metabolite analysis, environmental factors, and a transgenic...

168
1 METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC APPROACH TO UNDERSTANDING STRAWBERRY (FRAGARIA X ANANASSA) FLAVOR By MICHAEL LEE SCHWIETERMAN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2013

Upload: others

Post on 07-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

1

METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC APPROACH TO UNDERSTANDING STRAWBERRY (FRAGARIA X ANANASSA)

FLAVOR

By

MICHAEL LEE SCHWIETERMAN

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2013

Page 2: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

2

© 2013 Michael Lee Schwieterman

Page 3: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

3

To my family, friends, and colleagues

Page 4: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

4

ACKNOWLEDGMENTS

I thank my Ph.D. committee for their patience and guidance. Deepest

appreciation to my advisor, Dr. David Clark, for providing direction, encouragement and

sound advice when it was needed most, as well as, providing the freedom to pursue

research in an unfamiliar system. I recognize Dr. Thomas Colquhoun for his continued

dedication to my professional development and positive outlook throughout my Ph.D.

education. Portions of this work are supported by grants from USDA Specialty Crop

Block Grant. Graduate funding is provided by USDA National Needs Fellowship. Great

gratitude is extended to Timothy Johnson, HHMI Undergraduate Scholar, and Yasmin

Dweik, for assistance with screening transgenic lines for volatiles and transcript

abundance and Elizabeth Jaworski for assistance with Fragaria volatile analysis.

Page 5: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

5

TABLE OF CONTENTS page

ACKNOWLEDGMENTS .................................................................................................. 4

LIST OF TABLES ............................................................................................................ 8

LIST OF FIGURES .......................................................................................................... 9

LIST OF ABBREVIATIONS ........................................................................................... 10

ABSTRACT ................................................................................................................... 11

CHAPTER

1 INTRODUCTION AND LITERATURE REVIEW ..................................................... 13

Introduction ............................................................................................................. 13

Fruit Development and Regulation ......................................................................... 14 Strawberry Flavor ................................................................................................... 15 Methyl Anthranilate Biosynthesis ............................................................................ 19

Fragaria x ananassa ............................................................................................... 20 Perception and Integration of Flavor ....................................................................... 22

Research Objectives ............................................................................................... 24 Identifying Flavor-Related Metabolite Targets Using Psychophysics ............... 25 Field and Postharvest Environment Factors Influencing Flavor-Related

Metabolites .................................................................................................... 25 A Transgenic Approach to Introduce F. vesca Volatile Compound in F. x

ananassa....................................................................................................... 25

2 STRAWBERRY FLAVOR: DIVERSE CHEMICAL COMPOSITIONS, A SEASONAL INFLUENCE, AND EFFECTS ON SENSORY PERCEPTION ........... 27

Background ............................................................................................................. 27 Results .................................................................................................................... 31

Progression of Harvest Season Affects Metabolic Content and Perceived Quality of Strawberry ..................................................................................... 31

Overall Liking is Subject to Ratings of Sweetness, Flavor, and Texture ........... 32 Texture Liking Correlates to Fruit Firmness...................................................... 33

Sweetness Intensity is a Result of Sugar Content ............................................ 34 Sourness Intensity is Partially Explained by Titratable Acidity .......................... 35 Flavor Intensity is Influenced by Total and Specific Volatile Content ................ 36 Specific Volatiles Enhance Sweetness Intensity Independent of Sugars ......... 38

Discussion .............................................................................................................. 38

Materials and Methods............................................................................................ 48 Plant Material ................................................................................................... 48

Volatile Analysis ............................................................................................... 49

Page 6: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

6

Sugars and Acids Quantification ...................................................................... 50

Firmness Determination ................................................................................... 51 Sensory Analysis .............................................................................................. 51

Statistical Analysis ............................................................................................ 52

3 ENGINEERING OF THE AROMA FLAVOR VOLATILE METHYL ANTHRANILATE IN PETUNIA AND STRAWBERRY ........................................... 108

Background ........................................................................................................... 108 Results .................................................................................................................. 112

Methyl Anthranilate Content among Fragaria ................................................. 112 ZmAAMT1.1 Expression Analysis in Transgenic Plants ................................. 113

Overexpression construct and plant transformation ................................. 113 Petunia expression analysis..................................................................... 114

Strawberry expression analysis ............................................................... 115 ZmAAMT1.1 Volatile Analysis in Transgenic Plants ....................................... 115

Discussion ............................................................................................................ 116 Future Work .......................................................................................................... 121

Materials and Methods.......................................................................................... 122 Plant Material ................................................................................................. 122 Generation of Transgenic ZmAAMT1.1 Plants ............................................... 123

Overexpression construct ........................................................................ 123 Plant transformation and regeneration ..................................................... 124

RNA Isolation ................................................................................................. 124 Petunia ..................................................................................................... 124 Strawberry ................................................................................................ 125

Expression Analysis ....................................................................................... 125 Volatile Analysis ............................................................................................. 126

Statistical Analysis .......................................................................................... 128

4 EFFECTS OF ENHANCED LIGHT ENVIRONMENTS ON POSTHARVEST VOLATILE PROFILES OF ‘STRAWBERRY FESTIVAL’ ...................................... 138

Background ........................................................................................................... 138 Results .................................................................................................................. 139

Postharvest Exposure to Narrow-Bandwidth Light Alters Strawberry Volatile Content........................................................................................................ 139

Red and Black Plastic Mulch .......................................................................... 140 Reflective light qualities from red and black mulch .................................. 140

Strawberry volatile profiles are not consistently different between red and black mulch treatments .................................................................. 141

Consumers do not distinguish or prefer strawberry from red or black plastic mulch ......................................................................................... 141

Discussion ............................................................................................................ 142

Materials and Methods.......................................................................................... 144 Postharvest Narrow-Bandwidth Light Treatment ............................................ 144

Red and Black Plastic Mulch Field Conditions ............................................... 145

Page 7: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

7

Flavor Panel ................................................................................................... 146

Volatile Analysis ............................................................................................. 146 Statistical Analysis .......................................................................................... 148

LIST OF REFERENCES ............................................................................................. 157

BIOGRAPHICAL SKETCH .......................................................................................... 168

Page 8: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

8

LIST OF TABLES

Table page 2-1 Means of consumer, physical, and biochemical measures. ................................ 53

2-2 Standard errors of consumer, physical, and biochemical measures. .................. 70

2-3 Fruit attribute bivariate fit to harvest week. ......................................................... 87

2-4 Fruit attribute bivariate fir to consumer measure. ............................................... 89

2-5 Multiple regression for identification of sweetness enhancing volatiles. ............. 95

2-6 Index of CAS registry number, chemical name, and formula. ............................. 97

4-1 Photosynthetically active, red, and far-red radiation reflected by selective reflective mulch. ................................................................................................ 149

4-2 Consumer panels do not perceive differences between red and black plastic mulch grown strawberries. ................................................................................ 150

4-3 Volatile analysis does not detect consistent differences between red and black plastic mulch grown strawberries. ........................................................... 151

Page 9: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

9

LIST OF FIGURES

Figure page 2-1. Cluster analysis of strawberry samples and quantified metabolites. ................... 100

2-2. Season environmental conditions. ...................................................................... 102

2-3. Individual sugars and total volatiles regressed against season progression. ...... 103

2-4. Regression of hedonic and sensory measures to physical and chemical fruit attributes. .......................................................................................................... 105

2-5. Volatile chemical structures. ............................................................................... 107

3-1. Alternative methyl anthranilate biosynthetic pathways in Zea mays and Vitis labrusca.. .......................................................................................................... 129

3-2. Identification of methyl anthranilate in Fragaria. ................................................... 130

3-3. Methyl anthranilate content among various lines of Fragaria species. ................. 131

3-4. Binary vector for stable transformation of petunia and strawberry with ZmAAMT1.1.. ................................................................................................... 132

3-5. ZmAAMT1.1 transcript abundance in overexpressing Petunia x hybrida cv. ‘Mitchell Diploid’. ............................................................................................... 133

3-6. ZmAAMT1.1 transcript abundance in overexpressing Petunia x hybrida cv. ‘Mitchell Diploid’. ............................................................................................... 134

3-7. Emission of methyl anthranilate from petunia flowers over-expressing ZmAAMT1.1. .................................................................................................... 135

3-8. Identification of methyl anthranilate in petunia flower over-expressing ZmAAMT1.1. .................................................................................................... 136

3-9. ZmAAMT1.1 transcript abundance in overexpressing Fragaria x ananassa cv. ‘Strawberry Festival’. ........................................................................................ 137

4-1. Spectroradiometer readings of the light qualities used in postharvest treatments......................................................................................................... 153

4-2. Effect of light treatments on selected volatile compounds in Fragaria x. ananassa cv. ‘Strawberry Festival’. .................................................................. 154

4-3. Spectrum of light reflected from red and black plastic mulch. .............................. 156

Page 10: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

10

LIST OF ABBREVIATIONS

CDS Coding sequence

CM CHORISMATE MUTASE

COA Coenzyme A

DMF 3(2H)-furanone, 4-methoxy-2,5-dimethyl-

F. Fragaria

FID Flame ionization detector

GC Gas chromatograph

GLMS General labeled magnitude scale

LED Light emitting diode

MS Mass spectrometer

PNOS NOPALINE SYNTHASE 3’ promotor

NOST NOPALINE SYNTHASE 3’ terminator

NPTII NEOMYCIN PHOSPHOTRANSFERASE II

P. Petunia

PAR Photosynthetic active radiation

PFMV 34S Figwort mosaic virus 34S promoter

QRT-PCR Quantitative real time polymerase chain reaction

SQRT-PCR Semi-quantitative – polymerase chain reaction

SSC Soluble solids content

TA Titratable acidity

VLAMAT Vitis labrusca ANTHRANILOYL-CoA:METHANOL ACYLTRANSFERASE

ZMAAMT Zea mays ANTHRANILIC ACID METHYL TRANSFERASE

Page 11: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

11

Abstract of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC APPROACH TO UNDERSTANDING STRAWBERRY (FRAGARIA X ANANASSA)

FLAVOR

By

Michael Lee Schwieterman

August 2013

Chair: David G. Clark Major: Plant Molecular and Cellular Biology

Fresh strawberries (Fragaria x ananassa) are valued for their red color, juicy

texture, distinct aroma, and sweet fruity flavor. To ensure continued consumption, flavor

must be high in quality, but defining this complex trait has proven to be difficult. This

work presents a metabolite perspective on the perception, variation, and alteration of

strawberry fruit flavor to increase consumer acceptability.

In the primary study, genetic and environmentally induced variation among

strawberry is exploited by simultaneously assaying fruit for: inventories of volatile

compounds, sugars, and organic acids; physical measures of titratable acidity, soluble

solids content, and firmness; and consumer hedonic and sensory responses.

Psychophysics analysis determines seasonal effects and fruit attributes influencing

hedonics and sensory perception of strawberry fruit.

Seasonal progression negatively influences soluble solids content, primarily

through sucrose, leading to decreased volatile content. These alterations are

perceivable because sweetness intensity, flavor intensity, and texture liking significantly

influence overall liking through variations in sugar concentrations, volatiles, and

Page 12: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

12

firmness. Specific aroma volatiles make contributions to perceived sweetness

independent of fruit sugar concentration. Volatiles that increase perception of

sweetness without adding sugar will have far-reaching effects in food chemistry, and

also provides targets for future breeding efforts of consumer defined traits.

The biosynthesis of an underrepresented volatile in commercial germplasm,

methyl anthranilate, is the target of genetically engineering Petunia x hybrida ‘Mitchell

Diploid’ and ‘Strawberry Festival’. Expression of Zea mays ANTHRANILIC ACID

METHYL TRANSFERASE 1.1 will hypothetically enhance its aroma or flavor. Petunia

flowers with expression emit methyl anthranilate at levels similar to Fragaria vesca.

Expression is confirmed in over twenty T0 lines of ‘Strawberry Festival’. Consumer

panels assaying petunia and strawberry with methyl anthranilate phenotype will assist in

assaying this volatiles influence on perception.

Metabolite inventory of diverse strawberry fruit coupled with consumer panels

identifies rare and important compounds associated with strawberry flavor. Transgenic

efforts will determine methyl anthranilate influence on consumers. Furthermore,

exploration of environmental manipulation provides some prospective technologies for

altering strawberry volatile profiles. Whether through breeding, transgenics, or

environmental manipulation increasing the flavor of strawberry will ensure the current

trend of increasing consumption of this highly nutritious food.

Page 13: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

13

CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW

Introduction

Modern strawberry, Fragaria x ananassa, is the product of a recent

anthropomorphic botanical hybridization of otherwise geographically isolated species.

Hybrids of two octoploid species, male North American F. virginiana and female South

American F. chiloensis, began appearing in European gardens during the 18th century

(Darrow, 1966). Comparison of genomic microsatellite markers among F. x ananassa

cultivars and a geographically diverse collection of progenitors reveals this relatively

young crop species is founded on narrow genetic diversity (Chambers et al., 2013), yet

is cultivated in most arable regions of the world at a level over 4.3 million metric tons of

fruit annually (Hancock, 1999; UN, 2013).

The genus Fragaria is distributed globally throughout temperate and tropical

zones, with the most widespread distribution belonging to F. vesca. Other Fragaria

possess more geographically restricted distributions, most of which are within or

bordering that of F. vesca. A specific example is that of South American F. chiloensis.

Also, the genus exhibits a natural ploidy diversity ranging from diploid to decaploid

(Folta and Davis, 2006; Hancock, 1999). The relatively small stature and herbaceous

nature of strawberry strongly contradicts that of typical Rosaceae, but the perennial life

cycle is mutual. The morphologically distinct aggregate accessory fruit of strawberry, in

which the achenes are exposed on a swollen fleshy receptacle, has been a prize of

domestication for over two millennia (Hancock, 1999).

Modern fully ripe fruit of F. x ananassa is characterized by its large size, vibrant

red color, reduced firmness, distinct aroma, and sweet fruity flavor (Brummell and

Page 14: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

14

Harpster, 2001; Hong and Wrolstad, 1990; Schieberle and Hofmann, 1997; Ulrich et al.,

1997; Whitaker et al., 2011). Strawberry is also a rich source of phenolics, vitamins, and

minerals contributing to the nutritional quality of the fruit and promoting human health

through antioxidant, anti-inflammatory, antimicrobial, anti-allergy, anti-hypertensive and

anticancer properties (Brown et al., 2012; Giampieri et al., 2013; Giampieri et al., 2012;

Mikulic-Petkovsek et al., 2012; Tulipani et al., 2008). Ever increasing production and

consumption of strawberry (UN, 2013) is driven by demand for high quality fruit,

secondarily beneficial to our health, and facilitated by intensive modern horticulture and

sophisticated breeding practices.

Fruit Development and Regulation

Fertilization of the many ovary/ovule inflorescence of strawberry gives rise to the

aggregate fruit (Perkins-Veazie, 1995). Here, the achenes (true fruit) are fixed on the

epidermis, the outermost layer of the swollen receptacle (false fruit), also consisting of a

cortex and internal pith (Suutarinen et al., 1998). Fruit development and ripening is

coordinated and regulated with embryo formation and achene maturation most notably

through achene localized auxin biosynthesis (Given et al., 1988; Nitsch, 1950). The

three stages of non-climacteric, auxin dependent strawberry fruit development; division,

expansion and ripening, involve gains in diameter and fresh weight. During this

transition color shifts from green to white to dark red in about forty days after anthesis

(Zhang et al., 2011a). Increasing auxin during division and expansion stages promotes

growth, peaking prior to fruit whitening when achenes mature. Decreased auxin content

coincides with fruit maturation and ripening, thus auxin biosynthesis promotes fruit

growth but inhibits ripening prior to achene maturation (Fait et al., 2008; Given et al.,

1988).

Page 15: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

15

The dynamic state of fruit ripening is exemplified by the nearly 250 cDNAs with

significant differential expression (177 up, 70 down) in red compared to green fruit

determined using a microarray of 1700 probes (Aharoni et al., 2000). A physical

attribute of later ripening stages is the reduction of firmness. Dissolution of middle

lamella, which functions in cell-to-cell adhesion, contributes to the ‘melting’ texture of

fruit. Further, a transcript with 200-fold greater expression in ripening fruit compared to

green, POLYGALACTURONASE, contributes to fruit softening by aiding in catalytic cell

wall disassembly (Brummell and Harpster, 2001; Quesada et al., 2009; Trainotti et al.,

1999). Other differentially expressed transcripts are related to primary and secondary

metabolism, and transcription of multiple ripening–associated genes are initiated by

reduced auxin (Aharoni et al., 2002; Aharoni and O'Connell, 2002; Castillejo et al.,

2004; Manning, 1994, 1998). Transcriptional reconfiguration coordinates the final shift

for strawberry ripening. This highly metabolically active process is visualized by the late

accumulation of the predominant red pigment, pelargonidin 3-glucoside (Hoffmann et

al., 2006), an anthocyanin synthesized from the primary metabolite phenylalanine (Fait

et al., 2008). Of great metabolic interest in the final days of ripening is the accumulation

of multiple sugars and organic acids, which culminates with peak volatile emissions

(Menager et al., 2004).

Strawberry Flavor

The sweet fruity flavor and distinct aroma of a ripe strawberry is the result of a

multifaceted metabolite mixture of sugars, organic acids and volatile compounds, which

are coordinated at ripening through genetic and environmental factors. Early work in

tomato correlated fruit acceptability to sweetness and flavor, which were also shown to

be the result of sugar and volatile content (Baldwin et al., 1998). Glucose, fructose and

Page 16: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

16

sucrose accumulate to high levels and account for over 7% of fresh berry weight

(Menager et al., 2004). Citric acid and malic acid produce sour sensations at

concentrations around two to three micromolar (Settle et al., 1986) and are two of the

predominant organic acids in strawberry, in which total content is on the order of 50

millimolar (Mikulic-Petkovsek et al., 2012).

The predominant classes of volatile compounds in ripe strawberry are esters,

lactones, terpenes, aldehydes and characteristic furanones (Menager et al., 2004;

Olbricht et al., 2008) A comparison of strawberry volatile studies underscores the

complexity in defining strawberry aroma, as each source considers a highly variable

subset of total volatiles (Hakala et al., 2002; Jetti et al., 2007; Olbricht et al., 2008;

Schieberle and Hofmann, 1997; Ulrich et al., 1997). Methods such as odor value, aroma

extract dilution analysis, and GC-olfactometry have been used to relate concentrations

of volatiles in strawberry to perception through direct analysis or threshold determination

(Zabetakis and Holden, 1997). These methodologies can be criticized for lack of

physiological relevance as complex mixtures of volatiles are perceived entirely different

than individual volatiles (Bartoshuk and Klee, 2013). These studies have identified

butanoic acid, methyl ester (623-42-7); butanoic acid, ethyl ester (105-54-4); hexanoic

acid, methyl ester (106-70-7); hexanoic acid, ethyl ester (123-66-0); 1,6-octadien-3-ol,

3,7-dimethyl- (linalool) (78-70-6); butanoic acid, 2-methyl- (116-53-0); and 2,5-dimethyl-

4-methoxy-2,3-dihydrofuran-3-one (DMF) (4077-47-8) as integral to strawberry aroma

volatiles (Hakala et al., 2002; Jetti et al., 2007; Olbricht et al., 2008; Schieberle and

Hofmann, 1997; Ulrich et al., 1997). Comparisons of consumer preference among a

Page 17: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

17

variety of fresh strawberries and volatile analysis has described less preferable varieties

as possessing less esters, more decalactones and hexanoic acid (Ulrich et al., 1997).

During ripening, strawberry fruits become a nutrient sink and facilitate a

metabolism resulting in the biochemical constituents of strawberry flavor. In developing

strawberry a constant high sucrose sink strength (Basson et al., 2010) results in an

active metabolism able to accumulate, synthesize, and spontaneously produce a

diversity of primary and secondary metabolites (Fait et al., 2008). Transient

transformation of strawberry fruit with a RNA interference construct targeting the

predominant sucrose transporter responsible for sucrose accumulation results in

arrested ripening. Decreased sucrose and abscisic acid content measured in arrested

fruit indicates sucrose as a molecular signal in ripening (Jia et al., 2013). The constant

influx of sucrose is primary to all other aspects of fruit metabolism. It is the source for

alkanes, alcohols, aldehydes, ketones, esters, sugars, organic acids, fatty acids,

furanones, amino acids, and anthocyanins, all of which increase in concentration at one

point in development or ripening (Fait et al., 2008; Zhang et al., 2011a). Many of these

classes also represent precursors of volatile production, thus facilitating a flux through

biosynthetic pathways for the synthesis of some of the 360 identified volatile

compounds detected across Fragaria (Du et al., 2011b; Maarse, 1991).

Within a single fruit, only a fraction of volatiles are emitted and even fewer

contribute to perceived aroma. Functional genomic work has characterized strawberry

enzymes responsible for the synthesis of several volatile components of strawberry

aroma. QUINONE OXIDOREDUCTASE, an enzyme with highly specialized function, is

characterized to be responsible for 3(2H)-furanone, 4-hydroxy-2,5-dimethyl-

Page 18: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

18

biosynthesis (Raab et al., 2006). This furanone is indicated to be paramount to

strawberry aroma, in that six of six panelists detected an orthonasal and retronasal

difference when absent in model juice (Schieberle and Hofmann, 1997). Also, this key

aroma compound is a substrate of O-METHYLTRANSFERASE activity to produce

3(2H)-furanone, 4-methoxy-2,5-dimethyl- (DMF) (Lavid et al., 2002), which is less

defining of strawberry odor (Schieberle and Hofmann, 1997). Two ALCOHOL ACYL

TRANSFERASES are characterized in commercial strawberry, which accept a range of

alcohols and acyl-CoA substrates to produce a great diversity of esters, generally

associated with fruit aroma. Also, the transcripts of these enzymes demonstrate fruit

specific expression (Aharoni et al., 2000; Cumplido-Laso et al., 2012). Linalool and

nerolidol are terpenes associated with many fruits and flowers. Volatile analysis,

enzymatic characterization, and molecular markers have confirmed the genetic and

biochemical ability to produce these compounds arises from NEROLIDOL SYNTHASE

1 (NES1). Biosynthetic ability is conferred to commercial F. x ananassa and most hybrid

progenitors, but not hexaploid, tetraploid, or diploid species (Aharoni et al., 2004;

Chambers et al., 2012).

Differences in the presence or absence of volatile compounds exist in

commercial material compared to wild germplasm. This variation in regards to flavor

related metabolites is potentially a result of artificial selection prior or post hybridization.

Domestication of F. chiloensis began at least 700 years prior to hybridization with F.

virginiana (Finn et al., 2013). All accessions of F. chiloensis (4) and F. x ananassa (112)

analyzed contain a linalool producing NES1 allele that is absent in F. vesca materials.

Volatile analysis supports the allelic distribution across Fragaria species, particularly in

Page 19: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

19

commercial material (Chambers et al., 2012; Pyysalo et al., 1979). On the other hand,

methyl anthranilate is a common component of F. vesca, but relatively rare in F. x

ananassa (Pyysalo et al., 1979; Ulrich et al., 2007). Determination of biochemical

differences of strawberry aroma and correlated genetic elements can facilitate targeted

approaches to alter flavor of commercial fruit.

Methyl Anthranilate Biosynthesis

Methyl anthranilate is an aromatic ester that is characteristic of Concord grape,

Vitis labrusca. It has been used as a food additive to impart such flavor, for several

decades. The compound has been identified in F. x ananassa: ‘Mieze Schindler’ and F.

vesca. However, it is essentially lacking in fruit produced by commercial cultivars (Ulrich

et al., 2007). Enzymes of alternative pathways capable of producing methyl anthranilate

are characterized in Zea mays (Koellner et al., 2010) and Vitis labrusca (Wang and De

Luca, 2005) where volatile biosynthesis arises under herbivory or fruit ripening,

respectively.

ANTHRANILOYL-CoA:METHANOL ACYLTRANSFERASE of Vitis labrusca

(VlAMAT) catalyzes an alcohol acyl-transfer among anthraniloyl-coenzyme A

(anthraniloyl-CoA) and methanol for methyl anthranilate biosynthesis. This ATP

dependent reaction occurs in the grape where protein and methanol concentrations

increase to relatively high levels in fruit following the onset of ripening (Wang and De

Luca, 2005). Conversely, herbivory induced wound signaling results in up-regulation of

ANTHRANILIC ACID METHYL TRNASFERASE 1.1 of Zea mays (ZmAAMT1.1) and

anthranilic acid, which serves as the substrate for the S-adenosyl methionine dependent

reaction (Koellner et al., 2010). Previously characterized, F. x ananassa

STRAWBERRY ALCOHOL ACYLTRANSFERASE (FaSAAT) or a homolog may be

Page 20: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

20

responsible for the production of methyl anthranilate endogenously as its reactivity with

methanol has been confirmed. However, anthraniloyl-CoA was not tested as a

substrate, thus methyl anthranilate production by FaSAAT cannot be ruled out (Aharoni

et al., 2000).

A transgenic effort for methyl anthranilate biosynthesis in strawberry is attractive

due to deficiency in commercial material, hypothetical lack of specificity for endogenous

methyl anthranilate production, and multiple elucidated pathways in other plant species.

Also, stable Agrobacterium transformation of strawberry is becoming routine with the

first report in 1990 by Nehra (1990), despite long regeneration time and sensitivity to

kanamycin antibiotic selection (Folta et al., 2006). Expedited assaying of gene function

routinely relies on transient expression via Agrobacterium infiltration of fruit tissue

(Hoffmann et al., 2006; Meng et al., 2009; Miyawaki et al., 2012). On the other hand,

stable transformation is choice when developing materials tackling commercial interests

of disease resistance (Chalavi et al., 2003; Schestibratov and Dolgov, 2005; Vellicce et

al., 2006), fruit softening (Lee and Kim, 2011), fruit growth and development (Mezzetti et

al., 2004), and aroma enhancement (Lunkenbein et al., 2006). The ease and existing

infrastructure of vegetative propagation of strawberry is encouraging for the

dissemination of transgenic commercial material.

Fragaria x ananassa

The allo-octoploid genome of F. x ananassa provides great diversity and

adaptability for breeding efforts, but prevents use of lower ploidy material in the

development of new cultivars. Inbreeding depression increases with each generation of

related cross in strawberry; however with stringent parent selection genetic gains

comparable to unrelated crosses are achievable (Shaw, 1997). Introgression of F.

Page 21: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

21

chiloensis and F. virginiana is increasing and serves as a means of genetic diversity

(Hancock et al., 2001; Smith et al., 2003). Nonetheless, commercial cultivars are the

result of seedling selection, relying on vegetative propagation of daughter plants due to

heterozygosity of seedling progeny (Hancock, 1999; Whitaker et al., 2011).

Following initial hybridization events in the 18th century strawberry breeding

remained a personal endeavor, until the United States Department of Agriculture began

funding breeding efforts in Oregon. Efforts were initially focused on quality traits for

fresh and processed fruit, but disease resistance and abiotic tolerances soon became

priorities (Darrow, 1966). Intense breeding of strawberry has resulted in cultivars from a

relatively limited group in the United States, including proprietary development by

Driscoll’s (Watsonville, CA) and publically disseminated cultivars from the University of

California at Davis and the University of Florida. Today another shift is occurring as a

number of public and private entities, both domestic and abroad, are initiating breeding

programs. This expansion is the result of efforts to develop region specific cultivars, as

well as expanding targets for breeding including increase shelf-life, mechanical

harvestability, nutritional content, and flavor.

A highly successful product of the University of Florida’s breeding program under

Craig Chandler was “Strawberry Festival’. This cultivar is a first generation seedling

selection from a cross between ‘Rosa Linda’ and ‘Oso Grande’. ‘Strawberry Festival’

was selected for its large, firm, conical shaped fruit of desirable red internal and external

color and excellent flavor (Chandler et al., 2000). Currently, ‘Strawberry Festival’ is the

predominant cultivar by acreage in the state of Florida and therefore, an attractive

system for fundamental and applied work aimed at understanding flavor in the context

Page 22: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

22

of the consumer. Furthermore, the commercial relevance of ‘Strawberry Festival’ in

Florida and beyond makes it an attractive candidate for cultural, postharvest and

transgenic manipulation to enhance flavor.

Perception and Integration of Flavor

Flavor is the perceptual and hedonic response to the synthesis of sensory

signals of taste, odor, and tactile sensation (Prescott, 2004). In the case of strawberry

and other fruits, sensory elicitation is the result of multiple direct interactions between

plant and human: sugars and acids, pigments, turgor and structure, and volatile

compounds, which elicit the senses of taste, vision, tactile sensation, and olfaction,

respectively, in the development of flavor (Causse et al., 2001; Christensen, 1983; Hall,

1968; Stommel et al., 2005).

