microkineticmodels for exhaust-gas after-treatment€¦ · isothermal flat bed reactor: spatially...

44
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institute for Chemical Technology and Polymer Chemistry (ITCP) www.kit.edu Institute for Catalysis Research and Technology (IKFT) Microkinetic models for exhaust-gas after-treatment Olaf Deutschmann, Karlsruhe Institute of Technology (KIT) CLEERS 2015

Upload: others

Post on 19-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

    Institute for Chemical Technology and Polymer Chemistry (ITCP)

    www.kit.edu

    Institute for Catalysis Research and Technology (IKFT)

    Microkinetic models for exhaust-gas after-treatment

    Olaf Deutschmann, Karlsruhe Institute of Technology (KIT)

    CLEERS 2015

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry2

    THE CHALLENGE

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry3

    Catalytic converter: Physics and chemistry on many scales

    Courtesy of J. Eberspächer GmbH& Co

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry4

    1 m10 s

    1 mm10 ms

    10 m 100 s10 nm1 nm0.1 nm

    Catalytic converter:Physics and chemistry on many scales

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry5

    THE DREAM

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry6

    Simulation of catalytic reactors by multi-scale modeling:Information flux over the time and length scales

    Complexity

    Leng

    thTi

    me

    Elementary reactions on surfaces

    Particles and phases

    Porous supports

    Reactor behavior

    DFT

    kMC

    Reactive flow

    AdditivitySpill-over

    Diffusion

    Continuum mechanics

    Transient models for heat and mass transfer

    Multi componentParticle Sizes

    Pt

    Ce

    Reactor behavior

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry7

    THE REALITY

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry8

    1 m10 s

    1 mm10 ms

    10 m 100 s10 nm1 nm0.1 nm

    Catalytic converter:Physics and chemistry on many scales

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry9

    Density Functional Theory (DFT):Understanding catalysis on a molecular level

    0.1 nmJ.A. Keith, J. Anton, T.Jacob. Chapter 1 in Modeling and Simulation of HeterogeneousCatalytic Reactions. O. Deutschmann (Ed.), 2011

    Energy barriers

    Understanding reaction paths

    Pre-screening of catalysts

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry10

    Aging of Pd/Pt catalyst for CH4 total oxidation:Characterization by TEM and EDX

    Total Pd/Pt loading 5:1

    Most particles d < 5 nm Homogenous alloy

    (Pd100Pt0 - Pd89±5Pt11±2)

    Some particles d 10 nm Homogenous Alloy, higher Pt-content

    Few large particles d > 30 nm Homogenous alloy High Pt content Formation of core-shell structure after

    100 h, 1000 ppm CH4, 10% O2

    A. T. Gremminger, H. W. Pereira de Carvalho, R. Popescu, J.-D. Grunwaldt, O. Deutschmann. Catalysis Today (2015) DOI 10.1016/j.cattod.2015.01.034

    CH4 + 2 O2 CO2 + 2 H2OPd/Pt

    0 10 20 300

    20

    40

    60

    80

    100

    Pt L

    Con

    cent

    ratio

    n (a

    t. %

    )

    x (nm)

    Pd L

    Probe 13: Pd-Pt/Al2O3 aged (Sp. 8)

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry11

    Aging of Pd/Pt catalyst for CH4 total oxidation:Characterization by TEM and EDX

    Total Pd/Pt loading 5:1

    Most particles d < 5 nm Homogenous alloy

    (Pd100Pt0 - Pd89±5Pt11±2)

    Some particles d 10 nm Homogenous Alloy, higher Pt-content

    Few large particles d > 30 nm Homogenous alloy High Pt content Formation of core-shell structure after

    100 h, 1000 ppm CH4, 10% O2

    A. T. Gremminger, H. W. Pereira de Carvalho, R. Popescu, J.-D. Grunwaldt, O. Deutschmann. Catalysis Today (2015) DOI 10.1016/j.cattod.2015.01.034

    CH4 + 2 O2 CO2 + 2 H2OPd/Pt

    3 nm shellPd52±4Pt48±2

    22 nm corePd5±3Pt95±2

    • Total NP compositionPd36±5Pt64±6

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry12

    Kinetic Monte Carlo Simulation of surface reactions and diffusion on catalytic particles: CO oxidation on Pt/Al2O3

