metal adatom structures on semiconductor surfaces: model

53
Ralph Claessen Physikalisches Institut and Röntgen Research Center for Complex Materials (RCCM) Universität Würzburg, Germany Metal adatom structures on semiconductor surfaces: Model systems for low-dimensional quantum matter ECRYS 2014, Cargese, 18-08-2014 Tomonaga-Luttinger physics in 1D (non)Rashba physics in 2D Mott-Hubbard physics in a 2D triangular lattice Elemental topological insulator

Upload: others

Post on 18-Dec-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Metal adatom structures on semiconductor surfaces: Model

Ralph Claessen Physikalisches Institut and Röntgen Research Center for Complex Materials (RCCM) Universität Würzburg, Germany

Metal adatom structures on semiconductor surfaces: Model systems for low-dimensional quantum matter

ECRYS 2014, Cargese, 18-08-2014

• Tomonaga-Luttinger physics in 1D • (non)Rashba physics in 2D • Mott-Hubbard physics in a 2D triangular lattice • Elemental topological insulator

Page 2: Metal adatom structures on semiconductor surfaces: Model

Ralph Claessen Physikalisches Institut and Röntgen Research Center for Complex Materials (RCCM) Universität Würzburg, Germany

Surfaces as "Quantum Simulators"

ECRYS 2014, Cargese, 18-08-2014

• Tomonaga-Luttinger physics in 1D • (non)Rashba physics in 2D • Mott-Hubbard physics in a 2D triangular lattice • Elemental topological insulator

Page 3: Metal adatom structures on semiconductor surfaces: Model

The Würzburg "nanoteam" and friends

SR experiments L. Patthey (SLS/PSI) X.Y. Cui J.H. Dil (U Zürich/EPFL/PSI) B. Slomski F. Meier Eli Rotenberg (ALS) A. Bostwick J.L. McChesney LT-STM R. Matzdorf (U Kassel) S. Mietke

J. Schäfer P. Höpfner C. Blumenstein S. Meyer

C. Loho M. Scholz T. Schramm J. Settelein T.E. Umbach

J. Aulbach A. Barfuß L. Dudy A. Dollinger M. Heßmann

Theory W. Hanke (U Würzburg) A. Fleszar Gang Li S.C. Erwin (Naval Research Lab)

work supported by

Page 4: Metal adatom structures on semiconductor surfaces: Model

Transition metal oxides - Mott-Hubbard physics - high-Tc superconductivity - CMR

- …

"Electronic crystals" and emergent quantum phenomena

Bechgaard salts: - CDW/SDW instabilities - Tomonaga-Luttinger

liquid

ET-salts: - magnetic frustration - spin liquid behavior

Page 5: Metal adatom structures on semiconductor surfaces: Model

ARPES

Direct experimental access to electronic structure

STM/STS

Page 6: Metal adatom structures on semiconductor surfaces: Model

Transition metal oxides - Mott-Hubbard physics - high-Tc superconductivity - CMR

- …

"Electronic crystals" and emergent quantum phenomena

Bechgaard salts: - CDW/SDW instabilities - Tomonaga-Luttinger

liquid

ET-salts: - magnetic frustration - spin liquid behavior

Page 7: Metal adatom structures on semiconductor surfaces: Model

Alternative approach: surfaces as model systems

Example: metal adatom (sub)monolayers on semiconductor surfaces

• epitaxial and self-assembled growth of 2D and 1D structures

• control and tunability: - substrate orientation - adatom/substrate combination - doping by coadsorption - …

model systems with "tunable" electronic and magnetic properties

Page 8: Metal adatom structures on semiconductor surfaces: Model

Atomic nanowires: Au/Ge(100)

Page 9: Metal adatom structures on semiconductor surfaces: Model

Interacting electrons in 1D

breakdown of the Fermi liquid concept

spin-charge separation

Tomonaga-Luttinger liquid as new paradigm

suitable materials for TLL behavior ?

Atomic nanowires: Au/Ge(100)

classical interaction in 1D: fatal

Page 10: Metal adatom structures on semiconductor surfaces: Model

Interacting electrons in 1D

breakdown of the Fermi liquid concept

spin-charge separation

Tomonaga-Luttinger liquid as new paradigm

suitable materials for TLL behavior ?

