metastable susy breakingscipp.ucsc.edu/~haber/planck08/abel.pdfoutline 1. inevitability of...

33
Metastable SUSY breaking SAA w/ C.Durnford, J.Jaeckel, V.V.Khoze Metastable SUSY breaking – p.1

Upload: others

Post on 11-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

Metastable SUSY breakingSAA w/ C.Durnford, J.Jaeckel, V.V.Khoze

Metastable SUSY breaking – p.1

Page 2: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

Outline

1. Inevitability of Metastability: the Nelson-Seiberg theorem

2. ISS metastable SUSY breaking

3. Explicit vs. spontaneous R-breaking

4. Strong coupling and cascades

Metastable SUSY breaking – p.2

Page 3: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

Inevitability of metastability

Metastable SUSY breaking – p.3

Page 4: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

Metastability and Nelson-Seiberg

Consider low-energy, calculable models of SUSY breaking

The potential is V = |Fi|2 = | ∂W

∂Φi|2

Q: When is SUSY broken? i.e. when does Fi = 0 not have solutionsfor all i?

A: (Nelson-Seiberg) In a generic theory, when there is anR-symmetry.

Φi → eiRiαΦi

θ → eiαθ

W → e−2iαW

Metastable SUSY breaking – p.4

Page 5: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

Metastability and Nelson-Seiberg

But gaugino mass terms Mλλαλα have non-zero R-charge (sinceWα = λα + . . ., and Lgauge =

d2θWαW α)

Non-zero gaugino masses require both R-symmetry and SUSYbreaking but these are mutually exclusive!

Metastable SUSY breaking – p.5

Page 6: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

Metastability and Nelson-Seiberg

Option 1: explicit R breaking

W = WR−sym + εWR−breaking

A global SUSY minimum develops O(1/ε) away in field space, withMλ ∝ ε

Metastable SUSY breaking – p.6

Page 7: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

Metastability and Nelson-Seiberg

Option 2: spontaneous R breaking

The massless R-axion?

To give the massless R-axion a mass need additional R-symmetrybreaking εWR−breaking, but now Maxion ∝ ε

Metastable SUSY breaking – p.7

Page 8: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

Metastability and Nelson-Seiberg

For gauge mediation the Universe is (probably) metastable!

Analysis in SUGRA more complicated because the Kahler potentialenters and minimum can be at > MPl (see H.Abe, T.Kobayashi,Y.Omura).

Metastable SUSY breaking – p.8

Page 9: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

ISS metastable models

Metastable SUSY breaking – p.9

Page 10: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

ISS meta-stable models

Content of the microscopic “electric model” (Intriligator, Seiberg, Shihhep-th/0602239)

N = 1 gauge SU(Nc)

mesons QjQj ; i, j = 1 . . .Nf

fundamental electric quarks Qai ; a = 1 . . . Nc

antifundamentals (Dirac mass mQ) Qia

If the beta function is negative b0 = 3Nc − Nf > 0 then the Wilsoniangauge coupling

e−8π2/g2(E) =

(

E

Λ

)

−b0

is strongly coupled in the IR (Λ is the Landau pole).

Metastable SUSY breaking – p.10

Page 11: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

ISS meta-stable models

For certain values of parameters a Seiberg dual exists in the IRContent of the macroscopic “magnetic model”

N = 1 gauge SU(N) N = Nf − Nc

mesons Φji ; i, j = 1 . . . Nf

fundamental magnetic quarks ϕai ; a = 1 . . .N

antifundamentals ϕia

Exists if b0 = 3N − Nf < 0 so the Wilsonian coupling is runs to weakcoupling in the IR.

Metastable SUSY breaking – p.11

Page 12: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

ISS meta-stable models

Thus we require

Nc + 1 ≤ Nf <3

2Nc

Lowest values are Nc = 5, Nf = 7.Assume minimal Kahler potential K = ϕϕ + ϕ ¯ϕ + ΦΦ

Metastable SUSY breaking – p.12

Page 13: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

Characteristics of the IR theory

Magnetic theory contains tree-level plus ADS like dynamically generatedterm W = Wcl + Wdyn:

Wcl = h TrNf(ϕΦϕ) − hµ2TrNf

Φ

Wdyn = N

(

hNf detNfΦ

ΛNf−3N

)1

N

where µ2 ≈ mQΛ.