The senses of taste and olfaction directly sample the chemicals present in food,

but striking distinctions must be made between the two systems. The basic taste

qualities of sweet, sour, salty, and bitter are very limited in diversity compared to

innumerable distinct olfactory qualities. Nearly 350 olfactory receptor genes were

originally putatively identified following sequencing of the human genome (Breslin,

2001; Zozulya et al., 2001). A more recent study using 1000 Genomes Project identifies

over 4,000 protein variants from 413 intact olfactory receptor loci, of which roughly 600

allelic variants per person are estimated (Olender et al., 2012). This person to person

genetic variation is suggestive of a highly personalized olfactory system. Most

importantly, the distinction is between orthonasal and retronasal olfaction. Orthonasal

olfaction is the result of smelling i.e. bringing odor in through the nose, while retronasal

olfaction is elicited by odorants traveling from oral cavity or esophagus up to nasal

cavity (Pierce and Halpern, 1996). Orthonasal olfaction introduces volatile compounds

Page 23: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

23

to the nasal epithelium via inhalation, while retronasal olfaction is achieved during

exhalation (Masaoka et al., 2010). Specifically, the path of odorants distinguishes the

manner of interaction between consumer and potential food, with orthonasal

contributing to aroma and retronasal to flavor.

Integration of sensory stimuli relies on projection signals to various structures of

the brain. Interestingly, portions of orthonasal (smell) and retronasal (flavor) olfaction

project to different brain areas for processing (Small and Jones-Gotman, 2001), while

taste activation partly overlaps that of retronasal olfaction for integration to produce

flavor (Small et al., 2004). Co-activation of taste and retronasal olfaction, but not

orthonasal, is shown to elicit responses at otherwise independently sub-threshold

levels, exemplifying the ability of multiple sensory integration to intensify one another

(Veldhuizen et al., 2010). Mechanical blockage of retronasal olfaction during tasting of

solutions significantly reduces the ability to correctly identify solute, including sucrose

(Masaoka et al., 2010). Combination of taste and retronasal olfaction results in a

sensory system more adapt at analyzing the chemical content of food, but cross

communication also facilitates manipulation of the system.

The food industry knows of the intensification of volatile sensations by the

addition of small amounts of sweeteners to solutions containing volatiles (SjÖStrÖM

Loren and Cairncross Stanley, 1955). The ability of volatiles to enhance taste is also a

known phenomenon (Lindemann, 2001). Enhancement of perceived sweetness is

demonstrated by addition of volatiles amyl acetate (banana) (Burdach et al., 1984) and

citral (Murphy and Cain, 1980). Multiple studies show the ability of strawberry aroma to

intensify the sweetness of a sugar solution (Frank and Byram, 1988; Stevenson et al.,

Page 24: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

24

1999), as well as pineapple, raspberry, passion fruit, lychee, and peach (Cliff and Noble,

1990; Stevenson et al., 1999). Also, sweetness enhancement has been achieved with

vanilla (Lavin and Lawless, 1998), caramel (Prescott, 1999; Stevenson et al., 1999),

and chocolate (Masaoka et al., 2010) indicating this phenomena is not only associated

with fruit volatiles. Studies to determine perceptional differences when tomato is spiked

with sugars, acids, and volatiles indicates cross talk between taste and olfaction, in

which volatiles impact perception of sweetness and vice versa (Baldwin et al., 2008).

Individual volatile compounds have been implicated in tomato to intensify perceived

sweetness independent of sugar content (Bartoshuk and Klee, 2013; Tieman et al.,

2012).

Diverse retronasal olfaction and fundamental taste sensory systems combine for

flavor perception in cortical structures of the brain. Enhanced sensitivity and accuracy in

discerning flavors arises from this cooperative effort, facilitating assessment of chemical

constituents of food via chemical senses. Multiple roles are potentially served, but

foremost survival requires finding and consuming ‘safe’ food for maintaining metabolism

and avoiding the deleterious (Breslin, 2001; Goff and Klee, 2006).

Research Objectives

The efforts of strawberry breeding, and other fruits and vegetables in general,

over the past half century have not been on quality traits such as taste, aroma or

texture. Breeder focus has been on visual appeal, firmness for post-harvest, and field

traits such as yield and resistance (Ulrich et al., 2007). With flavor associated traits

difficult to qualify and flavor as a whole at the discretion of a few breeders, present

commercial varieties likely fall short of consumer preference.

Page 25: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

25

Identifying Flavor-Related Metabolite Targets Using Psychophysics

Amassing dense flavor-relevant metabolite data and corresponding consumer

hedonic and sensory perceptual information of a diverse set of strawberry fruit allows for

clarification of many factors contributing to strawberry flavor and consumer preference,

using a psychophysics approach. Statistical analysis of detailed metabolite inventory of

54 unique strawberry samples coupled with consumer data of roughly 100 panelists per

sample provides a means to define absolute targets in an otherwise amorphous

phenotype.

Field and Postharvest Environment Factors Influencing Flavor-Related Metabolites

The breadth of genetic diversity assayed for metabolite content is highly

complimented by environmentally induced variation in strawberry fruit flavor-related

metabolites. Integration of weather data with metabolic profiling allows for elucidating

factors that are detrimental to sugar and volatile content, which are positive contributors

to flavor. Specific postharvest light treatments indicate a potential to influence volatile

content on the shelf, while a pilot field experiment does not produce consistent effects.

A Transgenic Approach to Introduce F. vesca Volatile Compound in F. x ananassa

An uncommon commercial strawberry volatile compound, methyl anthranilate, is

the subject of an applied transgenic effort. Emission of this volatile is known and

preferred in many fruit and flowers including F. vesca, therefore heterologous

expression of ZmAAMT1.1, which is characterized to be highly specific for methyl

anthranilate biosynthesis, in ‘Strawberry Festival’ is undertaken to enhance the deficient

cultivars flavor.

Page 26: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

26

The defining tenet of consumer-assisted selection is the integration of consumers

in the development of new cultivars. With sweetness and complex flavor being high

priorities of strawberry consumers (Colquhoun et al., 2012) it is critical to identify

metabolites that are significantly impactful upon consumer perception and

environmental factors affecting them. This work provides individual targets for breeding,

fundamental science, and transgenic efforts to produce more flavorful strawberries

using consumer-assisted selection.

Page 27: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

27

CHAPTER 2 STRAWBERRY FLAVOR: DIVERSE CHEMICAL COMPOSITIONS, A SEASONAL

INFLUENCE, AND EFFECTS ON SENSORY PERCEPTION

Background

Modern fully ripe strawberry (F. x ananassa) fruit is characterized by its large size

(MacKenzie et al., 2011), vibrant red color (Hong and Wrolstad, 1990), reduced

firmness (Brummell and Harpster, 2001), distinct aroma (Ulrich et al., 1997), and sweet

fruity flavor (Schieberle and Hofmann, 1997). The three stages of non-climacteric, auxin

dependent strawberry fruit development; division, expansion and ripening, involve gains

in diameter and fresh weight; during which color shifts from green to white to dark red in

roughly forty days following anthesis (Zhang et al., 2011a). Ripening of strawberry fruit

results in the accumulation of multiple sugars and organic acids, culminating with peak

volatile emission (Menager et al., 2004).

Flavor is the perceptual and hedonic response to the synthesis of sensory

signals of taste, odor, and tactile sensation (Prescott, 2004). The senses of taste and

olfaction directly sample the chemicals present in food; sugars, acids, and volatiles.

These metabolites are primary sensory elicitors of taste and olfaction that attenuate the

perception and hedonics of flavor. A consumer based survey indicated sweetness and

complex flavor as consistent favorable attributes of the “ideal” strawberry experience

(Colquhoun et al., 2012). Thus a ripe strawberry is metabolically poised to elicit the

greatest sensory and hedonic responses from consumers.

During strawberry fruit development sucrose is continually imported from

photosynthetic tissue. A consistently high sucrose invertase activity contributes to

carbon sink strength in all developmental stages of fruit (Basson et al., 2010). Delivered

sucrose is hydrolyzed into glucose and fructose and these three carbohydrates

Page 28: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

28

constitute the major soluble sugars of ripe strawberries, a result of their continual

accumulation during fruit development (Fait et al., 2008). In fact, an approximately

150% increase in their sum during ripening has been observed (Basson et al., 2010;

Menager et al., 2004). The influx of carbon initiates a complex network of primary and

secondary metabolism specific to ripening strawberry fruit (Fait et al., 2008).

The metabolic activity of ripening strawberry is visualized by the late

accumulation of the predominant red pigment, pelargonidin 3-glucoside (Hoffmann et

al., 2006), an anthocyanin derived from the primary metabolite phenylalanine (Fait et al.,

2008). The dynamics of fruit development are genetically driven as nearly 15% of

cDNAs probed using a microarray exhibit significant differential expression in red

compared to green fruit (Aharoni et al., 2000). One up regulated gene,

POLYGALACTURONASE 1.1, contributes to fruit softening (Quesada et al., 2009) by

aiding in catalytic cell wall disassembly (Trainotti et al., 1999). Reduction of firmness is

also attributed to dissolution of middle lamella, which functions in cell-to-cell adhesion

(Brummell and Harpster, 2001). Active shifts in transcript accumulation throughout

ripening result in metabolic network reconfiguration altering the chemical and physical

properties.

Metabolic profiling indicates an accumulation of sugars, organic acids, and fatty

acids as well as the consumption of amino acids during fruit development, which is likely

accountable for increases of alkanes, alcohols, aldehydes, anthocyanins, ketones,

esters, and furanones during fruit ripening (Zhang et al., 2011a). Many of these

chemical classes serve as precursors to volatile synthesis (Perez et al., 2002), thus

facilitating a metabolic flux through biosynthetic pathways for increased and diverse

Page 29: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

29

volatile emissions in ripe strawberry fruit, predominantly furanones, acids, esters,

lactones, and terpenes (Menager et al., 2004). Over 350 volatile compounds have been

identified across Fragaria (Du et al., 2011b; Maarse, 1991), however within a single

fruit, far fewer compounds are detectable and even fewer contribute to aroma or flavor

perception.

A cross comparison of five previous studies which analyze strawberry volatiles

depicts the lack of agreement in defining chemical constituents of strawberry aroma.

Each source considers a highly variable subset of total volatiles, which are determined

by signal intensity and/or human perception of isolated compounds (Hakala et al., 2002;

Jetti et al., 2007; Olbricht et al., 2008; Schieberle and Hofmann, 1997; Ulrich et al.,

1997). Mutual volatiles across studies include butanoic acid, methyl ester (623-42-7);

butanoic acid, ethyl ester (105-54-4); hexanoic acid, methyl ester (106-70-7); hexanoic

acid, ethyl ester (123-66-0); 1,6-octadien-3-ol, 3,7-dimethyl- (linalool) (78-70-6);

butanoic acid, 2-methyl- (116-53-0); and DMF(4077-47-8), the current consensus of

integral strawberry aroma compounds. Comparisons of consumer preference among a

variety of fresh strawberries and their volatile profiles describes less preferable varieties

as possessing fewer esters, more decalactones and hexanoic acid (Ulrich et al., 1997).

The breadth of volatile phenotypes previously reported highlights the diversity across

strawberry genotypes and underscores the complexity of the aggregate trait of aroma

and flavor.

Annual horticulture of strawberry in Florida requires continual harvest of ripe fruit

from late November through March. The mild winter production environment affects fruit

quality as gradually increasing temperatures beginning in mid-January result in a late

Page 30: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

30

season decline of soluble solids content (SSC) (MacKenzie et al., 2011). In fact,

increasing temperature is known to be responsible for increasing fruit maturation rate

and decreasing SSC independent of flowering date (MacKenzie and Chandler, 2009).

Previous work also identifies variability of SSC, as well as titratable acidity (TA) and

multiple classes of volatile compounds across harvest dates (Jouquand et al., 2008).

The complex fruit biochemistry, which is variably affected by genetic, environmental,

and developmental factors, coupled with individuals’ perceptional biases has made

defining strawberry flavor cumbersome.

Here we exploit the genetic and within-season variability of fruit to provide as

many unique strawberry experiences as possible to a large sample of consumers.

Parallel assays of ripe strawberry samples quantify fruit traits of TA, pH, SSC, and fruit

firmness, as well as the content of malic acid, citric acid, glucose, fructose, sucrose, and

81 volatile compounds. The contributions of these attributes to fruit quality was

determined by simultaneously evaluating samples for perceived sensory intensities of

sourness, sweetness, and strawberry flavor, as well as the hedonic responses of texture

and overall liking, i.e. the pleasure derived from consuming a strawberry sample, by

consumer panelists during the 2011 and 2012 seasons in Florida. Data analyses

determine progression of harvest season effects, gross variation of strawberry

experiences, and factors influencing hedonics and sensory perception of strawberry fruit

consumption using a psychophysics approach. Results suggestive of specific volatile

compounds enhancing perceived sweetness has led to an application for patent

(#13/869,132) with the United States Patent and Trademark Office.

Page 31: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

31

Results

The inventory of 54 fully ripe unique strawberry samples (35 cultivars, 12

harvests, two seasons) assayed for TA, pH, SSC, firmness, as well as the

concentrations of malic acid, citric acid, glucose, fructose, sucrose, and quantity of 81

volatile compounds is reported (Table 2-1). Cluster analysis of relative chemical

composition of all samples and derived hierarchy of both cultivar and metabolite

relatedness is displayed (Figure 2-1). The vertical dendrogram (Figure 2-1)

demonstrates the lack of relatedness among volatile compound concentration through

large distances of initials segments, as well as the high number of clusters. Slightly

more structure was observed among the samples, horizontal dendrogram (Figure 2-1),

due to genetic or environmental effects.

Progression of Harvest Season Affects Metabolic Content and Perceived Quality of Strawberry

Ranges of weather parameters are consistent between both 2011 and 2012

seasons, except for slightly more precipitation during late January of 2011 (Figure 2-2

G, H). Solar radiation, minimum and maximum temperature all increased gradually and

showed similar trends in both seasons (Figure 2-2 A-D). Relative humidity also,

remained constant during and across seasons (Figure 2-2 E, F). One manifestation of

these environmental changes over a harvest season was the negative relationship

between SSC and harvest week (R2 = 0.444***) (p < 0.05*, 0.01**, 0.001***) (Table 2-

3). The sugars glucose, fructose, and sucrose were quantified, and their sum (total

sugar) shows a strong positive correlation to SSC (R2 = 0.733) (data not shown) and to

harvest week (R2 = 0.287***) (Table 2-3). Biochemical differences as a result of harvest

week included a significant reduction in sucrose concentration (R2 = 0.350***) (Figure 2-

Page 32: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

32

3A). However, glucose (R2 = 0.064) (Figure 2-3B) and fructose (R2 = 0.041) (Figure 2-

3C) did not show a significant change within-season. Total volatile content decreased

as the seasons progressed (R2 = 0.338***) (Figure 2-3D). Also, a significant correlation

was observed among total volatiles and sucrose (R2 = 0.305***) (Figure 2-3E) but not

glucose (R2 = 0.005) (data not shown) or fructose (R2 = 0.001) (Figure 2-3F). The

simultaneous waning of SSC, predominantly sucrose, and volatiles was perceivable, as

overall liking decreases as the season progresses (R2 = 0.422***) (Figure 2-4E).

The hedonic response to strawberry samples was measured as overall liking

using the hedonic general labeled magnitude scale (gLMS) that ranges from -100 to

+100, i.e. least to most pleasurable experience (Bartoshuk et al., 2004; Bartoshuk et al.,

2003; Bartoshuk et al., 2005; Tieman et al., 2012). The strawberry sample with the

highest overall liking was ‘Strawberry Festival’ from first harvest week in the second

season (sn 2, wk 1), which elicited an overall liking of 36.6 (Table 2-1). The lowest, a

late season ‘Red Merlin’ (sn 1, wk 6) scored at 13.3, while the sample set median was

23.5 (Table 2-1). The benchmark ‘Strawberry Festival’ sample contains 3.5-fold more

sucrose and 27% more total volatiles than the least liked fruit (Table 2-1), demonstrating

the disparity between early and late harvest week fruit quality and its effect on

consumer preference.

Overall Liking is Subject to Ratings of Sweetness, Flavor, and Texture

In order to elucidate factors contributing to a positive strawberry experience,

overall liking of strawberry samples was fit against the hedonic measure of texture liking

and the sensory intensities of sweetness, sourness, and strawberry flavor intensity

(Figure 2-4A-D). High correlation with significant fit exists for texture liking (R2 =

0.490***) (Figure 2-4A), sweetness intensity (R2 = 0.742***) (Figure 2-4B), and

Page 33: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

33

strawberry flavor intensity (R2 = 0.604***) (Figure 2-4D). However, sourness intensity

showed no correlation to overall liking (R2 = 0.008) (Figure 2-4C). Texture liking had a

significant influence on overall liking, and though increasing firmness contributed to

greater texture liking (R2 = 0.358***) (Figure 2-4I), firmness did not influence overall

liking (R2 = 0.034) (Table 2-4). Sweetness intensity was the strongest driver of overall

liking measured in this study. The correlation between total sugar and overall liking (R2

= 0.488***) (Figure 2-4F) demonstrated the aggregate sugar metabolites effect on

hedonic response to strawberry fruit. Total sugar concentration accounted for nearly a

majority of the observed overall liking variation but was far from a complete measure.

Sourness intensity appears to have no influence on the hedonic response to strawberry

fruit. On the other hand, a limited range of perceivable sourness intensity may be

underrepresenting the effect as fit of TA to overall liking was significant, even if minor

(R2 = 0.099*) (Figure 2-4G). Total volatiles was the second aggregate metabolite

measure having a significant enhancing effect on the overall liking of strawberry (R2 =

0.179**) (Figure 2-4H). This was not surprising, as strawberry flavor intensity exhibits

the second highest correlation to overall liking (Figure 2-4D).

Texture Liking Correlates to Fruit Firmness

The upper limit for hedonics of texture was comparable to that of overall liking

and was observed in ‘Strawberry Festival’ (sn 1, wk 2) with an average of 35.7,

however, the low texture liking value of 5.8 for ‘Mara Des Bois’ (sn 1, wk 7) indicated a

more drastic disliking of “off” textures than lowest overall liking of fruit in its entirety

(Table 2-1). Firmness of samples was assayed by measuring the force required for a

set penetration of the fruit, acting as a proxy for texture. The firmness of the fresh

strawberry exhibited nearly a five-fold difference in force, 0.2 kg for ‘Mara des Bois’ (sn

Page 34: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

34

1, wk 7) and 1.0 kg for ‘Strawberry Festival’ (sn 1, wk 5) (Table 2-1). Increasing force of

penetration, i.e. increasing firmness of berries, was positively correlated with texture

liking, indicating a hedonic response to firmer fruit (R2 = 0.358***) (Figure 2-4I).

However, the texture liking rating for the two samples with greatest firmness is less than

expected (Figure 2-4I).

Sweetness Intensity is a Result of Sugar Content

Perceived sweetness intensity was the greatest predictor of overall liking. In fact,

the same samples scoring the highest and lowest for overall liking, ‘Strawberry Festival’

(sn 2, wk 1) and ‘Red Merlin’ (sn 1, wk 6), elicited the greatest (36.2) and least (14.59)

intense sensations of sweetness (Table 2-1). The early and late harvest week samples

supported the observed decline in perceived sweetness intensity across harvest weeks

(R2 = 0.471***) (Table 2-3), which was also observable for multiple sugar measures

(Figure 2-3A-C).

In the 54 samples assayed, the total sugar concentration ranged from 2.29 –

7.93%, a 3.5-fold difference (Table 2-1). Glucose and fructose concentrations exhibited

highly similar ranges to each other, 0.66 – 2.48% and 0.75 – 2.61%, respectively (Table

2-1), and near-perfect correlation (R2 = 0.984***) (data not shown) within a sample.

However, the concentration of glucose or fructose was not predictive of sucrose

concentration (R2 = 0.011 and 0.004, respectively) (data not shown). Sucrose

demonstrated a more dynamic state as its concentration dips as low as 0.16% and up to

2.84%, nearly a seventeen-fold difference among all samples.

Sucrose was the single metabolite with the most significant contribution to overall

liking (R2 = 0.442***) (Table 2-4). Individually, sucrose (R2 = 0.445***) (Figure 2-4M),

glucose (R2 = 0.337***) (Figure 2-4N), and fructose (R2 = 0.300***) (Table 2-4) all

Page 35: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

35

significantly influenced the variation in sweetness intensity. However, total sugar

actually only accounted for slightly more than two-thirds of sweetness intensity variation

(R2 = 0.687***) (Figure 2-4L) likely a result of covariation of glucose and fructose.

Interestingly, the total volatile content of a sample correlated positively with sweetness

intensity, potentially accounting for up to 13.9%** of variation in sweetness intensity

(Figure 2-4O).

Sourness Intensity is Partially Explained by Titratable Acidity

The sourness intensity of ‘Red Merlin’ (sn 1, wk 6) led to the lowest maximum

consumer response of 24.6 (Table 2-1). This same sample rated as the lowest in terms

of overall liking and sweetness (Table 2-1). Acidity of strawberry fruit was assayed using

measures of pH, TA, citric acid and malic acid. The pH of strawberry samples ranged

from 3.35 to 4.12, while TA ranges from 0.44% to 1.05%. The range of malic acid

across samples was 0.078% to 0.338% while citric acid ranged from 0.441% to 1.080%

(Table 2-1). TA had the greatest correlation to sourness intensity (R2 = 0.314***) (Figure

2-4P), even compared to pH (R2 = 0.118*), malic acid (R2 = 0.189**) (Figure 2-4Q), or

citric acid (R2 = 0.146**) (Fig.3R) concentration. Citric acid concentration in general is

approximately three-fold greater than malic acid and had a significant correlation to TA

(R2 = 0.49***) (data not shown). There was no correlation of malic acid to TA (R2 = 0.01)

(data not shown). Citric acid did not show any significant correlation to overall liking (R2

= 0.056) (Table 2-4), presumably due to the minimal relationship among sourness

intensity and overall liking (R2 = 0.008) or limited range of sourness intensity ratings

(Figure 2-4C).

Page 36: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

36

Flavor Intensity is Influenced by Total and Specific Volatile Content

In this study, strawberry flavor intensity accounts for the retronasal olfaction

component of chemical senses, which compliments sourness and sweetness intensities

contribution to taste. The overall highest sensory intensity was 37.5 for strawberry flavor

of ‘Strawberry Festival’ (sn 2, wk 1), which also rated highest for overall liking and

sweetness intensity. Opposite this, FL- 05-85 (sn 1, wk 6) delivered the least intense

strawberry flavor experience with a score of 19.4. Total volatiles in ‘Strawberry Festival’

(sn 2, wk 1) was over 50% greater than in FL 05-85 and seven more volatiles

compounds are detected (Table 2-1). Total volatiles within a sample contribute to

strawberry flavor intensity (R2 = 0.167**)(Figure 2-4T), but it was not simply the sum of

volatile constituents that explain the effect. For instance, the maximum total volatile

content detected within a sample, 27.3 µg1 gFW-1 hr-1 from ‘Camarosa’ (sn 1, wk 2), did

not result in the greatest flavor intensity (30.5) and the minimum, 8.5 µg1 gFW-1 hr-1 from

‘Sweet Anne’ (sn 2, wk 9), did not rate as the least flavorful (25.8) (Table 2-1).

The chemical diversity of the resources analyzed allowed for the identification of

81 volatile compounds from fresh strawberry fruit (Figure 2-5). The majority of

compounds are lipid derived esters, while lipid derived aldehydes account for the

majority of volatile mass. Terpenes, furans, and ketones were also represented in the

headspace of strawberry. Forty three of the eighty-one volatile compounds were not

detected ( 0.06 ng1 gFW-1 hr-1) in at least one sample i.e. 38 volatiles were measured

in all samples and appear to be constant in the genetic resources analyzed (Table 2-1).

No cultivar has detectable amounts of all 81 volatiles. Samples of ‘Strawberry Festival’,

‘Camino Real’, PROPRIETARY 6 (proprietary cultivar of commercial entity, identity

withheld), and FL 06-38 were lacking detectable amounts of just one compound,

Page 37: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

37

benzoic acid, 2-amino-, methyl ester (134-20-3)(methyl anthranilate), which was

detectable in only ‘Mara des Bois’ and ‘Charlotte’ from the final harvest (wk 7) of season

1 (Table 2-1). ‘Chandler’ (sn 2, wk 4) was qualitatively the most deficient sample,

lacking detectable amounts of 19 of 81 compounds, had the second lowest amount of

total volatiles, and a flavor intensity of 24.8 (Table 2-1).

One ester deficient in ‘Chandler’, butanoic acid, 1-methylbutyl ester (60415-61-

4), was not detectable in eight samples, and significantly correlated to flavor intensity

(R2 = 0.233***) (Table 2-4), despite maximum mass of only 11.5 ng1 gFW-1 hr-1 (Table

2-1). Interestingly, the most abundant ester, butanoic acid, methyl ester was measured

at over 7 µg1 gFW-1 hr-1 from PROPRIETARY 2 (sn 1, wk 3) and had less correlation to

flavor (R2 = 0.097*) (Figure 2-4V) than butanoic acid, 1-methylbutyl ester. Hexanoic

acid, ethyl ester exhibits over 200-fold difference across samples, had no bearing on

sensory perception (Table 2-4). Likewise, hexanal (66-25-1) was the second most

abundant individual compound, an aldehyde detected in all samples, exceeded 11 µg1

gFW-1 hr-1(Table 2-1), and did not have a significant correlation to flavor intensity (R2 =

0.016)(Table 2-4). Conversely, two minor level aldehydes demonstrated a disparity in

effect: 1576-87-0 is enhancing toward flavor intensity (R2 = 0.239**) (Figure 2-4U), while

pentanal (110-62-3) was the only compound that negatively correlates to flavor (R2 =

0.079*) (Figure 2-4W). The significant contribution of the terpenes 1,6,10-dodecatrien-3-

ol, 3,7,11-trimethyl-, (6E)- (40716-66-3) and 1,6-octadien-3-ol, 3,7-dimethyl- to flavor

intensity positively correlated with their increasing concentration (R2 = 0.112* and R2 =

0.074*, respectively) (Table 2-4), as well as, the level of a characteristic strawberry

furan, DMF(R2 = 0.108*) (Table 2-3). In total, thirty volatiles diverse in structure and

Page 38: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

38

degree of presence were found to have a positive relationship to flavor intensity (α =

0.05).

Specific Volatiles Enhance Sweetness Intensity Independent of Sugars

Multiple regressions of individual volatile compounds against perceived intensity

of sweetness was performed independent of either glucose, fructose, or sucrose

concentration (Table 2-5). Twenty four volatile compounds showed significant

correlations (α = 0.05) to perceived sweetness intensity independent of glucose or

fructose concentration, twenty-two of which were mutual between the two

monosaccharides. Twenty volatiles were found to enhance sweetness intensity

independent of sucrose concentration; only six of these volatiles were shared with those

independent of glucose and fructose: 1-penten-3-one (1629-58-9); 2(3H)-furanone,

dihydro-5-octyl- (2305-05-7); butanoic acid, pentyl ester (540-18-1); butanoic acid, hexyl

ester (2639-63-6); acetic acid, hexyl ester (142-92-7); and butanoic acid, 1-methylbutyl

ester. Only three compounds were found to be negatively related to sweetness

independent of at least one of the sugars: octanoic acid, ethyl ester (106-32-1)

exclusively independent of glucose; 2-pentanone, 4-methyl- (108-10-1) mutually

independent of glucose and fructose; and 2-buten-1-ol, 3-methyl-, 1-acetate (1191-16-8)

exclusively independent of sucrose.

Discussion

Exploitation of genetic diversity and environmental variation allows for a wide

range of consumer hedonic and sensory responses. A nearly three-fold difference in

overall liking of strawberry is observable within all samples. The highest and lowest

rating samples are ‘Strawberry Festival’ of the first week of season 2 and ‘Red Merlin’ of

week six in the first season; two cultivars that are grown under the same conditions, but

Page 39: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

39

product of separate breeding programs and from opposite ends of the harvest season.

The cultivars in this study represent a large proportion of commercial strawberry

acreage in North America, breeding selections, and European cultivars. A genetic

collection to enhance the range of diversity for flavors and chemical constituents.

Despite the perennial life cycle of strawberry much commercial production uses annual

methods, which in sub-tropical Florida allows for continual harvest of ripe fruit from late

November through March. In general, progression of harvest of non-determinant, non-

climacteric fruit throughout a season results in decreased overall liking, attributed to

perceivable differences in fruit quality (Figure 2-4E).

