mic28304 family data sheet - microchip technology · 2018. 10. 26. · bstc mic28304 i lim v in pv...

44
2018 Microchip Technology Inc. DS20006093A-page 1 MIC28304 Features Easy to Use: - Stable with low-ESR ceramic output capacitor - No compensation and no inductor to choose 4.5V to 70V Input Voltage Single-Supply Operation Power Good (PG) Output Low Radiated Emission (EMI) per EN55022, Class B Adjustable Current Limit Adjustable Output Voltage from 0.8V to 24V (also limited by duty cycle) 200 kHz to 600 kHz Programmable Switching Frequency Supports Safe Start-up into a Pre-Biased Output -40°C to +125°C Junction Temperature Range Available in 64-Pin, 12 mm x 12 mm x 3 mm QFN Package Applications Distributed Power Systems Industrial, Medical, Telecom and Automotive General Description Microchip’s MIC28304 is a synchronous, step-down regulator module, featuring a unique adaptive on-time control architecture. The module incorporates a DC-to-DC controller, power MOSFETs, bootstrap diode, bootstrap capacitor and an inductor in a single package. The MIC28304 operates over an input supply range from 4.5V to 70V and can be used to supply up to 3A of output current. The output voltage is adjustable down to 0.8V with an ensured accuracy of ±1%. The device operates with a programmable switching frequency from 200 kHz to 600 kHz. Microchip’s HyperLight Load ® architecture provides the same high-efficiency and ultra-fast transient response as the Hyper Speed Control ® architecture under the medium to heavy loads. The architecture also maintains high efficiency under light load conditions by transitioning to Variable Frequency Discontinuous mode operation. The MIC28304 offers a full suite of protection features. These include undervoltage lockout, internal soft start, foldback current limit, “Hiccup” mode short-circuit protection and thermal shutdown. Data sheets and other support documentation can be found on the Microchip web site at: www.microchip.com. Typical Application Schematic Efficiency vs. Output Current (MIC28304-1 EFFICIENCY (%) OUTPUT CURRENT (A) V OUT = 5V F SW = 275 kHz 24 V IN 12 V IN GND PGND FB SW BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT BSTR ANODE PV IN V IN 4.5V to 70V PG EN 2.2 μF x2 100 μF V OUT 5V/3A 10 k 1.91 k 16.5 k 3.57 k GND 10 pF 75 k 70V, 3A Power Module Hyper Speed Control ® Family

Upload: others

Post on 10-May-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC2830470V, 3A Power Module Hyper Speed Control® Family

Features• Easy to Use:

- Stable with low-ESR ceramic output capacitor

- No compensation and no inductor to choose• 4.5V to 70V Input Voltage• Single-Supply Operation• Power Good (PG) Output• Low Radiated Emission (EMI) per EN55022,

Class B • Adjustable Current Limit• Adjustable Output Voltage from 0.8V to 24V (also

limited by duty cycle)• 200 kHz to 600 kHz Programmable Switching

Frequency• Supports Safe Start-up into a Pre-Biased Output • -40°C to +125°C Junction Temperature Range• Available in 64-Pin, 12 mm x 12 mm x 3 mm

QFN Package

Applications• Distributed Power Systems• Industrial, Medical, Telecom and Automotive

General DescriptionMicrochip’s MIC28304 is a synchronous, step-downregulator module, featuring a unique adaptive on-timecontrol architecture. The module incorporates aDC-to-DC controller, power MOSFETs, bootstrap diode,bootstrap capacitor and an inductor in a single package.The MIC28304 operates over an input supply rangefrom 4.5V to 70V and can be used to supply up to 3A ofoutput current. The output voltage is adjustable down to0.8V with an ensured accuracy of ±1%. The deviceoperates with a programmable switching frequency from200 kHz to 600 kHz.

Microchip’s HyperLight Load® architecture provides thesame high-efficiency and ultra-fast transient response asthe Hyper Speed Control® architecture under themedium to heavy loads. The architecture also maintainshigh efficiency under light load conditions by transitioningto Variable Frequency Discontinuous mode operation.

The MIC28304 offers a full suite of protection features.These include undervoltage lockout, internal soft start,foldback current limit, “Hiccup” mode short-circuitprotection and thermal shutdown.

Data sheets and other support documentation can befound on the Microchip web site at: www.microchip.com.

Typical Application Schematic

Efficiency vs.Output Current (MIC28304-1

EFFI

CIE

NC

Y (%

)

OUTPUT CURRENT (A)

VOUT = 5VFSW = 275 kHz

24 VIN 12 VIN

GND PGND

FB

SW

BSTC

MIC28304

ILIM

VIN

PVDD

PGOOD

EN

FREQ

2.2 nF

0.1 μF47 μF

x2

VOUT

BSTRANODE

PVIN

VIN

4.5V to 70V

PG

EN

2.2 μFx2

100 μF

VOUT

5V/3A

10 k

1.91 k

16.5 k

3.57 k

GND

10 pF

75 k

2018 Microchip Technology Inc. DS20006093A-page 1

Page 2: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

Package Types

Functional Block Diagram

64-Pin 12 mm x 12 mm H3QFN (MP)(Top View)

PVIN

VO

UT

VO

UT

VO

UT

VO

UT

VO

UT

VO

UT

VO

UT

VO

UT

VO

UT

VO

UT

PVIN

PGND

PVIN

PVIN

PVIN

PV

IN

PV

IN

PV

IN

PV

IN

PGND

PGND

PGND

PGND

FREQ

FREQ

SW

VIN

GND

GND

VIN

EN

SW

BS

TC

BS

TR

BS

TR

PG

OO

D

FB

GN

D

VOUT

VOUT

VOUT

VOUT

VOUT

VOUT

NC

SW

SW

SW

SW

SW

SW

SW

SW

SW

ANODE

ANODE

GN

D

BS

TC

1

3

2

6

4

7

5

10

8

11

9

14

12

15

13

17

16

1918

22

21

23

20

26

24

27

25

30

28

31

29 33

32

34

37

35

38

36

40

39

42

41

43

44

46

45

50

47

51

54

52

55 53

57

5659

58

63

60

62 61

64

48

49

ILIM

GND

NC

PV

DD

PV

DD

GND PGND

FB

SW

BST

CONTROLLERILIM

DH

DL

VIN

PVDD

PGOOD

EN

FREQ

N2

N1

4.7 μH

CBST

0.1 μF

COUT

47 μF

RBST

1

ILIM

-ADJ

SW

GND

VOUT

BSTC

VOUT

5V/3A

VIN

EN

PVDD

BSTR

PGND

FREQ

DBST ANODE

PVDD

PGOOD

PVIN

VIN

4.5 to 70V

CIN

10

0 μ

F

CIN

2 ×

2.2

μF

R19

DNP

VIN

CPVIN

RFREQ

100k

CVDD

2.2 μF

Cinj

0.1 μF

Rin

j

16

.5 k

R15

2.7 k Cff

2.2 nF

R1

10

k

C6

10 pF

FB

R11

LIN

DS20006093A-page 2 2018 Microchip Technology Inc.

Page 3: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†(1)

PVIN, VIN to PGND...................................................................................................................................... -0.3V to +76V

PVDD, VANODE to PGND ............................................................................................................................... -0.3V to +6V

VSW, VFREQ, VILIM, VEN ................................................................................................................ -0.3V to (PVIN + 0.3V)

VBSTC/BSTR to VSW.......................................................................................................................................... -0.3V to 6V

VBSTC/BSTR to PGND .................................................................................................................................... -0.3V to 82V

VFB, VPG to PGND ........................................................................................................................-0.3V to (PVDD + 0.3V)

PGND to AGND ......................................................................................................................................... -0.3V to +0.3V

Junction Temperature ........................................................................................................................................... +150°C

Storage Temperature (TS) ....................................................................................................................... -65°C to +150°C

Lead Temperature (soldering, 10s) ....................................................................................................................... +260°C

ESD Rating(1)............................................................................................................................................. ESD-Sensitive

Note 1: Devices are ESD-sensitive. Handling precautions are recommended. Human body model, 1.5 k in series with 100 pF.

Operating Ratings(1)

Supply Voltage (PVIN, VIN)............................................................................................................................. 4.5V to 70V

Enable Input (VEN) ..............................................................................................................................................0V to VIN

VSW, VFREQ, VILIM, VEN ......................................................................................................................................0V to VIN

Power Good (VPGOOD)....................................................................................................................................0V to PVDD

Junction Temperature (TJ) ......................................................................................................................-40°C to +125°C

Junction Thermal Resistance12mm × 12mm QFN-64 (JA) ...........................................................................................................................20°C/W12mm × 12mm QFN-64 (JC) .............................................................................................................................5°C/W

Note 1: The device is not ensured to function outside the operating range.

† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. Thisis a stress rating only and functional operation of the device at those or any other conditions above those indi-cated in the operational sections of this specification is not intended. Exposure to maximum rating conditions forextended periods may affect device reliability.

2018 Microchip Technology Inc. DS20006093A-page 3

Page 4: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

TABLE 1-1: ELECTRICAL CHARACTERISTICS(1)

Electrical Specifications: unless otherwise specified, PVIN = VIN = 12V; VOUT = 5V; VBST – VSW = 5V; TA = +25°C. Boldface values indicate -40°C TJ +125°C.

Symbol Parameter Min. Typ. Max. Units Test Conditions

Power Supply InputPVIN, VIN Input Voltage Range 4.5 — 70 V

IQ Controller Supply Current

— 0.4 0.75

mA

Current into Pin 60, VFB = 1.5V (MIC28304-1)

— 2.1 3 Current into Pin 60, VFB = 1.5V (MIC28304-2)

— 0.1 10 µA Current into Pin 60, VEN = 0V

IIN Operating Current— 0.7 —

mAIOUT = 0A (MIC28304-1)

— 27 — IOUT = 0A (MIC28304-2)ISD Shutdown Supply Current — 4 — µA PVIN = VIN = 12V, VEN = 0VPVDD SupplyVPVDD PVDD Output Voltage 4.8 5.2 5.4 V VIN = 7V to 70V, IPVDD = 10 mA

VUVLOPVDD UVLO Threshold 3.8 4.2 4.7 V PVDD risingPVDD UVLO Hysteresis — 400 — mV

LReg Load Regulation 0.6 2 3.6 % IPVDD = 0 to 40 mAReference

VREFFeedback Reference Voltage

0.792 0.8 0.808V

TJ = +25°C (±1.0%)0.784 0.8 0.816 -40°C TJ+125°C (±2%)

VFB FB Bias Current — 5 500 nA VFB = 0.8VEnable ControlVEN_H EN Logic Level High 1.8 — — V

VEN_L EN Logic Level Low — — 0.6 V

VEN_HYST EN Hysteresis — 200 — mV

VEN_BIAS EN Bias Current — 5 20 µA VEN = 12V

Oscillator

FSW Switching Frequency400 600 750

kHzFREQ Pin = Open

— 300 — RFREQ = 100 k (FREQ pin to GND)

DMAX Maximum Duty Cycle — 85 — %DMIN Minimum Duty Cycle — 0 — % VFB > 0.8VTOFF_MIN Minimum Off-Time 140 200 260 ns

Soft StartTSS Soft Start Time — 5 — msShort-Circuit ProtectionVCL_OFFSET Current-Limit Threshold -30 -14 0 mV VFB = 0.79V

VSHORT Short-Circuit Threshold -23 -7 9 mV VFB = 0VICL Current-Limit Source Current 60 80 100 µA VFB = 0.79VISHORT Short-Circuit Source Current 27 36 47 µA VFB = 0VLeakageISW SW, BSTR Leakage Current — — 50 µANote 1: Specifications are for packaged product only.