Atomic nanowires: Au/Ge(100)

e.g., organic CT salts: TTF-TCNQ

-0.2 0.0 0.2 0.4

-0.8

-0.6

-0.4

-0.2

0.0

E-E F (

eV)

k|| (Å-1)

-0.2 0.0 0.2

-0.8

-0.6

-0.4

-0.2

0.0

k|| (π/b)

photoemission

1D Hubbard model

Realization: anisotropic crystals

PRL 88, 096402 (2002)

Page 11: Metal adatom structures on semiconductor surfaces: Model

Realization: Au atom chains on Ge(100)

Interacting electrons in 1D

breakdown of the Fermi liquid concept

spin-charge separation

Tomonaga-Luttinger liquid as new paradigm

suitable materials for TLL behavior ?

PRL 101, 236802 (2008)

Atomic nanowires: Au/Ge(100)

Page 12: Metal adatom structures on semiconductor surfaces: Model

Interacting electrons in 1D

breakdown of the Fermi liquid concept

spin-charge separation

Tomonaga-Luttinger liquid as new paradigm

suitable materials for TLL behavior ?

PRL 101, 236802 (2008)

Atomic nanowires: Au/Ge(100)

Realization: Au atom chains on Ge(100)

Page 13: Metal adatom structures on semiconductor surfaces: Model

Atomic nanowires: Au/Ge(100)

"single domain" sample

PRB 83, 121411(R) (2011)

ARPES: 1D Fermi surface and "band" dispersion

Page 14: Metal adatom structures on semiconductor surfaces: Model

Atomic nanowires: Au/Ge(100)

STM: differential tunneling conductivity

Nature Phys. 7, 776 (2011)

gradual depression of spectral weight at zero bias

no structural or CDW phase transition below 585 K

Page 15: Metal adatom structures on semiconductor surfaces: Model

Atomic nanowires: Au/Ge(100)

Nature Phys. 7, 776 (2011)

Page 16: Metal adatom structures on semiconductor surfaces: Model

Atomic nanowires: Au/Ge(100)

differential tunneling conductivity scaled conductivity

dEdf

kTeVi

kTeVT

dVdI

+

2

221cosh

πααTLL scaling behavior:

kTeVvsT

dVdI .53.0

Nature Phys. 7, 776 (2011)

Page 17: Metal adatom structures on semiconductor surfaces: Model

Atomic nanowires: Au/Ge(100)

Playing the surface playground: "bounded Luttinger liquid": chain end effects? effect of local impurities dimensional crossover: 1D 2D carrier doping …

Au epitaxy

Vacancy

Impurity

Bridge

Page 18: Metal adatom structures on semiconductor surfaces: Model

α = 1.20

α = 0.61

chain end

"bulk"

Power law exponents in TLL theory (charge stiffness )

bulk:

chain end:

53.0)2( 141 =−+= −

ρρα KKbulk

42.1)1( 121 =−= −

ρα Kend

26.0=ρK

Atomic nanowires: Au/Ge(100)

Nature Phys. 7, 776 (2011)

Page 19: Metal adatom structures on semiconductor surfaces: Model

Y

Other examples of atomic nanowires

Au/Si(hhk)

Au double chains

antibonding bonding Au bands

spin-polarized Rashba bands

Page 20: Metal adatom structures on semiconductor surfaces: Model

Other examples of atomic nanowires

Au/Si(hhk)

"silicene nanoribbons" (cf. graphene)

Page 21: Metal adatom structures on semiconductor surfaces: Model

Other examples of atomic nanowires

Au/Si(hhk)

"silicene nanoribbons" (cf. graphene)

DFT: extra electron @ very 3rd Si edge atom with local moment and AFM order S.C. Erwin et al., Nat. Comm. (2010)

spin-integrated STM: confirms theory PRL 111, 137203 (2013

theory experiment

Page 22: Metal adatom structures on semiconductor surfaces: Model

Other examples of atomic nanowires

Au/Si(hhk)

13.3 Å

8×2 4×1

4 atoms

U = -1.0 V

CDW

300 K 65 K

In/Si(111)

prototypical CDW system H.W. Yeom et al. (1999)