Increasing texture liking, sweetness intensity, and strawberry flavor intensity

significantly increase overall liking, while sourness intensity is not clear (Figure 2-4A-D).

Therefore, overall liking is the cumulative measure of the experience from eating a

strawberry fruit. Integration and synthesis of response to sensory signals of taste,

olfaction, and tactile sensation constitute an eating experience (Prescott, 2004) and

drive overall liking. The senses of taste and olfaction sample the chemicals present in

food like sugars, acids, and volatile chemical compounds. These elicitors attenuate the

perception and hedonics of food (Fujimaru and Lim, 2013; Lindemann, 2001). Ratings

of strawberry fruit are correlated to specific chemical or physical attributes, especially

sweetness and flavor intensity, the two greatest drivers of overall liking.

Much work has been done to measure sugars and volatile compounds in

strawberry fruit in attempt of understanding sweetness and flavor, and these aims are in

line with consumer demand. A consumer survey using 36 attributes of strawberry

determined “sweetness” and “complex flavor” as consistent favorable characteristics of

Page 40: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

40

the ideal strawberry experience (Colquhoun et al., 2012). Using the same gLMS scales

employed in the current study, means for ideal strawberry and tomato (Tieman et al.,

2012) overall liking, sourness intensity, and flavor intensity are similar. Ideal flavor

evoked the highest mean sensory intensity for both, 45 on an intensity scale of 0-100,

exemplifying its importance to the consumer. Interestingly, a large disparity for ideal

sweetness intensity is found; 42 and 33 for strawberry and tomato, respectively. Ideal

sweetness intensity is much greater in strawberry, potentially due to differences in

consumption. Strawberry is often consumed fresh and is a delicacy or dessert fruit,

while tomato is savory and often an ingredient in complex recipes. Therefore, the desire

for sweetness is much greater in strawberry.

The overall liking of strawberry fruit is significantly related to texture liking (Figure

2-4A), and increasing fruit firmness accounts for more than a third of increasing texture

liking (Figure 2-4I). The five-fold variation in firmness can be attributed to variation in

fruit development or softening (Table 2-1). Strawberry fruit development consists of

division, expansion, and ripening (Zhang et al., 2011a). Developmentally regulated,

ripening associated fruit softening is multifaceted (Quesada et al., 2009), including

catalytic cell wall disassembly (Trainotti et al., 1999) and dissolution of cell-to-cell

adhesion (Brummell and Harpster, 2001). The relationship between texture liking and

firmness does not appear entirely linear, because the two firmest samples are close to

average texture liking (Figure 2-4I). Excessively firm fruits may be perceived as under

ripe while those with less firmness may be considered over ripe; affecting texture liking.

Fruit can progress through ripening, from under to over ripe, in ten days (Zhang et al.,

Page 41: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

41

2011a), exemplifying the narrow window in which multiple facets of fruit quality must

synchronize.

Despite a moderate range of intensity, perceived sourness has little to no bearing

on overall liking (Figure 2-4C). Just over 30% of sourness intensity variation can be

accounted for by positive correlation with TA. The concentrations of citric acid and malic

acid metabolites are likely additive toward the effect of TA on sourness intensity, and in

fact both organic acids have significant correlations to TA (data not shown). Despite a

lack of influence by sourness intensity on overall liking, which may be a result of limited

intensity range, metabolites of sourness have a critical role in fruit biochemistry, as

increased TA shows a significant minor correlation with overall liking (Table 2-4) and

correlates significantly with SSC (data not shown). This co-linearity is due to

accumulation of sugars and subsequent biosynthesis of organic acids during ripening of

fruit (Fait et al., 2008; Menager et al., 2004; Zhang et al., 2011a). Citric acid is the

predominant organic acid in ripe fruit (Mikulic-Petkovsek et al., 2012) and its

concentration is fairly stable during ripening. Also, it is known to act as an intermediate

between imported sucrose and fatty acid biosynthesis (Fait et al., 2008), which may

facilitate enhancement of overall liking.

The consumer rating of sweetness intensity is the primary factor contributing to

overall liking, and sweetness is the component of taste perception facilitating the

detection of sugars. Sugars are simple carbohydrates, a readily available form of

energy, and the degree of correlation among sweetness and overall liking is due to

hedonic effect (Lindemann, 2001). Variation in sweetness intensity is best explained by

sugar content (Figure 2-4L) and SSC. More commonly SSC is used to estimate sugar

Page 42: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

42

concentration, a valid indicator of sweetness in strawberry (Jouquand et al., 2008;

Whitaker et al., 2011). Previous quantification of individual sugars within a strawberry

identifies sucrose, glucose, and fructose as the predominant soluble solids (Basson et

al., 2010; Menager et al., 2004; Mikulic-Petkovsek et al., 2012; Whitaker et al., 2011).

Sucrose concentration, more than any other measure, is responsible for the most

variation in SSC, sweetness intensity, and overall liking. (Table 2-4). Metabolites

contributing to perceived sweetness intensity have the greatest influence on the overall

hedonics of strawberry. A significant decrease in sweetness intensity occurs during the

seasons, and unfortunately overall liking decreases as well.

The extended harvest season of strawberry has an effect on fruit quality (Figure

2-4E) likely due to environmental changes (Figure 2-2) or plant maturity. These factors

are likely causative of the observable decrease in sweetness intensity as the season

progresses (Table 2-3). SSC, the best predictor of sweetness intensity, decreases

during the season as the plant is subjected to increasing temperatures (Table 2-3),

which likely alters whole plant physiology and more specifically fruit biochemistry during

development and ripening, affecting fruit quality. Development of fruit under elevated

temperature increases fruit maturation rate and decreases SSC independent of

flowering date i.e. plant maturity (MacKenzie and Chandler, 2009; MacKenzie et al.,

2011). A significant and strong decrease in sucrose and a lack of change in glucose and

fructose indicates sucrose as the waning constituent of SSC within a season (Figure 2-

3A-C). Sucrose concentration has greatest variability among the three sugars and

shows no significant relationship to glucose or fructose concentration. However, a near

perfect statistical relationship observed between glucose and fructose is likely due to

Page 43: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

43

their biosynthetic association. During strawberry fruit development sucrose is continually

translocated from photosynthetic tissue, while a consistently high sucrose invertase

activity in fruit hydrolyzes sucrose into glucose and fructose, maintaining sink strength

of fruit (Basson et al., 2010) and in turn feed biosynthetic pathways (Fait et al., 2008).

Increased maturation rate hastens fruit development, potentially decreasing

cumulative period sucrose is imported to fruit, and inhibiting sucrose accumulation to

affect other fruit quality attributes. Total volatile content has an indirect dependence on

sucrose concentration (Figure 2-3E), and a decrease in total volatiles is observed as the

seasons progress (Figure 2-3D). Generation of glucose and fructose initiates a complex

network of primary and secondary metabolism specific to ripening strawberry fruit, in

which sucrose is principal and limiting to the strawberry fruit biosynthetic pathways (Fait

et al., 2008). The primary metabolite classes of fatty acids and amino acids are derived

from sucrose in a fruit specific metabolism and their concentrations decrease in the final

stage of ripening (Fait et al., 2008). The culmination of ripening coincides with peak

concentration of volatile secondary metabolites (Menager et al., 2004) and upregulation

of associated biosynthetic genes (Cumplido-Laso et al., 2012). Influence of harvest date

on headspace of fresh strawberry fruit is known (Pelayo-Zaldivar et al., 2005; Watson et

al., 2002). One hypothesis, increased volatile content is dependent on more free

sucrose, i.e. a larger imported reserve, facilitating greater flux through primary and

secondary metabolism. Glucose and fructose concentrations are tightly correlated,

show less variation, less seasonal influence, and lack of correlation to sucrose,

indicative of tighter biochemical regulation.

Page 44: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

44

Strawberry flavor intensity is the second greatest determinant of overall liking

(Figure 2-4D) and accounts for perception of volatile compounds through retronasal

olfaction. A significant positive relationship exists among total volatile content and the

flavor intensity for a given sample, however, total volatile content is not entirely

explanatory of flavor intensity. The maximum rating for strawberry flavor intensity by

‘Strawberry Festival’ (sn 2, wk1) is the greatest consumer response evoked within this

study (Table 2-1), highlighting the significance of sensory perception of aroma.

However, this sample only has slightly more than 60% of total volatile mass of the

greatest sample. The extent of volatile phenotype diversity is great enough across

strawberry fruit to not only be discerned but be preferred.

Within the genetic resources of F. x ananassa analyzed in this study 81

compounds are reproducibly detected, but not one cultivar has detectable amounts of

all compounds. Accumulation of sugars, organic acids, and fatty acids, as well as the

consumption of amino acids occurs during ripening (Zhang et al., 2011a). Many of these

chemical classes serve as precursors to volatile synthesis (Perez et al., 2002), thus

facilitating a flux through biosynthetic pathways for increased and diverse volatile

emissions in ripe strawberry fruit, characterized by acids, aldehydes, esters, furanones,

lactones, and terpenes (Jetti et al., 2007; Menager et al., 2004). Over 350 volatile

compounds are identified across Fragaria (Du et al., 2011b; Maarse, 1991). The

concentrations of individual volatile compounds within fruit can have a significant

influence on flavor intensity, but which volatiles are determinant of flavor has a lack of

agreement.

Page 45: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

45

Previous determination of flavor relevance relied on approaches in which

importance of volatiles is based on analytical signal intensity and/or human perception

of single isolated volatile compound via orthonasal olfaction (Hakala et al., 2002; Jetti et

al., 2007; Olbricht et al., 2008; Schieberle and Hofmann, 1997; Ulrich et al., 1997),

negating the complex system of strawberry fruit or actual flavor relevant retronasal

olfaction. Of the forty-six volatile compounds cited as relevant to strawberry flavor in five

studies (Hakala et al., 2002; Jetti et al., 2007; Olbricht et al., 2008; Schieberle and

Hofmann, 1997; Ulrich et al., 1997) only seven are common to at least three of the

studies, exemplifying the lack of agreement in defining flavor-relevant constituents. This

agreement includes butanoic acid, methyl ester; butanoic acid, ethyl ester; hexanoic

acid, methyl ester; hexanoic acid, ethyl ester; 1,6-Octadien-3-ol, 3,7-dimethyl- (linalool);

butanoic acid, 2-methyl-; and DMF-, all of which are quantified in this report. These

compounds exhibit adequate variability in fruit samples to discern dose dependent

effect on flavor intensity. However, only 1,6-Octadien-3-ol (linalool), 3,7-dimethyl-;

butanoic acid, ethyl ester; butanoic acid, methyl ester; and DMF show significant

positive correlation with flavor intensity (Table 2-4). These compounds that are found to

influence flavor intensity represent diverse classes, terpenoid alcohol, two esters, and a

furan, respectively, while the three compounds not fitting to flavor are all esters. With

esters accounting for the majority of chemical compounds detected in strawberry it is

possible that too much emphasis is placed on the chemical class for flavor, or that in a

complex mixture less are perceivable than when smelled individually. These volatiles

may have no bearing on strawberry flavor, but have been targets due to quantity,

threshold ratios, or simply identity.

Page 46: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

46

Over one third of volatiles in this study significantly correlate with strawberry

flavor intensity, potentially enhancing perception of a complex and highly variable

volatile mixture (Table 2-4), seventeen of which are not of previous strawberry flavor

focus. Two of these unrecognized compounds, 1-hexanol (111-71-7) and butanoic acid,

3-methyl-, butyl ester (109-19-3), are present in the most flavorful strawberry sample but

undetected in the least flavorful (Table 2-1). This pair of compounds as well as

pentanoic acid, ethyl ester (539-82-2) and butanoic acid, 3-methyl-, octyl ester (7786-

58-5), also present/absent in the most/least flavorful, have relatively minor amounts but

show evidence of enhancing perceived sweetness intensity independent of individual

sugars. Volatiles with relatively low concentrations are indicated as new impactful

components of strawberry flavor.

Thirty-eight volatile compounds are observed to significantly enhance the

perceived intensity of sweetness; twenty-two mutually independent of glucose and

fructose, fourteen uniquely independent of sucrose, and six compounds mutually

independent of all three sugars: 1-penten-3-one; 2(3H)-furanone, dihydro-5-octyl- (γ-

dodecalactone); butanoic acid, pentyl ester; butanoic acid, hexyl ester; acetic acid,

hexyl ester; and butanoic acid, 1-methylbutyl ester (Table 2-5). In tomato, similar

analysis of a volatile subset identifies three compounds enhancing sweetness intensity

independent of fructose: geranial; 1-butanol, 3-methyl- (123-51-3); and butanal, 2-

methyl- (96-17-3) (Tieman et al., 2012). These compounds are not identified in the

current study, therefore the effect cannot be confirmed in a second system. Botanically,

tomato is considered a true fruit and demonstrates climacteric ripening, while strawberry

fruit is non-climacteric and considered an aggregate accessory fruit. The developmental

Page 47: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

47

origin of the flesh that is consumed is divergent, exhibiting unique biochemistries, but

the observance of volatile compounds potentially enhancing perceived sweetness

appears to be widespread in fruit.

Orthonasal (smell) and retronasal (flavor) olfaction each project to different brain

areas for processing (Small and Jones-Gotman, 2001), and taste projects to the same

brain area as retronasal olfaction for integration to produce flavor (Small et al., 2004).

This integration has a remarkable consequence: taste and retronasal olfaction can

intensify one another. The food industry knows of the intensification of volatile

sensations by the addition of small amounts of sweeteners to solutions containing

volatiles (SjÖStrÖM Loren and Cairncross Stanley, 1955). The ability of volatiles to

enhance taste is also a phenomena (Burdach et al., 1984; Lindemann, 2001; Murphy et

al., 1977), and one study shows the ability of strawberry aroma to intensify the

sweetness of a sugar solution (Frank and Byram, 1988). The results here narrow the

previous effect of enhanced sweetness by strawberry aroma, a variable mixture, to

individual compounds in the fruit. These volatiles are not present at the highest amounts

in fruits and most are not targets of flavor analysis. Also, a majority appear to be

associated with lipid metabolism, like many other volatiles quantified in this work, yet

their presence or increased concentration has an enhancing effect on perceived

sweetness independent of sugars. Technically, sweetness is a facet of taste

(Lindemann, 2001). Therefore a means to convey sweetness via volatiles can serve as

an attractant to seed dispersers of wild strawberry, or perhaps it is a result of artificial

selection (Aharoni et al., 2004) to enhance a limited sugar capacity in commercial fruit.

Page 48: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

48

Strawberry fruit ripening results in softening of flesh, peak volatile emission, and

accumulation of sugars. This highly coordinated process results in fruit with strong liking

due primarily to texture, flavor, and sweetness. However, cultivar, environmental

conditions, and their interactions influence fruit attributes, altering the composition of

strawberry. This diversity allows for a gamut of experiences such that the hedonics and

intensities of these sensations can vary greatly. The importance of sucrose to

sweetness intensity is evident, and the correlation of total volatiles to sucrose highlights

the dependence of secondary metabolism to primary metabolism. Individual volatiles

correlate to strawberry flavor intensity, helping to better define distinct, perceptually

impactful compounds from the larger mixture of the fruit. The dependence of liking on

sweetness and strawberry flavor is undermined by environmental pressures that reduce

sucrose and total volatile content. A cultivar that exhibits minimal seasonal

environmental influence presents itself as a breeding ideotype, as maintenance of

sucrose concentration may alleviate loss of overall liking. Selection for increased

concentrations of volatile compounds that act independently of sugars to enhance

sweetness can serve as an alternate approach. The volatiles described herein are

sampled mainly from current commercial cultivars and are therefore feasible targets for

varietal improvement in the short-term, whereas future studies will be necessary to

identify sweet-enhancing volatiles not already present in elite germplasm.

Materials and Methods

Plant Material

Thirty-five strawberry cultivars and selections were grown during the 2010-2011

and 2011-2012 winter seasons according to current commercial practices for annual

strawberry plasticulture in Florida (MacKenzie et al., 2011; Santos et al., 2012). The

Page 49: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

49

cultivars were chosen to represent a large proportion of commercial strawberry acreage

in North America from both public and private breeding programs. Additional breeding

selections and European cultivars were added to enhance the range of diversity for

flavors and chemical constituents. Fully-ripe fruit by commercial standards (Strand,

2008) was harvested from three to five cultivars on Monday mornings, delivered to the

respective laboratories, and stored at 4°C in the dark overnight for simultaneous

analysis of fresh strawberry fruit volatiles, firmness, and sensory analysis on Tuesdays;

as well as sample preparation for later sugar and acid measurements. Six harvests in

both seasons allows for the complete analysis of fifty-four samples. Weather data was

obtained from the Balm, FL station of the Florida Automated Weather Network

(http://fawn.ifas.ufl.edu). Daily maximum and minimum temperature recording height

was 60 cm, and daily average relative humidity, rain, and solar radiation were recording

at 2 m.

Volatile Analysis

At least 100 grams or seven berries of each sample were removed from 4°C dark

overnight storage prior to volatile collection. Samples were homogenized in a blender

prior to splitting into three 15 gram replicates for immediate capturing of volatile

emissions and the remainder frozen in N2 (l) and stored at -80°C for later sugar and acid

quantification. A two hour collection in a dynamic headspace volatile collection system

(Underwood et al., 2005) allowed for concentration of emitted volatiles on HaySep 80-

100 porous polymer adsorbent (Hayes Seperations Inc., Bandera, TX, USA). Elution

from polymer was described by Schmelz et al. (Schmelz et al., 2003).

Quantification of volatiles in an elution was performed on an Agilent 7890A

Series gas chromatograph (GC) (carrier gas; He at 3.99 mL min-1; splitless injector,

Page 50: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

50

temperature 220°C, injection volume 2 µl) equipped with a DB-5 column ((5%-Phenyl)-

methylpolysiloxane, 30 m length × 250 µm i.d. × 1 µm film thickness; Agilent

Technologies, Santa Clara, CA, USA). Oven temperature was programmed from 40°C

(0.5 min hold) at 5°C min-1 to 250°C (4 min hold). Signals were captured with a flame

ionization detector (FID) at 280°C. Peaks from FID signal were integrated manually with

Chemstation B.04.01 software (Agilent Technologies, Santa Clara, CA). Volatile

emissions (ng1 gFW-1 h-1) were calculated based on individual peak area relative to

sample elution standard peak area. GC-Mass Spectrometry (MS) analysis of elutions

was performed on an Agilent 6890N GC in tandem with an Agilent 5975 MS (Agilent

Technologies, Santa Clara, CA, USA) and retention times were compared with

authentic standards (Sigma Aldrich, St Louis, MO, USA) for volatile identification

(Schmelz et al., 2001). Chemical Abstract Services (CAS) registry numbers were used

to query SciFinder® substances database for associated chemical name and molecular

formula presented in Table 2-6.

Sugars and Acids Quantification

Titratable acidity, pH, and SSC were averaged from four replicates of the

supernatant of centrifuged thawed homogenates (Whitaker et al., 2011). An appropriate

dilution of the supernatant from a separate homogenate (centrifugation of 1.5 ml at

16,000 x g for 20 minutes) was analyzed using biochemical kits (per manufacturer’s

instructions) for quantification of citric acid, L-malic acid, D-glucose, D-fructose, and

sucrose (CAT# 10-139-076-035, CAT# 10-139-068-035, and CAT# 10-716-260-035; R-

Biopharm, Darmstadt, Germany) with absorbance measured at 365 nm on an Epoch

Microplate Spectrophotometer (BioTek, Winooksi, VT, USA). Metabolite average

concentration (mg 100gFW-1) was determined from two to six technical replicates per

Page 51: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

51

pooled sample. Derived sucrose concentrations via D-glucose and D-fructose were

mathematically pooled.

Firmness Determination

Firmness of the strawberries was determined as the resistance of the fruit to

penetration (7 mm depth) at its equator with a TA.XTPlus Texture Analyzer (Texture

Technologies Corp., Scarsdale, NY, USA/Stable Micro Systems, Godalming, Surrey,

UK). The Texture Analyzer was equipped with a 50 kg load cell and an 8 mm diameter

convex tip probe. Whole fruit was punctured on the side to 7 mm down from the

epidermis at a test speed of 2 mm/sec; a flap cut off the opposite side provides stability.

Maximum force in kg for eight fruit was averaged and reported as a measure of

firmness.

Sensory Analysis

All consumer panels were approved by the University of Florida Institutional

Review Board. Over the course of two years, 166 recruited strawberry consumers (58

male, 108 female) evaluated strawberry cultivars. Ages of panelist ranged from 18 to

71, with a median age of 24. Panelists self-classified themselves as 98 White or

Caucasian, 11 Black or African-American, 1 Native American, Alaska Native or Aleutian,

41 Asian/Pacific Islander, and 15 Other. An average of 106 (range of 98-113) panelists

evaluated between three and five cultivars per session (Tieman et al., 2012). Fresh,

fully-ripe strawberry fruit was removed from overnight 4°C dark storage and allowed to

warm to room temperature prior to sensory analysis. Each panelist was given one to

two whole strawberries for evaluation, depending on cultivar availability. Panelist bit

each sample, chewed, and swallowed it. Ratings for overall liking and texture liking

were scaled on hedonic gLMS in the context of all pleasure/displeasure experiences.

Page 52: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

52

Perceived intensity of sweetness, sourness, and strawberry flavor are scaled in context

of all sensory experiences using sensory gLMS (Bartoshuk et al., 2004; Bartoshuk et

al., 2003; Bartoshuk et al., 2005; Tieman et al., 2012). Scales were employed to

mediate valid comparisons across subjects and sessions.

Statistical Analysis

Means and standard errors for consumer, physical, and metabolite

measurements were determined from all replicates using JMP (Version 8, SAS Institute

Inc., Cary, NC, USA). Bivariate analysis among individual measurements of samples

allowed for linear fit, which included summary of fit, analysis of variance, t-test, and

correlation analysis for density ellipse. Two-way Ward hierarchical cluster analysis of all

metabolite concentrations and strawberry samples was accomplished in JMP. Amounts

of individual volatile compounds were regressed using the “enter” method in SPSS (IBM

Corp., Armonk, NY, USA). This is done individually for each of the three sugars:

glucose, fructose or sucrose to identify which compounds have an effect on sweetness

intensity (positive or negative) independent of each of the sugars. For p-values ≤.05, the

volatile makes a contribution to perceived sweetness that is independent of the sugar

tested.

Page 53: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

53

Table 2-1. Means of consumer, physical, and biochemical measures.

HIGH 36.58 35.71 36.15 24.58 37.54

LOW 13.25 5.79 14.59 9.77 19.41

MEDIAN 23.52 25.29 22.19 18.32 25.78

FOLD DIFFERENCE

3 6 2 3 2

CULTIVAR HARVEST HARVEST

DATE OVERALL

LIKING TEXTURE

LIKING SWEETNESS INTENSITY

SOURNESS INTENSITY

STRAWBERRY FLAVOR INTENSITY

-100 to +100 -100 to +100 0 to +100 0 to +100 0 to +100

PROPRIETARY 1 2011 - 2 1/24/2011 30.75 24.89 27.72 14.68 30.58 CAMAROSA 2011 - 2 1/24/2011 26.34 26.39 23.66 21.24 30.05 FESTIVAL 2011 - 2 1/24/2011 36.10 35.71 30.34 17.87 24.27

MARA DES BOIS 2011 - 2 1/24/2011 22.49 13.00 27.58 15.87 28.61 RADIANCE 2011 - 2 1/24/2011 28.20 30.39 24.57 18.39 28.27

PROPRIETARY 2 2011 - 3 1/31/2011 31.85 24.61 31.01 17.27 33.48 CAMAROSA 2011 - 3 1/31/2011 27.76 27.73 24.76 19.07 29.50

SWEET CHARLIE 2011 - 3 1/31/2011 31.08 26.73 29.35 15.71 32.20 TREASURE 2011 - 3 1/31/2011 28.77 27.63 25.10 17.23 28.09

WINTER DAWN 2011 - 3 1/31/2011 26.05 25.60 20.68 19.46 25.40 PROPRIETARY 3 2011 - 4 2/7/2011 21.30 14.69 22.22 19.51 27.79

CAMINO REAL 2011 - 4 2/7/2011 14.06 13.95 16.16 19.77 23.41 FESTIVAL 2011 - 4 2/7/2011 20.31 23.85 18.51 18.99 23.58

WINTERSTAR 2011 - 5 2/14/2011 28.42 28.32 24.87 15.39 27.18 FESTIVAL 2011 - 5 2/14/2011 24.99 26.48 22.60 21.23 29.37 RADIANCE 2011 - 5 2/14/2011 20.98 26.83 19.83 18.69 25.58

PROPRIETARY 4 2011 - 5 2/14/2011 28.98 19.83 28.13 19.73 32.21 FL 05-85 2011 - 6 2/21/2011 19.46 23.85 17.87 11.50 19.41 ELYANA 2011 - 6 2/21/2011 23.50 27.14 22.77 12.09 24.70

FESTIVAL 2011 - 6 2/21/2011 22.53 25.30 19.75 13.81 23.98 RED MERLIN 2011 - 6 2/21/2011 13.25 21.49 14.59 24.58 23.95

SAN ANDREAS 2011 - 6 2/21/2011 19.39 26.59 18.25 21.68 25.37 ALBION 2011 - 7 2/28/2011 25.49 25.79 21.69 22.88 29.93

CHARLOTTE 2011 - 7 2/28/2011 13.87 8.66 20.16 9.77 19.72 FESTIVAL 2011 - 7 2/28/2011 17.35 23.78 15.94 15.88 20.36

MARA DES BOIS 2011 - 7 2/28/2011 15.05 5.79 24.99 12.10 24.82 MONTERREY 2011 - 7 2/28/2011 14.51 19.64 18.15 19.95 25.72

ALBION 2012 - 1 1/16/2012 34.22 32.85 33.98 16.41 36.70 FESTIVAL 2012 - 1 1/16/2012 36.58 34.79 36.15 18.24 37.54 MOJAVE 2012 - 1 1/16/2012 30.14 25.71 32.79 16.74 33.21

PROPRIETARY 3 2012 - 1 1/16/2012 28.32 20.47 30.89 15.38 31.96 CHANDLER 2012 - 4 2/6/2012 16.44 15.69 19.13 22.38 24.78 FESTIVAL 2012 - 4 2/6/2012 25.66 26.88 24.43 19.97 29.90 FL 09-127 2012 - 4 2/6/2012 24.40 25.28 23.40 17.62 27.53

TREASURE 2012 - 4 2/6/2012 28.49 28.62 26.02 18.67 29.79 WINTER DAWN 2012 - 4 2/6/2012 23.09 24.11 21.33 19.98 26.47

PROPRIETARY 5 2012 - 5 2/13/2012 26.91 25.38 24.98 16.78 27.15 ALBION 2012 - 5 2/13/2012 29.02 26.66 25.42 19.83 30.03

FESTIVAL 2012 - 5 2/13/2012 22.16 22.76 21.25 16.41 24.49 RUBYGEM 2012 - 5 2/13/2012 22.22 25.70 21.19 15.42 24.86

CAMINO REAL 2012 - 6 2/20/2012 23.54 24.51 21.34 16.98 25.49 DARSELECT 2012 - 6 2/20/2012 29.15 20.67 28.15 18.21 30.88

FESTIVAL 2012 - 6 2/20/2012 23.09 24.31 22.15 17.93 25.15 SWEET ANNE 2012 - 6 2/20/2012 24.19 27.04 24.11 21.68 28.63

BENICIA 2012 - 7 2/27/2012 20.00 26.06 19.00 19.66 24.28 FESTIVAL 2012 - 7 2/27/2012 20.85 24.62 18.85 16.90 22.08 FL 06-38 2012 - 7 2/27/2012 27.50 27.97 23.37 17.22 26.95

PORTOLA 2012 - 7 2/27/2012 23.12 27.10 19.40 20.23 24.77 VENTANA 2012 - 7 2/27/2012 18.10 25.69 15.53 20.72 22.08

PROPRIETARY 6 2012 - 9 3/12/2012 16.63 15.93 18.28 20.26 22.70 EVIE 2 2012 - 9 3/12/2012 18.99 18.59 20.09 18.40 23.96

FESTIVAL 2012 - 9 3/12/2012 20.99 21.11 20.95 13.84 22.41 GALLETA 2012 - 9 3/12/2012 15.57 15.62 18.76 22.49 24.79

SWEET ANNE 2012 - 9 3/12/2012 23.80 25.05 20.43 22.57 25.83

Page 54: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

54

Table 2-1. Continued.

