method of trigonometric parallaxes

103
p Method of Trigonometric Parallaxes June December Distant Stars Foreground Star

Upload: milo-fields

Post on 08-Jan-2018

224 views

Category:

Documents


0 download

DESCRIPTION

Closer stars have larger parallaxes: Distant stars have smaller parallaxes:

TRANSCRIPT

Page 1: Method of Trigonometric Parallaxes

p

Method of Trigonometric Parallaxes

June

December

Distant Stars

ForegroundStar

Page 2: Method of Trigonometric Parallaxes

Closer stars have larger parallaxes:

Distant stars have smaller parallaxes:

Page 3: Method of Trigonometric Parallaxes

Sun

Sun No propermotion

Large propermotion

Proper Motions

Page 4: Method of Trigonometric Parallaxes

1902

1952

2002

Barnard’s Star

Page 5: Method of Trigonometric Parallaxes

Case Study: The Big Dipper

Today

50,000 BC

Page 6: Method of Trigonometric Parallaxes

50,000 BC

Today

50,000 AD

Page 7: Method of Trigonometric Parallaxes

No Shift

Blueshift Redshift

Radial Velocities

Sun

Page 8: Method of Trigonometric Parallaxes

Space Velocity

Sun

TangentialVelocity

Radial Velocity

Proper Motion (angle)

Distance

2t

2r

2 vvv

tv 4.74 d=

SpaceVelocity

Page 9: Method of Trigonometric Parallaxes

d=1

d=2

d=3

B=1

B=1/9

B=1/4

Page 10: Method of Trigonometric Parallaxes

Center of Mass

M2

M1

a

a1a2

Page 11: Method of Trigonometric Parallaxes

A

A

B

B

B

A

A

B

Spectroscopic Binary

Page 12: Method of Trigonometric Parallaxes

Eclipsing Binary

Time

3

1

Brig

htne

ss

4

2

1

3

2

4

Page 13: Method of Trigonometric Parallaxes

Hydrogen

Continuum

Absorption Lines

Page 14: Method of Trigonometric Parallaxes

The Spectral Sequence

Bluest Reddest

Spectral Sequence is a Temperature Sequence

Hottest Coolest50,000K 1300K

O B A F G K M L

Page 15: Method of Trigonometric Parallaxes

H–R Diagram

40,000 20,000 10,000 5,000 2,500

106

104

102

1

102

104

Temperature (K)

Lum

inos

ity (L

sun)

White Dwarfs

Giants

Supergiants

Main Sequence

Page 16: Method of Trigonometric Parallaxes

Russell (1912) HIPPARCOS (1999)

Page 17: Method of Trigonometric Parallaxes

HipparcosH-R Diagram

4902 single starswith distance errors of <5%

Page 18: Method of Trigonometric Parallaxes

L M4

Page 19: Method of Trigonometric Parallaxes

Hydrostatic Equilibrium

Gas Pressure

Gravity

Page 20: Method of Trigonometric Parallaxes

Core-Envelope Structure

Hot, Compact Core

Cooler,ExtendedEnvelope

Page 21: Method of Trigonometric Parallaxes

Photon Random Walk

Page 22: Method of Trigonometric Parallaxes

Convection

cooler watersinks

Hot blob rises

Page 23: Method of Trigonometric Parallaxes

Proton-Proton Chain:

(twice) eHpp e2

(twice) HepH 32 ppHeHeHe 433

Page 24: Method of Trigonometric Parallaxes

positron

neutrino

2H

positron

neutrino

2Hphoton

3He

4He

photon

3He

Page 25: Method of Trigonometric Parallaxes

CNO Cycle:12C + p N

N C e

C p N

N p O

O N e

N p C He

e

e

13

13 13

13 14

14 15

15 15

15 12 4

Page 26: Method of Trigonometric Parallaxes

Main Sequence

40,000 20,000 10,000 5,000 2,500

106

104

102

1

10-2

10-4

Temperature (K)

Lum

inos

ity (L

sun)

HighMass

LowMass

Page 27: Method of Trigonometric Parallaxes

Upper Main Sequence Star

RadiativeEnvelope

ConvectiveCore

Page 28: Method of Trigonometric Parallaxes

ConvectiveEnvelope

RadiativeCore

Lower Main Sequence Star

Page 29: Method of Trigonometric Parallaxes

ConvectiveEnvelope

ConvectiveCore

Red Dwarf Star

Page 30: Method of Trigonometric Parallaxes

20,000 10,000 5000 2500Temperature

105

103

102

0.1

0.01

104

10

1

Lum

inos

ity

(Lsu

n)