    1-100 nm Coverage over time on each facet

    Reaction rates of each process

    Number of times each process was used

    L. Kunz et al., Chapter 4 in Modeling Heterogeneous Catalytic Reactions. O. Deutschmann (Ed.), 2011

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry13

    Effect of thermal aging on particle size distribution in DOC

    Fresh DOC

    DOC aged hydrothermally aging at 950°C

    Particle size distribution

    W. Boll, S. Tischer, O. Deutschmann, Ind. & Eng. Chem. Res. 49 (2010) 10303

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry14

    Catalytic converter: Physics and chemistry on many scales

    1 m10 s

    1 mm10 ms

    10 m 100 s10 nm1 nm0.1 nm

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry15

    Modeling heterogeneous reactions: Concept of rate equations (mean-field approximation)

    SR j

    jk

    ikijk

    kcks

    '

    f

    Surface reaction rate

    ΓcΘ iii

    Surface coverage

    ΓMs

    tΘ iii

    Locally resolved reaction rates depending on gas-phase concentration and surface

    coverages

    O. Deutschmann. in Handbook of Heterogeneous Catalysis, 2nd Ed.,, G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp (eds.), p. 1811, Wiley-VCH, 2008

    Rate expression

    s

    1

    expexpN

    i

    iiμi

    aβkf RT

    ΘεΘ

    RTE

    TAk kkikkk

    = microscopic site density

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry16

    Surface reaction kinetics of CO oxidation on Pt/Al2O3 DOC: Mean field approximation

    D. Chan, S. Tischer, J. Heck, C. Diehm, O. Deutschmann. Applied Catalysis B: Environmental 156–157 (2014) 153.

    Reaction coordinate

    En

    erg

    y [k

    J/m

    ol]

    -600

    -500

    -400

    -300

    -200

    -100 free Pt surfaceCO coveredO covered

    CO+O2

    CO(Pt)+O2

    CO(Pt)+O2(Pt)

    CO2(Pt)+O(Pt)

    CO(Pt)+2 O(Pt)

    CO2+O(Pt)

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry17

    D. Chatterjee, O. Deutschmann, J. Warnatz. Faraday Discuss. 119 (2001) 371J. Koop, O. Deutschmannn. Appl. Catal. B: Env. 91 (2009) 47

    Proposed surface reaction mechanism for Pt/Rh-based three-way catalysts: Mean field approximation

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry18

    Thermodynamic consistency

    Development of micro kinetic models for simulations of catalytic reactors

    Surface ScienceExperimental

    Surface ScienceTheoretical

    Reaction mechanismand kinetics (idea)

    Modeling of lab reactors(including gas phase kinetics and

    transport models)

    Sensitivity & reaction flow analyses

    Lab experiments(conversion, selectivity,

    ignition/extinction temperatures,spatial & temporal profiles,

    coverage)

    Comparison of experiment and

    simulation

    Revised reaction mechanism

    Technical reactor

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry19

    Surface reaction rate is proportional

    to the catalytic surface area

    determined by CO-chemisorption

    Pt particle sinteringAl2O3

    Scaling factor:Scaling factor:

    geocatcat

    cat

    geo

    catgeocat AM

    mDAAF

    /

    Modeling catalyst loading and dispersion:Variation of dispersion in a DOC due to aging

    Pt particles

    , cat/geo i s i i ij F M s

    Ageo

    Acat

    AcatAgeoAcat

    D. Chan, S. Tischer, J. Heck, C. Diehm, O. Deutschmann. Applied Catalysis B: Env. 156–157 (2014) 153.

    C. Karakaya, O. Deutschmann. Appl. Catal. A: Gen. 445-446 (2012) 221

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry20

    Multi-scale modeling:From 10-10 m and 10-13 s to 1m and 10 s

    1 m10 s

    1 mm10 ms

    10 m 100 s10 nm1 nm0.1 nm

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry21

    Coupling of surface reaction rate and flow field -Modeling internal transport limitation of reaction rate

    i

    ii Φ

    Φ )tanh(

    0,,eff

    ii

    ii cD

    sLΦ

    Effectiveness factor

    Thiele Modulus

    , c a t /g e o i s i i ij F M s

    fluid

    washcoat

    R.E. Hayes, B. Liu, M. Votsmeier. Chem. Eng. Sci. 60 (2005) 2037.

