Zr, 116Sn, 144Sm, and 208Pb nuclei, which are very sensitive to the nuclear matter incompressibility coefficient K. The value of K is directly related to the curvature of the equation of state, which is a very important quantity in the study of properties of nuclear matter, heavy ion collisions, neutron stars, and supernova. We present results of fully self-consistent HF+RPA calculations for the centroid energies of the breathing modes in the four nuclei using several Skyrme type nucleon-nucleon (NN) interactions and compare the results with available experimental data to deduce a value for K.

  • We have,

    where is equal to,

    This nicely agrees with the transition density obtained from RPA calculations.

    Chart5

    0.158440.2059720.110908

    0.158630.2062580.111002

    0.159020.2067820.111258

    0.15930.2070330.111567

    0.159110.2065150.111705

    0.158290.2051320.111448

    0.1570.2032840.110716

    0.155640.2016110.109669

    0.154610.2005930.108627

    0.154110.2002080.108012

    0.153960.1999980.107922

    0.153810.1993590.108261

    0.153270.1979910.108549

    0.152220.1959750.108465

    0.150750.1935670.107933

    0.149030.1906790.107381

    0.146990.1864790.107501

    0.144110.1793530.108867

    0.139410.1675170.111303

    0.131790.1497050.113875

    0.120410.1259730.114847

    0.105130.09797440.1122856

    0.0867040.06894620.1044618

    0.0668090.04282510.0907929

    0.0476670.02288310.0724509

    0.0313820.01029910.0524649

    0.0191830.00383890.0345271

    0.0110680.001141390.02099461

    0.00616170.000213610.01210979

    0.0033772-0.0000420.0067964

    0.0018488-0.000084460.00378206

    0.0010195-0.0000720680.002111068

    0.00056872-0.0000520560.001189496

    0.00032141-0.0000354550.000678275

    0.00018405-0.0000236570.000391757

    0.00010672-0.0000156770.000229117

    0.000062602-0.00001039580.0001355998

    0.000037108-0.00000690070.0000811167

    0.000022205-0.00000459630.0000490063

    0.000013399-0.00000306450.0000298625

    0.0000081469-0.00000204980.0000183436

    0.0000049867-0.00000137290.0000113463

    0.0000030707-0.00000092080.0000070622

    0.000001901-0.00000061780.0000044198

    0.0000011826-0.0000004150.0000027802

    0.0000007389-0.00000027880.0000017566

    0.0000004635-0.00000018740.0000011143

    0.0000002918-0.0000001260.0000007095

    0.0000001842-0.00000008470.0000004532

    0.0000001167-0.00000005690.0000002904

    0.0000000741-0.00000003830.0000001865

    Density

    Density + Delta Density

    Density - Delta Density

    Sheet1

    radiusdensitydelta density

    01.58440E-014.75320E-022.05972E-011.10908E-01

    0.31.58630E-014.76280E-020.2062580.111002

    0.61.59020E-014.77620E-020.2067820.111258

    0.91.59300E-014.77330E-020.2070330.111567

    1.21.59110E-014.74050E-020.2065150.111705

    1.51.58290E-014.68420E-020.2051320.111448

    1.81.57000E-014.62840E-020.2032840.110716

    2.11.55640E-014.59710E-020.2016110.109669

    2.41.54610E-014.59830E-020.2005930.108627

    2.71.54110E-014.60980E-020.2002080.108012

    31.53960E-014.60380E-020.1999980.107922

    3.31.53810E-010.0455490.1993590.108261

    3.61.53270E-010.0447210.1979910.108549

    3.91.52220E-010.0437550.1959750.108465

    4.21.50750E-010.0428170.1935670.107933

    4.51.49030E-010.0416490.1906790.107381

    4.81.46990E-010.0394890.1864790.107501

    5.11.44110E-010.0352430.1793530.108867

    5.41.39410E-010.0281070.1675170.111303

    5.71.31790E-010.0179150.1497050.113875

    61.20410E-010.0055630.1259730.114847