15 Msun

5 Msun

2 Msun

1 Msun

0.5 Msun

Zero-Age Main Sequence

Pre-Main Sequence Evolution

Page 31: Method of Trigonometric Parallaxes

Red Giant Star

InertHe

Core

H BurningShell

Cool, ExtendedEnvelope

Page 32: Method of Trigonometric Parallaxes

Climbing the Red Giant Branch

40,000 20,000 10,000 5,000 2,500

106

104

102

1

10 -2

10 -4

Temperature (K)

Lum

inos

ity (L

sun) Main Sequence

H-core exhaustion

Red GiantBranch

Page 33: Method of Trigonometric Parallaxes

Horizontal Branch Star

HeBurning

Core

H BurningShell

Envelope

Page 34: Method of Trigonometric Parallaxes

Horizontal Branch

40,000 20,000 10,000 5,000 2,500

106

104

102

1

10 -2

10 -4

Temperature (K)

Lum

inos

ity (L

sun) Main Sequence

H-core exhaustion

Red GiantBranchHorizontal Branch

HeliumFlash

Page 35: Method of Trigonometric Parallaxes

Asymptotic Giant Branch Star

InertC-OCore

He BurningShell Cool, Extended

Envelope

H BurningShell

Page 36: Method of Trigonometric Parallaxes

The Asymptotic Giant Branch

40,000 20,000 10,000 5,000 2,500

106

104

102

1

10 -2

10 -4

Temperature (K)

Lum

inos

ity (L

sun) Main Sequence

H-core exhaustion

Red GiantBranchHorizontal Branch

AsymptoticGiant Branch

Page 37: Method of Trigonometric Parallaxes

Planetary Nebula Phase

40,000 20,000 10,000 5,000 2,500

106

104

102

1

10 -2

10 -4

Temperature (K)

Lum

inos

ity (L

sun)

Main Sequence

Bare Core

WhiteDwarf

Envelope Ejection

Page 38: Method of Trigonometric Parallaxes

Red Supergiant Star

InertHe

Core

H BurningShell

Cool, ExtendedEnvelope

Not to Scale

Page 39: Method of Trigonometric Parallaxes

Supergiant Branch

40,000 20,000 10,000 5,000 2,500

106

104

102

1

10 -2

10 -4

Temperature (K)

Lum

inos

ity (L

sun)

RedSupergiant

Main Sequence

Page 40: Method of Trigonometric Parallaxes

Blue Supergiant

40,000 20,000 10,000 5,000 2,500

106

104

102

1

10 -2

10 -4

Temperature (K)

Lum

inos

ity (L

sun)

Blue Supergiant

HeliumFlash

Main Sequence

Page 41: Method of Trigonometric Parallaxes

End of Helium Burning

40,000 20,000 10,000 5,000 2,500

106

104

102

1

10 -2

10 -4

Temperature (K)

Lum

inos

ity (L

sun)

Main Sequence

Page 42: Method of Trigonometric Parallaxes

End of Carbon Burning Phase

InertO-Ne-Mg

Core

C BurningShell

Red SupergiantEnvelope

He BurningShell

H BurningShell

Page 43: Method of Trigonometric Parallaxes

End of the Silicon Burning Phase

InertFe-NiCore

Si BurningShell

O BurningShell

Ne BurningShell

C BurningShell

He BurningShell

H BurningShell

Envelope Radius: ~ 5 AU

Core Radius: ~1 Rearth

Page 44: Method of Trigonometric Parallaxes

Crab NebulaRemnant of Supernova in 1054 AD

Page 45: Method of Trigonometric Parallaxes

40,000 20,000 10,000 5,000 2,500

106

104

102

1

10-2

10-4

Temperature (K)

Lum

inos

ity (L

sun)

Age: ~1 Myr

Zero AgeMain Sequence

Page 46: Method of Trigonometric Parallaxes

40,000 20,000 10,000 5,000 2,500

106

104

102

1

10-2

10-4

Temperature (K)

Lum

inos

ity (L

sun)

Age: ~10 Myr

B Stars

Page 47: Method of Trigonometric Parallaxes

40,000 20,000 10,000 5,000 2,500

106

104

102

1

10-2

10-4

Temperature (K)

Lum

inos

ity (L

sun)

Age: ~100 Myr

A Stars

Page 48: Method of Trigonometric Parallaxes

40,000 20,000 10,000 5,000 2,500

106

104

102

1

10-2

10-4

Temperature (K)

Lum

inos

ity (L

sun)

Age: ~1 Gyr

F Stars

Page 49: Method of Trigonometric Parallaxes

40,000 20,000 10,000 5,000 2,500

106

104

102

1

10-2

10-4

Temperature (K)

Lum

inos

ity (L

sun)