Metastable SUSY breaking – p.13

Page 14: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

Characteristics of the IR theory

Near origin ignoring Wdyn we have an R-symmetry =⇒ |vac〉+:

FΦij

= h (ϕi.ϕj − µ2δj

i ) 6= 0

cannot be satisfied since ϕi.ϕj has rank N = Nf − Nc < Nf .

But Wdyn break this R-symmetry (anomalous) =⇒ |vac〉0:

0 2 4 6 8 10

2

4

6

8

10

Metastable SUSY breaking – p.14

Page 15: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

Characteristics of the IR theory

The form of the O’Raifeartaigh IR superpotential is explained

The metastable potential long lived (ISS)

S4 ∼ 2π2 Φ40

V+

= 2π2 Φ40

h2µ4

New model building (Franco Uranga; Amariti Forcella Girardello Mariotto; Forste;Dine Feng Silverstein; Dine Mason; Kitano Ooguri Ookouchi; Murayama Nomura;Csaki Shirman Terning; Aharony Seiberg; SAA Durnford Jaeckel Khoze; Brummer;Feretti; Haba Maru; Ellwanger, Jean-Louis, Teixeira; Bajc, Melfo)

The metastable vacuum is favoured thermally (SAA Chu Jaeckel Khoze;Craig Fox Wacker; Fischler Kaplunovsky Krishnan Mannelli Torres)

Inflation (Craig; Davis Postma; Linde Westphal; Savoy Sil)

F-term uplift (Dudas Papineau Pokorski; Kallosh Linde; Lebedev Lowen MambriniNilles Ratz; Abe Higaki Kobayashi Omura; Brax Davis2 Postma)

Metastable SUSY breaking – p.15

Page 16: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

Characteristics of the IR theory

Aside: the cosmological constant can be adjusted in an entirely separatehidden sector without affecting the gauge mediated phenomenology

V ∼ exp(K)

(

|F |2 − 3|W |2

M2

P

)

Fi = Wi +Ki

M2

P

W.

Then W ∼ M2s MP (e.g. Polonyi-like W → W + c), but since

Ki ∼ µ ≪ MP we have Fi = Fi + O(µ3/MP ).

Metastable SUSY breaking – p.16

Page 17: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

Explicit vs spontaneousR-breaking

Metastable SUSY breaking – p.17

Page 18: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

Explicit (naturalized) R-breaking

e.g Murayama Nomura; Aharony Seiberg; Kitano, Ooguri Ookouchi; Csaki,

Shirman, Terning; ....

How to generate an R-breaking Mλ without destabilizing? (NoteMλ = 0 at origin). Consider adding explicit R-symmetry breakingmessengers called f .

W ⊃λ

MPLQQ f.f + Mf.f

−→λΛ

MPLTr(Φ)f.f + Mf.f + ϕΦϕ − µ2Tr(Φ)

Metastable SUSY breaking – p.18

Page 19: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

Explicit (naturalized) R-breaking

These would generate gaugino masses

with global SUSY now restored at

λΛ

MPL〈f.f〉 = µ2 ;

λΛ

MPLTr(〈Φ〉) = −M

Duality explains the smallness of explicit R-symmetry breaking.

Metastable SUSY breaking – p.19

Page 20: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

Spontaneous R-breaking

Consider a “baryon-deformed” ISS (SAA, C.Durnford, J.Jaeckel, V.V.Khoze,

arXiv.0707.295, arXiv:0712.1812):

W = Φijϕi.ϕj − Tr(µ2Φ) + mεabεrsϕarϕb

s

where r, s = 1, 2 are the 1st and second generation numbers only.

We will use ϕ and ϕ to mediate to gauginos so let Nf = 7 and gaugeSU(5)f ⊃ GSM factor

take µ2ij = diag{µ2

2I2, µ25I5}

Metastable SUSY breaking – p.20

Page 21: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

Spontaneous R-symmetry breaking

As prescribed by Shih (hep-th/0703196) the model has an R-symmetrywith R 6= 0, 2...