    6.31.05130E-01-0.00715560.09797440.1122856

    6.68.67040E-02-0.01775780.06894620.1044618

    6.96.68090E-02-0.02398390.04282510.0907929

    7.24.76670E-02-0.02478390.02288310.0724509

    7.53.13820E-02-0.02108290.01029910.0524649

    7.81.91830E-02-0.01534410.00383890.0345271

    8.11.10680E-02-0.009926610.001141390.02099461

    8.46.16170E-03-0.005948090.000213610.01210979

    8.73.37720E-03-0.0034192-0.0000420.0067964

    91.84880E-03-0.00193326-0.000084460.00378206

    9.31.01950E-03-0.001091568-0.0000720680.002111068

    9.65.68720E-04-0.000620776-0.0000520560.001189496

    9.93.21410E-04-0.000356865-0.0000354550.000678275

    10.21.84050E-04-0.000207707-0.0000236570.000391757

    10.51.06720E-04-0.000122397-0.0000156770.000229117

    10.86.26020E-05-0.0000729978-0.00001039580.0001355998

    11.13.71080E-05-0.0000440087-0.00000690070.0000811167

    11.42.22050E-05-0.0000268013-0.00000459630.0000490063

    11.71.33990E-05-0.0000164635-0.00000306450.0000298625

    128.14690E-06-0.0000101967-0.00000204980.0000183436

    12.34.98670E-06-0.0000063596-0.00000137290.0000113463

    12.63.07070E-06-0.0000039915-0.00000092080.0000070622

    12.91.90100E-06-0.0000025188-0.00000061780.0000044198

    13.21.18260E-06-0.0000015976-0.0000004150.0000027802

    13.57.38880E-07-0.0000010177-0.00000027880.0000017566

    13.84.63460E-07-0.0000006508-0.00000018740.0000011143

    14.12.91750E-07-0.0000004177-0.0000001260.0000007095

    14.41.84250E-07-0.0000002689-0.00000008470.0000004532

    14.71.16710E-07-0.0000001737-0.00000005690.0000002904

    157.41250E-08-0.0000001124-0.00000003830.0000001865

    15.34.71970E-08-0.0000000729-0.00000002570.0000001201

    15.63.01210E-08-0.0000000474-0.00000001730.0000000775

    15.91.92650E-08-0.0000000309-0.00000001160.0000000502

    16.21.23450E-08-0.0000000202-0.00000000780.0000000325

    16.57.92600E-09-0.0000000132-0.00000000530.0000000211

    16.85.09740E-09-0.0000000086-0.00000000350.0000000137

    17.13.28360E-09-0.0000000057-0.00000000240.0000000089

    17.42.11830E-09-0.0000000037-0.00000000160.0000000058

    17.71.36850E-09-0.0000000024-0.00000000110.0000000038

    188.85310E-10-0.0000000016-0.00000000070.0000000025

    18.35.73420E-10-0.0000000011-0.00000000050.0000000016

    18.63.71850E-10-0.0000000007-0.00000000030.0000000011

    18.92.41400E-10-0.0000000005-0.00000000020.0000000007

    19.21.56870E-10-0.0000000003-0.00000000010.0000000005

    19.51.02050E-10-0.0000000002-0.00000000010.0000000003

    19.86.64410E-11-0.0000000001-0.00000000010.0000000002

    20.14.32960E-11-0.0000000001-00.0000000001

    20.42.82370E-11-0.0000000001-00.0000000001

    20.71.84290E-11-0-00.0000000001

    211.20370E-11-0-00

    21.37.86660E-12-0-00

    21.65.14440E-12-0-00

    21.93.36600E-12-0-00

    22.22.20360E-12-0-00

    22.51.44320E-12-0-00

    22.89.45630E-13-0-00

    23.16.19810E-13-0-00

    23.44.06380E-13-0-00

    23.72.66500E-13-0-00

    241.74800E-13-0-00

    24.31.14670E-13-0-00

    24.67.52200E-14-0-00

    24.94.93370E-14-0-00

    25.23.23510E-14-0-00

    25.52.12020E-14-0-00

    25.81.38840E-14-0-00

    26.19.08070E-15-0-00

    26.45.92790E-15-0-00

    26.73.85870E-15-0-00

    272.50120E-15-0-00

    27.31.61090E-15-0-00

    27.61.02740E-15-0-00

    27.96.45590E-16-0-00

    28.23.96330E-16-0-00

    28.52.34420E-16-0-00

    28.81.30320E-16-0-00

    29.16.48600E-17-0-00

    29.42.58120E-17-0-00

    29.75.67210E-18

    Sheet1

    Density

    Density + Delta Density

    Density - Delta Density