Age: ~10 Gyr

G Stars

Page 50: Method of Trigonometric Parallaxes

Age: ~10 Myr Age: ~1 Gyr

TempBlue Red Temp

BStars

FStars

Lum

inos

ity

Page 51: Method of Trigonometric Parallaxes

Typical Globular Cluster H-R Diagram

40,000 20,000 10,000 5,000 2,500

106

104

102

1

10-2

10-4

Temperature (K)

Lum

inos

ity (L

sun)

HorizontalBranchZero-Age

MainSequence Giant

Branch

MainSequence

Page 52: Method of Trigonometric Parallaxes
Page 53: Method of Trigonometric Parallaxes

Sirius BM 1.0 Msun

R 5800 km

White Dwarf

Page 54: Method of Trigonometric Parallaxes

Neutron Star

M=1.5 Msun

R10 km(spaceimaging.com)

Page 55: Method of Trigonometric Parallaxes

Inside a Neutron Star

CrystallineIron Crust

NeutronSuperfluid

??

SuperconductingProtons

Page 56: Method of Trigonometric Parallaxes

RadiationBeam

MagneticField

SpinAxis

Pulsar Model

Page 57: Method of Trigonometric Parallaxes

Neutron Star vs. Black Hole

Neutron StarM=1.5 Msun

R=10 kmManhattan

(spaceimaging.com)

Black HoleM=1.5 Msun

RS=4.5 km

Page 58: Method of Trigonometric Parallaxes

Jack

Jill

Page 59: Method of Trigonometric Parallaxes

Spectroscopic Parallax

A8V Star

40,000 20,000 10,000 5,000 2,500

106

104

102

1

10-2

10-4

Temperature (K)

Lum

inos

ity (L

sun)

A8I Star

L = 10 Lsun

Spectral Type

L = 22,000 Lsun

Page 60: Method of Trigonometric Parallaxes

Period-Luminosity Relationship

1 5 10 50

102

103

104

Period (days)

Lum

inos

ity

(Lsu

n) Cepheids

RR Lyraes

3 100300.5

Page 61: Method of Trigonometric Parallaxes

Cepheid P-L Relation

Page 62: Method of Trigonometric Parallaxes

Example: Cepheid with a 10-day period

1 5 10 50

102

103

104

Period (days)

Lum

inos

ity

(Lsu

n)

3 100300.5

L=5011 Lsun

P=10d

CepheidP-L Relation

Page 63: Method of Trigonometric Parallaxes

Wright’s Milky Way (1750)

Manystars

Few Stars

Page 64: Method of Trigonometric Parallaxes

The Herschels’ Milky Way Map (1785)

Page 65: Method of Trigonometric Parallaxes

Kapteyn Model (1922)

~17 kpc

~3 kpc

kpc = kiloparsec = 1000 pc

Page 66: Method of Trigonometric Parallaxes

Shapley’s Globular Cluster Distribution

3020101020 40

10

20

10

20

kpc

Page 67: Method of Trigonometric Parallaxes

Hubble “Tuning Fork” Diagram

E0 E3 E7

SBa SBb SBc

Sa Sb Sc

Page 68: Method of Trigonometric Parallaxes

NGC 4414Type Sc

Flocculent & Grand Design Spirals

NGC 628Type Sc

Page 69: Method of Trigonometric Parallaxes

E1 E5

Elliptical Galaxies

Page 70: Method of Trigonometric Parallaxes

Sa

Sb

Sc

Ordinary Spirals

Page 71: Method of Trigonometric Parallaxes

SBa

SBb

SBc

Barred Spirals

Page 72: Method of Trigonometric Parallaxes

Irregular Galaxies

Large Magellanic Cloud Small Magellanic Cloud

Page 73: Method of Trigonometric Parallaxes

NGC 628Face-On Sc

NGC 891Edge-On Sb

Page 74: Method of Trigonometric Parallaxes

Rotating Disk

Rotation Axis

Approaching SideBLUESHIFT

Receding SideREDSHIFT

Page 75: Method of Trigonometric Parallaxes

Differential Rotation

Inner orbit pulls ahead

Outer orbitlags behind

Page 76: Method of Trigonometric Parallaxes

Schematic Spiral Galaxy Rotation Curve

0

0

25

200

100

5 10 15 20

Radius from the Center (kpc)

Rot

atio

n S

peed

(k

m/s

ec)

Solid-BodyRotation

Differential Rotation

Page 77: Method of Trigonometric Parallaxes

Observed vs. Predicted Keplerian

50

200

100

0

10 20 30 400Radius from the Center (kpc)

Rot

atio

n S

peed

(k

m/s

ec)

KeplerianPrediction

Page 78: Method of Trigonometric Parallaxes

Orbit Crowding Schematic

Nested EllipticalOrbits, each oneslightly rotated.