In/Si(111)

following talk

Page 23: Metal adatom structures on semiconductor surfaces: Model

Revolving spins: Au/Ge(111)

Page 24: Metal adatom structures on semiconductor surfaces: Model

Revolving spins: Au/Ge(111)

Page 25: Metal adatom structures on semiconductor surfaces: Model

Spintronics without magnetism ?

spin-orbit coupling at surface: Rashba effect

search for Rashba-split metallic surface states on insulating substrate

Realization: √3×√3 Au/Ge(111)

PRB 83, 235435 (2011)

STM

Revolving spins: Au/Ge(111)

picture: J.H. Dil

Page 26: Metal adatom structures on semiconductor surfaces: Model

Revolving spins: Au/Ge(111)

PRB 83, 235435 (2011)

ARPES: mapping of bands and Fermi surface

metallic surface state on a semiconducting substrate

Page 27: Metal adatom structures on semiconductor surfaces: Model

Revolving spins: Au/Ge(111)

kll(Å-1) KM

ARPES SIS beamline, SLS

PRB 83, 235435 (2011)

band dispersions Fermi surface

Page 28: Metal adatom structures on semiconductor surfaces: Model

Revolving spins: Au/Ge(111)

kll(Å-1) KM

ARPES SIS beamline, SLS

PRB 83, 235435 (2011)

band theory LDA+SIC

Au Ge

spin-orbit splitting band dispersions

Page 29: Metal adatom structures on semiconductor surfaces: Model

Revolving spins: Au/Ge(111)

ARPES SIS beamline, SLS

PRB 83, 235435 (2011)

band dispersions Fermi surface

kll(Å-1) KM

Page 30: Metal adatom structures on semiconductor surfaces: Model

Revolving spins: Au/Ge(111)

PRB 83, 235435 (2011)

Fermi surface spin-resolved LDA

spin-integrated ARPES

Page 31: Metal adatom structures on semiconductor surfaces: Model

Revolving spins: Au/Ge(111)

PRL 108, 186801 (2012)

3D spin-resolved ARPES COPHEE @ SIS beamline, SLS

Fermi surface spin-resolved LDA

Page 32: Metal adatom structures on semiconductor surfaces: Model

Revolving spins: Au/Ge(111)

PRL 108, 186801 (2012)

3D spin-resolved ARPES COPHEE @ SIS beamline, SLS

non-Rashba behavior: in- and out-of plane spin rotations

similar to topological insulators

experimental SARPES spin vector results

Page 33: Metal adatom structures on semiconductor surfaces: Model

Revolving spins: Au/Ge(111)

PRL 108, 186801 (2012)

non-Rashba behavior: in- and out-of plane spin rotations

similar to topological insulators

experimental SARPES spin vector results

3D spin-resolved ARPES COPHEE @ SIS beamline, SLS

Page 34: Metal adatom structures on semiconductor surfaces: Model

isotropic Rashba term

hexagonal warping and spin-z component

radial rotation of planar spin

Spin texture of Au surface bands: striking similarity to the Dirac state of the topological insulator Bi2Te3

Fu, PRL 2009: DFT: Hexagonal Warping in Bi2Te3

Basak, PRB 2011: DFT: Radial Rotation in Bi2Te3

Revolving spins: Au/Ge(111)

Page 35: Metal adatom structures on semiconductor surfaces: Model

Physics of frustration: Sn/Si(111)

Page 36: Metal adatom structures on semiconductor surfaces: Model

Problem:

magnetic frustrations of local spin-1/2 moments on a triangular lattice

spin liquid? 120° AFM Néel order? other ordered states?

Physics of frustration: Sn/Si(111)

Realization: √3×√3 Sn/Si(111)

J. Settelein et al.

STM

?