    Sheet2

    Sheet3

    Chart1

    0.047532

    0.047628

    0.047762

    0.047733

    0.047405

    0.046842

    0.046284

    0.045971

    0.045983

    0.046098

    0.046038

    0.045549

    0.044721

    0.043755

    0.042817

    0.041649

    0.039489

    0.035243

    0.028107

    0.017915

    0.005563

    -0.0071556

    -0.0177578

    -0.0239839

    -0.0247839

    -0.0210829

    -0.0153441

    -0.00992661

    -0.00594809

    -0.0034192

    -0.00193326

    -0.001091568

    -0.000620776

    -0.000356865

    -0.000207707

    -0.000122397

    -0.0000729978

    -0.0000440087

    -0.0000268013

    -0.0000164635

    -0.0000101967

    -0.0000063596

    -0.0000039915

    -0.0000025188

    -0.0000015976

    -0.0000010177

    -0.0000006508

    -0.0000004177

    -0.0000002689

    -0.0000001737

    -0.0000001124

    Sheet1

    radiusdensitydelta density

    01.58440E-014.75320E-022.05972E-011.10908E-01

    0.31.58630E-014.76280E-020.2062580.111002

    0.61.59020E-014.77620E-020.2067820.111258

    0.91.59300E-014.77330E-020.2070330.111567

    1.21.59110E-014.74050E-020.2065150.111705

    1.51.58290E-014.68420E-020.2051320.111448

    1.81.57000E-014.62840E-020.2032840.110716

    2.11.55640E-014.59710E-020.2016110.109669

    2.41.54610E-014.59830E-020.2005930.108627

    2.71.54110E-014.60980E-020.2002080.108012

    31.53960E-014.60380E-020.1999980.107922

    3.31.53810E-010.0455490.1993590.108261

    3.61.53270E-010.0447210.1979910.108549

    3.91.52220E-010.0437550.1959750.108465

    4.21.50750E-010.0428170.1935670.107933

    4.51.49030E-010.0416490.1906790.107381

    4.81.46990E-010.0394890.1864790.107501

    5.11.44110E-010.0352430.1793530.108867

    5.41.39410E-010.0281070.1675170.111303

    5.71.31790E-010.0179150.1497050.113875

    61.20410E-010.0055630.1259730.114847

    6.31.05130E-01-0.00715560.09797440.1122856

    6.68.67040E-02-0.01775780.06894620.1044618

    6.96.68090E-02-0.02398390.04282510.0907929

    7.24.76670E-02-0.02478390.02288310.0724509

    7.53.13820E-02-0.02108290.01029910.0524649

    7.81.91830E-02-0.01534410.00383890.0345271

    8.11.10680E-02-0.009926610.001141390.02099461

    8.46.16170E-03-0.005948090.000213610.01210979

    8.73.37720E-03-0.0034192-0.0000420.0067964

    91.84880E-03-0.00193326-0.000084460.00378206

    9.31.01950E-03-0.001091568-0.0000720680.002111068

    9.65.68720E-04-0.000620776-0.0000520560.001189496

    9.93.21410E-04-0.000356865-0.0000354550.000678275

    10.21.84050E-04-0.000207707-0.0000236570.000391757

    10.51.06720E-04-0.000122397-0.0000156770.000229117

    10.86.26020E-05-0.0000729978-0.00001039580.0001355998

    11.13.71080E-05-0.0000440087-0.00000690070.0000811167

    11.42.22050E-05-0.0000268013-0.00000459630.0000490063

    11.71.33990E-05-0.0000164635-0.00000306450.0000298625

    128.14690E-06-0.0000101967-0.00000204980.0000183436

    12.34.98670E-06-0.0000063596-0.00000137290.0000113463

    12.63.07070E-06-0.0000039915-0.00000092080.0000070622

    12.91.90100E-06-0.0000025188-0.00000061780.0000044198

    13.21.18260E-06-0.0000015976-0.0000004150.0000027802

    13.57.38880E-07-0.0000010177-0.00000027880.0000017566

    13.84.63460E-07-0.0000006508-0.00000018740.0000011143

    14.12.91750E-07-0.0000004177-0.0000001260.0000007095

    14.41.84250E-07-0.0000002689-0.00000008470.0000004532

    14.71.16710E-07-0.0000001737-0.00000005690.0000002904

    157.41250E-08-0.0000001124-0.00000003830.0000001865

    15.34.71970E-08-0.0000000729-0.00000002570.0000001201