    Simple model: effectiveness factor Reaction-diffusion equations

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry22

    Multi-scale modeling:From 10-10 m and 10-13 s to 1m and 10 s

    1 m10 s

    1 mm10 ms

    10 m 100 s10 nm1 nm0.1 nm

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry23

    Impact of models for channel shape and washcoatdiffusion on NO profiles in a DOC

    NO profiles at lean conditions at 250°C (steady-state operation)CFD code: Fluent + DETCHEM N. Mladenov, J. Koop, S. Tischer, O. Deutschmann. Chem. Eng. Sci. 65 (2010) 812

    no washcoatdiffusionlimitation

    porousmediamodel

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry24

    Development of micro kinetic models for simulations of catalytic reactors

    Surface ScienceExperimental

    Surface ScienceTheoretical

    Reaction mechanismand kinetics (idea)

    Lab experiments(conversion, selectivity,

    ignition/extinction temperatures,spatial & temporal profiles,

    coverage)

    Modeling of lab reactors(including gas phase kinetics and

    transport models)

    Sensitivity & reaction flow analyses

    Comparison of experiment and

    simulation

    Revised reaction mechanism

    Thermodynamic consistency

    Technical reactor

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry25

    Development of micro kinetic models for simulations of catalytic reactors

    Surface ScienceExperimental

    Surface ScienceTheoretical

    Reaction mechanismand kinetics (idea)

    Lab experiments(conversion, selectivity,

    ignition/extinction temperatures,spatial & temporal profiles,

    coverage)

    Modeling of lab reactors(including gas phase kinetics and

    transport models)

    Sensitivity & reaction flow analyses

    Comparison of experiment and

    simulation

    Revised reaction mechanism

    Thermodynamic consistency

    Technical reactor

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry26

    Lab test benches in the Exhaust-Gas Center Karlsruhe: High-Pressure setup

    Tests of catalyst coated honeycombs

    (d = 2.54 cm, length < 6cm)

    Labview automatic controlled measurements

    Coated pipes, reactor and analytics – for sulfur

    Gases: NO, NO2, H2O, CO…

    Temperature: RT – 700°C

    Pressure: 1- 5 bar

    Flow: 10 - 70 slpm

    Gas analytics: FTIR, (MS)

    www.abgaszentrum-karlsruhe.de

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry27

    V. Schmeißer, J. Perez, U. Tuttlies, G. Eigenberger, Top. Catal. 42 (2007) 15

    Isothermal flat bed reactor: Spatially and time-resolved exhaust-gas composition in catalyst channel

    NO2 profile in NSC during storage

    CO profile in DOC

    J. Koop, O. Deutschmann. SAE 2007-01-1142.J. Koop, O. Deutschmann. Appl. Catal.B: Env. 91 (2009) 47

    G. Eigenberger et al.

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry28

    Lab test bench SpaciPro:Invasive in-situ technique for axially resolved profiles

    Tests of catalytically coated honeycombs (d = 2 - 2,54 cm,

    length ~ 5 cm)

    Axially resolved profiles of species concentration, gas-

    phase and surface temperatures (resolution: 0.25 mm)

    Gases: Gaseous and liquid HCs, CO,

    CO2, NH3, NO, NO2, O2,

    Air, N2, H2, H2O

    Temperature: RT – 1000°C

    Pressure: 1 atm

    Flow: 0.5 - 5 slpm

    Gas analytics: FT- IR, MS, GC

    D. Chan, S. Tischer, J. Heck, C. Diehm, O. Deutschmann. Applied Catalysis B: Environmental 156–157 (2014) 153.

    G. Fisher et al., 2006R. Horn, N. J. Degenstein, K. A. Williams, L. D. Schmidt, Catal. Lett. 110 (2006) 169.J. Sá, D.L. Abreu Fernandes, F. Aiouache, A. Goguet, C. Hardacre, D. Lundie, W. Naeem,

    W.P. Partridge, C. Stere, Analyst 135 (2010) 2260.A. Donazzi, D. Livio, M. Maestri, A. Beretta, G. Groppi, E. Tronconi, P. Forzatti, Angew.

    Chem. Int. Ed. 50 (2011) 3943.D. Livio, C. Diehm, A. Donazzi, A. Beretta, G. Groppi, O. Deutschmann, Appl. Catal. A

    467 (2013) 530.