SU(5) SU(2) U(1)R

Φij ≡

0

@

Y Z

Z X

1

A

0

@

4 × 1 �

� Adj + 1

1

A

0

@

1 1

1 1

1

A 2

ϕ ≡

0

@

φ

ρ

1

A

0

@

1

1

A � 1

ϕ ≡

0

@

φ

ρ

1

A

0

@

1

1

A � −1

Metastable SUSY breaking – p.21

Page 22: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

Spontaneous R-symmetry breaking

Runaway to broken SUSY with φ → ∞ and φ.φ = µ22, stabilized by

Coleman-Weinberg potential:

20 30 40 50 60

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

Metastable SUSY breaking – p.22

Page 23: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

Spontaneous R-symmetry breaking

Gaugino mass is naively

Mλ ≈g2

A

16π2〈X〉

µ25

µ22

Get additional suppression (F 3χ required) (c.f. Izawa, Nomura, Tobe,

Yanagida)

Metastable SUSY breaking – p.23

Page 24: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

Spontaneous R-symmetry breaking

Scalar masses can be much larger (don’t depend on R-symmetrybreaking):

Mscalar ∼g2

A

16π2µ5

The deformation m takes phenomenology continuously fromalmost-gauge-mediation-like to “split-SUSY-like”

Metastable SUSY breaking – p.24

Page 25: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

Spontaneous R-symmetry breaking

Compare spontaneous and explicit R-breaking (SUSYGen)

tan β µMSSM eL, µL t1 χ01

χ± h0 , H0, A g

Sp 58.7 2891 4165 10345 60.8 100.7 124.8 184.5 414.2

Exp 38.9 939 747.9 1593 270.3 526.5 137.6 975.1 1500

Metastable SUSY breaking – p.25

Page 26: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

Strong coupling andcascades

(in preparation)

Metastable SUSY breaking – p.26

Page 27: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

The Landau pole issue

Since the additional fields are in SU(5) multiplets, the beta functions of theMSSM gauge couplings are modified universally as

bA = b(MSSM)A − 9

The SM gauge couplings at a scale Q > µ in our model are thereforerelated to the traditional MSSM ones as

α−1A = (α−1

A )(MSSM) −9

2πlog(Q/µ)

Λ(MSSM)

µ∼ 105

Are both the MSSM and the ISS sector magnetic duals?

Metastable SUSY breaking – p.27

Page 28: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

The MSSM at the bottom of a cascade

c.f. Klebanov-Strassler cascade SU((k − 1)M) × SU(kM) with 2 flavours:

SU((k − 1)M) × SU(kM) → SU((k − 1)M) × SU((k − 2)M)

Wash, rinse, repeat: supergravity dual→field theory

Metastable SUSY breaking – p.28

Page 29: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

The MSSM at the bottom of a cascade

Verlinde et al’s suggested equivalent for the MSSM based onLR-symmetric quiver (Heckman Vafa Verlinde Wijnholt);

Metastable SUSY breaking – p.29

Page 30: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

The MSSM at the bottom of a cascade

Perhaps at the bottom of the cascade it goes;

Metastable SUSY breaking – p.30

Page 31: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

The MSSM at the bottom of a cascade

ΦRR

ΦLL

ΦLR

f, f

f, f

ϕ, ϕ

The superpotential is of the MN form

W = λTr(Φ)f.f + Mf.f + hϕΦϕ − hµ2Tr(Φ)

with suppressed λ (comes from a 3 meson-coupling of the electric theory)

Metastable SUSY breaking – p.31

Page 32: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

The MSSM at the bottom of a cascade

The ISS parameter µ is the scale of SU(2)R breaking

The Higgs is the pseudo-Goldstone mode ΦLR, hence mH ∼ h2µ8π

Gaugino masses Mλ ∼ g2

16π2

µ2

M requires M ∼ g2µ/(2πh2)

Metastable SUSY breaking – p.32

Page 33: Metastable SUSY breakingscipp.ucsc.edu/~haber/planck08/Abel.pdfOutline 1. Inevitability of Metastability: the Nelson-Seiberg theorem 2. ISS metastable SUSY breaking 3. Explicit vs

Summary

Metastability inevitable for low energy SUSY breaking

Extremely simple model of direct mediation from baryon-deformedISS

Phenomenology between gauge-mediation and split-SUSY - prefersheavy scalars

Different patterns of SUSY spectrum for explicit vs spontaneousR-breaking

Landau pole in MSSM → MSSM cascade?

Interesting possibilities for embedding ISS in cascade models

Can be done for both explicit and spontaneous R-breaking

Metastable SUSY breaking – p.33