DS20006093A-page 4 2018 Microchip Technology Inc.

Page 5: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

Power GoodVPG_TH Power Good Threshold

Voltage85 90 95 %VOUT Sweep VFB from low-to-high

VPG_HYS Power Good Hysteresis — 6 — %VOUT Sweep VFB from high-to-low

TPG_DLY Power Good Delay Time — 100 — µs Sweep VFB from low-to-high

VPG_LO Power Good Low Voltage — 70 200 mV VFB < 90% x Vnom, IPG = 1 mA

Thermal ProtectionTSD Overtemperature Shutdown — 160 — °CTSD_HYST Overtemperature Shutdown

Hysteresis— 4 — °C

Output CharacteristicVOR Output Voltage Ripple — 16 — mV IOUT = 3A,

1x47 µF output capacitorLineReg Line Regulation — 0.36 — % PVIN = VIN = 7V to 70V,

IOUT = 3A, 1x47 µF output capacitor

LoadReg Load Regulation

— 0.75 —

%

IOUT = 0A to 3A, PVIN = VIN = 12V (MIC28304-1)

— 0.05 — IOUT = 0A to 3A, PVIN = VIN = 12V (MIC28304-2)

Output Voltage Deviation from Load Step

— 400 —

mV

IOUT from 0A to 3A at 5A/µs (MIC28304-1), 1x47 µF output capacitor

— 500 — IOUT from 3A to 0A at 5A/µs (MIC28304-1),1x47 µF output capacitor

— 400 — IOUT from 0A to 3A at 5A/µs (MIC28304-2),1x47 µF output capacitor

— 500 — IOUT from 3A to 0A at 5A/µs (MIC28304-1),1x47 µF output capacitor

TABLE 1-1: ELECTRICAL CHARACTERISTICS(1) (CONTINUED)Electrical Specifications: unless otherwise specified, PVIN = VIN = 12V; VOUT = 5V; VBST – VSW = 5V; TA = +25°C. Boldface values indicate -40°C TJ +125°C.

Symbol Parameter Min. Typ. Max. Units Test Conditions

Note 1: Specifications are for packaged product only.

2018 Microchip Technology Inc. DS20006093A-page 5

Page 6: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

2.0 TYPICAL PERFORMANCE CURVES (275 kHz SWITCHING FREQUENCY)

FIGURE 2-1: Efficiency vs. Output Current (MIC28304-1).

FIGURE 2-2: Efficiency vs. Output Current (MIC28304-2).

FIGURE 2-3: Thermal Derating.

TABLE 2-1: RECOMMENDED COMPONENT VALUES FOR 275 kHz SWITCHING FREQUENCY

Note: The graphs and tables provided following this note are a statistical summary based on a limited number ofsamples and are provided for informational purposes only. The performance characteristics listed hereinare not tested or guaranteed. In some graphs or tables, the data presented may be outside the specifiedoperating range (e.g., outside specified power supply range) and therefore outside the warranted range.

50

55

60

65

70

75

80

85

90

95

100

0 0.5 1 1.5 2 2.5 3

OUTPUT CURRENT (A)

VOUT = 5V

48VIN

24VIN12VIN

36VIN

EFFI

CIE

NC

Y (%

)

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3

OUTPUT CURRENT (A)

VOUT = 5V

48VIN

24VIN12VIN

36VIN

EFFI

CIE

NC

Y (%

)

0

1

2

3

25 40 55 70 85 100 115

MAXIMUM AMBIENT TEMPERATURE (°C)

VOUT = 5VFSW = 275kHzTj_MAX =125\C

MIC28304-2

VIN = 12V

VIN = 24V

VIN = 48V

LOA

D C

UR

REN

T (A

) 125°C

VOUT VINR3

(Rinj)R19 R15

R1 (Top Feedback

Resistor)

R11 (Bottom Feedback

Resistor)

C10 (Cinj)

C12 (Cff)

COUT

5V 7V to 18V 16.5 k 75 k 3.57k 10 k 1.9 k 0.1 µF 2.2 nF 2 x 47 µF/6.3V5V 18V to 70V 39.2 k 75 k 3.57k 10 k 1.9 k 0.1 µF 2.2 nF 2 x 47 µF/6.3V

3.3V 5V to 18V 16.5 k 75 k 3.57k 10 k 3.24 k 0.1 µF 2.2 nF 2 x 47 µF/6.3V3.3V 18V to 70V 39.2 k 75 k 3.57k 10 k 3.24 k 0.1 µF 2.2 nF 2 x 47 µF/6.3V

DS20006093A-page 6 2018 Microchip Technology Inc.

Page 7: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

3.0 TYPICAL PERFORMANCE CURVES

FIGURE 3-1: VIN Operating Supply Current vs. Input Voltage (MIC28304-1).

FIGURE 3-2: Output Regulation vs. Input Voltage (MIC28304-1).

FIGURE 3-3: Feedback Voltage vs. Input Voltage (MIC28304-1).

FIGURE 3-4: Output Voltage vs. Input Voltage (MIC28304-1).

FIGURE 3-5: VIN Operating Supply Current vs. Temperature (MIC28304-1).

FIGURE 3-6: Feedback Voltage vs. Temperature (MIC28304-1).

Note: The graphs and tables provided following this note are a statistical summary based on a limited number ofsamples and are provided for informational purposes only. The performance characteristics listed hereinare not tested or guaranteed. In some graphs or tables, the data presented may be outside the specifiedoperating range (e.g., outside specified power supply range) and therefore outside the warranted range.

0.00

0.40

0.80

1.20

1.60

2.00

5 10 15 20 25 30 35 40 45 50 55 60 65 70

INPUT VOLTAGE (V)

VOUT = 5VIOUT = 0AFSW = 600kHz

SUPP

LY C

UR

REN

T (m

A)

-1.0%

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

7 12 17 22 27 32 37 42 47 52 57 62 67

INPUT VOLTAGE (V)

VOUT = 5.0VIOUT = 0A to 3AFSW = 600kHz

TOTA

L R

EGU

LATI

ON

(%)

0.792

0.797

0.802

0.807

0.812

0.817

5 10 15 20 25 30 35 40 45 50 55 60 65 70

INPUT VOLTAGE (V)

VOUT = 5.0VIOUT = 0AFSW = 600kHz

FEED

BA

CK

VO

LTA

GE

(V)

4.90

4.92

4.94

4.96

4.98

5.00

5.02

5.04

5.06

5.08

5 10 15 20 25 30 35 40 45 50 55 60 65 70

INPUT VOLTAGE (V)

VOUT = 5VIOUT = 0AFSW = 600kHz

OU

TPU

T VO

LTA

GE

(V)

0.00

0.40

0.80

1.20

1.60

2.00

-50 -25 0 25 50 75 100 125

TEMPERATURE (°C)

VIN = 12VVOUT = 5.0VIOUT = 0AFSW = 600kHz

SUPP

LY C

UR

REN

T (m

A)

0.792

0.796

0.800

0.804

0.808

-50 -25 0 25 50 75 100 125

TEMPERATURE (°C)

VIN= 12VVOUT = 5.0VIOUT = 0AFSW = 600kHz

FEED

BA

CK

VO

LTA

GE

(V)

2018 Microchip Technology Inc. DS20006093A-page 7

Page 8: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

FIGURE 3-7: Load Regulation vs. Temperature (MIC28304-1).

FIGURE 3-8: Line Regulation vs. Temperature (MIC28304-1).

FIGURE 3-9: Line Regulation vs. Temperature (MIC28304-1).

FIGURE 3-10: Feedback Voltage vs. Output Current (MIC28304-1).

FIGURE 3-11: Line Regulation vs. Output Current (MIC28304-1).

FIGURE 3-12: Efficiency (VIN = 12V) vs. Output Current (MIC28304-1).

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

-50 -25 0 25 50 75 100 125

TEMPERATURE (°C)

VIN = 12VVOUT = 5.0VIOUT = 0A to 3AFSW = 600kHz

LOA

D R

EGU

LATI

ON

(%)

-0.6%-0.5%-0.4%-0.3%-0.2%-0.1%0.0%0.1%0.2%0.3%0.4%0.5%0.6%0.7%0.8%

-50 -25 0 25 50 75 100 125

TEMPERATURE (°C)

VIN = 7V to 70VVOUT = 5.0VIOUT = 0AFSW = 600kHz

LIN

E R

EGU

LATI

ON

(%)

-0.6%-0.5%-0.4%-0.3%-0.2%-0.1%0.0%0.1%0.2%0.3%0.4%0.5%0.6%0.7%0.8%

-50 -25 0 25 50 75 100 125

TEMPERATURE (°C)

VIN = 7V to 70VVOUT = 5.0VIOUT = 3AFSW = 600kHz

LIN

E R

EGU

LATI

ON

(%)

0.792

0.796

0.800

0.804

0.808

0.0 0.5 1.0 1.5 2.0 2.5 3.0

OUTPUT CURRENT (A)

VIN = 12VVOUT = 5.0VFSW = 600kHz

FEED

BA

CK

VO

LTA

GE

(V)

-3.0%

-2.5%

-2.0%

-1.5%

-1.0%

-0.5%

0.0%

0.5%

1.0%

0.0 0.5 1.0 1.5 2.0 2.5 3.0

OUTPUT CURRENT (A)

VIN = 12V to 75VVOUT = 5.0VFSW = 600kHz

LIN

E R

EGU

LATI

ON

(%)

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1 10

OUTPUT CURRENT (A)

5.0V3.3V2.5V1.8V1.2V0.8V

FSW = 600kHzCCM

EFFI

CIE

NC

Y (%

)

DS20006093A-page 8 2018 Microchip Technology Inc.

Page 9: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

FIGURE 3-13: Efficiency (VIN = 18V) vs. Output Current (MIC28304-1).

FIGURE 3-14: Efficiency (VIN = 24V) vs. Output Current (MIC28304-1).

FIGURE 3-15: Efficiency (VIN = 38V) vs. Output Current (MIC28304-1).

FIGURE 3-16: Efficiency (VIN = 48V) vs. Output Current (MIC28304-1).

FIGURE 3-17: Efficiency (VIN = 70V) vs. Output Current (MIC28304-1).