HIGH 1.01 12.25 4.12 1.05

LOW 0.21 4.45 3.35 0.44

MEDIAN 0.51 7.13 3.69 0.83

FOLD DIFFERENCE

5 3 1 2

CULTIVAR HARVEST FORCE SSC pH TA

kg %

%

PROPRIETARY 1 2011 - 2 0.51 9.15 3.73 0.74 CAMAROSA 2011 - 2 0.48 7.43 3.47 0.89 FESTIVAL 2011 - 2 0.83 8.50 3.63 0.72

MARA DES BOIS 2011 - 2 0.50 10.13 3.43 0.85 RADIANCE 2011 - 2 0.65 7.83 3.57 0.79

PROPRIETARY 2 2011 - 3 0.45 8.95 3.53 0.83 CAMAROSA 2011 - 3 0.64 8.45 3.55 0.85

SWEET CHARLIE 2011 - 3 0.52 8.98 3.77 0.67 TREASURE 2011 - 3 0.81 9.15 3.65 0.77

WINTER DAWN 2011 - 3 0.63 7.65 3.41 0.85 PROPRIETARY 3 2011 - 4 0.35 7.43 3.53 0.76

CAMINO REAL 2011 - 4 0.32 4.45 3.55 0.61 FESTIVAL 2011 - 4 0.61 6.05 3.71 0.60

WINTERSTAR 2011 - 5 0.81 6.30 3.58 0.58 FESTIVAL 2011 - 5 1.01 7.58 3.41 0.74 RADIANCE 2011 - 5 0.97 5.70 3.48 0.64

PROPRIETARY 4 2011 - 5 0.47 8.80 3.41 0.96 FL 05-85 2011 - 6 0.70 6.50 3.82 0.53 ELYANA 2011 - 6 0.81 7.13 3.72 0.57

FESTIVAL 2011 - 6 0.73 7.03 3.72 0.59 RED MERLIN 2011 - 6 0.83 7.15 3.43 0.79

SAN ANDREAS 2011 - 6 0.80 7.45 3.61 0.77 ALBION 2011 - 7 0.45 6.23 3.51 0.85

CHARLOTTE 2011 - 7 0.34 6.60 3.89 0.44 FESTIVAL 2011 - 7 0.72 5.43 3.64 0.50

MARA DES BOIS 2011 - 7 0.21 7.03 3.64 0.61 MONTERREY 2011 - 7 0.50 6.60 3.57 0.76

ALBION 2012 - 1 0.75 12.25 3.90 0.97 FESTIVAL 2012 - 1 0.63 9.50 3.85 0.90 MOJAVE 2012 - 1 0.35 10.18 3.86 0.95

PROPRIETARY 3 2012 - 1 0.48 9.73 3.83 0.92 CHANDLER 2012 - 4 0.30 6.40 3.68 0.96 FESTIVAL 2012 - 4 0.52 7.60 4.00 0.85 FL 09-127 2012 - 4 0.59 6.88 4.01 0.83

TREASURE 2012 - 4 0.46 7.68 4.03 0.84 WINTER DAWN 2012 - 4 0.47 7.53 3.86 0.99

PROPRIETARY 5 2012 - 5 0.46 6.53 3.91 0.82 ALBION 2012 - 5 0.43 7.25 4.04 0.98

FESTIVAL 2012 - 5 0.54 6.48 3.93 0.95 RUBYGEM 2012 - 5 0.66 6.58 4.12 0.64

CAMINO REAL 2012 - 6 0.45 7.28 3.89 0.92 DARSELECT 2012 - 6 0.33 9.78 4.11 0.96

FESTIVAL 2012 - 6 0.40 7.40 3.97 0.86 SWEET ANNE 2012 - 6 0.43 - - -

BENICIA 2012 - 7 0.55 6.03 3.77 0.86 FESTIVAL 2012 - 7 0.49 6.20 3.88 0.80 FL 06-38 2012 - 7 0.55 6.28 3.82 0.75

PORTOLA 2012 - 7 0.70 5.78 3.69 0.92 VENTANA 2012 - 7 0.60 6.40 3.95 0.90

PROPRIETARY 6 2012 - 9 0.32 6.50 3.45 0.74 EVIE 2 2012 - 9 0.39 6.38 3.43 0.83

FESTIVAL 2012 - 9 0.53 6.65 3.54 0.64 GALLETA 2012 - 9 0.49 7.08 3.35 1.05

SWEET ANNE 2012 - 9 0.49 6.10 3.35 0.85

Page 55: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

55

Table 2-1. Continued.

HIGH 338.20 1080.33 7933.01 2481.98 2610.85 2840.18

LOW 78.02 440.98 2292.12 656.04 746.84 167.73

MEDIAN 220.27 744.26 4316.91 1541.08 1723.42 1020.84

FOLD DIFFERENCE

4 2 3 4 3 17

CULTIVAR HARVEST MALIC ACID

CITRIC ACID

TOTAL SUGAR

GLUCOSE FRUCTOSE SUCROSE

mg

1 100gFW

-

1

mg1 100gFW

-

1

mg1 100gFW

-

1

mg1 100gFW

-

1

mg1 100gFW

-

1

mg1 100gFW

-

1

6915-15-7 77-92-9

50-99-7 57-48-7 57-50-1

PROPRIETARY 1 2011 - 2 104 766 5191 1879 1998 1314 CAMAROSA 2011 - 2 211 879 4306 1313 1456 1538 FESTIVAL 2011 - 2 338 639 5169 1903 2048 1218

MARA DES BOIS 2011 - 2 146 834 5515 1730 1967 1818 RADIANCE 2011 - 2 246 721 4137 656 747 2734

PROPRIETARY 2 2011 - 3 158 956 6167 1781 2041 2345 CAMAROSA 2011 - 3 271 833 5058 1345 1498 2216

SWEET CHARLIE 2011 - 3 190 713 6470 2352 2435 1683 TREASURE 2011 - 3 271 610 4377 1464 1520 1392

WINTER DAWN 2011 - 3 252 775 4731 1265 1479 1986 PROPRIETARY 3 2011 - 4 161 844 4269 1657 1821 791

CAMINO REAL 2011 - 4 187 525 2292 911 1068 314 FESTIVAL 2011 - 4 259 515 3316 1391 1538 387

WINTERSTAR 2011 - 5 264 557 4233 1374 1518 1342 FESTIVAL 2011 - 5 266 631 4327 1544 1705 1079 RADIANCE 2011 - 5 273 579 3436 1060 1224 1152

PROPRIETARY 4 2011 - 5 259 834 5363 1462 1615 2286 FL 05-85 2011 - 6 182 510 2945 1179 1324 442 ELYANA 2011 - 6 197 607 4496 1904 2169 424

FESTIVAL 2011 - 6 244 515 3615 1449 1647 519 RED MERLIN 2011 - 6 229 784 4079 1649 1880 549

SAN ANDREAS 2011 - 6 237 721 4275 1502 1719 1055 ALBION 2011 - 7 241 867 3440 1166 1343 931

CHARLOTTE 2011 - 7 143 520 4294 1896 2230 168 FESTIVAL 2011 - 7 255 441 2747 1127 1311 309

MARA DES BOIS 2011 - 7 78 795 3932 1539 1788 605 MONTERREY 2011 - 7 282 677 3320 1316 1500 504

ALBION 2012 - 1 219 1007 7933 2482 2611 2840 FESTIVAL 2012 - 1 281 680 6417 2187 2327 1902 MOJAVE 2012 - 1 156 862 5647 1978 2141 1528

PROPRIETARY 3 2012 - 1 144 1025 5828 1964 2150 1714 CHANDLER 2012 - 4 225 743 4018 1403 1512 1102 FESTIVAL 2012 - 4 215 561 4389 2013 2189 187 FL 09-127 2012 - 4 201 602 4970 2171 2313 486

TREASURE 2012 - 4 253 662 4771 1598 1728 1444 WINTER DAWN 2012 - 4 221 716 3736 1170 1407 1159

PROPRIETARY 5 2012 - 5 132 756 4537 1497 1642 1398 ALBION 2012 - 5 207 820 4900 1535 1676 1688

FESTIVAL 2012 - 5 261 721 4272 1560 1728 983 RUBYGEM 2012 - 5 130 743 4432 1804 1971 657

CAMINO REAL 2012 - 6 174 764 5361 2202 2319 840 DARSELECT 2012 - 6 179 964 6290 2405 2580 1306

FESTIVAL 2012 - 6 225 790 4229 1807 1973 450 SWEET ANNE 2012 - 6 252 1080 4184 1582 1767 834

BENICIA 2012 - 7 225 746 4037 1548 1711 778 FESTIVAL 2012 - 7 202 725 4488 1775 1969 744 FL 06-38 2012 - 7 229 708 4968 1859 2017 1091

PORTOLA 2012 - 7 186 866 3381 1265 1428 687 VENTANA 2012 - 7 241 811 3139 1198 1339 601

PROPRIETARY 6 2012 - 9 181 834 4766 1485 1701 1580 EVIE 2 2012 - 9 142 838 3603 1271 1472 859

FESTIVAL 2012 - 9 182 513 3680 1517 1740 424 GALLETA 2012 - 9 259 961 4658 1735 1937 987

SWEET ANNE 2012 - 9 201 870 3456 1282 1463 712

Page 56: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

56

Table 2-1. Continued.

HIGH 27346.49 9.93 41.24 285.21 115.86 38.30

LOW 8450.24 0.00 0.00 16.80 17.43 0.00

MEDIAN 14572.86 3.20 15.34 98.36 46.99 5.68

FOLD DIFFERENCE

3 - - 17 7 -

CULTIVAR HARVEST TOTAL

VOLATILES 75-85-4 616-25-1 1629-58-9 96-22-0 110-62-3

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

alcohol alcohol ketone ketone aldehyde

PROPRIETARY 1 2011 - 2 21815.10 6.96 41.24 179.33 95.96 10.87 CAMAROSA 2011 - 2 27346.49 7.13 30.29 225.30 81.56 13.84 FESTIVAL 2011 - 2 19097.63 5.85 12.67 242.82 77.29 38.30

MARA DES BOIS 2011 - 2 17849.45 5.14 10.54 194.51 71.36 2.27 RADIANCE 2011 - 2 22308.92 8.05 13.94 202.66 73.78 11.81

PROPRIETARY 2 2011 - 3 24751.16 4.40 15.29 140.46 32.32 1.40 CAMAROSA 2011 - 3 24867.98 8.05 19.41 168.15 64.90 5.51

SWEET CHARLIE 2011 - 3 21335.50 5.32 19.04 229.19 55.66 1.10 TREASURE 2011 - 3 27216.45 9.93 17.29 266.09 83.88 1.31

WINTER DAWN 2011 - 3 22171.05 5.43 18.71 119.71 52.64 3.33 PROPRIETARY 3 2011 - 4 22791.16 8.71 22.22 150.99 115.86 8.56

CAMINO REAL 2011 - 4 16476.30 6.04 25.66 95.42 53.72 0.57 FESTIVAL 2011 - 4 27307.21 8.22 12.68 89.56 67.11 24.28

WINTERSTAR 2011 - 5 10049.72 3.32 9.68 48.13 30.02 3.95 FESTIVAL 2011 - 5 11866.30 2.13 15.59 59.40 42.88 13.92 RADIANCE 2011 - 5 11272.72 2.12 6.33 54.62 28.61 15.06

PROPRIETARY 4 2011 - 5 22279.55 0.48 22.43 249.57 67.72 1.33 FL 05-85 2011 - 6 11009.50 2.99 16.19 49.51 38.20 16.84 ELYANA 2011 - 6 11815.52 4.50 4.93 78.80 37.39 13.28

FESTIVAL 2011 - 6 14477.44 5.44 8.33 73.41 44.96 36.26 RED MERLIN 2011 - 6 13225.95 5.79 25.70 70.43 53.34 9.57

SAN ANDREAS 2011 - 6 12730.17 4.05 12.79 84.07 36.08 6.94 ALBION 2011 - 7 13917.02 3.68 17.27 56.84 60.08 0.94

CHARLOTTE 2011 - 7 15476.18 2.51 24.09 22.75 56.44 0.97 FESTIVAL 2011 - 7 11545.36 2.54 6.47 54.11 42.49 28.77

MARA DES BOIS 2011 - 7 12273.36 2.85 6.08 16.80 44.40 7.76 MONTERREY 2011 - 7 12809.80 4.31 10.29 31.57 33.43 0.97

ALBION 2012 - 1 22574.65 1.28 30.45 285.21 60.16 0.86 FESTIVAL 2012 - 1 16842.97 2.54 22.81 127.22 45.34 10.28 MOJAVE 2012 - 1 16822.84 1.54 24.83 178.58 47.28 6.21

PROPRIETARY 3 2012 - 1 14131.48 2.89 19.12 152.65 37.17 0.99 CHANDLER 2012 - 4 8893.20 0.00 0.00 72.32 55.09 0.00 FESTIVAL 2012 - 4 12239.27 6.76 8.94 169.03 49.64 17.63 FL 09-127 2012 - 4 11132.31 3.99 11.26 124.77 40.68 3.03

TREASURE 2012 - 4 17250.72 4.75 17.36 169.34 60.87 0.76 WINTER DAWN 2012 - 4 19884.41 4.88 13.48 123.57 35.94 7.94

PROPRIETARY 5 2012 - 5 9295.73 1.73 23.17 73.39 45.18 1.33 ALBION 2012 - 5 19223.80 2.42 17.20 165.96 56.03 1.09

FESTIVAL 2012 - 5 11526.96 2.38 12.33 92.75 45.20 13.01 RUBYGEM 2012 - 5 11491.14 2.18 9.69 88.93 32.68 6.87

CAMINO REAL 2012 - 6 16381.25 4.37 21.96 124.47 74.08 1.28 DARSELECT 2012 - 6 12942.55 3.52 13.89 95.15 61.92 10.81

FESTIVAL 2012 - 6 15924.67 3.03 13.51 123.50 58.09 19.21 SWEET ANNE 2012 - 6 11265.22 3.09 18.63 97.14 57.22 0.94

BENICIA 2012 - 7 12018.85 4.92 18.17 126.58 48.57 2.43 FESTIVAL 2012 - 7 17138.67 1.65 16.80 137.48 45.84 15.87 FL 06-38 2012 - 7 16576.73 2.34 8.49 99.57 41.34 5.86

PORTOLA 2012 - 7 9347.88 2.97 12.93 84.00 46.70 0.92 VENTANA 2012 - 7 12049.29 2.34 14.90 86.79 42.35 6.89

PROPRIETARY 6 2012 - 9 16025.99 2.43 18.24 107.74 36.96 0.73 EVIE 2 2012 - 9 10796.23 2.86 13.59 32.40 26.15 2.97

FESTIVAL 2012 - 9 8976.61 2.22 8.39 40.63 22.96 9.45 GALLETA 2012 - 9 14668.29 2.27 15.38 96.12 32.99 0.79

SWEET ANNE 2012 - 9 8450.24 1.18 7.39 35.24 17.43 0.42

Page 57: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

57

Table 2-1. Continued.

HIGH 0.93 85.37 12.25 7359.57 81.41 8.69

LOW 0.00 0.09 0.46 846.65 0.09 0.00

MEDIAN 0.37 6.26 3.06 2430.27 5.22 0.00

FOLD DIFFERENCE

- 972 27 9 901 -

CULTIVAR HARVEST 1534-08-3 105-37-3 109-60-4 623-42-7 591-78-6 108-10-1

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

ketone ester ester ester ketone ketone

PROPRIETARY 1 2011 - 2 0.53 1.81 1.83 3437.73 5.08 0.00 CAMAROSA 2011 - 2 0.61 4.55 5.39 3938.54 3.75 0.00 FESTIVAL 2011 - 2 0.61 26.83 1.63 2946.22 6.74 0.00

MARA DES BOIS 2011 - 2 0.44 7.17 3.84 1829.32 6.24 0.00 RADIANCE 2011 - 2 0.32 0.99 2.62 2093.93 4.44 0.00

PROPRIETARY 2 2011 - 3 0.42 3.25 1.14 7359.57 81.41 0.00 CAMAROSA 2011 - 3 0.84 6.24 4.08 3092.47 6.75 0.00

SWEET CHARLIE 2011 - 3 0.36 1.59 0.99 2821.39 19.94 0.00 TREASURE 2011 - 3 0.93 0.09 0.73 1569.55 20.85 0.00

WINTER DAWN 2011 - 3 0.44 0.83 1.24 2390.40 4.32 0.00 PROPRIETARY 3 2011 - 4 0.55 15.53 10.02 3205.64 12.35 0.00

CAMINO REAL 2011 - 4 0.66 3.43 1.91 2360.98 3.78 0.00 FESTIVAL 2011 - 4 0.32 51.55 3.51 4615.03 4.70 0.00

WINTERSTAR 2011 - 5 0.00 9.23 4.45 1530.58 6.86 0.00 FESTIVAL 2011 - 5 0.00 4.15 2.08 2272.42 6.17 0.00 RADIANCE 2011 - 5 0.00 6.76 5.50 1341.81 4.94 0.00

PROPRIETARY 4 2011 - 5 0.27 7.22 2.15 6785.81 57.94 0.00 FL 05-85 2011 - 6 0.29 0.92 1.35 2200.23 0.77 0.00 ELYANA 2011 - 6 0.45 1.30 0.51 1421.77 9.32 0.00

FESTIVAL 2011 - 6 0.31 12.14 1.54 3299.73 1.34 0.00 RED MERLIN 2011 - 6 0.49 0.73 1.01 1458.22 0.09 0.00

SAN ANDREAS 2011 - 6 0.33 1.85 1.57 2394.10 0.73 0.00 ALBION 2011 - 7 0.51 3.96 5.49 3152.61 2.44 0.00

CHARLOTTE 2011 - 7 0.68 3.16 5.37 2692.37 0.69 0.00 FESTIVAL 2011 - 7 0.30 17.27 2.21 2086.02 0.72 0.00

MARA DES BOIS 2011 - 7 0.36 30.38 6.69 2145.67 0.16 0.00 MONTERREY 2011 - 7 0.40 9.68 8.76 2820.74 1.11 0.00

ALBION 2012 - 1 0.43 1.37 0.46 5282.14 17.61 0.00 FESTIVAL 2012 - 1 0.33 10.39 2.26 3598.18 3.83 0.00 MOJAVE 2012 - 1 0.34 5.51 3.11 2466.44 9.28 3.01

PROPRIETARY 3 2012 - 1 0.47 3.73 1.66 1867.96 19.82 0.00 CHANDLER 2012 - 4 0.00 13.19 2.45 1632.05 25.54 0.00 FESTIVAL 2012 - 4 0.52 85.37 4.05 2345.75 4.16 8.28 FL 09-127 2012 - 4 0.56 7.01 3.68 2258.78 11.27 8.69

TREASURE 2012 - 4 0.46 6.29 7.97 2835.56 27.56 4.59 WINTER DAWN 2012 - 4 0.30 9.99 5.08 3286.53 3.75 7.24

PROPRIETARY 5 2012 - 5 0.63 8.31 5.44 1015.51 4.39 0.00 ALBION 2012 - 5 0.39 12.04 12.25 4113.08 22.53 3.00

FESTIVAL 2012 - 5 0.38 13.57 4.07 2934.78 3.68 2.31 RUBYGEM 2012 - 5 0.36 5.00 9.65 1490.23 4.94 7.61

CAMINO REAL 2012 - 6 0.33 6.12 3.84 3523.27 8.22 4.74 DARSELECT 2012 - 6 0.35 15.98 7.32 2364.50 4.40 3.79

FESTIVAL 2012 - 6 0.37 4.04 2.94 4106.50 5.37 3.28 SWEET ANNE 2012 - 6 0.35 2.00 3.01 1057.63 17.98 0.00

BENICIA 2012 - 7 0.49 7.05 7.95 846.65 27.36 0.00 FESTIVAL 2012 - 7 0.45 14.91 1.97 5497.45 4.31 6.00 FL 06-38 2012 - 7 0.50 36.13 4.49 3388.37 8.82 5.46

PORTOLA 2012 - 7 0.39 2.45 2.09 906.65 4.63 0.00 VENTANA 2012 - 7 0.30 3.16 3.25 1621.23 10.34 0.00

PROPRIETARY 6 2012 - 9 0.34 16.80 6.10 4699.23 9.97 4.16 EVIE 2 2012 - 9 0.30 6.92 8.10 1637.05 3.07 0.00

FESTIVAL 2012 - 9 0.20 11.82 2.17 3000.85 2.87 4.13 GALLETA 2012 - 9 0.35 1.96 2.25 3583.31 8.68 6.12

SWEET ANNE 2012 - 9 0.00 0.35 1.15 1509.83 7.67 0.00

Page 58: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

58

Table 2-1. Continued.

HIGH 84.64 92.80 20.17 6.10 8.54 278.06

LOW 8.74 9.58 0.51 0.00 0.00 5.81

MEDIAN 31.50 33.06 2.33 0.29 1.71 30.42

FOLD DIFFERENCE

10 10 39 - - 48

CULTIVAR HARVEST 1576-87-0 1576-86-9 623-43-8 71-41-0 1576-95-0 556-24-1

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

aldehyde ketone ester alcohol alcohol ester

PROPRIETARY 1 2011 - 2 64.62 78.26 2.29 0.00 1.39 67.02 CAMAROSA 2011 - 2 73.97 79.63 7.74 0.00 3.00 60.52 FESTIVAL 2011 - 2 70.39 68.79 0.51 2.53 2.08 37.85

MARA DES BOIS 2011 - 2 38.78 54.19 3.05 0.05 1.92 5.92 RADIANCE 2011 - 2 69.95 70.06 8.11 0.00 3.18 14.88

PROPRIETARY 2 2011 - 3 78.60 65.21 5.96 0.00 1.84 278.06 CAMAROSA 2011 - 3 84.45 83.49 4.52 0.08 3.82 40.17

SWEET CHARLIE 2011 - 3 83.44 76.64 3.55 0.00 0.00 38.92 TREASURE 2011 - 3 84.64 92.80 1.88 0.00 1.15 52.65

WINTER DAWN 2011 - 3 61.61 58.78 3.68 0.28 4.39 13.53 PROPRIETARY 3 2011 - 4 52.73 78.50 3.75 1.96 1.05 227.94

CAMINO REAL 2011 - 4 36.84 34.19 5.73 0.48 0.98 13.51 FESTIVAL 2011 - 4 50.18 28.94 1.24 0.53 2.60 36.82

WINTERSTAR 2011 - 5 23.16 12.17 1.27 0.00 0.60 37.20 FESTIVAL 2011 - 5 24.28 18.28 1.01 0.00 1.55 9.70 RADIANCE 2011 - 5 31.53 14.50 7.43 0.10 0.69 10.57

PROPRIETARY 4 2011 - 5 53.67 67.09 5.23 0.55 0.78 93.07 FL 05-85 2011 - 6 18.63 19.59 0.80 0.00 0.00 7.83 ELYANA 2011 - 6 28.59 22.24 0.81 0.00 0.58 28.04

FESTIVAL 2011 - 6 26.05 22.17 0.82 0.00 0.62 16.59 RED MERLIN 2011 - 6 27.83 30.33 1.37 0.00 0.83 5.81

SAN ANDREAS 2011 - 6 27.68 26.12 0.89 0.00 0.14 9.56 ALBION 2011 - 7 23.52 26.38 7.71 0.39 0.00 37.70

CHARLOTTE 2011 - 7 12.17 15.75 20.17 2.30 0.00 249.23 FESTIVAL 2011 - 7 21.77 19.00 0.91 0.00 0.00 15.11

MARA DES BOIS 2011 - 7 8.74 9.58 7.44 0.00 0.00 11.96 MONTERREY 2011 - 7 18.24 13.37 4.28 0.15 0.00 46.02

ALBION 2012 - 1 42.60 39.14 2.63 2.42 0.00 52.19 FESTIVAL 2012 - 1 45.86 38.23 2.07 2.08 1.88 5.82 MOJAVE 2012 - 1 46.72 38.37 0.75 2.49 4.11 24.61

PROPRIETARY 3 2012 - 1 48.04 56.50 2.28 3.49 6.08 118.31 CHANDLER 2012 - 4 14.25 14.46 1.48 1.81 0.00 31.30 FESTIVAL 2012 - 4 34.40 38.15 0.78 0.24 3.81 6.84 FL 09-127 2012 - 4 22.75 24.14 2.37 0.00 5.34 23.09

TREASURE 2012 - 4 38.09 45.42 2.51 0.00 1.71 41.09 WINTER DAWN 2012 - 4 35.87 32.17 4.82 0.00 3.63 26.29

PROPRIETARY 5 2012 - 5 20.95 23.26 6.98 6.10 4.85 68.34 ALBION 2012 - 5 38.89 41.84 5.46 0.69 0.00 31.52

FESTIVAL 2012 - 5 33.58 32.70 1.33 0.31 7.32 8.55 RUBYGEM 2012 - 5 31.02 24.67 2.72 0.61 1.60 10.32

CAMINO REAL 2012 - 6 38.54 33.73 2.13 2.19 4.37 12.57 DARSELECT 2012 - 6 31.10 34.71 2.25 2.73 0.00 106.70

FESTIVAL 2012 - 6 41.77 40.98 0.97 2.40 1.71 15.45 SWEET ANNE 2012 - 6 26.02 34.44 0.65 2.90 1.49 20.57

BENICIA 2012 - 7 31.46 38.14 1.16 3.66 3.53 37.61 FESTIVAL 2012 - 7 40.58 40.70 1.15 2.14 4.04 16.74 FL 06-38 2012 - 7 28.41 30.56 2.98 2.76 1.72 46.76

PORTOLA 2012 - 7 24.38 27.04 3.48 2.96 2.21 26.48 VENTANA 2012 - 7 22.81 27.23 2.77 1.90 2.69 82.27

PROPRIETARY 6 2012 - 9 29.63 33.41 12.01 0.80 1.97 55.48 EVIE 2 2012 - 9 12.07 12.40 3.55 0.88 2.71 91.64

FESTIVAL 2012 - 9 15.38 14.13 1.21 0.21 2.96 21.41 GALLETA 2012 - 9 24.28 27.34 1.66 0.09 8.54 40.76

SWEET ANNE 2012 - 9 10.30 12.47 1.42 0.16 1.20 29.53

Page 59: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

59

Table 2-1. Continued.

