michał antkowiak

42
Grid computing applications in modeling and simulations of molecular nanomagnets and classical charged particles Michał Antkowiak Faculty of Physics, A. Mickiewicz University, Poznań, Poland European Institute of Molecular Magnetism, Florence, Italy P. Sobczak, G. Musiał, G. Kamieniarz, B. Błaszkiewicz

Upload: nancy

Post on 11-Jan-2016

40 views

Category:

Documents


0 download

DESCRIPTION

Grid computing applications in modeling and simulations of molecular nanomagnets and classical charged particles. Michał Antkowiak. P. Sobczak, G. Musiał, G. Kamieniarz, B. Błaszkiewicz. Faculty of Physics, A. Mickiewicz University, Pozna ń , Poland - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Michał Antkowiak

Grid computing applications in modeling and simulations of molecular nanomagnets and classical charged particles

Michał Antkowiak

Faculty of Physics, A. Mickiewicz University, Poznań, PolandEuropean Institute of Molecular Magnetism, Florence, Italy

P. Sobczak, G. Musiał, G. Kamieniarz, B. Błaszkiewicz

Page 2: Michał Antkowiak

Outline

Molecular nanomagnets Classical charged particles PEARL-AMU site

Page 3: Michał Antkowiak

Molecular nanomagnets

• Quantum molecular rings

• Spin models and thermodynamic quantities

• Exact Diagonalization Technique

• Results for Cr – based rings

Page 4: Michał Antkowiak

Cr8

(Cr8F8Piv16)

Page 5: Michał Antkowiak

Cr9

[Pr2NH2][Cr9F9Cl2(Piv)17]

Page 6: Michał Antkowiak

Cr7Cd

[(CH3)2NH2][Cr7CdF8{OOCC(CH3)3}16]

Page 7: Michał Antkowiak

)sincos()(

)( =

B2

1||111=

xj

zj

zj

zj

zj

yj

yj

xj

xj

n

j

ssBgsD

ssJssssJ

H

Sj - spin operators (s=3/2)n – number of sitesB – magnetic field

The quantum molecular rings model

θ

Page 8: Michał Antkowiak

HB TreZZTkF ,ln

BTBTB

F

T

FTC

F

-S ,,2

2

2

2

222 )()( zzBz SSg

•Free energy

•Specific heat C, susceptibility χ and entropy S as derivatives of the free energy

•Specific heat C and susceptibility χz as functions of the spin moments

Thermodynamic quantities

Page 9: Michał Antkowiak

Exact diagonalization technique

•Size of the Hamiltonian matrix• Cr8: 48 x 48 (65536 x 65536 = 32GB)• Cr9: 49 x 49 (262144 x 262144 = 512GB)

•For θ=0• quasi diagonal form of the Hamiltonian• matrix blocks labeled by

• eigenvalues M of Sz

• Symmetry (a) of the eigenstate• Cr8: 48 blocks (max. size: 4068 x 4068 = 0.12GB)• Cr9: 52 blocks (max. size: 15180 x 15180 = 1.7GB)

•For θ≠0 -> only 2 blocks labeled by symmetry

Page 10: Michał Antkowiak

Sizes of the Hamiltonian matrix blocks (Cr8)

Page 11: Michał Antkowiak

Parallel programming tasks and models

MPI library Master-slave model Star-like

LPT algorithm

Page 12: Michał Antkowiak

Processing times for different blocks (Cr8)

Page 13: Michał Antkowiak

Speedup (Cr8) u = tseq/tpar

Page 14: Michał Antkowiak

Efficiency (Cr8) E = u/p

Limited scalability

Page 15: Michał Antkowiak

Results

Page 16: Michał Antkowiak
Page 17: Michał Antkowiak
Page 18: Michał Antkowiak
Page 19: Michał Antkowiak
Page 20: Michał Antkowiak
Page 21: Michał Antkowiak
Page 22: Michał Antkowiak

Magnetisation Cr7Cd

Page 23: Michał Antkowiak

Susceptibility

Page 24: Michał Antkowiak

Susceptibility Cr7Cd

Page 25: Michał Antkowiak

Susceptibility

Page 26: Michał Antkowiak
Page 27: Michał Antkowiak
Page 28: Michał Antkowiak
Page 29: Michał Antkowiak
Page 30: Michał Antkowiak

Classical charged particles

• Subject of the research

• Models

• Genetic algorithm

• Results

Page 31: Michał Antkowiak

Subject of the research

Page 32: Michał Antkowiak

2D system Coulomb potential (1), 9≤N≤30 Logarithmic potential (2), 9≤N≤30

3D system Coulomb potential (1), 17≤N≤70 Logarithmic potential (2), 10≤N≤50

N

=i

N

=i

N

+ij= ji

jii

rr

qq+r=U

1

1

1 1

2

N

=i

N

=i

N

+ij= ji

jii

rr

qq+r=U

1

1

1 1

2 ln2(1) (2)

Uniform particles: qi = qj = 1

The classical charged particles models

Page 33: Michał Antkowiak

2D system One chromosome = one solution One gene = one coordinate (x or y).

x1

x2

… xN Chromosome

y1

y2

… yN gene

Genetic algorithm method

Ns (generations): 106 - 107

S (chromosomes): 200 – 500Pc (crossing probability): 0.1 - 0.9Pm (mutation probability): 0.02 – 0.2

Page 34: Michał Antkowiak

N=302D system results

Page 35: Michał Antkowiak

N=302D system results

Ground-state configuration Metastable state configuration

Higher symmetry = lower energy

Page 36: Michał Antkowiak

Conclusions

Despite more and more advanced algorithmslarge computing resources are still needed

More complicated systems = more computing resources(both quantum and classical)(ED – higher scalability)

Grid resources improve computational infrastructure and enable simulations of more complicated systems

Page 37: Michał Antkowiak

G. Kamieniarz W. FlorekG. MusiałL. DębskiP. KozłowskiK. PacerD. TomeckaP. SobczakP. GąbkaL. KaliszanM. HaglauerT. ŚlusarskiB. BłaszkiewiczŁ. KucharskiM. Antkowiak

Team

Page 38: Michał Antkowiak

19 CPUs (32 cores) AMD x86_64 Opteron Dual Core: 2.0 and 2.4 GHz Xeon Dual Core: 2.66GHz ~ 4 cores per node

Rpeak = 153 GFlops 41 GB RAM

4 GB – 12 GB per node 1.22 TB disc space Wien2k, FPLO, NWChem, Molpro, Turbomole,

numerical NAG library

PEARL-AMU site

Page 39: Michał Antkowiak

PEARL-AMU node

Page 40: Michał Antkowiak

Galera1344 x quad-core Xeon 2,33 GHz

Reef46 x dual-core Xeon EM64T 3GHz

Computing grants in HPC centers

JUMP448 x Power6 4.7 GHz

Page 41: Michał Antkowiak

Acknowledgements

European Network of Excellence MAGMANet

Polish Ministry of Science and Higher Education

Page 42: Michał Antkowiak

Thank you for your attention!