FIGURE 3-18: Efficiency vs. Output Current (MIC28304-1).

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1 10

OUTPUT CURRENT (A)

5.0V3.3V2.5V1.8V1.2V0.8V

FSW = 600kHzCCM

EFFI

CIE

NC

Y (%

)

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1 10

OUTPUT CURRENT (A)

5.0V3.3V2.5V1.8V

1.2V

0.8V

FSW = 600kHzCCM

EFFI

CIE

NC

Y (%

)

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1 10

OUTPUT CURRENT (A)

5.0V

3.3V2.5V

1.8V

1.2V

0.8V

FSW = 600kHzCCM

EFFI

CIE

NC

Y (%

)

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1 10

OUTPUT CURRENT (A)

5.0V

3.3V

2.5V1.8V

1.2V

0.8V

FSW = 600kHzCCM

EFFI

CIE

NC

Y (%

)

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1 10

OUTPUT CURRENT (A)

5.0V

3.3V2.5V1.8V1.2V

0.8V

FSW = 600kHzCCM

EFFI

CIE

NC

Y (%

)

50

55

60

65

70

75

80

85

90

95

100

0.01 0.1 1 10

OUTPUT CURRENT (A)

VOUT = 12VFSW = 600kHzCCMR3 = 23.2k

18VIN

24VIN36VIN48VIN70VIN

EFFI

CIE

NC

Y (%

)

2018 Microchip Technology Inc. DS20006093A-page 9

Page 10: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

FIGURE 3-19: VIN Operating Supply Current vs. Input Voltage (MIC28304-2).

FIGURE 3-20: Feedback Voltage vs. Input Voltage (MIC28304-2).

FIGURE 3-21: Output Regulation vs. Input Voltage (MIC28304-2).

FIGURE 3-22: VIN Shutdown Current vs. Input Voltage.

FIGURE 3-23: PVDD Voltage vs. Input Voltage.

FIGURE 3-24: Output Peak Current Limit vs. Input Voltage.

0

10

20

30

40

50

5 10 15 20 25 30 35 40 45 50 55 60 65 70

INPUT VOLTAGE (V)

VOUT = 5VIOUT = 0AFSW = 600kHz

SUPP

LY C

UR

REN

T (m

A)

0.792

0.796

0.800

0.804

0.808

0.812

7 12 17 22 27 32 37 42 47 52 57 62 67

INPUT VOLTAGE (V)

VOUT = 5.0VIOUT = 0AFW = 600kHz

FEED

BA

CK

VO

LTA

GE

(V)

-1.0%

-0.8%

-0.6%

-0.4%

-0.2%

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

7 12 17 22 27 32 37 42 47 52 57 62 67

INPUT VOLTAGE (V)

VOUT = 5.0VIOUT = 0A TO 3AFSW = 600kHz

OU

TPU

T R

EGU

LATI

ON

(%)

0

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30 35 40 45 50 55 60 65 70

INPUT VOLTAGE (V)

VEN = 0VR16 = OPENSH

UTD

OW

N C

UR

REN

T (µ

A)

0

2

4

6

8

10

7 12 17 22 27 32 37 42 47 52 57 62 67

INPUT VOLTAGE (V)

VOUT = 5.0VFSW = 600kHz

IPVDD = 10mA

IPVDD = 40mA

V DD

VO

LTA

GE

(V)

PVD

D V

OLT

AG

E (V

)

0

2

4

6

8

10

7 12 17 22 27 32 37 42 47 52 57 62 67

INPUT VOLTAGE (V)

VOUT = 5.0VFSW = 600kHzC

UR

REN

T LI

MIT

(A)

DS20006093A-page 10 2018 Microchip Technology Inc.

Page 11: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

FIGURE 3-25: Switching Frequency vs. Input Voltage.

FIGURE 3-26: Enable Threshold vs. Input Voltage.

FIGURE 3-27: VIN Shutdown Current vs. Temperature.

FIGURE 3-28: PVDD Voltage vs. Temperature.

FIGURE 3-29: PVDD UVLO Threshold vs. Temperature.

FIGURE 3-30: Output Peak Current Limit vs. Temperature.

400

450

500

550

600

650

700

750

800

7 12 17 22 27 32 37 42 47 52 57 62 67

INPUT VOLTAGE (V)

VOUT = 5.0VIOUT = 2A

SWIT

CH

ING

FR

EQU

ENC

Y (k

Hz)

0.00

0.30

0.60

0.90

1.20

1.50

10 15 20 25 30 35 40 45 50 55 60 65 70 75

INPUT VOLTAGE (V)

ENA

BLE

TH

RES

HO

LD (V

)

Hyst

Falling

Rising

0

1

2

3

4

5

6

7

8

9

10

-50 -25 0 25 50 75 100 125

TEMPERATURE (°C)

VIN = 12VVEN = 0VIOUT = 0AFSW = 600kHz

SHU

TDO

WN

CU

RR

ENT

(µA

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

-50 -25 0 25 50 75 100 125

TEMPERATURE (°C)

VIN = 12VIOUT = 0A

IPVDD = 40mAIPVDD = 10mA

PVD

D V

OLT

AG

E (V

)

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.0

4.1

4.2

4.3

4.4

-50 -25 0 25 50 75 100 125

TEMPERATURE (°C)

RISING

FALLING

VIN = 12VIOUT = 0AFSW = 600kHz

V DD

TH

RES

HO

LD (V

)

0

2

4

6

8

10

-50 -25 0 25 50 75 100 125

TEMPERATURE (°C)

VIN = 12VVOUT = 5.0VFSW = 600kHz

CU

RR

ENT

LIM

IT (A

)

2018 Microchip Technology Inc. DS20006093A-page 11

Page 12: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

FIGURE 3-31: EN Bias Current vs. Temperature.

FIGURE 3-32: Enable Threshold vs. Temperature.

FIGURE 3-33: VIN Operating Supply Current vs. Temperature (MIC28304-2).

FIGURE 3-34: Feedback Voltage vs. Temperature (MIC28304-2).

FIGURE 3-35: Load Regulation vs. Temperature (MIC28304-2).

FIGURE 3-36: Line Regulation vs. Temperature (MIC28304-2).

0

20

40

60

80

100

-50 -25 0 25 50 75 100 125

TEMPERATURE (°C)

VIN = 12VVEN = 0VFSW = 600kHz

EN B

IAS

CU

RR

ENT

(µA

)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

-50 -25 0 25 50 75 100 125

TEMPERATURE (°C)

FALLING

RISING

VIN = 12VVOUT = 5VFSW = 600kHz

ENA

BLE

TH

RES

HO

LD (V

)

0

4

8

12

16

20

24

28

32

36

40

-50 -25 0 25 50 75 100 125

TEMPERATURE (°C)

VIN = 12VVOUT = 5.0VIOUT = 0AFSW = 600kHzSU

PPLY

CU

RR

ENT

(mA

)

0.792

0.796

0.800

0.804

0.808

0.812

-50 -25 0 25 50 75 100 125

TEMPERATURE (°C)

VIN = 12VVOUT = 5.0VIOUT = 0AFE

EDB

AC

K V

OLT

AG

E (V

)

FSW = 600 kHz

-0.3%

-0.2%

-0.1%

0.0%

0.1%

0.2%

0.3%

0.4%

-50 -25 0 25 50 75 100 125

TEMPERATURE (°C)

VIN = 12VVOUT = 5.0VIOUT = 0A TO 3AFSW = 600kHz

LOA

D R

EGU

LATI

ON

(%)

-1.00%

-0.50%

0.00%

0.50%

1.00%

-50 -25 0 25 50 75 100 125

TEMPERATURE (°C)

VIN = 7V TO 70VVOUT = 5.0VIOUT = 0A

LIN

E R

EGU

LATI

ON

(%)

FSW = 600 kHz

DS20006093A-page 12 2018 Microchip Technology Inc.

Page 13: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

FIGURE 3-37: Line Regulation vs. Temperature (MIC28304-2).

FIGURE 3-38: Switching Frequency vs. Temperature (MIC28304-2).

FIGURE 3-39: Feedback Voltage vs. Output Current (MIC28304-2).

FIGURE 3-40: Line Regulation vs. Output Current (MIC28304-2).

FIGURE 3-41: Efficiency (VIN = 12V) vs. Output Current (MIC28304-2).

FIGURE 3-42: Efficiency (VIN = 18V) vs. Output Current (MIC28304-2).

-1.0%

-0.5%

0.0%

0.5%

1.0%

-50 -25 0 25 50 75 100 125TEMPERATURE (°C)

VIN = 7V TO 70VVOUT = 5.0VIOUT = 3A

LIN

E R

EGU

LATI

ON

(%)

FSW = 600 kHz

100

150

200

250

300

350

400

450

500

550

600

650

700

-50 -25 0 25 50 75 100 125

TEMPERATURE (°C)

VIN = 12VVOUT = 5VIOUT = 0A

SWIT

CH

ING

FR

EQU

ENC

Y (k

Hz)

0.792

0.796

0.800

0.804

0.808

0.0 0.5 1.0 1.5 2.0 2.5 3.0

OUTPUT CURRENT (A)

VIN = 12VVOUT = 5.0VFSW = 600kHzFE

EDB

AC

K V

OLT

AG

E (V

)

0.0%

0.1%

0.1%

0.2%

0.2%

0.3%

0.3%

0.4%

0.4%

0.0 0.5 1.0 1.5 2.0 2.5 3.0

OUTPUT CURRENT (A)

VIN = 12V to 70VVOUT = 5.0VFSW = 600kHz

LIN

E R

EGU

LATI

ON

(%)

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3 3.5 4

OUTPUT CURRENT (A)

5.0V

3.3V

2.5V

1.8V

1.2V

0.8V

FSW = 600kHz

EFFI

CIE

NC

Y (%

)

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3 3.5 4

OUTPUT CURRENT (A)

5.0V

3.3V

2.5V

1.8V

1.2V

0.8V

FSW = 600kHz

EFFI

CIE

NC

Y (%

)

2018 Microchip Technology Inc. DS20006093A-page 13

Page 14: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

FIGURE 3-43: Efficiency (VIN = 24V) vs. Output Current (MIC28304-2).

FIGURE 3-44: Efficiency (VIN = 38V) vs. Output Current (MIC28304-2).

FIGURE 3-45: Efficiency (VIN = 48V) vs. Output Current (MIC28304-2).

FIGURE 3-46: Efficiency (VIN = 70V) vs. Output Current (MIC28304-2).

FIGURE 3-47: Die Temperature(1) (VIN = 12V) vs. Output Current (MIC28304-2).

FIGURE 3-48: Die Temperature(1) (VIN = 48V) vs. Output Current (MIC28304-2).

Note 1: Case Temperature: The temperature measurement was taken at the hottest point on the MIC28304 case mounted on a 5 square inch PCB (see Section 7.7 “Thermal Measurements and Safe Operating Area”). Actual results will depend upon the size of the PCB, ambient temperature and proximity to other heat emitting components.