HIGH 5.59 110.34 11063.45 409.81 19.44 23.52

LOW 0.00 15.83 1072.17 5.76 1.24 0.40

MEDIAN 1.67 37.72 2025.28 41.46 4.18 3.05

FOLD DIFFERENCE

- 7 10 71 16 58

CULTIVAR HARVEST 589-38-8 105-54-4 66-25-1 123-86-4 624-24-8 29674-47-3

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

ketone ester aldehyde ester ester ester/alcohol

PROPRIETARY 1 2011 - 2 1.83 110.34 1968.29 21.02 7.10 3.32 CAMAROSA 2011 - 2 0.76 81.38 6487.68 117.21 3.47 2.22 FESTIVAL 2011 - 2 2.65 50.73 3557.99 61.96 8.25 2.90

MARA DES BOIS 2011 - 2 0.57 54.34 2189.85 88.98 2.78 0.40 RADIANCE 2011 - 2 0.49 55.42 2830.28 38.56 6.00 1.38

PROPRIETARY 2 2011 - 3 2.08 72.34 2235.46 223.79 8.81 19.83 CAMAROSA 2011 - 3 1.36 74.73 3096.11 151.16 3.50 2.79

SWEET CHARLIE 2011 - 3 1.69 65.95 3242.15 41.22 8.66 2.03 TREASURE 2011 - 3 1.65 41.17 5076.19 148.51 1.35 4.99

WINTER DAWN 2011 - 3 1.54 58.02 2783.71 41.49 7.19 3.41 PROPRIETARY 3 2011 - 4 1.64 58.66 3252.41 45.78 4.12 4.17

CAMINO REAL 2011 - 4 2.98 67.98 1990.17 62.46 1.83 3.05 FESTIVAL 2011 - 4 3.50 58.22 11063.45 48.47 15.63 3.18

WINTERSTAR 2011 - 5 1.93 36.76 1357.23 32.35 4.93 1.84 FESTIVAL 2011 - 5 2.03 52.35 1177.82 12.03 5.84 4.84 RADIANCE 2011 - 5 1.65 36.20 1355.03 11.65 5.14 1.64

PROPRIETARY 4 2011 - 5 3.78 51.65 2460.07 100.84 7.78 23.52 FL 05-85 2011 - 6 0.77 38.42 1335.24 16.88 3.60 1.89 ELYANA 2011 - 6 0.71 27.79 1697.01 125.28 8.61 0.46

FESTIVAL 2011 - 6 0.77 27.39 2417.33 15.42 10.18 2.67 RED MERLIN 2011 - 6 3.01 44.16 1428.52 5.76 2.78 1.28

SAN ANDREAS 2011 - 6 0.91 30.97 2132.07 56.15 2.93 2.75 ALBION 2011 - 7 0.22 37.58 1821.58 41.43 1.71 5.54

CHARLOTTE 2011 - 7 0.21 42.06 2065.13 25.67 1.24 2.45 FESTIVAL 2011 - 7 0.42 38.02 1860.14 8.18 10.28 3.05

MARA DES BOIS 2011 - 7 0.44 20.80 2687.64 52.54 3.18 0.79 MONTERREY 2011 - 7 0.57 31.73 1814.15 220.76 2.07 4.01

ALBION 2012 - 1 2.12 37.27 3184.80 409.81 3.65 7.20 FESTIVAL 2012 - 1 1.40 40.51 2808.47 37.47 7.29 10.51 MOJAVE 2012 - 1 3.88 41.01 2629.55 187.78 6.08 5.64

PROPRIETARY 3 2012 - 1 1.98 52.62 1535.05 14.32 4.49 3.28 CHANDLER 2012 - 4 0.00 15.83 1147.02 86.61 3.85 4.31 FESTIVAL 2012 - 4 1.11 30.83 2550.02 30.00 7.41 7.24 FL 09-127 2012 - 4 0.92 25.16 1783.23 81.55 3.58 1.70

TREASURE 2012 - 4 1.85 31.76 3463.96 99.09 2.18 4.99 WINTER DAWN 2012 - 4 1.60 33.38 7116.18 29.42 9.09 10.55

PROPRIETARY 5 2012 - 5 1.04 34.88 1072.17 6.53 2.05 2.45 ALBION 2012 - 5 3.34 25.09 4951.49 363.88 3.62 12.46

FESTIVAL 2012 - 5 2.52 36.49 1813.61 41.12 6.99 8.83 RUBYGEM 2012 - 5 2.25 37.88 1787.67 51.62 4.24 1.26

CAMINO REAL 2012 - 6 5.59 42.43 1745.53 249.11 4.03 9.53 DARSELECT 2012 - 6 3.44 29.37 1709.95 94.53 7.74 2.20

FESTIVAL 2012 - 6 2.68 38.93 2200.20 34.84 9.19 9.93 SWEET ANNE 2012 - 6 3.31 35.49 1414.31 14.63 1.59 1.91

BENICIA 2012 - 7 2.67 33.13 2034.26 30.35 2.17 0.93 FESTIVAL 2012 - 7 1.44 31.66 2488.31 28.35 19.44 16.18 FL 06-38 2012 - 7 0.80 23.04 4253.17 74.97 8.20 3.98

PORTOLA 2012 - 7 2.25 37.86 1136.90 13.07 2.96 2.42 VENTANA 2012 - 7 2.10 36.30 1465.00 8.78 2.84 2.52

PROPRIETARY 6 2012 - 9 1.56 39.94 2016.30 22.01 7.95 17.24 EVIE 2 2012 - 9 3.00 35.18 1542.68 62.24 2.92 1.83

FESTIVAL 2012 - 9 1.64 21.54 1323.32 11.83 12.99 5.91 GALLETA 2012 - 9 3.89 29.33 1767.37 59.57 2.80 2.80

SWEET ANNE 2012 - 9 1.94 25.54 1153.26 12.57 1.75 0.94

Page 60: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

60

Table 2-1. Continued.

HIGH 57.10 378.13 53.35 196.93 18382.28 343.94

LOW 0.00 1.59 0.00 17.27 3794.92 0.00

MEDIAN 1.44 57.32 17.77 40.80 7674.66 52.96

FOLD DIFFERENCE

- 237 - 11 5 -

CULTIVAR HARVEST 96-04-8 638-11-9 116-53-0 7452-79-1 6728-26-3 928-95-0

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

ketone ester ester ester aldehyde alcohol

PROPRIETARY 1 2011 - 2 3.53 41.97 45.90 77.04 14335.48 92.25 CAMAROSA 2011 - 2 1.68 30.25 30.03 47.41 15185.47 78.48 FESTIVAL 2011 - 2 2.20 118.88 37.91 52.20 10600.45 9.02

MARA DES BOIS 2011 - 2 0.56 11.69 24.73 57.68 12230.43 126.08 RADIANCE 2011 - 2 1.51 75.65 39.49 87.29 15085.78 61.45

PROPRIETARY 2 2011 - 3 16.03 206.43 48.14 86.63 12931.96 2.18 CAMAROSA 2011 - 3 2.29 39.34 42.56 86.60 16752.16 49.50

SWEET CHARLIE 2011 - 3 10.51 35.48 37.92 101.23 11893.28 0.93 TREASURE 2011 - 3 6.89 281.63 44.88 107.55 18382.28 29.13

WINTER DAWN 2011 - 3 0.00 68.75 37.09 83.33 15661.83 71.96 PROPRIETARY 3 2011 - 4 3.95 42.51 53.35 88.85 13505.17 120.68

CAMINO REAL 2011 - 4 0.72 24.16 16.39 32.07 10723.21 81.37 FESTIVAL 2011 - 4 1.44 68.20 18.34 101.79 9615.52 7.37

WINTERSTAR 2011 - 5 2.63 41.69 21.80 46.72 5950.65 38.79 FESTIVAL 2011 - 5 1.03 24.69 15.50 31.94 7458.72 62.14 RADIANCE 2011 - 5 0.45 32.38 25.94 196.93 7258.31 29.59

PROPRIETARY 4 2011 - 5 3.69 122.82 34.18 70.83 10623.73 62.34 FL 05-85 2011 - 6 1.55 44.35 29.89 48.80 6670.12 62.99 ELYANA 2011 - 6 1.23 67.71 16.46 61.71 6379.28 0.00

FESTIVAL 2011 - 6 0.79 78.32 17.34 39.96 7562.82 9.99 RED MERLIN 2011 - 6 0.50 18.79 20.54 37.44 9479.61 124.13

SAN ANDREAS 2011 - 6 0.58 145.41 13.53 32.41 6926.46 30.73 ALBION 2011 - 7 0.00 77.97 1.73 57.55 7974.22 29.04

CHARLOTTE 2011 - 7 0.00 25.47 0.90 73.71 9785.12 45.12 FESTIVAL 2011 - 7 0.00 47.69 40.71 29.66 6793.29 7.10

MARA DES BOIS 2011 - 7 0.00 18.25 17.06 47.31 6226.18 21.80 MONTERREY 2011 - 7 1.44 151.12 26.91 41.23 6568.59 10.41

ALBION 2012 - 1 0.00 378.13 0.00 49.12 9284.85 51.62 FESTIVAL 2012 - 1 0.00 72.25 31.48 30.28 8842.99 41.84 MOJAVE 2012 - 1 2.39 116.93 0.00 44.42 9099.23 22.29

PROPRIETARY 3 2012 - 1 1.45 25.61 0.00 43.21 9279.66 21.62 CHANDLER 2012 - 4 57.10 16.80 0.00 18.62 3794.92 192.46 FESTIVAL 2012 - 4 1.15 83.83 26.84 29.68 5682.02 68.17 FL 09-127 2012 - 4 1.32 76.41 10.43 24.94 4505.45 141.04

TREASURE 2012 - 4 5.05 148.23 27.36 42.91 8905.78 65.42 WINTER DAWN 2012 - 4 0.60 82.02 51.73 29.56 7942.89 40.06

PROPRIETARY 5 2012 - 5 0.58 1.59 2.51 30.68 6107.65 125.08 ALBION 2012 - 5 1.30 131.19 9.34 32.39 7047.18 39.00

FESTIVAL 2012 - 5 0.69 35.09 0.00 21.13 5568.16 54.29 RUBYGEM 2012 - 5 1.01 28.61 15.82 34.85 6866.30 88.57

CAMINO REAL 2012 - 6 2.27 90.14 5.21 29.27 8227.17 343.94 DARSELECT 2012 - 6 3.33 53.48 2.40 21.39 5078.91 199.40

FESTIVAL 2012 - 6 1.42 95.80 18.20 29.11 7786.50 80.28 SWEET ANNE 2012 - 6 2.73 31.91 0.00 34.24 6743.07 202.27

BENICIA 2012 - 7 4.47 28.82 0.00 41.19 7511.25 90.63 FESTIVAL 2012 - 7 1.53 110.91 34.49 28.58 7174.23 46.44 FL 06-38 2012 - 7 1.49 95.51 19.15 32.62 5635.20 29.72

PORTOLA 2012 - 7 2.74 22.42 2.54 32.99 6446.74 70.78 VENTANA 2012 - 7 4.00 20.85 7.94 43.56 7835.52 95.77

PROPRIETARY 6 2012 - 9 1.47 61.53 5.60 38.31 7167.81 41.61 EVIE 2 2012 - 9 0.60 13.66 0.55 29.31 6490.12 58.24

FESTIVAL 2012 - 9 0.42 61.16 13.69 17.27 3810.95 24.98 GALLETA 2012 - 9 0.93 61.72 18.29 40.42 7798.82 79.02

SWEET ANNE 2012 - 9 1.74 40.88 0.00 22.51 4795.75 30.21

Page 61: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

61

Table 2-1. Continued.

HIGH 640.91 119.22 106.05 130.12 24.21 18.47

LOW 0.87 1.51 0.00 0.00 0.00 0.00

MEDIAN 25.49 17.37 14.72 8.47 2.32 4.06

FOLD DIFFERENCE

734 79 - - - -

CULTIVAR HARVEST 111-27-3 123-92-2 624-41-9 110-43-0 2432-51-1 105-66-8

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

alcohol ester ester ketone ketone ester

PROPRIETARY 1 2011 - 2 9.11 9.75 37.36 9.54 3.18 1.06 CAMAROSA 2011 - 2 9.09 13.09 44.21 6.52 5.51 2.81 FESTIVAL 2011 - 2 2.26 2.62 5.74 14.89 18.72 10.74

MARA DES BOIS 2011 - 2 14.36 2.70 5.14 7.73 1.17 6.39 RADIANCE 2011 - 2 10.71 24.34 44.81 18.59 2.35 2.46

PROPRIETARY 2 2011 - 3 1.44 43.48 5.96 19.82 3.28 2.07 CAMAROSA 2011 - 3 7.84 9.45 28.73 12.78 8.03 5.22

SWEET CHARLIE 2011 - 3 9.64 6.98 4.40 130.12 0.00 3.45 TREASURE 2011 - 3 6.43 12.30 14.65 43.93 0.00 4.06

WINTER DAWN 2011 - 3 9.30 4.33 8.79 3.99 0.79 2.31 PROPRIETARY 3 2011 - 4 34.87 119.22 81.96 7.59 4.26 2.63

CAMINO REAL 2011 - 4 30.08 6.75 9.21 1.98 0.00 0.53 FESTIVAL 2011 - 4 7.79 2.77 8.83 6.26 12.01 7.61

WINTERSTAR 2011 - 5 23.12 10.35 18.40 4.04 0.00 7.34 FESTIVAL 2011 - 5 20.92 4.61 10.92 3.92 2.10 3.28 RADIANCE 2011 - 5 26.48 7.32 13.58 5.60 1.68 4.48

PROPRIETARY 4 2011 - 5 37.24 18.30 11.52 6.00 0.00 2.12 FL 05-85 2011 - 6 16.56 5.82 0.00 3.66 1.92 1.18 ELYANA 2011 - 6 5.18 19.43 5.21 19.90 2.68 2.40

FESTIVAL 2011 - 6 3.15 6.91 0.00 19.22 0.00 4.07 RED MERLIN 2011 - 6 51.99 1.51 17.53 1.42 0.00 0.00

SAN ANDREAS 2011 - 6 0.87 14.24 25.41 4.41 0.91 4.42 ALBION 2011 - 7 39.47 21.04 22.86 1.54 0.56 1.61

CHARLOTTE 2011 - 7 52.15 55.52 10.44 0.00 3.15 0.00 FESTIVAL 2011 - 7 7.25 4.86 9.07 0.38 5.51 2.02

MARA DES BOIS 2011 - 7 29.18 8.81 7.36 0.51 2.94 6.53 MONTERREY 2011 - 7 20.52 25.30 106.05 1.90 0.53 3.90

ALBION 2012 - 1 45.45 12.53 3.34 21.56 0.44 4.57 FESTIVAL 2012 - 1 28.56 6.77 7.29 6.08 7.63 11.41 MOJAVE 2012 - 1 31.51 17.83 9.45 25.96 0.07 5.99

PROPRIETARY 3 2012 - 1 27.14 29.70 15.82 3.90 2.12 0.00 CHANDLER 2012 - 4 640.91 70.63 37.55 8.35 0.00 5.75 FESTIVAL 2012 - 4 31.73 18.12 13.62 15.73 20.02 8.67 FL 09-127 2012 - 4 94.68 28.80 19.00 40.87 1.18 9.99

TREASURE 2012 - 4 45.06 42.31 30.94 49.17 4.63 11.36 WINTER DAWN 2012 - 4 16.40 22.80 21.51 23.76 0.33 5.67

PROPRIETARY 5 2012 - 5 62.48 32.81 7.45 6.71 2.55 1.07 ALBION 2012 - 5 19.46 39.82 16.87 21.29 1.83 18.47

FESTIVAL 2012 - 5 44.71 14.72 12.89 7.41 7.73 8.18 RUBYGEM 2012 - 5 30.28 20.33 18.43 26.20 2.28 8.87

CAMINO REAL 2012 - 6 305.02 43.57 26.48 36.58 10.02 7.75 DARSELECT 2012 - 6 156.00 65.91 25.44 31.19 9.20 9.79

FESTIVAL 2012 - 6 24.65 10.18 20.16 13.58 24.21 7.96 SWEET ANNE 2012 - 6 103.18 31.91 21.50 12.75 3.51 2.77

BENICIA 2012 - 7 49.89 50.04 17.87 8.60 1.77 4.03 FESTIVAL 2012 - 7 18.20 10.35 14.22 9.75 24.04 7.39 FL 06-38 2012 - 7 18.85 28.26 15.98 15.06 8.08 10.63

PORTOLA 2012 - 7 33.47 16.91 16.44 6.16 2.07 1.49 VENTANA 2012 - 7 42.06 36.12 26.96 12.71 2.79 1.98

PROPRIETARY 6 2012 - 9 16.78 22.10 10.68 12.49 1.76 3.46 EVIE 2 2012 - 9 30.52 58.37 14.78 6.49 2.95 3.68

FESTIVAL 2012 - 9 9.77 8.38 9.84 2.06 9.80 5.19 GALLETA 2012 - 9 26.33 16.01 10.89 12.47 3.45 7.97

SWEET ANNE 2012 - 9 15.95 23.61 15.38 4.26 1.63 1.35

Page 62: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

62

Table 2-1. Continued.

HIGH 20.14 8.63 9.74 34.43 749.40 2.71

LOW 0.00 0.00 1.47 0.00 18.26 0.00

MEDIAN 2.54 3.16 4.38 2.79 190.28 0.40

FOLD DIFFERENCE

- - 7 - 41 -

CULTIVAR HARVEST 539-82-2 111-71-7 628-63-7 1191-16-8 106-70-7 55514-48-2

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

ester aldehyde ester ester ester ester

PROPRIETARY 1 2011 - 2 0.00 4.23 3.94 2.54 517.87 0.00 CAMAROSA 2011 - 2 2.57 6.47 5.22 12.84 168.57 0.00 FESTIVAL 2011 - 2 6.12 4.32 4.14 0.60 191.30 0.00

MARA DES BOIS 2011 - 2 2.12 3.18 4.73 1.08 211.46 0.00 RADIANCE 2011 - 2 3.21 5.15 4.36 21.68 230.46 0.00

PROPRIETARY 2 2011 - 3 0.00 4.33 4.10 0.00 182.53 0.64 CAMAROSA 2011 - 3 2.59 6.70 8.16 7.85 177.26 1.17

SWEET CHARLIE 2011 - 3 1.76 4.95 4.92 0.00 579.41 0.28 TREASURE 2011 - 3 2.59 8.63 4.57 1.81 39.38 0.66

WINTER DAWN 2011 - 3 1.11 4.85 4.21 0.00 181.28 0.32 PROPRIETARY 3 2011 - 4 9.21 2.97 9.74 29.55 506.71 0.64

CAMINO REAL 2011 - 4 0.00 0.77 4.23 3.50 150.10 0.49 FESTIVAL 2011 - 4 2.71 1.20 6.64 0.94 601.98 0.16

WINTERSTAR 2011 - 5 0.36 0.00 4.07 11.72 319.32 0.38 FESTIVAL 2011 - 5 0.14 0.63 3.43 1.48 247.67 0.19 RADIANCE 2011 - 5 0.00 0.33 4.42 11.16 184.38 0.27

PROPRIETARY 4 2011 - 5 0.69 2.88 5.72 3.34 378.92 0.27 FL 05-85 2011 - 6 0.00 0.00 2.22 1.24 177.86 0.04 ELYANA 2011 - 6 0.89 0.95 6.03 2.47 352.17 0.22

FESTIVAL 2011 - 6 1.85 0.15 3.86 0.00 287.17 0.11 RED MERLIN 2011 - 6 0.00 0.81 3.18 6.79 141.67 0.28

SAN ANDREAS 2011 - 6 0.39 0.44 3.12 17.54 167.24 0.11 ALBION 2011 - 7 2.66 1.10 2.73 8.36 56.88 0.71

CHARLOTTE 2011 - 7 0.00 1.43 3.02 7.78 18.26 0.60 FESTIVAL 2011 - 7 2.04 1.21 3.71 1.56 170.82 0.93

MARA DES BOIS 2011 - 7 1.41 1.05 4.22 4.08 240.92 1.15 MONTERREY 2011 - 7 0.23 0.59 3.83 34.43 55.08 2.44

ALBION 2012 - 1 6.79 7.65 5.60 1.04 189.25 0.42 FESTIVAL 2012 - 1 3.83 2.87 2.60 1.76 232.02 0.42 MOJAVE 2012 - 1 4.63 4.20 6.57 2.23 238.63 0.46

PROPRIETARY 3 2012 - 1 0.00 1.70 3.25 2.87 314.38 0.00 CHANDLER 2012 - 4 6.36 0.00 5.35 11.86 292.32 2.71 FESTIVAL 2012 - 4 20.14 4.82 4.61 1.78 180.57 0.60 FL 09-127 2012 - 4 15.20 3.48 4.31 6.10 374.19 0.58

TREASURE 2012 - 4 5.65 7.85 5.04 6.91 99.88 0.97 WINTER DAWN 2012 - 4 3.31 4.49 6.54 4.52 188.53 0.74

PROPRIETARY 5 2012 - 5 1.70 2.07 4.40 0.65 128.06 1.07 ALBION 2012 - 5 5.24 5.89 8.66 4.74 228.08 1.34

FESTIVAL 2012 - 5 3.35 3.17 4.87 1.42 230.09 0.50 RUBYGEM 2012 - 5 2.52 4.80 4.56 6.54 229.35 0.68

CAMINO REAL 2012 - 6 6.03 7.48 6.92 1.71 175.99 0.67 DARSELECT 2012 - 6 5.47 5.80 6.21 4.45 636.03 0.55

FESTIVAL 2012 - 6 5.89 5.28 5.45 3.02 348.91 0.44 SWEET ANNE 2012 - 6 2.91 4.03 3.15 1.53 174.94 0.46

BENICIA 2012 - 7 3.16 2.06 1.80 4.66 67.54 0.29 FESTIVAL 2012 - 7 7.76 3.46 5.75 2.42 485.44 0.25 FL 06-38 2012 - 7 11.27 4.85 5.47 2.71 614.15 0.38

PORTOLA 2012 - 7 1.10 2.92 1.99 8.54 117.55 0.33 VENTANA 2012 - 7 1.48 3.15 2.97 13.61 164.55 0.18

PROPRIETARY 6 2012 - 9 5.21 3.56 5.66 3.48 749.40 0.98 EVIE 2 2012 - 9 1.62 2.64 3.40 2.46 167.41 0.36

FESTIVAL 2012 - 9 2.93 1.05 4.97 1.18 235.34 0.00 GALLETA 2012 - 9 1.27 4.01 3.07 0.82 144.95 0.39

SWEET ANNE 2012 - 9 0.31 1.96 1.47 2.32 101.93 0.00

Page 63: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

63

Table 2-1. Continued.

HIGH 6.87 1123.40 726.88 15.43 257.91 108.16

LOW 0.28 0.00 3.59 0.83 5.68 3.22

MEDIAN 2.65 24.74 70.87 5.08 35.84 18.64

FOLD DIFFERENCE

25 - 202 19 45 34

CULTIVAR HARVEST 110-93-0 109-21-7 123-66-0 124-13-0 142-92-7 2497-18-9

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

ketone ester ester aldehyde ester ester

PROPRIETARY 1 2011 - 2 4.09 6.22 7.97 9.90 45.64 29.13 CAMAROSA 2011 - 2 3.10 29.58 9.92 9.99 69.96 79.21 FESTIVAL 2011 - 2 5.35 132.50 125.58 4.92 52.94 16.30

MARA DES BOIS 2011 - 2 4.01 72.56 103.95 9.56 67.35 54.68 RADIANCE 2011 - 2 4.66 13.61 5.73 6.45 46.21 17.64

PROPRIETARY 2 2011 - 3 2.16 184.68 21.92 4.26 57.68 5.26 CAMAROSA 2011 - 3 4.82 82.90 34.95 11.54 76.65 17.42

SWEET CHARLIE 2011 - 3 6.87 46.30 80.13 9.32 72.09 5.60 TREASURE 2011 - 3 5.16 211.28 16.96 8.05 59.48 6.67

WINTER DAWN 2011 - 3 3.41 7.54 22.10 3.95 30.73 13.87 PROPRIETARY 3 2011 - 4 6.06 3.57 148.57 5.69 39.10 24.51

CAMINO REAL 2011 - 4 0.86 23.70 48.17 4.60 32.03 9.52 FESTIVAL 2011 - 4 3.57 61.45 162.29 3.00 35.01 3.98

WINTERSTAR 2011 - 5 0.97 22.95 133.45 3.37 33.59 25.97 FESTIVAL 2011 - 5 1.53 10.87 37.28 2.55 14.04 9.23 RADIANCE 2011 - 5 2.86 4.59 31.31 2.41 23.01 24.78

PROPRIETARY 4 2011 - 5 3.11 222.92 164.62 8.87 46.56 23.62 FL 05-85 2011 - 6 0.77 5.05 12.41 3.57 16.86 19.32 ELYANA 2011 - 6 1.33 132.18 75.36 2.66 109.46 5.94

FESTIVAL 2011 - 6 1.68 38.21 96.71 4.64 25.58 16.58 RED MERLIN 2011 - 6 0.28 0.00 4.79 3.78 16.14 35.49

SAN ANDREAS 2011 - 6 1.34 23.64 73.49 2.03 28.01 12.68 ALBION 2011 - 7 1.06 15.39 14.48 2.58 16.58 20.08

CHARLOTTE 2011 - 7 0.39 0.66 3.59 7.31 21.39 35.79 FESTIVAL 2011 - 7 1.59 8.76 80.61 0.83 13.84 13.77

MARA DES BOIS 2011 - 7 1.05 51.57 295.46 4.55 32.49 23.27 MONTERREY 2011 - 7 1.40 55.74 26.33 7.79 104.68 50.34

ALBION 2012 - 1 3.53 1123.40 49.89 5.17 199.02 11.15 FESTIVAL 2012 - 1 2.49 57.18 169.83 4.07 31.69 14.33 MOJAVE 2012 - 1 1.33 154.43 83.49 4.98 257.91 33.53

PROPRIETARY 3 2012 - 1 1.54 0.00 26.63 3.17 12.46 8.46 CHANDLER 2012 - 4 3.73 24.68 19.38 6.85 78.72 35.84 FESTIVAL 2012 - 4 5.05 45.17 137.24 4.08 21.52 4.00 FL 09-127 2012 - 4 2.65 149.77 208.16 4.76 113.53 12.46

TREASURE 2012 - 4 2.65 77.25 322.38 6.17 77.52 10.99 WINTER DAWN 2012 - 4 1.87 4.05 280.32 6.10 69.31 17.19

PROPRIETARY 5 2012 - 5 2.55 0.00 55.45 8.31 23.48 27.35 ALBION 2012 - 5 5.12 121.60 369.10 8.16 90.75 58.32

FESTIVAL 2012 - 5 2.99 17.64 68.25 4.41 22.63 13.67 RUBYGEM 2012 - 5 3.43 16.65 19.26 5.78 32.27 19.21

CAMINO REAL 2012 - 6 2.74 176.93 90.81 9.88 95.76 34.36 DARSELECT 2012 - 6 3.70 31.04 300.87 15.43 206.81 74.77

FESTIVAL 2012 - 6 3.85 80.27 103.95 7.18 36.66 42.17 SWEET ANNE 2012 - 6 4.08 6.84 74.49 11.22 45.04 108.16

BENICIA 2012 - 7 2.93 8.67 88.83 8.24 39.25 71.59 FESTIVAL 2012 - 7 2.59 64.12 187.23 4.76 33.82 26.46 FL 06-38 2012 - 7 2.97 99.72 726.88 6.26 76.37 20.62

PORTOLA 2012 - 7 1.46 0.80 60.21 3.44 15.41 18.08 VENTANA 2012 - 7 0.58 0.00 34.29 3.77 18.52 36.37

PROPRIETARY 6 2012 - 9 2.37 24.79 350.70 12.25 20.91 24.32 EVIE 2 2012 - 9 1.25 22.57 43.48 5.70 29.09 4.82

FESTIVAL 2012 - 9 1.87 19.02 52.54 1.61 8.42 3.22 GALLETA 2012 - 9 3.04 88.84 62.31 6.66 37.24 8.68

SWEET ANNE 2012 - 9 2.02 7.92 17.87 2.14 5.68 3.47

Page 64: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

64

Table 2-1. Continued.

HIGH 11.52 22.42 18.23 20.36 6.53 13.43

LOW 0.00 0.00 0.00 0.00 0.00 0.15

MEDIAN 0.31 4.45 2.56 1.63 2.28 2.50

FOLD DIFFERENCE

- - - - - 91

CULTIVAR HARVEST 60415-61-4 104-76-7 2311-46-8 109-19-3 2548-87-0 540-18-1

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

ester alcohol ester ester aldehyde ester

PROPRIETARY 1 2011 - 2 0.53 4.53 0.00 0.79 2.17 1.67 CAMAROSA 2011 - 2 0.00 1.38 0.00 1.23 3.22 1.63 FESTIVAL 2011 - 2 1.31 11.70 0.33 1.63 3.91 2.56

MARA DES BOIS 2011 - 2 0.10 1.91 0.03 2.07 2.15 2.21 RADIANCE 2011 - 2 0.14 12.21 0.00 0.40 3.64 1.60

PROPRIETARY 2 2011 - 3 1.60 4.26 2.03 20.36 1.91 11.15 CAMAROSA 2011 - 3 0.15 3.14 0.45 2.82 4.47 2.67

SWEET CHARLIE 2011 - 3 1.15 10.25 2.60 1.99 4.78 2.74 TREASURE 2011 - 3 1.15 6.23 0.00 6.15 6.53 7.55

WINTER DAWN 2011 - 3 0.47 4.77 0.00 1.60 4.77 1.10 PROPRIETARY 3 2011 - 4 0.35 2.00 5.06 0.50 2.67 0.83

CAMINO REAL 2011 - 4 0.00 0.00 7.27 0.00 0.91 0.19 FESTIVAL 2011 - 4 0.00 7.53 2.32 0.00 0.89 0.69

WINTERSTAR 2011 - 5 0.00 8.88 0.00 0.00 0.42 1.89 FESTIVAL 2011 - 5 0.00 3.41 0.00 0.00 0.41 1.03 RADIANCE 2011 - 5 0.00 4.20 0.00 0.00 0.40 0.15

PROPRIETARY 4 2011 - 5 1.34 5.41 5.28 2.09 1.75 13.43 FL 05-85 2011 - 6 0.26 3.35 0.46 0.00 0.50 0.43 ELYANA 2011 - 6 0.27 22.42 2.51 11.87 0.35 5.80

FESTIVAL 2011 - 6 0.24 8.24 1.30 0.00 0.49 1.07 RED MERLIN 2011 - 6 0.52 2.52 0.00 0.00 0.59 0.39

SAN ANDREAS 2011 - 6 0.31 12.90 1.56 0.00 0.70 1.09 ALBION 2011 - 7 0.02 1.13 0.44 0.00 1.22 1.45

CHARLOTTE 2011 - 7 0.15 0.20 0.01 0.00 0.38 0.28 FESTIVAL 2011 - 7 0.22 0.00 0.00 0.00 0.66 0.28

MARA DES BOIS 2011 - 7 0.00 2.16 0.00 0.00 0.35 1.81 MONTERREY 2011 - 7 0.12 3.69 1.72 1.06 0.45 1.21

ALBION 2012 - 1 11.52 18.50 18.17 15.65 2.45 12.32 FESTIVAL 2012 - 1 1.89 6.57 7.21 1.23 2.19 4.81 MOJAVE 2012 - 1 1.83 12.54 12.07 3.87 1.94 5.12

PROPRIETARY 3 2012 - 1 0.10 1.95 2.51 0.79 2.36 0.97 CHANDLER 2012 - 4 0.00 4.86 5.20 1.94 0.00 0.24 FESTIVAL 2012 - 4 1.26 7.46 7.27 1.56 2.64 3.81 FL 09-127 2012 - 4 1.13 11.33 11.65 3.48 2.20 6.39

TREASURE 2012 - 4 0.91 6.30 7.51 4.95 4.40 9.49 WINTER DAWN 2012 - 4 0.55 5.07 6.15 2.42 3.66 3.41

PROPRIETARY 5 2012 - 5 0.27 1.20 1.85 1.99 3.00 2.44 ALBION 2012 - 5 0.94 7.46 6.77 7.26 3.65 5.74

FESTIVAL 2012 - 5 0.16 2.79 3.16 1.23 2.97 3.08 RUBYGEM 2012 - 5 0.61 3.46 2.97 1.54 2.41 2.89

CAMINO REAL 2012 - 6 1.20 4.36 4.93 2.43 2.18 5.25 DARSELECT 2012 - 6 0.56 10.86 11.55 6.35 3.11 7.25

FESTIVAL 2012 - 6 1.06 8.61 9.71 2.80 3.82 5.11 SWEET ANNE 2012 - 6 0.31 4.08 4.90 2.50 3.14 4.05

BENICIA 2012 - 7 0.23 2.15 3.34 2.55 4.36 4.48 FESTIVAL 2012 - 7 0.69 10.91 10.75 1.62 3.28 3.86 FL 06-38 2012 - 7 0.79 17.63 18.23 6.27 5.46 10.22

PORTOLA 2012 - 7 0.10 9.68 1.97 1.76 3.50 2.04 VENTANA 2012 - 7 0.11 0.74 2.27 1.84 3.37 2.41

PROPRIETARY 6 2012 - 9 0.55 6.67 6.48 1.74 3.05 4.88 EVIE 2 2012 - 9 0.14 1.81 2.69 4.11 1.91 4.32

FESTIVAL 2012 - 9 0.38 4.34 3.88 0.25 1.65 1.26 GALLETA 2012 - 9 0.52 2.33 2.99 5.55 3.54 4.73

SWEET ANNE 2012 - 9 0.10 1.98 2.62 1.16 1.77 2.26

Page 65: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

65

Table 2-1. Continued.