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry29

    NO LIF profile during reduction by H2 to NH3 in Pt/Al2O3one-side-coated single channel of a DOC

    A. Zellner, R. Suntz, O. Deutschmann, Angew. Chem. Intl. Ed. 54 (2015) 2653.

    Non-invasive in-situ analysis of spatial and temporal profiles of species concentration and temperature in the gas phase above a catalytic surface using Raman and LIF-spectroscopy

    Lab test bench CATHLEN: Optical diagnostics of catalytic reactors

    NO

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry30

    Development of micro kinetic models for simulations of catalytic reactors

    Surface ScienceExperimental

    Surface ScienceTheoretical

    Reaction mechanismand kinetics (idea)

    Lab experiments(conversion, selectivity,

    ignition/extinction temperatures,spatial & temporal profiles,

    coverage)

    Modeling of lab reactors(including gas phase kinetics and

    transport models)

    Sensitivity & reaction flow analyses

    Comparison of experiment and

    simulation

    Revised reaction mechanism

    Thermodynamic consistency

    Technical reactor

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry31

    Effect of catalyst loading on conversion of CO in DOCReaction flow analysis

    D. Chan, S. Tischer, J. Heck, C. Diehm, O. Deutschmann. Applied Catalysis B: Environmental 156–157 (2014) 153.

    440 460 480 500 520 540

    0 2 4 6 8 10

    T 50

    [K]

    Pt dispersion [%]

    exp.sim.

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry32

    Development of micro kinetic models for simulations of catalytic reactors

    Surface ScienceExperimental

    Surface ScienceTheoretical

    Reaction mechanismand kinetics (idea)

    Lab experiments(conversion, selectivity,

    ignition/extinction temperatures,spatial & temporal profiles,

    coverage)

    Modeling of lab reactors(including gas phase kinetics and

    transport models)

    Sensitivity & reaction flow analyses

    Comparison of experiment and

    simulation

    Revised reaction mechanism

    Thermodynamic consistency

    Technical reactor

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry33

    Transient simulation of lab light-off experiment:Temporal variation of axial profiles during light-off

    D. Chan, S. Tischer, J. Heck, C. Diehm, O. Deutschmann. Applied Catalysis B: Environmental 156–157 (2014) 153.

    T = 508 K, Disp = 3%

    0

    0.2

    0.4

    0.6

    0.8

    1

    400 450 500 550

    CO

    con

    vers

    ion

    T [K]

    exp.sim. eff.

    sim. detailed

    0

    0.5

    1

    1.5

    -3 0 3 6 9 12 15 18 21 24 27 30 6

    7

    8

    9

    CO [%

    ]

    CO2 [

    %]

    z [mm]

    CO exp.CO2 exp.

    sim. eff.sim. detailed

    z [mm]

    CO(P

    t)

    5 10 15 20 250

    0.2

    0.4

    0.6

    0.8

    t [min]

    4367

    z [mm]

    CO2(P

    t)

    0 5 10 15 20 250

    2E-07

    4E-07

    6E-07

    8E-07

    1E-06

    1.2E-06

    1.4E-06

    t [min]50

    4367

    z [mm]

    O(Pt

    )

    0 5 10 15 20 250

    0.2

    0.4

    0.6

    0.8

    1

    t [min]

    50 4367

    z [mm]

    CO(P

    t)

    0 5 10 15 20 250

    0.2

    0.4

    0.6

    0.8

    1

    t [min]

    435067

    z [mm]

    (Pt)

    0 5 10 15 20 250

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    t [min]

    4367 50

    z [mm]

    O 2(P

    t)

    0 5 10 15 20 250

    1E-06

    2E-06

    3E-06

    4E-06

    5E-06

    6E-06

    7E-06

    t [min]

    4367

    50

    t [s]

    T [K]

    0 2000 4000

    400

    450

    500

    550

    CO(Pt) CO

    O2(Pt) O (Pt)

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry34

    Development of micro kinetic models for simulations of catalytic reactors

    Surface ScienceExperimental

    Surface ScienceTheoretical

    Reaction mechanismand kinetics (idea)

    Lab experiments(conversion, selectivity,

    ignition/extinction temperatures,spatial & temporal profiles,

    coverage)

    Modeling of lab reactors(including gas phase kinetics and

    transport models)

    Sensitivity & reaction flow analyses

    Comparison of experiment and

    simulation

    Revised reaction mechanism

    Thermodynamic consistency

    Technical reactor

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry35

    Pre-turbo SCR for large diesel engines:Effect of high pressure and temperature on conversion

    C. Hauck, O. Deutschmann, 2014

    cool

    ai

    r

    LLK: charge air cooler DOC: diesel oxidation catalyst HK: hydrolysis catalystKMK: coolant cooler DPF: diesel particle filter SCR: SCR catalyst

    SC: ammonia trap

    charge airexhaustmain cooling circuit

    diesel engine

    turbo charger

    E. Tronconi, I. Nova, C. Ciardelli, D. Chatterjee, M. Weibel; J. Catal. 245 (2007) 1.I. Nova, C. Ciardelli, E. Tronconi, D. Chatterjee, M. Weibel; (2009), AIChE J.55, 6, 1514-1529