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3 3.5 4

OUTPUT CURRENT (A)

5.0V3.3V2.5V1.8V1.2V

0.8V

FSW = 600kHz

EFFI

CIE

NC

Y (%

)

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3 3.5 4

OUTPUT CURRENT (A)

5.0V

3.3V

2.5V

1.8V

1.2V

0.8V

FSW = 600kHz

EFFI

CIE

NC

Y (%

)

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3 3.5 4

OUTPUT CURRENT (A)

5.0V

3.3V

2.5V

1.8V

1.2V

0.8V

FSW = 600kHz

EFFI

CIE

NC

Y (%

)

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3 3.5 4

OUTPUT CURRENT (A)

5.0V3.3V2.5V1.8V1.2V0.8V

FSW = 600kHz

EFFI

CIE

NC

Y (%

)

0

20

40

60

80

100

120

140

0.0 0.5 1.0 1.5 2.0 2.5 3.0

OUTPUT CURRENT (A)

VIN = 12VVOUT = 5.0VFSW = 600kHz

DIE

TEM

PER

ATU

RE

(°C

)

0

20

40

60

80

100

120

140

0.0 0.5 1.0 1.5 2.0 2.5 3.0

OUTPUT CURRENT (A)

VIN = 48VVOUT = 5.0VFSW = 600kHz

`

DIE

TEM

PER

ATU

RE

(°C

)

DS20006093A-page 14 2018 Microchip Technology Inc.

Page 15: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

FIGURE 3-49: Die Temperature(1) (VIN = 70V) vs. Output Current (MIC28304-2).

FIGURE 3-50: Switching Frequency.

FIGURE 3-51: IC Power Dissipation vs. Output Current (MIC28304-2).

FIGURE 3-52: IC Power Dissipation vs. Output Current (MIC28304-2).

FIGURE 3-53: IC Power Dissipation vs. Output Current (MIC28304-2).

FIGURE 3-54: IC Power Dissipation vs. Output Current (MIC28304-2).

Note 1: Case Temperature: The temperature measurement was taken at the hottest point on the MIC28304 case mounted on a 5 square inch PCB (see Section 7.7 “Thermal Measurements and Safe Operating Area”). Actual results will depend upon the size of the PCB, ambient temperature and proximity to other heat emitting components.

0

20

40

60

80

100

120

140

0.0 0.5 1.0 1.5 2.0 2.5 3.0

OUTPUT CURRENT (A)

VIN = 70VVOUT = 5.0VFSW = 600kHzD

IE T

EMPE

RAT

UR

E (°

C)

R19 (kOhm)

0

0.5

1

1.5

2

2.5

0 1 2 3

OUTPUT CURRENT (A)

VIN = 12VFSW=600kHz

VOUT = 5V

VOUT = 0.8V

VOUT = 5V, 3.3V, 2.5V, 1.8V, 1.2V, 0.8V

IC P

OW

ER D

ISSI

PATI

ON

(W)

0

0.5

1

1.5

2

2.5

0 1 2 3

OUTPUT CURRENT (A)

VIN = 12VFSW = 600kHz

VOUT = 5V

VOUT = 0.8V

VOUT = 5V, 3.3V, 2.5V, 1.8V, 1.2V, 0.8V

IC P

OW

ER D

ISSI

PATI

ON

(W)

0

1

2

3

4

5

6

0 1 2 3

OUTPUT CURRENT (A)

VIN = 48VFSW = 600kHz

VOUT = 5V

VOUT = 0.8V

VOUT = 5V, 3.3V, 2.5V, 1.8V, 1.2V, 0.8V

IC P

OW

ER D

ISSI

PATI

ON

(W)

0

1

2

3

4

5

6

7

8

9

0 1 2 3

OUTPUT CURRENT (A)

VIN = 70VFSW = 600kHz

VOUT = 5V

VOUT = 0.8V

VOUT = 5V, 3.3V, 2.5V, 1.8V, 1.2V, 0.8V

IC P

OW

ER D

ISSI

PATI

ON

(W)

2018 Microchip Technology Inc. DS20006093A-page 15

Page 16: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

FIGURE 3-55: Thermal Derating.

FIGURE 3-56: Thermal Derating.

FIGURE 3-57: Thermal Derating.

FIGURE 3-58: Thermal Derating.

FIGURE 3-59: Thermal Derating.

FIGURE 3-60: Thermal Derating.

0

1

2

3

25.0 40.0 55.0 70.0 85.0 100.0

LOAD CURRENT (A)

MAXIMUM AMBIENT TEMPERATURE (°C)

VOUT = 5VFSW = 600kHzTj_MAX = 125\C

VIN =18V

VIN = 12V

VIN = 24VVIN = 48V

125°C

LOA

D C

UR

REN

T (A

)

0

1

2

3

25 40 55 70 85 100

MAXIMUM AMBIENT TEMPERATURE (C)

VOUT = 3.3VFSW = 600kHzTj_MAX = 125\C

VIN = 18V

VIN = 12V

VIN = 24V

VIN = 48V

LOA

D C

UR

REN

T (A

)

125°C

0

1

2

3

25 40 55 70 85 100

MAXIMUM AMBIENTTEMPERATURE (C)

VOUT = 2.5VFSW = 600kHzTj_MAX = 125\C

VIN =18V

VIN = 12V

VIN = 24V

VIN = 48VLOA

D C

UR

REN

T (A

) 125°C

0

1

2

3

25 40 55 70 85 100

MAXIMUM AMBIENT TEMPERATURE (°C)

VOUT = 1.8VFSW = 600kHzMIC28304-2Tj_MAX =125\C

VIN = 12V

VIN = 24V

VIN = 48V

VIN =18V

LOA

D C

UR

REN

T (A

)

R19 = DNP

125°C

0

1

2

3

25 40 55 70 85 100

MAXIMUM AMBIENT TEMPERATURE (°C)

VOUT = 1.2VFSW = 600kHzMIC28304-2Tj_MAX =125\C

VIN = 12V

VIN = 24V

VIN = 48V

VIN =18VLO

AD

CU

RR

ENT

(A)

125°C

R19 = DNP

0

1

2

3

25 40 55 70 85 100

MAXIMUM AMBIENT TEMPERATURE (°C)

VOUT = 0.8VFSW = 600kHzMIC28304-2Tj_MAX =125\C

VIN =18V

VIN = 12V

VIN = 48V

VIN = 24V

LOA

D C

UR

REN

T (A

)

125°C

R19 = DNP

DS20006093A-page 16 2018 Microchip Technology Inc.

Page 17: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

FIGURE 3-61: Thermal Derating.

FIGURE 3-62: IC Power Dissipation vs. Output Current (MIC28304-2).

FIGURE 3-63: Efficiency vs. Output Current (MIC28304-2).

0

1

2

3

4

25 40 55 70 85 100

MAXIMUM AMBIENT TEMPERATURE (°C)

VOUT = 12VFSW = 600kHzMIC28304-2R3 = 23.2kOTj_MAX =125\C

24VIN

48VIN

18VIN

70VIN

LOA

D C

UR

REN

T (A

)125°C

23.2k

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4OUTPUT CURRENT (A)

VOUT = 12VR3 = 23.2kOFSW = 600kHz

70VIN48VIN36VIN24VIN18VIN

IC P

OW

ER D

ISSI

PATI

ON

(W)

23.2k

50

55

60

65

70

75

80

85

90

95

100

0 0.6 1.2 1.8 2.4 3 3.6

OUTPUT CURRENT (A)

VOUT = 12VFSW = 600kHzR3=23.2kO

18VIN24VIN36VIN48VIN70VIN

EFFI

CIE

NC

Y (%

)

23.2k

2018 Microchip Technology Inc. DS20006093A-page 17

Page 18: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

4.0 TYPICAL PERFORMANCE CURVES (600 kHz SWITCHING FREQUENCY)

FIGURE 4-1: VIN Soft Turn-On.

FIGURE 4-2: VIN Soft Turn-Off.

FIGURE 4-3: Enable Turn-On Delay and Rise Time.

FIGURE 4-4: Enable Turn-Off Delay and Fall Time.

FIGURE 4-5: MIC28304-2 VIN Start-up with Pre-Biased Output.

FIGURE 4-6: MIC28304-1 VIN Start-up with Pre-Biased Output.

Time (4.0ms/div)

VIN

(10V/div)

VOUT

(2V/div)

VSW

(10V/div)

VIN Soft Turn-On

VIN = 12V

VOUT

= 5V

IOUT

= 3A

VIN

VIN

VIN = 12V

VOUT

= 5V

IOUT

= 3A

Time (20ms/div)

VIN

(10V/div)

VOUT

(2V/div)

VSW

(10V/div)

VIN Soft Turn-Off

VIN

VIN

VIN = 12V

VOUT

= 5V

IOUT

= 3A

Time (2.0ms/div)

VEN

(2V/div)

VOUT

(2V/div)

VSW

(10V/div)

Enable Turn-On Delay and Rise Time

VIN

VIN

= 12V

VOUT

= 5V

IOUT

= 3A

Time (1.0ms/div)

VEN

(2V/div)

VOUT

(2V/div)

VSW

(10V/div)

Enable Turn-Off Delay and Fall Time

VIN = 12V

VOUT

= 5V

IOUT

= 0A

VPRE-BIAS

= 1.5V

Time (4.0ms/div)

VIN

(10V/div)

VOUT

(2V/div)

VSW

(10V/div)

MIC28304 2 VIN Start Up with Pre-Biased Output

VIN

VIN

VIN = 12V

VOUT

= 5V

IOUT

= 0A

VPRE-BIAS

= 1.5V

Time (4.0ms/div)

VIN

(10V/div)

VOUT

(2V/div)

VSW

(10V/div)

pwith Pre-Biased Output

VIN

VIN

DS20006093A-page 18 2018 Microchip Technology Inc.

Page 19: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

FIGURE 4-7: Enable Turn-On/Turn-Off.

FIGURE 4-8: Enable Thresholds.

FIGURE 4-9: VIN UVLO Thresholds.

FIGURE 4-10: Power-up into Short Circuit.

FIGURE 4-11: Enabled into Short.

FIGURE 4-12: Output Peak Current-Limit Threshold.

VIN = 12V

VOUT

= 5V

IOUT

= 3A

Time (10ms/div)

VEN

(2V/div)

VOUT

(2V/div)

VSW

(10V/div)

Enable Turn On/Turn Off

VIN

VIN = 12V

VOUT

= 5V

IOUT

= 3A

Time (10ms/div)

VEN

(1V/div)

VOUT

(2V/div)

Enable Thresholds

VIN

VOUT

= 3.3V

IOUT

= 1.0A

Time (20ms/div)

VIN

(1V/div)

VOUT

(2V/div)

VIN UVLO Thresholds

VIN

VIN = 12V

VOUT

= 5V

IOUT

= SHORT

Time (2.0ms/div)

VIN

(10V/div)

VOUT

(20mV/div)

VSW

(10V/div)

Power-Up into Short Circuit

VIN VIN

VIN = 12V

VOUT

= 5V

IOUT

= SHORT

Time (400μs/div)

VEN

(2V/div)

VOUT

(20mV/div)

VSW

(10V/div)

Enabled into Short

VIN

VIN = 12V

VOUT

= 5V

Time (40ms/div)

VOUT

(5V/div)

IOUT

(5A/div)

Output Peak Current-Limit Threshold

VIN

2018 Microchip Technology Inc. DS20006093A-page 19

Page 20: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

FIGURE 4-13: Short Circuit.