HIGH 42.14 107.78 53.62 12.98 482.77 40.01

LOW 0.00 1.54 0.00 0.13 21.64 1.31

MEDIAN 9.41 14.36 0.82 1.92 81.74 5.66

FOLD DIFFERENCE

- 70 - 102 22 30

CULTIVAR HARVEST 4077-47-8 20664-46-4 821-55-6 5989-33-3 78-70-6 124-19-6

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

furan aldehyde ketone furan alcohol aldehyde

PROPRIETARY 1 2011 - 2 12.78 29.87 0.11 3.81 137.57 22.11 CAMAROSA 2011 - 2 17.54 14.62 0.66 1.63 51.87 18.85 FESTIVAL 2011 - 2 19.87 37.83 1.43 3.16 75.99 19.24

MARA DES BOIS 2011 - 2 17.84 17.40 1.07 1.32 28.59 12.59 RADIANCE 2011 - 2 26.97 9.60 0.41 3.58 306.04 40.01

PROPRIETARY 2 2011 - 3 16.90 32.79 2.18 1.80 31.65 11.72 CAMAROSA 2011 - 3 23.65 23.72 2.30 1.13 79.98 20.75

SWEET CHARLIE 2011 - 3 28.96 26.38 9.77 4.42 161.57 32.69 TREASURE 2011 - 3 42.14 37.23 8.28 1.29 65.37 17.61

WINTER DAWN 2011 - 3 20.93 7.30 0.57 0.92 54.87 8.35 PROPRIETARY 3 2011 - 4 10.54 107.78 0.00 2.48 322.88 13.77

CAMINO REAL 2011 - 4 3.31 10.08 0.00 1.73 286.33 10.30 FESTIVAL 2011 - 4 7.91 23.99 0.00 1.68 71.60 7.05

WINTERSTAR 2011 - 5 1.26 2.50 0.00 0.78 32.98 2.12 FESTIVAL 2011 - 5 2.03 2.17 0.00 2.40 59.36 2.10 RADIANCE 2011 - 5 3.05 2.13 0.00 0.23 150.10 4.63

PROPRIETARY 4 2011 - 5 13.58 31.50 0.00 3.71 84.37 8.34 FL 05-85 2011 - 6 2.92 8.75 0.00 0.76 52.49 2.43 ELYANA 2011 - 6 5.86 12.72 0.28 0.28 62.28 4.67

FESTIVAL 2011 - 6 4.32 11.44 0.00 0.46 43.26 2.62 RED MERLIN 2011 - 6 3.73 3.25 0.00 2.11 40.05 2.28

SAN ANDREAS 2011 - 6 7.67 29.67 0.00 1.39 137.52 3.64 ALBION 2011 - 7 5.27 3.65 0.00 1.07 168.45 3.63

CHARLOTTE 2011 - 7 4.46 13.69 0.00 1.67 34.07 3.20 FESTIVAL 2011 - 7 2.70 5.25 0.00 0.88 30.15 1.31

MARA DES BOIS 2011 - 7 4.22 9.85 0.00 0.13 21.64 2.85 MONTERREY 2011 - 7 16.37 40.26 0.00 1.51 133.91 5.54

ALBION 2012 - 1 9.73 22.76 5.45 12.98 423.84 11.40 FESTIVAL 2012 - 1 7.08 12.05 2.52 3.63 104.29 5.26 MOJAVE 2012 - 1 7.95 3.34 2.94 3.22 63.18 5.66

PROPRIETARY 3 2012 - 1 9.67 8.86 0.24 7.00 240.74 5.66 CHANDLER 2012 - 4 0.00 19.73 0.00 1.56 35.92 4.09 FESTIVAL 2012 - 4 14.54 29.45 0.00 1.72 56.24 6.46 FL 09-127 2012 - 4 11.81 40.36 53.62 1.37 67.05 5.48

TREASURE 2012 - 4 16.01 33.65 11.39 1.88 67.90 8.36 WINTER DAWN 2012 - 4 13.35 4.56 25.43 1.13 51.47 5.20

PROPRIETARY 5 2012 - 5 9.29 11.72 3.61 2.27 112.00 4.44 ALBION 2012 - 5 18.44 14.10 8.28 8.69 400.74 7.71

FESTIVAL 2012 - 5 8.71 4.75 1.81 3.28 83.51 4.40 RUBYGEM 2012 - 5 6.13 11.73 5.31 3.64 97.91 4.73

CAMINO REAL 2012 - 6 8.16 24.39 4.96 6.59 244.74 11.06 DARSELECT 2012 - 6 26.02 69.41 8.77 5.87 153.20 9.67

FESTIVAL 2012 - 6 13.06 23.72 4.68 4.89 90.93 9.72 SWEET ANNE 2012 - 6 7.61 21.36 1.81 7.21 482.77 14.43

BENICIA 2012 - 7 15.11 8.58 5.87 3.65 330.32 6.09 FESTIVAL 2012 - 7 13.33 13.74 3.41 1.96 99.14 5.59 FL 06-38 2012 - 7 23.82 56.32 5.40 2.90 222.58 5.48

PORTOLA 2012 - 7 9.49 1.89 0.08 2.27 27.05 3.52 VENTANA 2012 - 7 9.32 1.54 1.05 4.40 86.68 6.13

PROPRIETARY 6 2012 - 9 8.31 25.05 2.14 0.85 79.76 6.73 EVIE 2 2012 - 9 5.86 19.66 0.99 1.71 69.84 3.64

FESTIVAL 2012 - 9 3.28 6.69 0.00 0.94 24.57 1.34 GALLETA 2012 - 9 21.08 47.33 1.96 2.47 218.27 6.18

SWEET ANNE 2012 - 9 7.41 21.61 0.00 7.17 295.85 4.04

Page 66: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

66

Table 2-1. Continued.

HIGH 6.80 36.07 72.87 22.46 13.66 117.92

LOW 1.06 1.29 0.00 0.00 0.00 0.49

MEDIAN 2.78 8.54 6.96 3.75 0.82 10.26

FOLD DIFFERENCE

6 28 - - - 239

CULTIVAR HARVEST 103-09-3 140-11-4 2639-63-6 53398-83-7 106-32-1 112-14-1

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

ester ester ester ester ester ester

PROPRIETARY 1 2011 - 2 4.51 7.40 2.54 2.84 0.13 11.65 CAMAROSA 2011 - 2 2.87 7.66 6.98 7.08 0.16 21.13 FESTIVAL 2011 - 2 3.29 6.81 21.49 16.38 1.21 11.03

MARA DES BOIS 2011 - 2 4.50 8.83 21.27 15.48 0.80 19.38 RADIANCE 2011 - 2 3.41 11.79 8.25 4.27 0.23 5.46

PROPRIETARY 2 2011 - 3 4.42 12.94 12.80 7.12 0.39 10.35 CAMAROSA 2011 - 3 3.96 15.69 12.79 3.99 0.62 34.07

SWEET CHARLIE 2011 - 3 3.44 25.45 17.14 3.60 1.26 28.47 TREASURE 2011 - 3 2.04 11.17 29.51 9.74 0.26 9.99

WINTER DAWN 2011 - 3 2.49 8.65 2.03 1.34 0.33 4.41 PROPRIETARY 3 2011 - 4 6.06 25.91 1.01 0.62 4.63 20.99

CAMINO REAL 2011 - 4 4.26 36.07 3.94 1.06 0.82 20.04 FESTIVAL 2011 - 4 3.84 6.47 11.68 5.12 2.07 17.37

WINTERSTAR 2011 - 5 2.94 10.12 7.39 3.65 1.29 10.17 FESTIVAL 2011 - 5 2.28 4.03 3.72 2.90 0.41 2.89 RADIANCE 2011 - 5 2.41 8.77 2.56 3.60 0.28 1.24

PROPRIETARY 4 2011 - 5 3.26 24.68 28.61 11.18 1.69 8.78 FL 05-85 2011 - 6 2.58 3.56 0.95 1.61 0.07 3.02 ELYANA 2011 - 6 2.50 19.10 0.00 1.00 1.21 103.40

FESTIVAL 2011 - 6 3.28 4.86 10.50 10.41 0.63 5.39 RED MERLIN 2011 - 6 2.07 6.98 0.63 1.24 0.13 0.49

SAN ANDREAS 2011 - 6 2.37 9.74 3.48 0.87 0.65 1.25 ALBION 2011 - 7 1.44 5.62 1.43 1.55 0.35 2.62

CHARLOTTE 2011 - 7 1.68 2.93 0.90 1.71 0.11 1.15 FESTIVAL 2011 - 7 1.68 3.57 2.31 2.28 0.68 2.49

MARA DES BOIS 2011 - 7 3.05 4.13 12.55 5.77 6.07 22.76 MONTERREY 2011 - 7 3.33 30.29 6.93 2.81 0.62 67.70

ALBION 2012 - 1 1.91 7.51 72.87 6.97 0.15 30.97 FESTIVAL 2012 - 1 1.93 3.57 8.17 8.39 1.06 6.29 MOJAVE 2012 - 1 2.19 15.81 42.52 6.27 0.51 80.78

PROPRIETARY 3 2012 - 1 1.84 4.24 0.12 0.00 0.25 3.93 CHANDLER 2012 - 4 3.56 24.18 11.30 4.21 0.00 27.23 FESTIVAL 2012 - 4 2.51 4.69 9.36 5.43 0.00 4.85 FL 09-127 2012 - 4 2.78 9.04 30.03 5.84 8.93 33.80

TREASURE 2012 - 4 2.63 8.43 13.65 4.71 5.39 16.21 WINTER DAWN 2012 - 4 2.55 8.94 1.67 0.68 6.25 10.41

PROPRIETARY 5 2012 - 5 2.41 9.79 0.60 1.20 0.00 2.93 ALBION 2012 - 5 2.96 15.31 9.56 4.68 4.31 41.16

FESTIVAL 2012 - 5 1.71 3.92 5.40 4.30 0.00 2.70 RUBYGEM 2012 - 5 1.83 5.61 3.16 3.26 0.00 13.94

CAMINO REAL 2012 - 6 3.32 26.05 30.87 12.77 2.93 29.70 DARSELECT 2012 - 6 3.57 8.36 26.13 10.14 8.35 117.92

FESTIVAL 2012 - 6 3.18 4.63 12.22 22.46 4.80 11.58 SWEET ANNE 2012 - 6 2.78 6.13 2.39 3.86 4.12 7.78

BENICIA 2012 - 7 2.99 32.97 2.82 2.86 4.39 8.61 FESTIVAL 2012 - 7 1.86 4.42 11.81 12.66 5.25 9.94 FL 06-38 2012 - 7 2.10 19.64 22.97 5.08 13.66 28.08

PORTOLA 2012 - 7 2.17 1.79 1.18 0.85 6.16 8.62 VENTANA 2012 - 7 1.06 21.96 1.13 1.42 2.32 3.62

PROPRIETARY 6 2012 - 9 6.80 12.26 6.93 3.02 9.47 13.97 EVIE 2 2012 - 9 5.20 10.43 4.18 0.78 0.95 13.53

FESTIVAL 2012 - 9 2.31 1.29 3.00 2.26 0.82 1.75 GALLETA 2012 - 9 4.11 2.97 11.96 4.40 1.79 6.70

SWEET ANNE 2012 - 9 3.42 4.24 2.02 0.61 1.70 3.25

Page 67: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

67

Table 2-1. Continued.

HIGH 52.26 6.93 4.74 397.54 13.27 28.72

LOW 0.06 0.00 0.00 0.00 0.00 0.00

MEDIAN 4.95 1.67 0.00 21.75 1.10 1.33

FOLD DIFFERENCE

875 - - - - -

CULTIVAR HARVEST 564-94-3 3913-81-3 134-20-3 110-39-4 110-38-3 29811-50-5

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

aldehyde aldehyde ester ester ester ester

PROPRIETARY 1 2011 - 2 3.33 5.23 0.00 11.79 0.00 5.59 CAMAROSA 2011 - 2 3.66 4.22 0.00 27.44 0.00 7.58 FESTIVAL 2011 - 2 4.22 3.58 0.00 50.97 6.02 0.59

MARA DES BOIS 2011 - 2 10.95 2.72 0.00 33.50 1.22 1.11 RADIANCE 2011 - 2 52.26 2.71 0.00 6.10 0.00 0.54

PROPRIETARY 2 2011 - 3 8.12 4.23 0.00 34.71 0.00 2.00 CAMAROSA 2011 - 3 9.20 6.93 0.00 60.22 0.00 11.73

SWEET CHARLIE 2011 - 3 10.97 3.42 0.00 59.74 3.99 3.58 TREASURE 2011 - 3 10.54 5.50 0.00 53.49 0.00 2.87

WINTER DAWN 2011 - 3 2.19 1.95 0.00 3.37 0.00 0.61 PROPRIETARY 3 2011 - 4 0.78 3.53 0.00 4.28 0.00 1.74

CAMINO REAL 2011 - 4 0.84 1.31 0.00 24.94 0.00 2.53 FESTIVAL 2011 - 4 4.07 2.24 0.00 41.00 3.63 3.15

WINTERSTAR 2011 - 5 4.94 0.47 0.00 11.29 0.64 0.66 FESTIVAL 2011 - 5 0.17 0.65 0.00 4.84 0.40 0.74 RADIANCE 2011 - 5 5.12 0.78 0.00 1.17 0.37 0.80

PROPRIETARY 4 2011 - 5 9.67 3.96 0.00 48.33 1.60 0.65 FL 05-85 2011 - 6 0.64 0.79 0.00 3.64 2.38 1.17 ELYANA 2011 - 6 1.52 1.15 0.00 397.54 2.93 5.24

FESTIVAL 2011 - 6 1.47 1.02 0.00 21.95 5.77 1.35 RED MERLIN 2011 - 6 3.84 0.91 0.00 0.21 0.00 0.56

SAN ANDREAS 2011 - 6 0.06 0.55 0.00 7.00 1.64 0.26 ALBION 2011 - 7 8.36 0.51 0.00 1.69 0.00 0.46

CHARLOTTE 2011 - 7 3.84 0.67 1.46 0.00 0.00 0.40 FESTIVAL 2011 - 7 2.44 0.60 0.00 4.43 0.97 1.32

MARA DES BOIS 2011 - 7 4.30 1.42 4.74 28.14 2.30 1.73 MONTERREY 2011 - 7 0.62 1.08 0.00 46.32 0.45 28.72

ALBION 2012 - 1 6.70 1.49 0.00 263.31 13.27 2.56 FESTIVAL 2012 - 1 4.95 1.70 0.00 17.42 1.71 0.70 MOJAVE 2012 - 1 7.34 2.02 0.00 234.85 1.99 10.78

PROPRIETARY 3 2012 - 1 2.45 1.63 0.00 3.46 0.00 0.28 CHANDLER 2012 - 4 7.61 0.00 0.00 61.48 0.00 17.51 FESTIVAL 2012 - 4 6.77 2.35 0.00 31.08 7.18 1.72 FL 09-127 2012 - 4 17.13 1.84 0.00 94.26 3.87 3.33

TREASURE 2012 - 4 8.39 2.95 0.00 35.23 1.29 3.63 WINTER DAWN 2012 - 4 4.20 0.70 0.00 4.73 0.69 0.00

PROPRIETARY 5 2012 - 5 7.75 1.80 0.00 0.63 0.00 0.00 ALBION 2012 - 5 13.97 1.70 0.00 36.23 4.45 3.43

FESTIVAL 2012 - 5 3.00 1.78 0.00 6.15 0.97 0.88 RUBYGEM 2012 - 5 7.10 2.19 0.00 22.67 1.71 2.07

CAMINO REAL 2012 - 6 6.58 1.06 0.00 95.34 2.58 1.63 DARSELECT 2012 - 6 3.75 2.02 0.00 100.59 1.55 19.94

FESTIVAL 2012 - 6 6.02 2.93 0.00 23.30 5.14 0.89 SWEET ANNE 2012 - 6 4.40 1.28 0.00 8.95 4.14 0.65

BENICIA 2012 - 7 12.14 1.26 0.00 5.09 0.84 0.00 FESTIVAL 2012 - 7 6.79 2.06 0.00 19.59 3.97 0.93 FL 06-38 2012 - 7 10.22 1.88 0.00 55.04 6.14 1.79

PORTOLA 2012 - 7 2.74 1.20 0.00 4.51 0.24 2.12 VENTANA 2012 - 7 6.36 1.30 0.00 1.90 0.00 0.00

PROPRIETARY 6 2012 - 9 4.01 2.24 0.00 16.72 2.24 0.76 EVIE 2 2012 - 9 5.97 1.37 0.00 21.55 0.00 2.51

FESTIVAL 2012 - 9 2.29 0.72 0.00 6.94 2.48 1.11 GALLETA 2012 - 9 13.64 0.68 0.00 37.60 0.00 2.73

SWEET ANNE 2012 - 9 2.76 0.45 0.00 4.33 8.38 0.73

Page 68: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

68

Table 2-1. Continued.

HIGH 191.41 6.17 346.93 5.57 12.77 12.92

LOW 0.00 0.00 0.00 0.00 2.30 0.00

MEDIAN 2.28 0.81 5.73 0.70 5.74 2.49

FOLD DIFFERENCE

- - - - 6 -

CULTIVAR HARVEST 7786-58-5 15111-96-3 706-14-9 10522-34-6 5881-17-4 128-37-0

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

ester ester furan ester hydrocarbon

PROPRIETARY 1 2011 - 2 4.53 0.85 0.68 0.44 9.73 0.67

CAMAROSA 2011 - 2 6.93 0.56 0.96 0.59 7.49 1.09 FESTIVAL 2011 - 2 1.17 1.93 0.60 1.51 8.54 2.27

MARA DES BOIS 2011 - 2 6.72 4.69 0.94 0.42 8.68 0.36 RADIANCE 2011 - 2 0.34 0.65 115.37 0.68 9.88 2.43

PROPRIETARY 2 2011 - 3 24.85 0.06 0.00 1.36 11.41 0.82 CAMAROSA 2011 - 3 16.29 2.80 1.57 1.14 10.85 2.21

SWEET CHARLIE 2011 - 3 15.07 4.29 313.79 1.33 12.77 5.49 TREASURE 2011 - 3 10.66 0.61 5.79 1.64 9.70 1.33

WINTER DAWN 2011 - 3 0.24 0.96 1.02 0.27 7.42 1.71 PROPRIETARY 3 2011 - 4 8.02 1.01 3.11 0.38 9.60 0.98

CAMINO REAL 2011 - 4 1.80 1.00 21.12 0.61 9.23 1.22 FESTIVAL 2011 - 4 1.61 6.17 0.40 1.78 10.03 3.01

WINTERSTAR 2011 - 5 0.64 1.64 20.02 0.57 5.25 1.03 FESTIVAL 2011 - 5 0.00 1.73 5.78 0.32 5.90 1.41 RADIANCE 2011 - 5 0.00 1.42 33.22 0.57 6.43 3.08

PROPRIETARY 4 2011 - 5 1.56 0.79 0.73 2.11 5.36 0.57 FL 05-85 2011 - 6 0.00 2.79 0.45 0.59 2.93 0.63 ELYANA 2011 - 6 60.26 2.25 46.44 5.57 4.56 0.70

FESTIVAL 2011 - 6 0.90 3.21 0.84 1.53 5.00 1.63 RED MERLIN 2011 - 6 0.00 0.34 6.79 0.00 2.30 0.00

SAN ANDREAS 2011 - 6 0.18 0.23 83.49 0.51 3.63 1.47 ALBION 2011 - 7 1.13 0.41 6.56 0.24 3.99 2.54

CHARLOTTE 2011 - 7 0.49 0.41 0.37 0.00 3.89 0.00 FESTIVAL 2011 - 7 0.42 2.07 0.00 0.29 3.30 1.09

MARA DES BOIS 2011 - 7 4.34 2.49 0.00 0.56 3.40 0.00 MONTERREY 2011 - 7 13.36 1.00 0.00 0.40 5.11 2.04

ALBION 2012 - 1 22.86 1.24 346.93 4.53 7.67 8.11 FESTIVAL 2012 - 1 1.05 1.07 2.62 1.23 6.13 8.09 MOJAVE 2012 - 1 60.69 0.60 191.40 2.35 3.91 0.00

PROPRIETARY 3 2012 - 1 0.94 0.48 1.68 0.00 3.04 1.54 CHANDLER 2012 - 4 37.20 0.00 78.79 2.89 9.81 12.92 FESTIVAL 2012 - 4 2.75 1.44 2.62 2.22 8.36 9.62 FL 09-127 2012 - 4 30.92 0.97 147.96 2.35 7.21 9.66

TREASURE 2012 - 4 15.68 0.98 5.18 1.32 6.34 3.64 WINTER DAWN 2012 - 4 0.00 0.50 1.67 0.42 7.76 7.92

PROPRIETARY 5 2012 - 5 2.45 0.65 5.68 0.00 3.36 9.46 ALBION 2012 - 5 14.25 0.74 148.43 1.42 7.26 11.56

FESTIVAL 2012 - 5 0.98 0.69 1.24 0.67 3.89 8.09 RUBYGEM 2012 - 5 4.63 0.79 38.39 1.26 4.08 8.35

CAMINO REAL 2012 - 6 6.41 0.82 84.65 2.68 5.73 9.55 DARSELECT 2012 - 6 191.41 0.44 292.66 1.32 5.90 8.18

FESTIVAL 2012 - 6 2.03 0.87 1.81 1.57 6.35 9.80 SWEET ANNE 2012 - 6 4.57 0.57 49.75 0.48 5.31 8.71

BENICIA 2012 - 7 5.29 0.74 39.34 0.00 4.40 6.02 FESTIVAL 2012 - 7 1.09 0.79 1.36 1.05 5.74 5.50 FL 06-38 2012 - 7 18.44 0.66 150.70 2.24 5.80 5.01

PORTOLA 2012 - 7 2.10 0.41 1.42 0.00 3.90 1.86 VENTANA 2012 - 7 0.58 0.38 9.54 0.00 3.67 0.63

PROPRIETARY 6 2012 - 9 1.23 0.61 37.57 2.17 4.48 9.08 EVIE 2 2012 - 9 34.44 0.27 33.27 0.99 4.03 7.36

FESTIVAL 2012 - 9 0.88 1.07 0.81 0.72 3.48 2.63 GALLETA 2012 - 9 14.06 0.79 25.34 1.06 5.49 6.97

SWEET ANNE 2012 - 9 1.41 0.90 32.10 0.65 5.66 3.19

Page 69: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

69

Table 2-1. Continued.

HIGH 667.62 185.71 29.36 30.10

LOW 0.00 0.00 0.00 0.14

MEDIAN 46.90 6.38 1.46 4.66

FOLD DIFFERENCE

- - - 211

CULTIVAR HARVEST 40716-66-3 4887-30-3 5454-09-1 2305-05-7

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

alcohol ester ester furan

PROPRIETARY 1 2011 - 2 97.06 12.78 8.68 4.20 CAMAROSA 2011 - 2 26.75 9.98 4.82 5.42 FESTIVAL 2011 - 2 86.35 23.87 11.82 9.72

MARA DES BOIS 2011 - 2 9.85 8.74 1.46 5.54 RADIANCE 2011 - 2 308.02 20.59 19.16 7.73

PROPRIETARY 2 2011 - 3 5.12 2.20 0.85 2.43 CAMAROSA 2011 - 3 78.87 16.29 4.94 9.50

SWEET CHARLIE 2011 - 3 667.62 65.87 24.70 11.74 TREASURE 2011 - 3 34.85 8.92 1.62 30.10

WINTER DAWN 2011 - 3 159.43 0.00 0.00 6.49 PROPRIETARY 3 2011 - 4 74.18 4.33 0.00 16.59

CAMINO REAL 2011 - 4 36.38 8.96 1.89 1.31 FESTIVAL 2011 - 4 96.42 20.83 3.04 9.09

WINTERSTAR 2011 - 5 30.80 5.61 0.85 1.60 FESTIVAL 2011 - 5 51.21 3.16 0.81 2.78 RADIANCE 2011 - 5 198.38 0.00 0.00 3.55

PROPRIETARY 4 2011 - 5 27.41 2.62 1.27 6.68 FL 05-85 2011 - 6 7.63 1.34 0.25 3.00 ELYANA 2011 - 6 30.63 185.71 29.36 1.93

FESTIVAL 2011 - 6 43.41 33.67 1.47 3.11 RED MERLIN 2011 - 6 0.00 0.00 0.00 0.27

SAN ANDREAS 2011 - 6 46.87 3.77 0.00 3.57 ALBION 2011 - 7 12.49 0.00 0.00 1.57

CHARLOTTE 2011 - 7 0.00 0.00 0.00 0.83 FESTIVAL 2011 - 7 6.07 1.99 0.00 0.92

MARA DES BOIS 2011 - 7 0.88 7.36 1.55 1.43 MONTERREY 2011 - 7 3.32 8.36 3.97 0.14

ALBION 2012 - 1 214.55 36.92 12.37 28.69 FESTIVAL 2012 - 1 149.32 7.95 1.92 14.55 MOJAVE 2012 - 1 7.36 94.19 14.57 13.45

PROPRIETARY 3 2012 - 1 38.63 0.00 0.00 8.54 CHANDLER 2012 - 4 17.26 37.41 7.02 6.85 FESTIVAL 2012 - 4 141.27 11.47 1.50 9.55 FL 09-127 2012 - 4 159.47 36.55 8.65 4.99

TREASURE 2012 - 4 39.48 5.72 1.15 26.32 WINTER DAWN 2012 - 4 72.49 0.00 0.00 4.43

PROPRIETARY 5 2012 - 5 26.46 0.00 0.00 1.54 ALBION 2012 - 5 213.01 11.52 2.14 16.53

FESTIVAL 2012 - 5 86.59 2.24 0.79 5.33 RUBYGEM 2012 - 5 113.35 8.64 1.86 2.29

CAMINO REAL 2012 - 6 52.50 15.73 6.48 4.50 DARSELECT 2012 - 6 138.07 119.27 5.83 10.60

FESTIVAL 2012 - 6 116.93 6.07 1.64 8.30 SWEET ANNE 2012 - 6 144.53 3.85 0.00 4.81

BENICIA 2012 - 7 82.87 1.30 0.00 1.37 FESTIVAL 2012 - 7 123.21 6.69 1.20 6.86 FL 06-38 2012 - 7 244.90 30.12 6.10 10.15

PORTOLA 2012 - 7 8.16 1.79 0.00 0.97 VENTANA 2012 - 7 13.54 0.00 0.00 1.49

PROPRIETARY 6 2012 - 9 10.59 3.28 0.96 3.16 EVIE 2 2012 - 9 18.05 7.59 1.57 6.93

FESTIVAL 2012 - 9 42.61 2.80 1.03 3.20 GALLETA 2012 - 9 46.93 3.75 2.09 2.01

SWEET ANNE 2012 - 9 89.97 2.20 0.42 3.75

Page 70: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

70

Table 2-2. Standard errors of consumer, physical, and biochemical measures.