    15.63.01210E-08-0.0000000474-0.00000001730.0000000775

    15.91.92650E-08-0.0000000309-0.00000001160.0000000502

    16.21.23450E-08-0.0000000202-0.00000000780.0000000325

    16.57.92600E-09-0.0000000132-0.00000000530.0000000211

    16.85.09740E-09-0.0000000086-0.00000000350.0000000137

    17.13.28360E-09-0.0000000057-0.00000000240.0000000089

    17.42.11830E-09-0.0000000037-0.00000000160.0000000058

    17.71.36850E-09-0.0000000024-0.00000000110.0000000038

    188.85310E-10-0.0000000016-0.00000000070.0000000025

    18.35.73420E-10-0.0000000011-0.00000000050.0000000016

    18.63.71850E-10-0.0000000007-0.00000000030.0000000011

    18.92.41400E-10-0.0000000005-0.00000000020.0000000007

    19.21.56870E-10-0.0000000003-0.00000000010.0000000005

    19.51.02050E-10-0.0000000002-0.00000000010.0000000003

    19.86.64410E-11-0.0000000001-0.00000000010.0000000002

    20.14.32960E-11-0.0000000001-00.0000000001

    20.42.82370E-11-0.0000000001-00.0000000001

    20.71.84290E-11-0-00.0000000001

    211.20370E-11-0-00

    21.37.86660E-12-0-00

    21.65.14440E-12-0-00

    21.93.36600E-12-0-00

    22.22.20360E-12-0-00

    22.51.44320E-12-0-00

    22.89.45630E-13-0-00

    23.16.19810E-13-0-00

    23.44.06380E-13-0-00

    23.72.66500E-13-0-00

    241.74800E-13-0-00

    24.31.14670E-13-0-00

    24.67.52200E-14-0-00

    24.94.93370E-14-0-00

    25.23.23510E-14-0-00

    25.52.12020E-14-0-00

    25.81.38840E-14-0-00

    26.19.08070E-15-0-00

    26.45.92790E-15-0-00

    26.73.85870E-15-0-00

    272.50120E-15-0-00

    27.31.61090E-15-0-00

    27.61.02740E-15-0-00

    27.96.45590E-16-0-00

    28.23.96330E-16-0-00

    28.52.34420E-16-0-00

    28.81.30320E-16-0-00

    29.16.48600E-17-0-00

    29.42.58120E-17-0-00

    29.75.67210E-18

    Sheet1

    Density

    Density + Delta Density

    Density - Delta Density

    Sheet2

    Sheet3

  • For the two-body nuclear potential Vij, we take a Skyrme type effective NN interaction given by,

    The Skyrme interaction parameters (ti, xi, , and Wo) are obtained by fitting the HF results to the experimental data. This interaction is written in terms of delta functions which make the integrals in the HF equations easier to carry out.

  • Giant Resonance

    In HF based RPA theory, giant resonances are described as coherent superpositions of particle hole excitations of the ground state.In the Greens Function formulation of RPA, one starts with the RPA-Greens function which is given by

    where Vph is the particle-hole interaction and the free particle-hole Greens function is defined as,

    where is the single-particle wave function, i is the single-particle energy, and ho is the single-particle Hamiltonian.

  • Fully Self-Consistent HF Based RPA Results For Breathing Mode Energy (in MeV)

    TAMU Data: D. H. Youngblood et al, Phys. Rev. C 69, 034315 (2004); C 69, 054312(2004).Nguyen Van Giai and H. Sagawa, Phys. Lett. B106, 379 (1981).c) TAMU Interaction: B. K. Agrawal, S. Shlomo and V. Kim Au, Phys. Rev. C 72, 014310 (2005).

    Sheet1

    Intergral WidthExperimenta)SG2b)KDE0c)

    90Zr0--6017.918.1

    10--3517.81+/-0.3017.918.0

    116Sn0--6016.216.6

    10--3515.85+/-0.2016.216.6

    144Sm0--6015.315.5

    10--3515.40+/-0.4015.315.4

    208Pb0--6013.613.8

    10--3513.96+/-0.2013.613.8

    K=215K=229

    J=29J=33

    Sheet2

    Sheet3

  • Nuclear Matter Incompressibility

    The value of K is directly related to the second derivative of the equation of state (EOS) of symmetric nuclear matter.