FIGURE 4-14: Output Recovery from Short Circuit.

FIGURE 4-15: Output Recovery from Thermal Shutdown.

FIGURE 4-16: MIC28304-2 Switching Waveforms (IOUT = 3A).

FIGURE 4-17: MIC28304-2 Switching Waveforms (IOUT = 0A).

FIGURE 4-18: MIC28304-1 Switching Waveforms (IOUT = 0A).

VIN = 12V

VOUT

= 5V

Time (100μs/div)

VOUT

(2V/div)

IOUT

(5A/div)

Short Circuit

VIN

VIN = 12V

VOUT

= 5V

Time (2.0ms/div)

VOUT

(2V/div)

IOUT

(5A/div)

Output Recovery from Short Circuit

VIN

VIN = 12V

VOUT

= 5V

IOUT

= 1A

Time (2.0ms/div)

VOUT

(2V/div)

VSW

(10V/div)

Output Recovery fromThermal Shutdown

VIN

VIN = 12V

VOUT

= 5V

IOUT

= 3A

Time (1.0μs/div)

VOUT

(AC-COUPLED)

(20mV/div)

VSW

(10V/div)

MIC28304-2 Switching Waveforms(IOUT = 3A)

VIN

VIN = 12V

VOUT

= 5V

IOUT

= 0A

Time (1.0μs/div)

VOUT

(AC-COUPLED)

(20mV/div)

VSW

(10V/div)

MIC28304-2 Switching Waveforms(IOUT = 0A)

VIN

VIN = 12V

VOUT

= 5V

IOUT

= 0A

Time (400μs/div)

VOUT

(AC-COUPLED)

(50mV/div)

VSW

(10V/div)

MIC28304-1 Switching Waveforms(IOUT = 0A)

VIN

DS20006093A-page 20 2018 Microchip Technology Inc.

Page 21: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

FIGURE 4-19: MIC28304-1 Switching Waveforms (IOUT = 3A).

FIGURE 4-20: MIC28304-2 Transient Response.

FIGURE 4-21: MIC28304-1 Transient Response.

FIGURE 4-22: MIC28304-2 Transient Response.

FIGURE 4-23: MIC28304-1 Transient Response.

FIGURE 4-24: MIC28304-2 Transient Response.

VIN = 12V

VOUT

= 5V

IOUT

= 3A

Time (1.0μs/div)

VOUT

(AC-COUPLED)

(20mV/div)

VSW

(10V/div)

MIC28304-1 Switching Waveforms(IOUT = 3A)

VIN

VIN

VIN

Time (100μs/div)

VOUT

(AC-COUPLED)

(100mV/div)

IOUT

(500mA/div)

VIN = 12V

VOUT

= 5V

IOUT

= 10mA TO 500mA

VIN

VIN = 12V

VOUT

= 5V

IOUT

= 10mA TO 500mA

Time (100μs/div)

VOUT

(AC-COUPLED)

(100mV/div)

IOUT

(500mA/div)

830 a s e t espo se

VIN

VIN = 12V

VOUT

= 5V

IOUT

= 500mA TO 2A

Time (100μs/div)

VOUT

(AC-COUPLED)

(200mV/div)

IOUT

(1A/div)

p

VIN

2018 Microchip Technology Inc. DS20006093A-page 21

Page 22: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

FIGURE 4-25: MIC28304-1 Transient Response.

FIGURE 4-26: MIC28304-2 Transient Response.

FIGURE 4-27: MIC28304-1 Transient Response.

FIGURE 4-28: Power Good @ VIN Soft Turn-On.

FIGURE 4-29: Power Good @ VIN Soft Turn-Off.

VIN = 12V

VOUT

= 5V

IOUT

= 500mA TO 2A

Time (100μs/div)

VOUT

(AC-COUPLED)

(200mV/div)

IOUT

(1A/div)

VIN

VIN = 12V

VOUT

= 5V

IOUT

= 1A TO 3A

Time (100μs/div)

VOUT

(AC-COUPLED)

(500mV/div)

IOUT

(2A/div)

VIN

VIN = 12V

VOUT

= 5V

IOUT

= 1A TO 3A

Time (100μs/div)

VOUT

(AC-COUPLED)

(500mV/div)

IOUT

(2A/div)

VIN

VIN = 12V

VOUT

= 5V

IOUT

= 0A

Time (2.0ms/div)

VIN

(10V/div)

VPG

(5V/div)

VOUT

(5V/div)

VIN VIN

VIN = 12V

VOUT

= 5V

IOUT

= 0A

Time (20ms/div)

VIN

(10V/div)

VPG

(5V/div)

VOUT

(5V/div)

VIN

VIN

DS20006093A-page 22 2018 Microchip Technology Inc.

Page 23: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

FIGURE 4-30: Radiated Emission – 30 MHz to 1000 MHz (VIN = 12V/IOUT = 2A).

FIGURE 4-31: Radiated Emission – 30 MHz to 1000 MHz (VIN = 36V/IOUT = 2A).

FIGURE 4-32: Radiated Emission – 30 MHz to 1000 MHz (VIN = 63V/IOUT = 2A).

FIGURE 4-33: Radiated Emission – 30 MHz to 1000 MHz (VIN = 12V/IOUT = 3A).

FIGURE 4-34: Radiated Emission – 30 MHz to 1000 MHz (VIN = 62V/IOUT = 3A).

VIN

VIN

VIN

VIN

VIN

2018 Microchip Technology Inc. DS20006093A-page 23

Page 24: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

5.0 PIN DESCRIPTIONSThe descriptions of the pins are listed in Table 5-1.

TABLE 5-1: PIN FUNCTION TABLEPin Number Pin Name Pin Function

1, 2, 3, 54, 64 GND Analog Ground: Ground for internal controller and feedback resistor network. The Analog Ground return path should be separate from the Power Ground (PGND) return path.

4 ILIM Current-Limit Setting: Connect a resistor from SW (Pin# 4) to ILIM to set the overcurrent threshold for the converter.

5, 60 VIN Supply Voltage for Controller: The VIN operating voltage range is from 4.5V to 70V. A 0.47 µF ceramic capacitor from VIN (Pin# 60) to AGND is required for decoupling. Pin# 5 should be externally connected to either PVIN or Pin# 60 on the PCB.

6, 40-48, 51 SW Switch Node and Current Sense Input: High-current output driver return. The SW pin connects directly to the Switch node. Due to the high-speed switching on this pin, the SW pin should be routed away from sensitive nodes. The SW pin also senses the current by monitoring the voltage across the low-side MOSFET during off-time.

7, 8 FREQ Switching Frequency Adjust Input: Leaving this pin open will set the switching frequency to 600 kHz. Alternatively, a resistor from this pin to ground can be used to lower the switching frequency.

9-13 PGND Power Ground: PGND is the return path for the buck converter power stage. The PGND pin connects to the sources of the low-side N-channel external MOSFET, the negative terminals of the input capaci-tors and the negative terminals of the output capacitors. The return path for the Power Ground should be as small as possible and separate from the Analog Ground (GND) return path.

14-22 PVIN Power Input Voltage: Connection to the drain of the internal high-side power MOSFET.23-38 VOUT Output Voltage: Connection with the internal inductor. The output capacitor should be connected from

this pin to PGND as close to the module as possible.39 NC No Connection: Leave it floating.

49, 50 ANODE Anode Bootstrap Diode Input: Anode connection of internal bootstrap diode. This pin should be connected to the PVDD pin.

52, 53 BSTC Bootstrap Capacitor: Connection to the internal bootstrap capacitor. Leave floating, no connect.55, 56 BSTR Bootstrap Resistor: Connection to the internal bootstrap resistor and high-side power MOSFET drive

circuitry. Leave floating, no connect.57 FB Feedback Input: Input to the transconductance amplifier of the control loop. The FB pin is regulated to

0.8V. A resistor divider connecting the feedback to the output is used to set the desired output voltage.58 PGOOD Power Good Output: Open-drain output; an external pull-up resistor to the external power rails is

required.59 EN Enable Input: A logic signal to enable or disable the buck converter operation. The EN pin is CMOS

compatible. Logic high enables the device, logic low shuts down the regulator. In the Disable mode, the input supply current for the device is minimized to 4 µA typically. Do not pull EN to PVDD.

61, 62 PVDD Internal +5V Linear Regulator Output: PVDD is the internal supply bus for the device. In the applications with VIN < +5.5V, PVDD should be tied to VIN to bypass the linear regulator.

63 NC No Connection: Leave it floating.

DS20006093A-page 24 2018 Microchip Technology Inc.

Page 25: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

6.0 FUNCTIONAL DESCRIPTIONThe MIC28304 is an adaptive on-time synchronousbuck regulator module built for high input voltage to lowoutput voltage conversion applications. The MIC28304is designed to operate over a wide input voltage range,from 4.5V to 70V, and the output is adjustable with anexternal resistor divider. An adaptive on-time controlscheme is employed to obtain a constant switchingfrequency and to simplify the control compensation.Hiccup mode overcurrent protection is implemented bythe sensing low-side MOSFET’s RDS(ON). The devicefeatures internal soft start, enable, UVLO and thermalshutdown. The module has integrated switching FETs,inductor, bootstrap diode, resistor and capacitor.

6.1 Theory of OperationPer the “Functional Block Diagram” of the MIC28304module, the output voltage is sensed by the MIC28304Feedback pin, FB, via the voltage dividers, R1 and R11.Then it is compared to a 0.8V reference voltage, VREF,at the error comparator through a low-gain transcon-ductance (gm) amplifier. If the feedback voltagedecreases and the amplifier output is below 0.8V, thenthe error comparator will trigger the control logic andgenerate an on-time period. The on-time period lengthis predetermined by the “Fixed tON Estimator” circuitry:

EQUATION 6-1: FIXED tON ESTIMATOR

At the end of the on-time period, the internal high-sidedriver turns off the high-side MOSFET and the low-sidedriver turns on the low-side MOSFET. In most cases, theoff-time period length depends upon the feedback volt-age. When the feedback voltage decreases and the out-put of the gm amplifier is below 0.8V, the on-time periodis triggered and the off-time period ends. If the off-timeperiod determined by the feedback voltage is less thanthe minimum off-time tOFF(MIN), which is about 200 ns,the MIC28304 control logic will apply the tOFF(MIN)instead. tOFF(MIN) is required to maintain enough energyin the Boost Capacitor (CBST) to drive the high-sideMOSFET.