Page 79: Method of Trigonometric Parallaxes

NGC147NGC185

M32

And IIAnd III

Fornax

Scupltor SMC

Sagitarius

DracoUrsa Minor Leo II

NGC 205And I

NGC 6822

M31

M33

IC1613

LMC

MW

Carina

Leo I

The Local Group

1 Mpc

Page 80: Method of Trigonometric Parallaxes

~100 Mpc

Local Group

LocalSupercluster

Data from Tully, 1982, ApJ, 257, 389

Page 81: Method of Trigonometric Parallaxes

Voids

Filaments2dF Redshift Survey>120,000 Galaxies

300 Mpc

600 Mpc

Page 82: Method of Trigonometric Parallaxes

Raising Tides

Far side Near side

Page 83: Method of Trigonometric Parallaxes

Bright Active Galaxy

NGC 5548

Variability (1988-1996)HST Image

OSU AGN Watch

Page 84: Method of Trigonometric Parallaxes

Normal Galaxy

Active Galaxy

Page 85: Method of Trigonometric Parallaxes

Composite Quasar SpectrumSloan Digital Sky Survey

Page 86: Method of Trigonometric Parallaxes

Jane’s clock as seen by Jane:

Tick!!

Photon Path = 3 meters

Page 87: Method of Trigonometric Parallaxes

Jane’s clock as seen by Dick:

0.8c

Tick!!

Photon Path = 5 meters

Page 88: Method of Trigonometric Parallaxes

Perihelion Precession of Mercury

Earlier Later

Page 89: Method of Trigonometric Parallaxes

Bending of Starlight(side view)

TruePosition

Sun

ApparentPosition

Scale is exaggerated

Earth

Page 90: Method of Trigonometric Parallaxes

0 0.5 1Deflection(arcsec)

1o 2o

1o

2oView from EarthData from 1922 Eclipse

Page 91: Method of Trigonometric Parallaxes

Hubble’s Data (1929)

1000

500

0

0 1 2Distance (Mpc)

Rec

essi

on V

eloc

ity

(km

/sec

)

Page 92: Method of Trigonometric Parallaxes

Hubble & Humason (1931)

10 20 30

5000

10,000

15,000

20,000

Rec

essi

on V

eloc

ity

(km

/sec

)

Distance (Mpc)

1929 Data

Page 93: Method of Trigonometric Parallaxes

Freedman et al. (2001) – HST Key Project

Freedman et al. 2001, ApJ, 553, 47

Page 94: Method of Trigonometric Parallaxes

Freedman et al. 2001, ApJ, 553, 47

Page 95: Method of Trigonometric Parallaxes

Expanding Space-Time

Universe 2x largerGalaxies are 2x further apart

Page 96: Method of Trigonometric Parallaxes

Recession Velocity (cz)

Dis

tanc

e (d

)

Accelerating(slower in past)

Decelerating(faster in past)

Constant

Page 97: Method of Trigonometric Parallaxes

2-D Examples of Curved Spaces

Positive(Spherical)

Flat

Negative(Hyperbolic)

Page 98: Method of Trigonometric Parallaxes

d L (d

ista

nce)

Dev

iatio

n fro

m

=0

, m=0

.3 m

odel

Redshift (z)

m=0.3, =0

Accelerated

Decelerated

Page 99: Method of Trigonometric Parallaxes

Very Open<<1

Closed>1 Oscillating?

Time

Dis

tanc

e B

etw

een

Gal

axie

s

~100 Billion Years

Histories for =0

Critical/Open=1

Page 100: Method of Trigonometric Parallaxes

Matter & Energy Content of the Universe

dm

m

Page 101: Method of Trigonometric Parallaxes

Size

Binding Energy

Atoms 10–10 m 103 K Nuclei 10–14 m 1010 K p & n 10–15 m 1011 K Quarks 10–18 m 1013 K

Typical Sizes & Binding Energies

Page 102: Method of Trigonometric Parallaxes

Big

Ban

g

Infla

tion

GU

Ts E

poch

Pla

nck

Epo

ch

Nuc

leos

ynth

esis

Nuc

leon

Fre

ezeo

ut

Qua

rk F

reez

eout

Ele

ctro

wea

k D

ecou

plin

g

Page 103: Method of Trigonometric Parallaxes

Rec

ombi

natio

n30

0,00

0 yr

Toda

y~1

3 G

yr

Dar

k A

ges

Firs

t Sta

rs &

G

alax

ies

1 G

yr

500

Myr

Big

Ban

g0

Sun

For

ms

9 G

yr