    Once we know that a two-body interaction is successful in determining the centroid energy of the monopole resonance, we can use that interaction to find the EOS and from that we can find the value of K.

    [fm-3]

    = 0.16 fm-3

    E/A [MeV]

    E/A = -16 MeV

  • Classical Picture of the Breathing Mode

    In the classical description of the breathing mode, the nucleus is modeled after a drop of liquid that oscillates by expanding and contracting about its spherical shape.

    We consider the isoscalar breathing mode in which the neutrons and protons move in phase (T=0, S=0).

  • In the scaling model, we have the matter density oscillates as

    We consider small oscillations, so is very close to zero ( 0.1). Performing a Taylor expansion of the density,

    we obtain,

  • Microscopic Description of the Breathing Mode

    Ground StateThe ground state of the nucleus with A nucleons is given by an antisymmetric wave function which is, in the mean-field approximation, given by a Slater determinant.

    In the spherical case, the single-particle wave function is given in terms of the radial , the spherical spin harmonic , and the isospin functions:

  • The total Hamiltonian of the nucleus is written as a sum of the kinetic T and potential V energies,

    where,The total energy E is,

  • Now we apply the variation principle to derive the Hartree-Fock equations. We minimize

    by varying with the constraint of particle number conservation,

    and obtain the Hartree-Fock equations,

  • For a spherical case the HF equations can be reduced to,

    where the effective mass , the central potential , and the spin-orbit potential are written in terms of the Skyrme parameters, matter density, charge density, and current density.

  • Method of Solving the HF Equations

    With an initial guess of the single-particle wave functions (usually the harmonic oscillator wave functions because they are known analytically) we can find the matter density, kinetic density, current density, and charge density. Once we know these values, we can use them to find the effective mass, central potential, and the spin- orbit potential. We then use these functions in the HF equations to find the new radial wave functions. We repeat the whole procedure with these new wave functions until convergence is reached.

  • Single-Particle Energies (in MeV) for 40Ca

    *TAMU Skyrme Interaction: B. K. Agrawal, S. Shlomo and V. Kim Au, Phys. Rev. C 72, 014310 (2005).

    Sheet1

    OrbitsExpt.KDE0*OrbitsExpt.KDE0*

    ProtonsNeutrons

    1s1/2-50+11-38.211s1/2--47.77

    1p3/2--26.421p3/2--34.90

    1p1/2-34+6-22.341p1/2--30.78

    1d5/2--14.511d5/2--22.08

    2s1/2-10.9-9.662s1/2-18.1-17.00

    1d3/2-8.3-7.531d3/2-15.6-14.97

    1f7/2-1.4-2.761f7/2-8.3-9.60

    2p3/2-6.2-4.98

    Sheet2

    Sheet3

  • We use the scattering operator F

    where for monopole excitation, to obtain the strength function

    and the transition density.

  • A Note on Self-Consistency

    In numerical implementation of HF based RPA theory, it is the job of the theorist to limit the numerical errors so that these are lower than the experimental errors. Some available HF+RPA calculations omit parts of the particle-hole interaction that are numerically difficult to implement, such as the spin-orbit or Coulomb parts. Omission of these terms leads to self-consistency violation, and the shift in the centroid energy can be on the order of 1 MeV or 5 times the experimental error. The calculations we have carried out are fully self-consistent. Note:For example: E = 14 MeV (in 208Pb), and K = 230 MeV, then a E = 1 MeV leads to K = 35 MeV.

  • Isoscalar Monopole Strength Functions

    90Zr

    116Sn

    144Sm

    208Pb

    E [MeV]

    S(E) [fm4/MeV]

  • Conclusion

    After doing the fully self-consistent HF+RPA calculations for the centroid energy of the breathing mode in the four nuclei, using the two Skyrme interactions SG2 and KDE0, we have deduced a value ofK = 230 +/- 20 MeV.

  • Acknowledgments

    Work done at:

  • Work supported by:

    Grant numbers: PHY-0355200 PHY-463291-00001

    Grant number: DOE-FG03-93ER40773