The maximum duty cycle is obtained from the 200 nstOFF(MIN):

EQUATION 6-2: OBTAINING THE MAXIMUM DUTY CYCLE

It is not recommended to use the MIC28304 with anoff-time close to tOFF(MIN) during steady-state operation.

The adaptive on-time control scheme results in a con-stant switching frequency in the MIC28304. The actualon-time and resulting switching frequency will vary withthe different rising and falling times of the externalMOSFETs. Also, the minimum tON results in a lowerswitching frequency in high VIN to VOUT applications.During load transients, the switching frequency ischanged due to the varying off-time.

To illustrate the control loop operation, we will analyzeboth the steady-state and load transient scenarios. Foreasy analysis, the gain of the gm amplifier is assumed tobe 1. With this assumption, the inverting input of theerror comparator is the same as the feedback voltage.

Figure 6-1 shows the MIC28304 control loop timingduring steady-state operation. During steady-stateoperation, the gm amplifier senses the feedback voltageripple, which is proportional to the output voltage rippleplus injected voltage ripple, to trigger the on-time period.The on-time is predetermined by the tON estimator. Thetermination of the off-time is controlled by the feedbackvoltage. At the valley of the feedback voltage ripple,which occurs when VFB falls below VREF, the off periodends and the next on-time period is triggered through thecontrol logic circuitry.

FIGURE 6-1: MIC28304 Control Loop Timing.

tON(ESTIMATED) =VOUT

VIN fSW

Where:

VOUT = Output voltageVIN = Power stage input voltagefSW = Switching frequency

DMAX =tS – tOFF(MIN)

tS200 ns

tS= 1 –

Where:

tS = 1/fSW

IL

IOUT

VOUT

VFB

VREF

L(PP)

OUT(PP) = ESR

COUT ×

L(PP)

ESTIMATED ON-TIME

DH

FB(PP) OUT(PP) ×

R2

R1 + R2

TRIGGER ON-TIME IF VFB

IS BELOW VREF

2018 Microchip Technology Inc. DS20006093A-page 25

Page 26: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

Figure 6-2 shows the operation of the MIC28304 duringa load transient. The output voltage drops due to thesudden load increase, which causes the VFB to be lessthan VREF. This will cause the error comparator to triggeran on-time period. At the end of the on-time period, aminimum off-time (tOFF(MIN)) is generated to charge theBootstrap Capacitor (CBST), since the feedback voltageis still below VREF. Then, the next on-time period istriggered due to the low feedback voltage. Therefore, theswitching frequency changes during the load transient,but returns to the nominal fixed frequency once theoutput has stabilized at the new load current level. Withthe varying duty cycle and switching frequency, the out-put recovery time is fast and the output voltage deviationis small.

FIGURE 6-2: MIC28304 Load Transient Response.Unlike true Current mode control, the MIC28304 usesthe output voltage ripple to trigger an on-time period. Theoutput voltage ripple is proportional to the inductorcurrent ripple if the ESR of the output capacitor is largeenough.

In order to meet the stability requirements, the MIC28304feedback voltage ripple should be in phase with theinductor current ripple, and is large enough to be sensedby the gm amplifier and the error comparator. The recom-mended feedback voltage ripple is 20 mV~100 mV overfull input voltage range. If a low-ESR output capacitor isselected, then the feedback voltage ripple may be toosmall to be sensed by the gm amplifier and the errorcomparator. Also, the output voltage ripple and thefeedback voltage ripple are not necessarily in phase withthe inductor current ripple if the ESR of the outputcapacitor is very low. In these cases, ripple injection isrequired to ensure proper operation. Please refer tothe subsection, Section 7.6 “Ripple Injection”, inSection 7.0 “Application Information” for more detailsabout the ripple injection technique.

6.2 Discontinuous Mode (MIC28304-1 Only)

In Continuous mode, the inductor current is alwaysgreater than zero; however, at light loads, theMIC28304-1 is able to force the inductor current tooperate in Discontinuous mode. Discontinuous mode iswhere the inductor current falls to zero, as indicated bythe trace (IL) shown in Figure 6-3. During this period,the efficiency is optimized by shutting down all thenon-essential circuits and minimizing the supply cur-rent. The MIC28304-1 wakes up and turns on thehigh-side MOSFET when the Feedback Voltage, VFB,drops below 0.8V.

The MIC28304-1 has a Zero-Crossing (ZC) comparatorthat monitors the inductor current by sensing the voltagedrop across the low-side MOSFET during its on-time. Ifthe VFB > 0.8V, and the inductor current goes slightly neg-ative, then the MIC28304-1 automatically powers downmost of the IC circuitry and goes into a Low-Power mode.

Once the MIC28304-1 goes into Discontinuous mode,both DL and DH are low, which turns off the high-sideand low-side MOSFETs. The load current is suppliedby the output capacitors and VOUT drops. If the drop ofVOUT causes VFB to go below VREF, then all the circuitswill wake-up into normal Continuous mode. First, thebias currents of most circuits reduced during theDiscontinuous mode are restored and then a tON pulseis triggered before the drivers are turned on to avoidany possible glitches. Finally, the high-side driver isturned on. Figure 6-3 shows the control loop timing inDiscontinuous mode.

FIGURE 6-3: MIC28304-1 Control Loop Timing (Discontinuous Mode).

IOUT

VOUT

VFB

DH

No Load

Full Load

VREF

TOFF(min) IL Crosses 0 and VFB > 0.8V,

Discontinuous Mode StartsVFB < 0.8V, Wake-up fromDiscontinuous Mode

IL

0

VFB

VREF

ZC

DH

DL Estimated On-Time

DS20006093A-page 26 2018 Microchip Technology Inc.

Page 27: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

During Discontinuous mode, the bias current of mostcircuits is substantially reduced. As a result, the totalpower supply current during Discontinuous mode is onlyabout 400 µA, allowing the MIC28304-1 to achieve highefficiency in light load applications.

6.3 Soft StartSoft start reduces the input power supply surge currentat start-up by controlling the output voltage rise time.The input surge appears while the output capacitor ischarged up. A slower output rise time will draw a lowerinput surge current.

The MIC28304 implements an internal digital soft startby making the 0.8V Reference Voltage, VREF, rampfrom 0 to 100% in about 5 ms with 9.7 mV steps. There-fore, the output voltage is controlled to increase slowlyby a staircase VFB ramp. Once the soft start cycle ends,the related circuitry is disabled to reduce current con-sumption. PVDD must be powered up at the same timeor after VIN to make the soft start function correctly.

6.4 Current LimitThe MIC28304 uses the RDS(ON) of the low-sideMOSFET, and an external resistor connected from theILIM pin to the SW node, to decide the current limit.

FIGURE 6-4: MIC28304 Current-Limiting Circuit.In each switching cycle of the MIC28304, the inductorcurrent is sensed by monitoring the low-side MOSFET inthe off period. The Sensed Voltage, V(ILIM), is comparedwith the Power Ground (PGND) after a blanking time of150 ns. In this way, the drop voltage over the resistor,R15 (VRLIM), is compared with the drop over the bottomFET generating the short current limit. The small capac-itor (C6) connected from the ILIM pin to PGND filters theswitching node ringing during the off-time, allowing abetter short limit measurement. The time constantcreated by R15 and C6 should be much less than theminimum off-time.

The VRLIM drop allows programming of the short limitthrough the value of the resistor (R15) if the absolutevalue of the voltage drop on the bottom FET is greaterthan VRLIM. In that case, the V(ILIM) is lower than PGNDand a short-circuit event is triggered. A hiccup cycle totreat the short event is generated. The hiccup sequence,including the soft start, reduces the stress on the switch-ing FETs, and protects the load and supply for severeshort conditions.

The short-circuit current limit can be programmed byusing Equation 3.

EQUATION 6-3: PROGRAMMING THE SHORT-CIRCUIT CURRENT LIMIT

The peak-to-peak inductor current ripple is:

EQUATION 6-4: CALCULATING THE INDUCTOR RIPPLE CURRENT

SW

FB

2.2 μFx2

MIC28304

BST

PGND

VIN

VIN

SW

CS

ILIM

R15

C6

R15 =(ICLIM + IL(PP) 0.5) RDS(ON) + VCL_OFFSET

ICL

Where:

ICLIM = Desired current limitRDS(ON) = On resistance of low-side power MOSFET, 45 m typicallyVCL_OFFSET = Current-limit threshold (typical value is -14 mV per Section 1.0 “Electrical Characteristics”ICL = Current-limit source current (typical value is 80 µA per Section 1.0 “ElectricalCharacteristics”IL(PP) = Inductor current peak-to-peak; since the inductor is integrated, use Equation 6-4 to calculate the inductor ripple current

IL(PP) =VOUT (VIN(MAX) – VOUT)

VIN(MAX) fSW L

2018 Microchip Technology Inc. DS20006093A-page 27

Page 28: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

The MIC28304 has 4.7 µH inductor integrated into themodule.

In case of a hard short, the short limit is folded down toallow an indefinite hard short on the output without anydestructive effect. It is mandatory to make sure that theinductor current used to charge the output capacitanceduring soft start is under the folded short limit; otherwise,the supply will go in Hiccup mode and may not befinishing the soft start successfully.

Table 6-1 shows the typical output current-limit valuefor a given R15 with C6 = 10 pF.

TABLE 6-1: TYPICAL OUTPUT CURRENT-LIMIT VALUE

R15 Typical Output Current Limit

1.81 k 3A2.7 k 6.3A

DS20006093A-page 28 2018 Microchip Technology Inc.

Page 29: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

7.0 APPLICATION INFORMATION

7.1 Simplified Input Transient Circuitry

The 76V absolute maximum rating of MIC28304 allowssimplifying the transient voltage suppressor on the inputsupply side, which is very common in industrial applica-tions. The Input Supply Voltage (VIN), shown inFigure 7-1, may be operating at 12V input rail most ofthe time, but can encounter a noise spike of 60V for ashort duration. By using MIC28304, which has 76Vabsolute maximum voltage rating, the input transientsuppressor is not needed, which saves on componentcount, form factor, and ultimately, the system becomesless expensive.

FIGURE 7-1: Simplified Input Transient Circuitry.

7.2 Setting the Switching Frequency The MIC28304 switching frequency can be adjusted bychanging the value of resistor, R19. The top resistor of100 k is internal to the module and is connectedbetween the VIN and FREQ pins, so the value of R19sets the switching frequency. The switching frequencyalso depends upon VIN, VOUT and load conditions.

FIGURE 7-2: Switching Frequency Adjustment.

Figure 7-1 gives the estimated switching frequency:

EQUATION 7-1: ESTIMATED SWITCHING FREQUENCY

For more precise setting, it is recommended to useFigure 7-3:

FIGURE 7-3: Switching Frequency vs. R19.