CULTIVAR HARVEST HARVEST

DATE OVERALL

LIKING TEXTURE

LIKING SWEETNESS INTENSITY

SOURNESS INTENSITY

STRAWBERRY FLAVOR INTENSITY

-100 to +100

-100 to +100

0 to +100 0 to +100 0 to +100

PROPRIETARY 1 2011 - 2 1/24/2011 2.51 2.63 2.05 1.64 2.15 CAMAROSA 2011 - 2 1/24/2011 2.63 2.61 1.85 1.74 2.15 FESTIVAL 2011 - 2 1/24/2011 2.39 2.38 2.17 1.73 2.28

MARA DES BOIS 2011 - 2 1/24/2011 2.39 2.49 2.11 1.36 2.08 RADIANCE 2011 - 2 1/24/2011 2.29 2.29 2.04 1.71 2.05

PROPRIETARY 2 2011 - 3 1/31/2011 2.46 2.66 2.19 1.49 2.32 CAMAROSA 2011 - 3 1/31/2011 2.31 2.36 2.01 1.62 2.13

SWEET CHARLIE 2011 - 3 1/31/2011 2.54 2.72 2.16 1.63 2.31 TREASURE 2011 - 3 1/31/2011 2.57 2.61 2.07 1.69 2.08

WINTER DAWN 2011 - 3 1/31/2011 2.29 2.39 1.80 1.65 2.00 PROPRIETARY 3 2011 - 4 2/7/2011 2.47 2.89 1.98 1.84 2.14

CAMINO REAL 2011 - 4 2/7/2011 2.56 2.29 1.68 1.78 2.07 FESTIVAL 2011 - 4 2/7/2011 2.28 2.47 1.81 1.81 1.95

WINTERSTAR 2011 - 5 2/14/2011 2.74 2.61 2.09 1.42 2.07 FESTIVAL 2011 - 5 2/14/2011 2.46 2.47 1.92 1.75 2.13 RADIANCE 2011 - 5 2/14/2011 2.66 2.70 1.92 1.65 2.12

PROPRIETARY 4 2011 - 5 2/14/2011 2.54 2.32 2.21 1.66 2.27 FL 05-85 2011 - 6 2/21/2011 2.13 2.15 1.75 1.08 1.74 ELYANA 2011 - 6 2/21/2011 2.42 2.36 1.93 1.26 2.04

FESTIVAL 2011 - 6 2/21/2011 2.44 2.29 1.85 1.30 1.95 RED MERLIN 2011 - 6 2/21/2011 2.21 2.06 1.46 1.86 1.81

SAN ANDREAS 2011 - 6 2/21/2011 2.17 2.31 1.80 1.84 1.83 ALBION 2011 - 7 2/28/2011 2.48 2.51 2.11 1.63 2.17

CHARLOTTE 2011 - 7 2/28/2011 2.80 2.56 1.71 1.11 1.61 FESTIVAL 2011 - 7 2/28/2011 2.34 2.24 1.63 1.66 1.75

MARA DES BOIS 2011 - 7 2/28/2011 2.89 2.80 2.07 1.22 2.05 MONTERREY 2011 - 7 2/28/2011 2.86 2.43 1.89 1.65 2.13

ALBION 2012 - 1 1/16/2012 2.61 2.62 2.22 1.60 2.27 FESTIVAL 2012 - 1 1/16/2012 2.40 2.37 2.31 1.67 2.34 MOJAVE 2012 - 1 1/16/2012 2.51 2.63 2.33 1.55 2.23

PROPRIETARY 3 2012 - 1 1/16/2012 2.46 2.62 2.17 1.41 2.12 CHANDLER 2012 - 4 2/6/2012 2.21 2.44 1.87 1.88 1.93 FESTIVAL 2012 - 4 2/6/2012 2.58 2.48 2.25 1.68 2.35 FL 09-127 2012 - 4 2/6/2012 2.71 2.48 2.08 1.48 2.32

TREASURE 2012 - 4 2/6/2012 2.40 2.31 2.29 1.67 2.27 WINTER DAWN 2012 - 4 2/6/2012 2.16 2.53 1.84 1.70 1.97

PROPRIETARY 5 2012 - 5 2/13/2012 2.17 2.30 2.16 1.51 2.07 ALBION 2012 - 5 2/13/2012 2.57 2.37 2.16 1.75 2.19

FESTIVAL 2012 - 5 2/13/2012 2.45 2.50 1.91 1.32 1.88 RUBYGEM 2012 - 5 2/13/2012 2.62 2.56 2.11 1.50 2.19

CAMINO REAL 2012 - 6 2/20/2012 2.22 2.41 2.05 1.48 2.10 DARSELECT 2012 - 6 2/20/2012 2.65 2.64 2.36 1.80 2.24

FESTIVAL 2012 - 6 2/20/2012 2.39 2.43 2.03 1.76 2.15 SWEET ANNE 2012 - 6 2/20/2012 2.52 2.47 2.32 1.98 2.34

BENICIA 2012 - 7 2/27/2012 2.28 2.31 2.01 1.72 1.90 FESTIVAL 2012 - 7 2/27/2012 2.29 2.37 2.05 1.51 1.95 FL 06-38 2012 - 7 2/27/2012 2.37 2.26 2.01 1.53 1.99

PORTOLA 2012 - 7 2/27/2012 2.55 2.30 1.99 1.74 2.14 VENTANA 2012 - 7 2/27/2012 2.32 2.42 1.67 1.77 1.88

PROPRIETARY 6 2012 - 9 3/12/2012 2.39 2.42 2.02 1.85 2.14 EVIE 2 2012 - 9 3/12/2012 2.13 2.45 1.95 1.75 1.82

FESTIVAL 2012 - 9 3/12/2012 2.42 2.50 2.06 1.45 2.08 GALLETA 2012 - 9 3/12/2012 2.48 2.33 1.86 1.84 1.97

SWEET ANNE 2012 - 9 3/12/2012 2.09 2.10 1.91 1.76 2.01

Page 71: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

71

Table 2-2. Continued.

CULTIVAR HARVEST SSC pH TA

%

%

PROPRIETARY 1 2011 - 2

0.03 0.01 0.02 CAMAROSA 2011 - 2

0.03 0.01 0.01

FESTIVAL 2011 - 2

0.04 0.00 0.02 MARA DES BOIS 2011 - 2

0.03 0.03 0.02

RADIANCE 2011 - 2

0.05 0.01 0.01 PROPRIETARY 2 2011 - 3

0.03 0.02 0.01

CAMAROSA 2011 - 3

0.05 0.00 0.01 SWEET CHARLIE 2011 - 3

0.05 0.01 0.00

TREASURE 2011 - 3

0.03 0.00 0.01 WINTER DAWN 2011 - 3

0.03 0.00 0.01

PROPRIETARY 3 2011 - 4

0.03 0.00 0.01 CAMINO REAL 2011 - 4

0.03 0.01 0.00

FESTIVAL 2011 - 4

0.03 0.00 0.02 WINTERSTAR 2011 - 5

0.00 0.00 0.01

FESTIVAL 2011 - 5

0.03 0.00 0.00 RADIANCE 2011 - 5

0.04 0.01 0.00

PROPRIETARY 4 2011 - 5

0.04 0.01 0.01 FL 05-85 2011 - 6

0.00 0.00 0.00

ELYANA 2011 - 6

0.03 0.00 0.01 FESTIVAL 2011 - 6

0.03 0.00 0.00

RED MERLIN 2011 - 6

0.09 0.00 0.02 SAN ANDREAS 2011 - 6

0.03 0.00 0.01

ALBION 2011 - 7

0.05 0.00 0.01 CHARLOTTE 2011 - 7

0.04 0.01 0.00

FESTIVAL 2011 - 7

0.06 0.00 0.00 MARA DES BOIS 2011 - 7

0.03 0.00 0.00

MONTERREY 2011 - 7

0.04 0.00 0.01 ALBION 2012 - 1

0.05 0.00 0.02

FESTIVAL 2012 - 1

0.00 0.00 0.01 MOJAVE 2012 - 1

0.03 0.00 0.02

PROPRIETARY 3 2012 - 1

0.05 0.00 0.02 CHANDLER 2012 - 4

0.00 0.01 0.01

FESTIVAL 2012 - 4

0.00 0.00 0.01 FL 09-127 2012 - 4

0.03 0.01 0.01

TREASURE 2012 - 4

0.03 0.00 0.00 WINTER DAWN 2012 - 4

0.03 0.01 0.01

PROPRIETARY 5 2012 - 5

0.03 0.01 0.01 ALBION 2012 - 5

0.05 0.00 0.01

FESTIVAL 2012 - 5

0.09 0.01 0.03 RUBYGEM 2012 - 5

0.03 0.01 0.01

CAMINO REAL 2012 - 6

0.03 0.01 0.02 DARSELECT 2012 - 6

0.03 0.00 0.00

FESTIVAL 2012 - 6

0.00 0.01 0.02 SWEET ANNE 2012 - 6

- - -

BENICIA 2012 - 7

0.03 0.01 0.01 FESTIVAL 2012 - 7

0.00 0.01 0.01

FL 06-38 2012 - 7

0.03 0.01 0.01 PORTOLA 2012 - 7

0.05 0.01 0.00

VENTANA 2012 - 7

0.04 0.01 0.02 PROPRIETARY 6 2012 - 9

0.00 0.00 0.02

EVIE 2 2012 - 9

0.03 0.01 0.00 FESTIVAL 2012 - 9

0.05 0.00 0.00

GALLETA 2012 - 9

0.03 0.00 0.01 SWEET ANNE 2012 - 9 0.00 0.00 0.00

Page 72: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

72

Table 2-2. Continued.

CULTIVAR HARVEST MALIC ACID

CITRIC ACID

TOTAL SUGAR

GLUCOSE FRUCTOSE SUCROSE

mg

1 100gFW

-

1

mg1 100gFW

-

1

mg1 100gFW

-

1

mg1 100gFW

-

1

mg1 100gFW

-

1

mg1 100gFW

-

1

6915-15-7 77-92-9 50-99-7 57-48-7 57-50-1

PROPRIETARY 1 2011 - 2 2.01 11.48

15.33 5.94 39.17 CAMAROSA 2011 - 2 2.01 9.84

14.87 19.40 18.14

FESTIVAL 2011 - 2 2.01 3.28

15.60 14.09 20.36 MARA DES BOIS 2011 - 2 4.42 11.48

12.19 12.34 23.51

RADIANCE 2011 - 2 1.41 9.84

26.40 6.17 77.84 PROPRIETARY 2 2011 - 3 2.21 14.75

46.71 32.92 84.59

CAMAROSA 2011 - 3 1.01 32.79

20.31 24.69 52.04 SWEET CHARLIE 2011 - 3 0.20 1.64

39.28 12.61 15.57

TREASURE 2011 - 3 4.83 0.00

14.33 8.42 39.49 WINTER DAWN 2011 - 3 0.80 11.48

26.40 47.32 40.15

PROPRIETARY 3 2011 - 4 1.81 11.48

28.44 55.55 88.63 CAMINO REAL 2011 - 4 2.82 13.11

8.48 8.81 15.41

FESTIVAL 2011 - 4 0.40 16.39

16.90 16.02 17.58 WINTERSTAR 2011 - 5 3.42 0.00

16.36 26.99 24.61

FESTIVAL 2011 - 5 1.61 18.03

14.48 12.99 24.33 RADIANCE 2011 - 5 11.26 11.48

8.12 10.29 22.15

PROPRIETARY 4 2011 - 5 0.40 1.64

11.77 17.87 40.84 FL 05-85 2011 - 6 2.21 24.59

12.04 4.95 15.85

ELYANA 2011 - 6 2.01 13.11

14.14 16.63 28.02 FESTIVAL 2011 - 6 4.42 6.56

5.42 9.89 16.25

RED MERLIN 2011 - 6 3.02 6.56

8.46 14.84 26.77 SAN ANDREAS 2011 - 6 1.81 3.28

2.71 23.44 47.36

ALBION 2011 - 7 5.23 8.20

8.46 12.19 26.10 CHARLOTTE 2011 - 7 4.62 4.92

21.02 6.29 11.14

FESTIVAL 2011 - 7 1.61 21.31

10.16 14.40 16.32 MARA DES BOIS 2011 - 7 0.40 37.70

21.84 6.40 14.74

MONTERREY 2011 - 7 9.05 4.92

16.25 10.29 5.76 ALBION 2012 - 1 0.60 6.56

16.25 2.06 42.72

FESTIVAL 2012 - 1 2.21 1.64

2.03 18.52 28.68 MOJAVE 2012 - 1 1.01 6.56

7.95 22.69 24.65

PROPRIETARY 3 2012 - 1 1.41 1.64

14.22 14.40 39.84 CHANDLER 2012 - 4 1.61 4.92

26.40 10.29 11.44

FESTIVAL 2012 - 4 1.01 0.00

10.55 18.63 8.47 FL 09-127 2012 - 4 2.61 8.20

14.22 4.11 8.91

TREASURE 2012 - 4 0.80 0.00

2.03 4.11 22.04 WINTER DAWN 2012 - 4 2.41 4.92

16.25 12.34 4.99

PROPRIETARY 5 2012 - 5 2.01 4.92

10.16 8.23 17.43 ALBION 2012 - 5 0.20 3.28

4.98 9.26 24.58

FESTIVAL 2012 - 5 0.40 16.39

16.25 20.57 18.47 RUBYGEM 2012 - 5 0.20 4.92

16.25 24.69 19.65

CAMINO REAL 2012 - 6 1.21 6.56

21.75 37.05 37.73 DARSELECT 2012 - 6 0.80 0.00

36.56 41.15 48.27

FESTIVAL 2012 - 6 0.80 13.11

21.65 23.55 41.73 SWEET ANNE 2012 - 6 1.41 18.03

2.03 6.17 37.10

BENICIA 2012 - 7 0.20 11.48

19.20 39.30 50.27 FESTIVAL 2012 - 7 0.60 13.11

8.12 30.86 28.89

FL 06-38 2012 - 7 1.61 0.00

22.15 28.92 62.91 PORTOLA 2012 - 7 1.41 6.56

30.47 37.03 15.98

VENTANA 2012 - 7 0.60 8.20

4.06 10.29 14.34 PROPRIETARY 6 2012 - 9 1.61 4.92

14.22 14.40 35.01

EVIE 2 2012 - 9 0.00 4.92

13.78 31.31 44.14 FESTIVAL 2012 - 9 0.00 4.92

8.85 19.11 27.48

GALLETA 2012 - 9 1.61 6.56

10.87 18.51 17.54 SWEET ANNE 2012 - 9 3.42 8.20 10.16 6.17 10.39

Page 73: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

73

Table 2-2. Continued.

CULTIVAR HARVEST TOTAL

VOLATILES 75-85-4 616-25-1 1629-58-9 96-22-0 110-62-3

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

PROPRIETARY 1 2011 - 2

1.62 2.34 13.73 9.56 0.88 CAMAROSA 2011 - 2

1.47 3.28 26.53 1.93 1.17

FESTIVAL 2011 - 2

1.21 3.20 8.34 6.83 5.42 MARA DES BOIS 2011 - 2

2.00 3.75 36.97 1.74 0.08

RADIANCE 2011 - 2

1.58 0.88 27.43 4.42 0.97 PROPRIETARY 2 2011 - 3

1.01 1.67 2.22 2.27 0.19

CAMAROSA 2011 - 3

1.03 0.35 22.50 3.10 1.55 SWEET CHARLIE 2011 - 3

0.54 3.64 46.05 7.66 0.39

TREASURE 2011 - 3

3.08 1.01 20.20 5.10 0.06 WINTER DAWN 2011 - 3

1.29 0.52 3.00 2.11 0.62

PROPRIETARY 3 2011 - 4

3.12 3.46 11.53 10.37 0.24 CAMINO REAL 2011 - 4

3.05 0.30 2.21 0.25 0.11

FESTIVAL 2011 - 4

3.82 1.06 4.86 1.37 2.93 WINTERSTAR 2011 - 5

0.40 0.95 3.59 2.78 0.48

FESTIVAL 2011 - 5

1.22 0.54 0.98 2.04 1.15 RADIANCE 2011 - 5

0.55 1.22 2.93 2.62 0.83

PROPRIETARY 4 2011 - 5

0.47 1.57 13.28 4.58 0.16 FL 05-85 2011 - 6

0.69 1.04 2.32 2.12 0.92

ELYANA 2011 - 6

1.37 0.35 1.82 0.32 5.86 FESTIVAL 2011 - 6

0.92 1.50 4.05 1.57 3.07

RED MERLIN 2011 - 6

1.44 3.76 5.51 5.16 0.56 SAN ANDREAS 2011 - 6

0.70 1.17 4.75 1.13 1.10

ALBION 2011 - 7

0.24 0.84 1.51 1.29 0.04 CHARLOTTE 2011 - 7

1.13 2.82 0.93 1.78 0.14

FESTIVAL 2011 - 7

0.64 1.35 4.74 2.33 1.41 MARA DES BOIS 2011 - 7

1.00 0.72 0.91 0.61 0.64

MONTERREY 2011 - 7

1.71 1.64 6.49 3.07 0.22 ALBION 2012 - 1

0.19 2.13 16.94 5.22 0.17

FESTIVAL 2012 - 1

1.88 2.57 6.93 1.64 2.26 MOJAVE 2012 - 1

1.00 1.32 0.53 0.38 0.70

PROPRIETARY 3 2012 - 1

3.25 2.04 19.56 4.96 0.25 CHANDLER 2012 - 4

0.00 0.00 1.92 4.43 0.00

FESTIVAL 2012 - 4

0.55 0.25 7.89 2.29 2.73 FL 09-127 2012 - 4

0.49 1.41 19.82 5.36 0.63

TREASURE 2012 - 4

2.51 0.30 4.07 1.39 0.13 WINTER DAWN 2012 - 4

2.58 0.35 0.09 1.82 0.77

PROPRIETARY 5 2012 - 5

0.52 0.66 12.41 0.51 0.03 ALBION 2012 - 5

0.21 1.69 19.45 5.14 0.34

FESTIVAL 2012 - 5

0.37 1.75 16.31 6.48 3.33 RUBYGEM 2012 - 5

0.51 0.08 3.28 1.37 0.49

CAMINO REAL 2012 - 6

1.16 0.48 7.89 3.69 0.14 DARSELECT 2012 - 6

1.21 1.89 12.39 6.51 2.01

FESTIVAL 2012 - 6

0.81 2.31 22.55 3.47 4.49 SWEET ANNE 2012 - 6

0.92 0.44 4.35 1.55 0.09

BENICIA 2012 - 7

1.45 0.66 5.16 1.75 0.06 FESTIVAL 2012 - 7

0.38 2.16 11.94 3.80 3.17

FL 06-38 2012 - 7

0.45 0.38 8.69 1.90 1.72 PORTOLA 2012 - 7

0.74 0.21 7.90 3.19 0.21

VENTANA 2012 - 7

0.71 0.41 3.55 0.33 0.82 PROPRIETARY 6 2012 - 9

1.15 0.38 5.07 1.48 0.03

EVIE 2 2012 - 9

1.50 0.63 0.82 0.93 0.26 FESTIVAL 2012 - 9

1.68 2.17 21.16 7.33 2.75

GALLETA 2012 - 9

1.43 0.22 5.87 0.84 0.11 SWEET ANNE 2012 - 9 1.16 1.63 16.82 5.50 0.29

Page 74: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

74

Table 2-2. Continued.

CULTIVAR HARVEST 1534-08-3 105-37-3 109-60-4 623-42-7 591-78-6 108-10-1

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

PROPRIETARY 1 2011 - 2 0.01 0.20 0.17 369.92 0.61 0.00 CAMAROSA 2011 - 2 0.14 0.63 0.55 386.20 1.45 0.00 FESTIVAL 2011 - 2 0.14 3.27 0.33 344.43 1.86 0.00

MARA DES BOIS 2011 - 2 0.01 0.52 0.28 127.52 0.85 0.00 RADIANCE 2011 - 2 0.08 0.28 0.23 57.50 0.20 0.00

PROPRIETARY 2 2011 - 3 0.01 0.15 0.33 465.89 4.76 0.00 CAMAROSA 2011 - 3 0.35 0.53 0.28 190.03 0.52 0.00

SWEET CHARLIE 2011 - 3 0.10 0.36 0.18 194.00 1.62 0.00 TREASURE 2011 - 3 0.14 0.08 0.13 112.55 1.43 0.00

WINTER DAWN 2011 - 3 0.04 0.05 0.07 50.54 0.89 0.00 PROPRIETARY 3 2011 - 4 0.13 2.59 1.51 518.04 1.44 0.00

CAMINO REAL 2011 - 4 0.00 0.21 0.17 92.89 0.28 0.00 FESTIVAL 2011 - 4 0.02 2.13 0.08 187.66 0.15 0.00

WINTERSTAR 2011 - 5 0.00 1.19 0.59 201.14 0.67 0.00 FESTIVAL 2011 - 5 0.00 0.64 0.22 354.33 0.26 0.00 RADIANCE 2011 - 5 0.00 0.80 0.65 142.67 0.91 0.00

PROPRIETARY 4 2011 - 5 0.13 0.55 0.06 441.51 3.63 0.00 FL 05-85 2011 - 6 0.02 0.11 0.19 293.84 0.17 0.00 ELYANA 2011 - 6 0.15 0.12 0.08 127.47 0.32 0.00

FESTIVAL 2011 - 6 0.06 1.84 0.25 501.85 0.63 0.00 RED MERLIN 2011 - 6 0.11 0.25 0.25 171.57 0.14 0.00

SAN ANDREAS 2011 - 6 0.02 0.53 0.26 255.08 0.21 0.00 ALBION 2011 - 7 0.13 0.16 0.22 206.13 0.20 0.00

CHARLOTTE 2011 - 7 0.17 0.20 0.06 107.74 0.20 0.00 FESTIVAL 2011 - 7 0.08 2.00 0.35 231.55 0.14 0.00

MARA DES BOIS 2011 - 7 0.03 3.38 0.54 241.50 0.09 0.00 MONTERREY 2011 - 7 0.11 0.86 0.63 228.15 0.32 0.00

ALBION 2012 - 1 0.05 0.12 0.12 245.82 0.78 0.00 FESTIVAL 2012 - 1 0.02 0.24 0.13 84.45 1.45 0.00 MOJAVE 2012 - 1 0.01 0.28 0.17 86.81 0.51 1.55

PROPRIETARY 3 2012 - 1 0.04 0.67 0.37 177.15 2.70 0.00 CHANDLER 2012 - 4 0.00 1.96 1.33 237.43 3.07 0.00 FESTIVAL 2012 - 4 0.28 4.92 0.38 96.01 0.31 0.79 FL 09-127 2012 - 4 0.12 1.57 0.83 414.77 1.97 1.58

TREASURE 2012 - 4 0.06 0.70 0.34 145.97 0.48 0.31 WINTER DAWN 2012 - 4 0.01 0.35 0.49 92.18 0.09 1.27

PROPRIETARY 5 2012 - 5 0.07 0.60 0.20 62.03 0.12 0.00 ALBION 2012 - 5 0.02 1.22 1.29 401.75 2.72 1.53

FESTIVAL 2012 - 5 0.01 1.72 0.56 360.35 0.45 1.56 RUBYGEM 2012 - 5 0.02 0.29 0.48 42.94 0.09 0.39

CAMINO REAL 2012 - 6 0.01 0.51 0.34 188.61 0.55 1.23 DARSELECT 2012 - 6 0.03 1.73 0.93 233.00 0.89 1.90

FESTIVAL 2012 - 6 0.04 0.63 0.65 371.71 1.38 1.68 SWEET ANNE 2012 - 6 0.02 0.12 0.10 71.88 1.16 0.00

BENICIA 2012 - 7 0.01 0.16 0.16 8.43 1.15 0.00 FESTIVAL 2012 - 7 0.06 1.82 0.41 650.70 1.03 0.75 FL 06-38 2012 - 7 0.05 1.86 0.53 171.42 0.52 0.57

PORTOLA 2012 - 7 0.06 0.14 0.07 42.50 0.53 0.00 VENTANA 2012 - 7 0.02 0.13 0.22 49.17 0.55 0.00

PROPRIETARY 6 2012 - 9 0.01 0.92 0.23 329.22 0.43 0.29 EVIE 2 2012 - 9 0.01 0.15 0.30 30.99 0.15 0.00

FESTIVAL 2012 - 9 0.10 4.01 1.32 854.75 1.34 2.63 GALLETA 2012 - 9 0.04 0.07 0.15 34.27 0.69 0.55

SWEET ANNE 2012 - 9 0.00 0.51 0.68 376.54 3.04 0.00

Page 75: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

75

Table 2-2. Continued.

CULTIVAR HARVEST 1576-87-0 1576-86-9 623-43-8 71-41-0 1576-95-0 556-24-1

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

PROPRIETARY 1 2011 - 2 2.01 1.23 0.14 0.00 0.16 7.03 CAMAROSA 2011 - 2 2.81 4.32 0.67 0.00 1.53 9.01 FESTIVAL 2011 - 2 5.40 6.19 0.08 1.84 0.55 6.93

MARA DES BOIS 2011 - 2 1.51 2.29 0.17 0.42 0.39 0.77 RADIANCE 2011 - 2 2.15 1.12 0.13 0.00 0.20 0.17

PROPRIETARY 2 2011 - 3 5.28 4.55 0.33 0.00 0.81 15.14 CAMAROSA 2011 - 3 4.66 4.76 0.09 0.14 1.53 3.01

SWEET CHARLIE 2011 - 3 6.23 8.03 0.28 0.00 0.00 11.34 TREASURE 2011 - 3 6.02 7.03 0.25 0.00 0.32 2.17

WINTER DAWN 2011 - 3 7.29 5.47 0.25 0.46 1.57 3.09 PROPRIETARY 3 2011 - 4 3.98 7.59 0.34 0.15 0.12 42.17

CAMINO REAL 2011 - 4 0.02 0.57 0.02 0.10 0.98 0.63 FESTIVAL 2011 - 4 0.87 0.29 0.03 0.08 0.63 1.93

WINTERSTAR 2011 - 5 3.21 1.92 0.21 0.00 0.00 16.54 FESTIVAL 2011 - 5 0.35 0.21 0.08 0.00 0.14 1.77 RADIANCE 2011 - 5 5.68 2.17 1.02 0.37 0.09 1.54

PROPRIETARY 4 2011 - 5 3.62 5.03 0.14 0.11 0.20 5.89 FL 05-85 2011 - 6 0.32 1.18 0.08 0.00 0.00 1.32 ELYANA 2011 - 6 1.72 0.77 0.09 0.00 0.13 2.68

FESTIVAL 2011 - 6 1.33 1.65 0.03 0.00 0.32 5.05 RED MERLIN 2011 - 6 2.07 2.76 0.08 0.00 0.18 0.68

SAN ANDREAS 2011 - 6 1.01 1.53 0.04 0.00 0.14 1.40 ALBION 2011 - 7 0.33 0.59 0.29 0.18 0.00 5.04

CHARLOTTE 2011 - 7 0.55 0.86 0.03 0.33 0.00 10.14 FESTIVAL 2011 - 7 1.38 1.50 0.10 0.00 0.00 1.85

MARA DES BOIS 2011 - 7 0.20 0.38 0.55 0.00 0.00 2.01 MONTERREY 2011 - 7 0.97 1.34 0.55 0.23 0.00 4.18

ALBION 2012 - 1 2.48 2.36 0.42 0.27 0.00 5.28 FESTIVAL 2012 - 1 0.98 1.09 1.19 0.53 1.88 0.10 MOJAVE 2012 - 1 1.27 1.21 0.04 0.05 1.07 1.36

PROPRIETARY 3 2012 - 1 5.40 7.18 0.35 0.27 0.50 13.18 CHANDLER 2012 - 4 1.80 3.86 0.79 0.61 0.00 8.28 FESTIVAL 2012 - 4 1.11 1.28 0.13 0.25 0.39 0.36 FL 09-127 2012 - 4 4.93 2.60 0.54 0.00 1.65 5.85

TREASURE 2012 - 4 1.64 0.66 0.02 0.00 0.51 3.25 WINTER DAWN 2012 - 4 2.34 0.59 0.06 0.00 1.09 0.40

PROPRIETARY 5 2012 - 5 0.24 0.32 0.29 0.35 0.08 5.29 ALBION 2012 - 5 5.37 5.00 0.65 0.08 0.00 3.61

FESTIVAL 2012 - 5 3.87 3.66 0.16 0.15 0.47 1.50 RUBYGEM 2012 - 5 1.05 0.68 0.14 0.04 0.67 0.20

CAMINO REAL 2012 - 6 4.57 2.25 0.21 0.38 2.42 0.58 DARSELECT 2012 - 6 3.84 3.60 0.14 0.24 0.00 8.99

FESTIVAL 2012 - 6 5.58 4.97 0.22 0.13 1.71 1.90 SWEET ANNE 2012 - 6 0.84 1.53 0.12 0.51 0.19 1.60

BENICIA 2012 - 7 1.82 2.40 0.16 0.21 0.41 0.27 FESTIVAL 2012 - 7 3.19 2.93 0.16 0.33 0.20 2.10 FL 06-38 2012 - 7 1.02 1.40 0.04 0.77 0.16 2.97

PORTOLA 2012 - 7 0.25 0.35 0.21 0.58 0.57 1.45 VENTANA 2012 - 7 0.59 1.34 0.18 0.64 0.74 3.49

PROPRIETARY 6 2012 - 9 0.45 0.44 0.41 0.21 0.27 5.50 EVIE 2 2012 - 9 0.09 0.51 0.14 0.15 0.53 2.62

FESTIVAL 2012 - 9 4.73 5.05 0.41 0.59 1.64 7.97 GALLETA 2012 - 9 0.63 1.09 0.06 0.02 1.83 0.67

SWEET ANNE 2012 - 9 2.63 3.71 0.18 0.12 0.35 7.81

Page 76: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

76

Table 2-2. Continued.