    At constant mass flow:

    Residence time ~ pressureDiffusion ~ 1/pressure

    L ~ 22 cm

    1 bar

    5 bar

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry36

    Multi-scale modeling:From 10-10 m and 10-13 s to 1m and 10 s

    1 m10 s

    1 mm10 ms

    10 m 100 s10 nm1 nm0.1 nm

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry37

    Simulation at real driving conditions is very challenging: Continuous variation of all inlet variables

    J. Braun, T. Hauber, H. Többen, J. Windmann, P. Zacke, D. Chatterjee, C. Correa, O. Deutschmann, L. Maier, S.Tischer, J. Warnatz, SAE paper 2002-01-0065

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry38

    DETCHEMMONOLITH: Computer program for the numerical simulation of transients in catalytic monoliths

    MONOLITHTemperature of the solid structure incl. canning

    by a 2D / 3D heat balance

    CHANNEL or PLUG 1D or 2D-flow field simulations for a representative number of

    channels using boundary layer or plug flow equations

    temperature profileat the wall heat source term

    time scale ~ 1 s

    residence time < 100 msquasi-steady-statetransient

    gas phase concentrationstemperature

    chemical source termtransport coefficients

    DETCHEM - LibraryThermodynamic and transport properties

    Detailed reaction mechanisms for gas-phase & surface

    S. Tischer, O. Deutschmann, Catal. Today 105 (2005) 407, www.detchem.de

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry39

    Cumulative CO emission in MEVG cycle:Experiment vs. simulation

    0

    1

    2

    3

    4

    5

    6

    7

    8

    0 200 400 600 800 1000 1200time [s]

    CO

    em

    issi

    on [%

    ]

    0

    20

    40

    60

    80

    100

    cum

    ulat

    ive

    CO

    em

    issi

    on [g

    ]

    inletinlet (cum.)experiment (cum.)simulation (cum.)

    Tischer et al. SAE Technical paper 2007-01-1072 2007

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry40

    2 NH3 + NO + NO2 2 N2 + 3 H2O

    Selective catalytic reduction (SCR) of NOx emissions by urea solution: Processes between injection and catalyst

    (NH2)2CO (l) NH3 (g) + HNCO (g)HNCO (g) + H2O (g) NH3 (g) + CO2 (g)

    F. Birkhold, U. Meingast, P. Wassermann, O. Deutschmann. SAE Technical paper 2006-01-0643, SAE 2006 Trans. J. of Fuels and Lubricants (2006), 252F. Birkhold, U. Meingast, P. Wassermann, O. Deutschmann. Appl. Catal. B: Environmental 70 (2007) 119-127

    Source: Robert Bosch GmbH

    deposit

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry41

    W. Brack, B. Heine, F. Birkhold, M. Kruse, G. Schoch, S. Tischer, O. Deutschmann. Chem. Eng. Sci. 106 ( 2014)1–8.

    Modeling of deposit formation in Urea-SCR:Understanding the reaction mechanism

    Source: Robert Bosch GmbH

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry42

    Simulation of catalytic converters from first principles:Dream or nightmare?

    Complexity

    Leng

    thTi

    me

    Elementary reactions on surfaces

    Particles and phases

    Porous supports

    Reactor behavior

    DFT

    kMC

    Reactive flow

    AdditivitySpill-over

    Diffusion

    Continuum mechanics

    Transient models for heat and mass transfer

    Multi componentParticle Sizes

    Pt

    Ce

    Reactor behavior

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry43

    Acknowledgements - Exhaust-Gas After-Treatment

    Academic collaborations

    J.-D. Grunwaldt & many colleagues at KIT

    U. Nieken, G. Eigenberger (U Stuttgart)E. Tronconi (Politecnico Milano)R. Gläser (U Leipzig)Ch. Beidel, (TU Darmstadt)G. Wachtmeister (TU München)

    SFB/TRR 150 (TU Darmstadt, KIT)Deutschmann group at KIT 2011

    Funding and industry partners

    Dr. Denise Chan A. Gremminger Dr. Claudia Diehm Wolfgang Brack Dr. Ch. Hauck Dr. Luba Maier Dr. SteffenTischer

  • Olaf Deutschmann

    Institute for Chemical Technology and Polymer Chemistry44

    Thank you!Abstract due May 15

    J. Emission Control Sci. & Technol. Paper due Aug 31