7.3 Output Capacitor Selection The type of the output capacitor is usually determinedby the application and its Equivalent Series Resistance(ESR). Voltage and RMS current capability are twoother important factors for selecting the outputcapacitor. Recommended capacitor types are MLCC,tantalum, low-ESR aluminum electrolytic, OS-CON andPOSCAP. The output capacitor’s ESR is usually themain cause of the output ripple. The MIC28304requires ripple injection and the output capacitor ESReffects the control loop from a stability point of view.

The maximum value of ESR is calculated as inEquation 7-2:

EQUATION 7-2: CALCULATING THE MAXIMUM VALUE OF ESR

MIC28304Module

VIN

VOUT

12V

60V

SW

FB

2.2 μFx3

MIC28304

BST

PGND

VINV

IN

FREQCS

R19

RFREQ

fSW_ADJ = fO R19R19 + 100 k

Where:

fO = Switching frequency when R19 is open

R19 (kOhm)

ESRCOUT VOUT(pp)IL(PP)

Where:

VOUT(pp) = Peak-to-peak output voltage rippleIL(PP) = Peak-to-peak inductor current ripple

2018 Microchip Technology Inc. DS20006093A-page 29

Page 30: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

The total output ripple is a combination of the ESR andoutput capacitance. The total ripple is calculated inEquation 7-3:

EQUATION 7-3: CALCULATING THE TOTAL RIPPLE

As described in the subsection, Section 6.1 “Theory ofOperation”, in Section 6.0 “Functional Description”,the MIC28304 requires at least 20 mV peak-to-peakripple at the FB pin to make the gm amplifier and theerror comparator behave properly. Also, the output volt-age ripple should be in phase with the inductor current.Therefore, the output voltage ripple caused by the outputcapacitor’s value should be much smaller than the ripplecaused by the output capacitor, ESR. If low-ESR capac-itors, such as ceramic capacitors, are selected as theoutput capacitors, a ripple injection method should beapplied to provide enough feedback voltage ripple.Please refer to Section 7.6 “Ripple Injection” for moredetails.

The voltage rating of the capacitor should be twice theoutput voltage for a tantalum and 20% greater foraluminum electrolytic or OS-CON.

The output capacitor RMS current is calculated inEquation 7-4:

EQUATION 7-4: CALCULATING OUTPUT CAPACITOR RMS CURRENT

The power dissipated in the output capacitor is:

EQUATION 7-5: DISSIPATED POWER IN OUTPUT CAPACITOR

7.4 Input Capacitor SelectionThe input capacitor for the Power Stage Input, PVIN,should be selected for ripple current rating and voltagerating. Tantalum input capacitors may fail when sub-jected to high inrush currents, caused by turning theinput supply on. A tantalum input capacitor’s voltagerating should be at least two times the maximum inputvoltage to maximize reliability. Aluminum electrolytic,OS-CON and multilayer polymer film capacitors canhandle the higher inrush currents without voltagederating. The input voltage ripple will primarily dependon the input capacitor’s ESR.

The input capacitor must be rated for the input currentripple. The RMS value of the input capacitor current isdetermined at the maximum output current. Assumingthe peak-to-peak inductor current ripple is low:

EQUATION 7-6: CALCULATING INPUT CAPACITOR RATING

The power dissipated in the input capacitor is:

EQUATION 7-7: POWER DISSIPATED IN THE INPUT CAPACITOR

The general rule is to pick the capacitor with a ripple cur-rent rating equal to or greater than the calculatedworst-case (VIN_MAX) RMS capacitor current. Its voltagerating should be 20% to 50% higher than the maximuminput voltage. Typically, the input ripple (VIN) needs tobe kept down to less than ±10% of the input voltage. TheESR also increases the input ripple.

Equation 7-8 should be used to calculate the inputcapacitor. Also, it is recommended to keep somemargin on the calculated value:

EQUATION 7-8: CALCULATING THE INPUT CAPACITOR

VOUT(pp) =IL(PP)

COUT fSW 8

2 + (IL(PP) ESRCOUT(RMS))2 Where:

COUT = Output capacitance valuefSW = Switching frequency

OUT(RMS)

ICOUT(RMS) =IL(PP)

12OUT(RMS)

PDISS(COUT) = ICOUT(RM2 ESRCOUTOUTOUT OUT(RMS)

ICIN(RMS) IOUT(MAX) D (1 – D)Where:

D = Duty cycle

IN(RMS)

PDISS(CIN) = ICIN(RMS)2 ESRCININ

CIN IOUT(MAX) (1 – D)

fSW VIN

Where:

VIN = Input ripplefSW = Switching frequency

DS20006093A-page 30 2018 Microchip Technology Inc.

Page 31: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

7.5 Output Voltage Setting

ComponentsThe MIC28304 requires two resistors to set the outputvoltage, as shown in Figure 7-4:

FIGURE 7-4: Voltage-Divider Configuration.

The output voltage is determined by Equation 7-9:

EQUATION 7-9: DETERMINING OUTPUT VOLTAGE

A typical value of R1 used on the standard evaluationboard is 10 k. If R1 is too large, it may allow noise tobe introduced into the voltage feedback loop. If R1 istoo small in value, it will decrease the efficiency of thepower supply, especially at light loads. Once R1 isselected, R11 can be calculated using Equation 7-10:

EQUATION 7-10: CALCULATING R11

7.6 Ripple InjectionThe VFB ripple required for proper operation of theMIC28304 gm amplifier and error comparator is 20 mVto 100 mV. However, the output voltage ripple is gener-ally designed as 1% to 2% of the output voltage. For alow output voltage, such as 1V, the output voltageripple is only 10 mV to 20 mV, and the feedback voltageripple is less than 20 mV. If the feedback voltage rippleis so small that the gm amplifier and error comparatorcannot sense it, then the MIC28304 will lose controland the output voltage is not regulated. In order to havesome amount of VFB ripple, a ripple injection method isapplied for low output voltage ripple applications.Table 6-1 summarizes the ripple injection componentvalues for the ceramic output capacitor.

The applications are divided into three situationsaccording to the amount of the feedback voltage ripple:

1. Enough ripple at the feedback voltage due to thelarge ESR of the output capacitors (Figure 7-5):

FIGURE 7-5: Enough Ripple at FB.

As shown in Figure 7-5, the converter is stablewithout any ripple injection.

FIGURE 7-6: Inadequate Ripple at FB.

The feedback voltage ripple is:

EQUATION 7-11: FEEDBACK VOLTAGE RIPPLE

gm AMP FB

VREF

R1

R11

VOUT = VFB R1R11

Where:

VFB = 0.8V

R11 =VFB R1

VOUT – VFB

VOUT

FBR1

R11

COUT

ESR

MIC28304

VOUT

FBR1

R11

COUT

ESR

MIC28304 Cff

VFB(PP) =R11

R1 + R11 ESRCOUT IL(PP)

Where:

IL(PP) = Peak-to-peak value of the inductor current ripple

2018 Microchip Technology Inc. DS20006093A-page 31

Page 32: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

2. Inadequate ripple at the feedback voltage due to

the small ESR of the output capacitors; such isthe case with the ceramic output capacitor.The output voltage ripple is fed into the FB pinthrough a feed-forward Capacitor, Cff, in thissituation, as shown in Figure 7-7. The typical Cffvalue is between 1 nF and 100 nF.

FIGURE 7-7: Invisible Ripple at FB.

With the feed-forward Capacitor, the feedbackvoltage ripple is very close to the output voltageripple:

EQUATION 7-12: FEEDBACK VOLTAGE RIPPLE

3. Virtually no ripple at the FB pin voltage due tothe very low-ESR of the output capacitors.In this situation, the output voltage ripple is lessthan 20 mV. Therefore, additional ripple isinjected into the FB pin from the Switching node,SW, via a resistor, Rinj, and a capacitor, Cinj, asshown in Figure 7-7. The injected ripple is:

EQUATION 7-13: INJECTED RIPPLE

In Equation 7-13, it is assumed that the time constantassociated with Cff must be much greater than theswitching period:

EQUATION 7-14: TIME CONSTANT ASSOCIATED WITH Cff

If the voltage divider resistors, R1 and R11, are in the krange, then a Cff of 1 nF to 100 nF can easily satisfy thelarge time constant requirements. Also, a 100 nF injec-tion Capacitor, Cinj, is used in order to be considered asshort for a wide range of the frequencies.

The process of sizing the ripple injection resistor andcapacitors is:

Step 1. Select Cff to feed all output ripples into theFeedback pin and make sure the large time constantassumption is satisfied. The typical choice of Cff is 1 nFto 100 nF if R1 and R11 are in the k range.

Step 2. Select Rinj according to the expected feedbackvoltage ripple using Equation 7-16:

EQUATION 7-15: OBTAINING Kdiv

Then the value of Rinj is obtained as:

EQUATION 7-16: OBTAINING Rinj VALUE

Step 3. Select Cinj as 100 nF, which could be consideredas short for a wide range of the frequencies.

Table 7-1 summarizes the typical value of componentsfor particular input and output voltages, and 600 kHzswitching frequency design.

VOUT

FB

R1

R11

COUT

ESR

MIC28304 Cff

Cinj

Rinj

SW

VFB(PP) ESR IL(PP)

VFB(pp) = VIN Kdiv D (1 – D) 1fSW

Kdiv =R1//R11

Rinj + R1//R11

Where:

VIN = Power stage input voltageD = Duty cyclefSW = Switching frequency = (R1//R11//Rinj) Cff

1fSW

T << 1=

Kdiv =VFB(pp)

VIN

fSW D (1 – D)

Rinj = (R1//R11) 1Kdiv

– 1

DS20006093A-page 32 2018 Microchip Technology Inc.

Page 33: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

TABLE 7-1: RECOMMENDED COMPONENT VALUES FOR 600 kHz SWITCHING FREQUENCY

7.7 Thermal Measurements and Safe Operating Area

Measuring the IC’s case temperature is recommendedto ensure it is within its operating limits. Although thismight seem like a very elementary task, it is easy to geterroneous results. The most common mistake is to usethe standard thermocouple that comes with a thermalmeter. This thermocouple wire gauge is large, typically22 gauge, and behaves like a heatsink, resulting in alower case measurement.

Two methods of temperature measurement are using asmaller thermocouple wire or an infrared thermometer.If a thermocouple wire is used, it must be constructed of36-gauge wire or higher (smaller wire size) to minimizethe wire heatsinking effect. In addition, the thermo-couple tip must be covered in either thermal grease orthermal glue to make sure that the thermocouplejunction is making good contact with the case of the IC.The Omega® brand thermocouple (5SC-TT-K-36-36) isadequate for most applications.

Wherever possible, an infrared thermometer is recom-mended. The measurement spot size of most infraredthermometers is too large for an accurate reading on asmall form factor IC.

However, an IR thermometer from Optris has a 1 mmspot size, which makes it a good choice for measuringthe hottest point on the case. An optional stand makesit easy to hold the beam on the IC for long periods oftime.