Page 37: Metal adatom structures on semiconductor surfaces: Model

Physics of frustration: Sn/Si(111)

scanning tunneling spectroscopy (STS) J. Settelein et al.

metal (1/2 filled)

Sn 5pz

Nat. Comm. 4, 1620 (2013)

ARPES

LHB UHB

G. Li et al., PRB 83, 041104 (2011)

Mott insulator

Page 38: Metal adatom structures on semiconductor surfaces: Model

Physics of frustration: Sn/Si(111)

local moments → magnetic ordering ?

e.g., 120° Néel order Sn/Si(111)

degeneracy

band backfolding for 3x3 SDW

3x3 superstructure

Nat. Comm. 4, 1620 (2013)

Page 39: Metal adatom structures on semiconductor surfaces: Model

Physics of frustration: Sn/Si(111)

metal (1/2 filled)

Sn 5pz

ARPES

G. Li et al., PRB 83, 041104 (2011)

ARPES "shadow bands"

G. Li et al., Nat. Comm. 4, 1620 (2013)

Page 40: Metal adatom structures on semiconductor surfaces: Model

Physics of frustration: Sn/Si(111)

G. Li et al., PRB 83, 041104(R) (2011)

row-wise antiferromagnetic order

Page 41: Metal adatom structures on semiconductor surfaces: Model

Direct comparison of ARPES with DCA spectral function

Physics of frustration: Sn/Si(111)

confirms (short-range) collinear AF row-wise order

Nat. Comm. 4, 1620 (2013)

Page 42: Metal adatom structures on semiconductor surfaces: Model

Direct comparison of ARPES with DCA spectral function

Physics of frustration: Sn/Si(111)

confirms (short-range) collinear AF row-wise order

Nat. Comm. 4, 1620 (2013)

Page 43: Metal adatom structures on semiconductor surfaces: Model

Physics of frustration

Isotropic triangular Hubbard model

spiral magnetic

NMI (spin liquid)

chiral (d+id) superconductivity

NMI

Playing the surface playground:

group IV atoms on (111) surfaces: Sn, Pb on Si(111), Ge(111) tuning of correlation, bandfilling, spin-orbit coupling topological superconductivity ? …

example: superconductivity in

Pb/Si(111)

Zhang et al. , Nat. Phys. (2010) Uchihashi et al., PRL (2011)

Page 44: Metal adatom structures on semiconductor surfaces: Model

Topological insulators go elemental: 𝜶-Sn/InSb(001)

Page 45: Metal adatom structures on semiconductor surfaces: Model

Topological insulators (TIs)

spin-orbit coupling +

band-inverted insulator

conducting and spin-polarized surface/edge states in the gap

3D TIs with 2D surface states

2D TIs with 1D edge states

M. König et al., Science 318, 766 (2007)

Page 46: Metal adatom structures on semiconductor surfaces: Model

known 3D topological insulators: • Bi2X3 (X=Se, Te) • strained HgTe /CdTe(001) • …

Page 47: Metal adatom structures on semiconductor surfaces: Model

PRL 11, 157205 (2013)

known 3D topological insulators: • Bi2X3 (X=Se, Te) • strained HgTe /CdTe(001) • …

Page 48: Metal adatom structures on semiconductor surfaces: Model

PRL 111, 157205 (2013)

known 3D topological insulators: • Bi2X3 (X=Se, Te) • strained HgTe /CdTe(001) • … predicted: • strained α-Sn /InSb(001)

Page 49: Metal adatom structures on semiconductor surfaces: Model

PRL 111, 157205 (2013)

ARPES: topological surface states and Dirac cone

Page 50: Metal adatom structures on semiconductor surfaces: Model

PRL 111, 157205 (2013)

Identification of the topological character: spin-polarized ARPES

Page 51: Metal adatom structures on semiconductor surfaces: Model

PRL 111, 157205 (2013)

Doping effects: - intrinsic p-doping by In diffusion - counter-doping with Te, acts also as surfactant

Page 52: Metal adatom structures on semiconductor surfaces: Model

Sn as 2D topological insulator: stanene

stanene = Sn bilayer (cf. graphene) control parameters: - strain

- dangling bond saturation (sp2 vs. sp3)

Page 53: Metal adatom structures on semiconductor surfaces: Model

Metal adatoms on semiconductor surfaces as Quantum Simulators • experimentally well-controlled

• "tunable" properties

• ideally suited for ARPES and STM/STS

• examples: - Fermi liquid breakdown in 1D - (non-)Rashba physics in 2D - Mott-Hubbard physics in frustrated geometries - elemental topological insulator

• perspectives: - doping/bandfilling effects - 1D-2D crossover - spin-orbit coupling - topological physics - …

Take home message

work supported by