The Safe Operating Area (SOA) of the MIC28304 isshown in Section 2.0 “Typical Performance Curves(275 kHz Switching Frequency)”. These thermalmeasurements were taken on the MIC28304 evaluationboard. Since the MIC28304 is an entire system, com-prised of a switching regulator controller, MOSFETs andinductor, the part needs to be considered as a system.The SOA curves will give guidance to reasonable use ofthe MIC28304.

7.8 Emission Characteristics of MIC28304

The MIC28304 integrates switching components in asingle package, so the MIC28304 has reduced emissioncompared to a standard buck regulator with externalMOSFETS and inductors. The radiated EMI scans forMIC28304 are shown in Section 3.0 “Typical Perfor-mance Curves”. The limit on the graph is per theEN55022 Class B standard.

VOUT VINR3

(Rinj)

R1 (Top Feedback

Resistor)

R11 (Bottom Feedback

Resistor)R19 C10

(Cinj)C12(Cff)

COUT

0.9V 5V to 70V 16.5 k 10 k 80.6 k DNP 0.1 µF 2.2 nF 47 µF/6.3Vor 2 x 22 µF

1.2V 5V to 70V 16.5 k 10 k 20 k DNP 0.1 µF 2.2 nF 47 µF/6.3Vor 2 x 22 µF

1.8V 5V to 70V 16.5 k 10 k 8.06 k DNP 0.1 µF 2.2 nF 47 µF/6.3Vor 2 x 22 µF

2.5V 5V to 70V 16.5 k 10 k 4.75 k DNP 0.1 µF 2.2 nF 47 µF/6.3Vor 2 x 22 µF

3.3V 5V to 70V 16.5 k 10 k 3.24 k DNP 0.1 µF 2.2 nF 47 µF/6.3Vor 2 x 22 µF

5V 7V to 70V 16.5 k 10 k 1.9 k DNP 0.1 µF 2.2 nF 47 µF/6.3Vor 2 x 22 µF

12V 18V to 70V 23.2 k 10 k 715 DNP 0.1 µF 2.2 nF 47 µF/16Vor 2 x 22 µF

2018 Microchip Technology Inc. DS20006093A-page 33

Page 34: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

8.0 PACKAGING INFORMATION

8.1 Package Marking Information

Legend: XX...X Product code or customer-specific informationY Year code (last digit of calendar year)YY Year code (last 2 digits of calendar year)WW Week code (week of January 1 is week ‘01’)NNN Alphanumeric traceability code Pb-free JEDEC® designator for Matte Tin (Sn)* This package is Pb-free. The Pb-free JEDEC designator ( )

can be found on the outer packaging for this package.

●, ▲, ▼ Pin one index is identified by a dot, delta up or delta down (trianglemark).

Note: In the event the full Microchip part number cannot be marked on one line, it willbe carried over to the next line, thus limiting the number of availablecharacters for customer-specific information. Package may or may not includethe corporate logo.

Underbar (_) and/or Overbar (⎯) symbol may not be to scale.

3e

3e

64-Lead 12 mm x 12 mm H3QFN

XXXXX-XXXXWNNN

Example

28304-1YMP1017

MICMIC

64-Lead 12 mm x 12 mm H3QFN

XXXXX-XXXXYYWW

Example

28304-2YMP1817

MICMIC

DS20006093A-page 34 2018 Microchip Technology Inc.

Page 35: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

8.2 Package DetailsThe following sections give the technical details of the packages.

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.

2018 Microchip Technology Inc. DS20006093A-page 35

Page 36: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.

DS20006093A-page 36 2018 Microchip Technology Inc.

Page 37: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

Recommended Land Pattern

Note: For the most current package drawings, please see the Microchip Packaging Specification located athttp://www.microchip.com/packaging.

2018 Microchip Technology Inc. DS20006093A-page 37

Page 38: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

NOTES:

DS20006093A-page 38 2018 Microchip Technology Inc.

Page 39: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

APPENDIX A: REVISION HISTORY

Revision A (October 2018)• Converted Micrel document MIC28304 to

Microchip data sheet DS20006093A.• Minor text changes throughout document.

2018 Microchip Technology Inc. DS20006093A-page 39

Page 40: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

NOTES:

DS20006093A-page 40 2018 Microchip Technology Inc.

Page 41: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

PRODUCT IDENTIFICATION SYSTEMTo order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

Examples:a) MIC28304-1YMP-T1: MIC28304, HLL,

64-Pin H3QFN, 100/Reel

b) MIC28304-1YMP-TR: MIC28304, HLL,

64-Pin H3QFN, 5,000/Reel

c) MIC28304-2YMP-T1: MIC28304, HSC,64-Pin H3QFN, 100/Reel

d) MIC28304-2YMP-TR: MIC28304, HSC,64-Pin H3QFN, 5,000/Reel

PART NO. XXX

PackageDevice

Device: MIC28304: 70V, 3A Power Module Hyper SpeedControl® Family

Option: 1 = HLL2 = HSC

Package: YMP = 64-Pin 12 mm x 12 mm H3QFN

Media Type: T1 = 100/pcs.TR = 500/pcs.

– X

Option

XX

Media

Type

2018 Microchip Technology Inc. DS20006093A-page 41

Page 42: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

MIC28304

NOTES:

DS20006093A-page 42 2018 Microchip Technology Inc.

Page 43: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

Note the following details of the code protection feature on Microchip devices:• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of ourproducts. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such actsallow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding deviceapplications and the like is provided only for your convenienceand may be superseded by updates. It is your responsibility toensure that your application meets with your specifications.MICROCHIP MAKES NO REPRESENTATIONS ORWARRANTIES OF ANY KIND WHETHER EXPRESS ORIMPLIED, WRITTEN OR ORAL, STATUTORY OROTHERWISE, RELATED TO THE INFORMATION,INCLUDING BUT NOT LIMITED TO ITS CONDITION,QUALITY, PERFORMANCE, MERCHANTABILITY ORFITNESS FOR PURPOSE. Microchip disclaims all liabilityarising from this information and its use. Use of Microchipdevices in life support and/or safety applications is entirely atthe buyer’s risk, and the buyer agrees to defend, indemnify andhold harmless Microchip from any and all damages, claims,suits, or expenses resulting from such use. No licenses areconveyed, implicitly or otherwise, under any Microchipintellectual property rights unless otherwise stated.

2018 Microchip Technology Inc.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV

== ISO/TS 16949 ==

TrademarksThe Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies.© 2018, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-3764-2

DS20006093A-page 43

Page 44: MIC28304 Family Data Sheet - Microchip Technology · 2018. 10. 26. · BSTC MIC28304 I LIM V IN PV DD PGOOD EN FREQ 2.2 nF 0.1 μF 47 μF x2 V OUT ANODE BSTR PV IN V IN 4.5V to 70V

DS20006093A-page 44 2018 Microchip Technology Inc.

AMERICASCorporate Office2355 West Chandler Blvd.Chandler, AZ 85224-6199Tel: 480-792-7200 Fax: 480-792-7277Technical Support: http://www.microchip.com/supportWeb Address: www.microchip.comAtlantaDuluth, GA Tel: 678-957-9614 Fax: 678-957-1455Austin, TXTel: 512-257-3370 BostonWestborough, MA Tel: 774-760-0087 Fax: 774-760-0088ChicagoItasca, IL Tel: 630-285-0071 Fax: 630-285-0075DallasAddison, TX Tel: 972-818-7423 Fax: 972-818-2924DetroitNovi, MI Tel: 248-848-4000Houston, TX Tel: 281-894-5983IndianapolisNoblesville, IN Tel: 317-773-8323Fax: 317-773-5453Tel: 317-536-2380Los AngelesMission Viejo, CA Tel: 949-462-9523Fax: 949-462-9608Tel: 951-273-7800 Raleigh, NC Tel: 919-844-7510New York, NY Tel: 631-435-6000San Jose, CA Tel: 408-735-9110Tel: 408-436-4270Canada - TorontoTel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFICAustralia - SydneyTel: 61-2-9868-6733China - BeijingTel: 86-10-8569-7000 China - ChengduTel: 86-28-8665-5511China - ChongqingTel: 86-23-8980-9588China - DongguanTel: 86-769-8702-9880 China - GuangzhouTel: 86-20-8755-8029 China - HangzhouTel: 86-571-8792-8115 China - Hong Kong SARTel: 852-2943-5100 China - NanjingTel: 86-25-8473-2460China - QingdaoTel: 86-532-8502-7355China - ShanghaiTel: 86-21-3326-8000 China - ShenyangTel: 86-24-2334-2829China - ShenzhenTel: 86-755-8864-2200 China - SuzhouTel: 86-186-6233-1526 China - WuhanTel: 86-27-5980-5300China - XianTel: 86-29-8833-7252China - XiamenTel: 86-592-2388138 China - ZhuhaiTel: 86-756-3210040

ASIA/PACIFICIndia - BangaloreTel: 91-80-3090-4444 India - New DelhiTel: 91-11-4160-8631India - PuneTel: 91-20-4121-0141Japan - OsakaTel: 81-6-6152-7160 Japan - TokyoTel: 81-3-6880- 3770 Korea - DaeguTel: 82-53-744-4301Korea - SeoulTel: 82-2-554-7200Malaysia - Kuala LumpurTel: 60-3-7651-7906Malaysia - PenangTel: 60-4-227-8870Philippines - ManilaTel: 63-2-634-9065SingaporeTel: 65-6334-8870Taiwan - Hsin ChuTel: 886-3-577-8366Taiwan - KaohsiungTel: 886-7-213-7830Taiwan - TaipeiTel: 886-2-2508-8600 Thailand - BangkokTel: 66-2-694-1351Vietnam - Ho Chi MinhTel: 84-28-5448-2100

EUROPEAustria - WelsTel: 43-7242-2244-39Fax: 43-7242-2244-393Denmark - CopenhagenTel: 45-4450-2828 Fax: 45-4485-2829Finland - EspooTel: 358-9-4520-820France - ParisTel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - GarchingTel: 49-8931-9700Germany - HaanTel: 49-2129-3766400Germany - HeilbronnTel: 49-7131-67-3636Germany - KarlsruheTel: 49-721-625370Germany - MunichTel: 49-89-627-144-0 Fax: 49-89-627-144-44Germany - RosenheimTel: 49-8031-354-560Israel - Ra’anana Tel: 972-9-744-7705Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781Italy - PadovaTel: 39-049-7625286 Netherlands - DrunenTel: 31-416-690399 Fax: 31-416-690340Norway - TrondheimTel: 47-7288-4388Poland - WarsawTel: 48-22-3325737 Romania - BucharestTel: 40-21-407-87-50Spain - MadridTel: 34-91-708-08-90Fax: 34-91-708-08-91Sweden - GothenbergTel: 46-31-704-60-40Sweden - StockholmTel: 46-8-5090-4654UK - WokinghamTel: 44-118-921-5800Fax: 44-118-921-5820

Worldwide Sales and Service

08/15/18