CULTIVAR HARVEST 589-38-8 105-54-4 66-25-1 123-86-4 624-24-8 29674-47-3

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

PROPRIETARY 1 2011 - 2 0.07 2.11 102.64 1.56 0.57 0.14 CAMAROSA 2011 - 2 0.13 24.34 4164.45 15.62 0.38 0.33 FESTIVAL 2011 - 2 0.43 4.95 494.68 10.18 1.38 0.66

MARA DES BOIS 2011 - 2 0.10 4.01 155.67 7.12 0.22 0.08 RADIANCE 2011 - 2 0.13 4.50 42.08 1.21 0.16 0.19

PROPRIETARY 2 2011 - 3 0.24 5.31 95.52 8.96 0.30 2.22 CAMAROSA 2011 - 3 0.20 7.94 36.10 2.28 0.07 0.29

SWEET CHARLIE 2011 - 3 0.38 7.46 257.72 3.17 0.58 0.15 TREASURE 2011 - 3 0.11 1.69 264.44 6.98 0.02 0.10

WINTER DAWN 2011 - 3 0.16 1.58 178.57 3.42 0.58 0.68 PROPRIETARY 3 2011 - 4 0.40 6.47 433.70 7.00 0.60 0.25

CAMINO REAL 2011 - 4 0.19 1.60 32.97 0.55 0.06 0.32 FESTIVAL 2011 - 4 0.19 2.47 8436.52 2.03 0.73 0.28

WINTERSTAR 2011 - 5 0.31 3.29 202.10 4.51 0.69 0.26 FESTIVAL 2011 - 5 0.07 6.11 116.74 1.55 0.79 0.16 RADIANCE 2011 - 5 0.25 7.42 215.95 1.73 0.74 0.26

PROPRIETARY 4 2011 - 5 0.28 7.41 138.27 6.00 0.46 0.48 FL 05-85 2011 - 6 0.25 3.78 125.54 1.86 0.39 0.24 ELYANA 2011 - 6 0.13 0.75 44.55 7.30 0.45 0.24

FESTIVAL 2011 - 6 0.07 1.79 393.73 3.09 2.05 0.24 RED MERLIN 2011 - 6 0.29 6.56 102.96 0.67 0.37 0.23

SAN ANDREAS 2011 - 6 0.10 1.30 261.61 7.71 0.38 0.60 ALBION 2011 - 7 0.08 4.30 97.95 2.77 0.15 0.71

CHARLOTTE 2011 - 7 0.08 1.46 34.54 0.87 0.08 0.41 FESTIVAL 2011 - 7 0.11 3.65 131.35 0.64 0.83 0.07

MARA DES BOIS 2011 - 7 0.08 2.30 667.84 7.42 0.42 0.08 MONTERREY 2011 - 7 0.13 4.18 117.92 14.94 0.15 0.19

ALBION 2012 - 1 0.21 2.06 233.23 29.42 0.31 0.79 FESTIVAL 2012 - 1 0.01 1.21 70.34 1.16 0.25 0.43 MOJAVE 2012 - 1 0.29 4.06 104.11 9.42 0.33 0.29

PROPRIETARY 3 2012 - 1 0.40 6.42 197.10 1.56 0.69 0.51 CHANDLER 2012 - 4 0.00 1.36 164.21 13.70 1.39 0.14 FESTIVAL 2012 - 4 0.12 1.43 105.20 1.79 0.28 0.38 FL 09-127 2012 - 4 0.22 2.67 394.51 18.08 0.83 0.07

TREASURE 2012 - 4 0.27 3.92 187.47 5.56 0.11 0.16 WINTER DAWN 2012 - 4 0.15 1.19 5375.04 0.41 0.11 0.22

PROPRIETARY 5 2012 - 5 0.17 1.84 102.93 0.54 0.14 0.08 ALBION 2012 - 5 0.62 1.63 510.40 38.49 0.38 0.91

FESTIVAL 2012 - 5 0.57 2.82 326.20 8.22 1.40 1.90 RUBYGEM 2012 - 5 0.07 2.30 66.96 2.53 0.13 0.09

CAMINO REAL 2012 - 6 0.25 2.88 115.46 17.76 0.34 0.67 DARSELECT 2012 - 6 0.40 0.95 153.22 9.16 0.76 0.20

FESTIVAL 2012 - 6 0.56 2.57 284.38 4.58 1.25 1.20 SWEET ANNE 2012 - 6 0.20 2.87 83.60 1.05 0.09 0.07

BENICIA 2012 - 7 0.07 2.22 41.00 0.49 0.19 0.26 FESTIVAL 2012 - 7 0.31 3.83 269.03 3.32 2.35 1.47 FL 06-38 2012 - 7 0.08 1.75 252.12 5.42 0.59 0.19

PORTOLA 2012 - 7 0.16 2.70 21.76 0.36 0.14 0.03 VENTANA 2012 - 7 0.36 2.62 46.33 0.59 0.15 0.20

PROPRIETARY 6 2012 - 9 0.09 0.90 166.64 1.86 0.69 0.66 EVIE 2 2012 - 9 0.31 2.33 56.49 2.30 0.16 0.08

FESTIVAL 2012 - 9 0.77 4.01 447.52 4.44 4.73 1.99 GALLETA 2012 - 9 0.34 3.36 58.88 1.40 0.05 0.19

SWEET ANNE 2012 - 9 0.44 4.25 294.99 3.22 0.16 0.27

Page 77: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

77

Table 2-2. Continued.

CULTIVAR HARVEST 96-04-8 638-11-9 116-53-0 7452-79-1 6728-26-3 928-95-0

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

PROPRIETARY 1 2011 - 2 0.50 4.29 0.79 6.21 101.07 20.79 CAMAROSA 2011 - 2 0.10 3.54 15.48 14.86 1170.41 10.15 FESTIVAL 2011 - 2 0.50 19.69 7.33 14.89 1283.53 6.74

MARA DES BOIS 2011 - 2 0.04 0.70 3.27 3.30 527.75 26.88 RADIANCE 2011 - 2 0.28 1.61 1.74 2.57 217.87 1.87

PROPRIETARY 2 2011 - 3 3.44 0.30 0.69 6.53 655.72 1.87 CAMAROSA 2011 - 3 0.40 2.07 4.33 9.22 1075.55 21.54

SWEET CHARLIE 2011 - 3 1.26 1.44 12.44 10.87 1256.85 0.46 TREASURE 2011 - 3 0.54 5.90 3.71 5.87 990.69 3.37

WINTER DAWN 2011 - 3 0.00 7.75 1.30 9.80 1159.98 15.51 PROPRIETARY 3 2011 - 4 0.26 8.22 4.96 8.80 1122.30 4.08

CAMINO REAL 2011 - 4 0.02 0.40 2.87 2.73 306.18 5.36 FESTIVAL 2011 - 4 0.19 3.58 1.20 11.45 623.92 2.02

WINTERSTAR 2011 - 5 0.34 3.87 10.36 19.03 660.94 12.69 FESTIVAL 2011 - 5 0.17 4.09 1.92 2.17 147.31 6.13 RADIANCE 2011 - 5 0.22 4.74 5.58 168.45 1190.44 3.31

PROPRIETARY 4 2011 - 5 0.81 5.90 3.71 5.42 602.04 8.15 FL 05-85 2011 - 6 0.14 6.53 7.30 9.37 148.67 17.38 ELYANA 2011 - 6 0.26 2.17 3.56 5.92 340.10 0.00

FESTIVAL 2011 - 6 0.19 21.38 1.76 8.06 834.90 3.17 RED MERLIN 2011 - 6 0.24 2.98 2.73 5.23 751.42 30.71

SAN ANDREAS 2011 - 6 0.09 19.09 4.20 4.37 632.27 9.91 ALBION 2011 - 7 0.00 6.16 0.13 5.41 228.27 1.38

CHARLOTTE 2011 - 7 0.00 0.71 0.12 7.99 234.64 4.75 FESTIVAL 2011 - 7 0.00 4.11 6.69 2.81 436.15 1.04

MARA DES BOIS 2011 - 7 0.00 2.37 1.97 7.26 497.38 4.60 MONTERREY 2011 - 7 0.21 10.81 2.53 3.99 450.88 1.02

ALBION 2012 - 1 0.00 16.93 0.00 3.69 650.04 11.54 FESTIVAL 2012 - 1 0.00 5.39 17.28 3.17 127.96 3.73 MOJAVE 2012 - 1 0.15 5.21 0.00 1.84 317.88 1.99

PROPRIETARY 3 2012 - 1 0.34 0.28 0.00 7.11 1179.97 3.78 CHANDLER 2012 - 4 4.63 1.95 0.00 2.05 313.98 20.83 FESTIVAL 2012 - 4 0.11 2.10 1.81 0.38 42.93 3.84 FL 09-127 2012 - 4 0.08 13.43 5.47 4.88 710.27 34.69

TREASURE 2012 - 4 0.27 11.15 2.21 0.73 95.16 5.66 WINTER DAWN 2012 - 4 0.13 0.88 6.59 1.52 135.60 3.73

PROPRIETARY 5 2012 - 5 0.05 0.40 0.08 1.12 349.91 10.61 ALBION 2012 - 5 0.22 16.96 0.86 3.83 689.14 4.11

FESTIVAL 2012 - 5 0.34 12.14 0.00 3.52 1076.46 13.33 RUBYGEM 2012 - 5 0.13 0.42 1.96 0.94 242.88 7.92

CAMINO REAL 2012 - 6 0.06 5.84 5.38 2.78 655.05 26.22 DARSELECT 2012 - 6 0.47 5.62 3.79 2.10 503.36 25.46

FESTIVAL 2012 - 6 0.38 7.79 10.60 4.25 1053.76 13.59 SWEET ANNE 2012 - 6 0.08 2.70 0.00 1.25 233.43 11.00

BENICIA 2012 - 7 0.43 0.28 0.00 1.37 267.55 6.88 FESTIVAL 2012 - 7 0.16 11.52 8.80 1.86 547.27 9.69 FL 06-38 2012 - 7 0.13 8.51 9.22 3.04 401.75 2.81

PORTOLA 2012 - 7 0.08 4.07 4.52 1.03 81.71 5.48 VENTANA 2012 - 7 0.09 3.21 5.37 1.88 441.57 5.31

PROPRIETARY 6 2012 - 9 0.09 4.22 0.44 1.39 248.46 4.86 EVIE 2 2012 - 9 0.07 0.24 0.05 1.34 264.88 4.06

FESTIVAL 2012 - 9 0.42 24.96 13.69 6.15 1257.51 11.57 GALLETA 2012 - 9 0.11 1.60 2.54 2.11 321.16 10.08

SWEET ANNE 2012 - 9 0.34 12.62 0.00 5.93 1215.64 10.31

Page 78: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

78

Table 2-2. Continued.

CULTIVAR HARVEST 111-27-3 123-92-2 624-41-9 110-43-0 2432-51-1 105-66-8

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

PROPRIETARY 1 2011 - 2 1.27 1.27 3.64 1.22 0.58 0.07 CAMAROSA 2011 - 2 2.13 2.77 5.73 1.31 0.39 0.57 FESTIVAL 2011 - 2 1.04 0.51 0.44 3.63 3.54 2.14

MARA DES BOIS 2011 - 2 5.17 0.04 0.25 1.02 0.16 0.52 RADIANCE 2011 - 2 1.56 2.69 0.56 0.46 0.03 0.08

PROPRIETARY 2 2011 - 3 0.96 2.28 0.28 2.20 0.19 0.64 CAMAROSA 2011 - 3 2.18 0.65 0.88 1.98 0.26 1.73

SWEET CHARLIE 2011 - 3 1.97 1.09 0.62 12.81 0.00 0.30 TREASURE 2011 - 3 1.48 0.59 0.53 2.91 0.00 0.39

WINTER DAWN 2011 - 3 1.97 0.67 0.58 0.98 0.35 0.82 PROPRIETARY 3 2011 - 4 0.66 17.25 12.27 1.64 1.00 0.54

CAMINO REAL 2011 - 4 0.92 0.85 0.96 0.84 0.00 0.13 FESTIVAL 2011 - 4 2.02 0.31 0.65 1.20 0.61 0.43

WINTERSTAR 2011 - 5 1.47 1.23 2.20 0.97 0.00 1.06 FESTIVAL 2011 - 5 1.51 1.01 1.34 0.69 0.19 0.35 RADIANCE 2011 - 5 6.31 1.31 1.98 1.36 0.15 0.63

PROPRIETARY 4 2011 - 5 3.64 0.40 0.22 0.73 0.00 0.11 FL 05-85 2011 - 6 1.90 0.52 0.00 0.70 0.11 0.27 ELYANA 2011 - 6 1.14 0.80 0.23 1.15 0.21 0.24

FESTIVAL 2011 - 6 0.85 2.18 0.00 5.05 0.00 1.09 RED MERLIN 2011 - 6 9.82 0.28 2.80 0.60 0.00 0.00

SAN ANDREAS 2011 - 6 1.38 1.22 2.88 1.68 0.26 1.23 ALBION 2011 - 7 6.29 0.90 1.09 0.44 0.22 0.09

CHARLOTTE 2011 - 7 7.38 1.32 0.63 0.00 0.34 0.00 FESTIVAL 2011 - 7 2.41 0.61 1.20 0.91 0.30 0.08

MARA DES BOIS 2011 - 7 7.62 1.18 0.85 0.58 0.30 0.79 MONTERREY 2011 - 7 3.02 1.00 6.17 0.57 0.19 0.37

ALBION 2012 - 1 7.90 0.24 0.38 1.43 0.06 0.25 FESTIVAL 2012 - 1 11.74 1.45 0.39 0.13 0.59 0.56 MOJAVE 2012 - 1 3.79 0.75 0.57 0.81 0.04 0.31

PROPRIETARY 3 2012 - 1 1.55 3.54 2.10 1.74 0.38 0.00 CHANDLER 2012 - 4 92.26 12.81 8.18 1.96 0.00 1.08 FESTIVAL 2012 - 4 3.00 2.17 0.93 2.58 0.80 0.42 FL 09-127 2012 - 4 24.55 5.13 5.15 12.01 1.01 2.96

TREASURE 2012 - 4 3.96 1.77 1.36 1.11 0.32 0.35 WINTER DAWN 2012 - 4 1.85 1.17 0.73 6.43 0.07 0.13

PROPRIETARY 5 2012 - 5 2.13 2.32 0.39 0.67 0.12 0.13 ALBION 2012 - 5 6.79 4.91 2.27 3.83 0.47 2.34

FESTIVAL 2012 - 5 2.69 4.71 4.58 3.27 2.19 2.24 RUBYGEM 2012 - 5 3.44 0.89 0.61 1.70 0.12 0.50

CAMINO REAL 2012 - 6 24.49 2.35 1.36 5.87 4.68 2.15 DARSELECT 2012 - 6 22.34 6.46 1.80 6.52 2.43 1.70

FESTIVAL 2012 - 6 0.92 0.27 1.51 2.58 2.82 0.63 SWEET ANNE 2012 - 6 18.39 1.96 2.62 0.42 0.58 0.04

BENICIA 2012 - 7 12.14 0.25 1.05 1.29 0.18 0.25 FESTIVAL 2012 - 7 1.46 0.93 1.23 1.92 3.33 1.07 FL 06-38 2012 - 7 2.86 2.08 1.51 2.27 0.71 0.95

PORTOLA 2012 - 7 12.33 1.25 0.52 0.30 0.12 0.14 VENTANA 2012 - 7 11.94 1.46 0.31 1.28 0.24 0.19

PROPRIETARY 6 2012 - 9 0.60 0.57 0.47 0.38 0.06 0.34 EVIE 2 2012 - 9 1.55 2.43 1.31 0.44 0.19 0.07

FESTIVAL 2012 - 9 5.30 2.59 3.53 4.07 4.60 2.31 GALLETA 2012 - 9 1.42 0.61 0.20 1.64 0.59 0.63

SWEET ANNE 2012 - 9 1.80 7.69 4.50 3.29 0.66 0.35

Page 79: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

79

Table 2-2. Continued.

CULTIVAR HARVEST 539-82-2 111-71-7 628-63-7 1191-16-8 106-70-7 55514-48-2

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

PROPRIETARY 1 2011 - 2 0.00 0.17 0.29 0.92 42.41 0.00 CAMAROSA 2011 - 2 0.25 2.08 0.94 1.34 17.92 0.00 FESTIVAL 2011 - 2 1.25 1.16 1.19 0.19 34.27 0.00

MARA DES BOIS 2011 - 2 0.81 0.43 0.11 0.15 15.09 0.00 RADIANCE 2011 - 2 1.05 0.14 0.23 0.50 5.10 0.00

PROPRIETARY 2 2011 - 3 0.00 1.25 0.56 0.00 14.61 0.03 CAMAROSA 2011 - 3 1.15 1.07 1.74 0.48 4.43 0.06

SWEET CHARLIE 2011 - 3 0.61 1.31 0.41 0.00 35.53 0.14 TREASURE 2011 - 3 1.61 1.01 0.24 0.04 0.94 0.05

WINTER DAWN 2011 - 3 1.27 1.83 0.88 0.00 17.28 0.02 PROPRIETARY 3 2011 - 4 1.15 0.43 1.83 4.17 68.13 0.13

CAMINO REAL 2011 - 4 0.00 0.46 0.64 0.53 12.81 0.15 FESTIVAL 2011 - 4 0.27 0.37 0.51 0.06 28.39 0.19

WINTERSTAR 2011 - 5 0.15 0.00 0.47 0.69 30.98 0.11 FESTIVAL 2011 - 5 0.10 0.33 0.34 0.24 25.65 0.05 RADIANCE 2011 - 5 0.00 0.40 1.02 1.71 24.67 0.06

PROPRIETARY 4 2011 - 5 0.06 0.21 0.61 0.20 19.75 0.08 FL 05-85 2011 - 6 0.00 0.00 0.23 0.12 17.80 0.08 ELYANA 2011 - 6 0.08 0.60 0.51 0.08 5.78 0.05

FESTIVAL 2011 - 6 0.74 1.02 0.98 0.00 67.81 0.18 RED MERLIN 2011 - 6 0.00 0.32 0.76 1.08 19.41 0.17

SAN ANDREAS 2011 - 6 0.53 0.83 0.33 2.10 25.71 0.12 ALBION 2011 - 7 0.49 0.43 0.44 0.53 5.00 0.17

CHARLOTTE 2011 - 7 0.00 0.29 0.57 0.07 0.59 0.27 FESTIVAL 2011 - 7 0.13 0.30 0.56 0.16 10.37 0.39

MARA DES BOIS 2011 - 7 0.25 0.29 0.70 0.31 25.28 0.31 MONTERREY 2011 - 7 0.24 0.42 0.73 1.98 3.45 0.20

ALBION 2012 - 1 0.42 0.85 0.53 0.16 7.90 0.06 FESTIVAL 2012 - 1 0.12 0.13 0.56 0.16 8.95 0.02 MOJAVE 2012 - 1 0.28 0.13 0.24 0.40 9.64 0.01

PROPRIETARY 3 2012 - 1 0.00 0.45 0.50 0.31 45.03 0.00 CHANDLER 2012 - 4 5.16 0.00 0.79 1.59 46.13 0.30 FESTIVAL 2012 - 4 2.81 0.49 0.52 0.24 8.49 0.12 FL 09-127 2012 - 4 3.29 1.71 1.04 1.12 90.60 0.17

TREASURE 2012 - 4 0.44 0.37 0.36 0.17 7.61 0.05 WINTER DAWN 2012 - 4 0.30 0.21 0.42 0.42 4.69 0.23

PROPRIETARY 5 2012 - 5 0.14 0.18 0.29 0.13 12.01 0.12 ALBION 2012 - 5 0.76 1.16 1.33 0.49 27.63 0.22

FESTIVAL 2012 - 5 1.30 1.63 1.67 0.16 59.03 0.27 RUBYGEM 2012 - 5 0.22 0.57 0.26 0.31 5.45 0.02

CAMINO REAL 2012 - 6 1.14 2.39 1.00 0.21 13.25 0.10 DARSELECT 2012 - 6 0.86 1.35 0.87 0.35 89.16 0.20

FESTIVAL 2012 - 6 1.50 0.59 0.30 0.28 46.55 0.08 SWEET ANNE 2012 - 6 0.31 0.22 0.32 0.28 12.04 0.07

BENICIA 2012 - 7 0.34 0.24 0.46 0.03 1.34 0.30 FESTIVAL 2012 - 7 1.15 0.37 0.43 0.25 62.24 0.34 FL 06-38 2012 - 7 0.83 0.66 0.67 0.36 57.18 0.07

PORTOLA 2012 - 7 0.23 0.35 0.41 0.18 6.87 0.12 VENTANA 2012 - 7 0.15 0.28 0.31 0.40 7.87 0.08

PROPRIETARY 6 2012 - 9 0.19 0.19 0.37 0.13 52.33 0.05 EVIE 2 2012 - 9 0.26 0.09 0.12 0.10 6.25 0.08

FESTIVAL 2012 - 9 1.58 1.64 2.31 0.12 93.13 0.00 GALLETA 2012 - 9 0.40 0.68 0.60 0.08 5.32 0.05

SWEET ANNE 2012 - 9 0.29 1.01 0.41 0.46 25.83 0.00

Page 80: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

80

Table 2-2. Continued.

CULTIVAR HARVEST 110-93-0 109-21-7 123-66-0 124-13-0 142-92-7 2497-18-9

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

PROPRIETARY 1 2011 - 2 0.17 0.74 1.19 0.95 4.35 5.48 CAMAROSA 2011 - 2 0.31 4.40 1.30 1.29 3.08 21.55 FESTIVAL 2011 - 2 1.37 24.63 24.02 1.97 8.74 2.72

MARA DES BOIS 2011 - 2 0.14 5.26 7.20 1.50 3.58 3.20 RADIANCE 2011 - 2 0.49 1.13 0.71 0.76 0.39 0.44

PROPRIETARY 2 2011 - 3 0.76 21.67 2.65 1.05 6.61 0.53 CAMAROSA 2011 - 3 0.51 2.75 2.03 0.80 2.76 3.39

SWEET CHARLIE 2011 - 3 1.10 4.29 7.72 1.90 7.85 0.81 TREASURE 2011 - 3 0.21 8.11 1.07 0.48 3.01 0.19

WINTER DAWN 2011 - 3 0.73 1.03 2.80 0.89 4.25 3.21 PROPRIETARY 3 2011 - 4 0.13 0.56 20.18 0.85 3.45 3.36

CAMINO REAL 2011 - 4 0.12 1.86 3.46 0.69 1.87 0.83 FESTIVAL 2011 - 4 0.35 2.89 7.88 0.43 2.57 0.07

WINTERSTAR 2011 - 5 0.14 2.12 12.82 0.41 2.51 5.63 FESTIVAL 2011 - 5 0.12 1.39 4.07 0.21 0.64 0.63 RADIANCE 2011 - 5 0.70 0.90 3.48 0.54 2.08 4.23

PROPRIETARY 4 2011 - 5 0.41 11.14 8.86 0.68 1.48 2.39 FL 05-85 2011 - 6 0.09 0.60 1.69 0.76 2.50 5.99 ELYANA 2011 - 6 0.13 6.82 4.43 0.93 5.69 0.37

FESTIVAL 2011 - 6 0.09 8.17 19.54 1.28 4.70 2.08 RED MERLIN 2011 - 6 0.30 0.00 0.62 0.91 3.33 10.05

SAN ANDREAS 2011 - 6 0.49 3.85 13.44 0.78 3.38 4.37 ALBION 2011 - 7 0.33 1.17 1.07 0.58 1.02 1.09

CHARLOTTE 2011 - 7 0.12 0.43 0.67 0.43 3.27 8.36 FESTIVAL 2011 - 7 0.23 0.23 3.55 0.41 0.67 0.43

MARA DES BOIS 2011 - 7 0.02 4.75 23.84 0.76 3.37 5.57 MONTERREY 2011 - 7 0.09 2.99 1.94 1.13 9.03 13.18

ALBION 2012 - 1 0.23 56.32 3.85 0.44 10.32 0.58 FESTIVAL 2012 - 1 0.04 2.42 8.01 0.30 2.01 0.45 MOJAVE 2012 - 1 0.15 6.48 3.31 0.14 8.90 1.30

PROPRIETARY 3 2012 - 1 0.40 0.00 5.48 0.82 1.65 1.07 CHANDLER 2012 - 4 1.63 4.17 70.50 0.18 13.83 2.34 FESTIVAL 2012 - 4 0.28 2.61 113.08 0.68 12.93 0.41 FL 09-127 2012 - 4 0.52 36.65 79.44 1.55 39.13 0.79

TREASURE 2012 - 4 0.05 4.73 164.53 0.28 6.77 0.32 WINTER DAWN 2012 - 4 0.18 0.64 229.81 1.24 28.93 0.54

PROPRIETARY 5 2012 - 5 0.21 0.00 50.68 0.82 6.18 3.46 ALBION 2012 - 5 0.60 15.13 50.49 1.54 14.86 11.44

FESTIVAL 2012 - 5 0.76 5.05 42.23 1.76 8.00 3.28 RUBYGEM 2012 - 5 0.11 0.48 15.27 0.27 2.23 0.73

CAMINO REAL 2012 - 6 0.24 13.36 14.54 0.95 4.10 2.90 DARSELECT 2012 - 6 0.65 4.65 18.09 2.66 31.01 11.08

FESTIVAL 2012 - 6 0.63 10.28 11.53 1.18 4.04 12.83 SWEET ANNE 2012 - 6 0.53 0.59 45.78 1.15 7.09 23.22

BENICIA 2012 - 7 0.44 0.40 17.72 0.25 0.63 7.70 FESTIVAL 2012 - 7 0.32 8.38 17.22 0.99 4.03 2.91 FL 06-38 2012 - 7 0.38 9.69 91.73 1.03 9.45 1.67

PORTOLA 2012 - 7 0.09 0.36 35.31 0.26 2.68 0.76 VENTANA 2012 - 7 0.03 0.00 3.85 0.27 0.33 1.48

PROPRIETARY 6 2012 - 9 0.05 1.58 20.25 0.17 0.69 0.58 EVIE 2 2012 - 9 0.13 0.81 2.11 0.45 1.41 0.66

FESTIVAL 2012 - 9 0.67 7.79 26.84 1.75 4.03 0.85 GALLETA 2012 - 9 0.13 3.28 10.28 0.36 1.40 1.25

SWEET ANNE 2012 - 9 0.60 1.97 6.43 1.36 1.75 1.24

Page 81: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

81

Table 2-2. Continued.

CULTIVAR HARVEST 60415-61-4 104-76-7 2311-46-8 109-19-3 2548-87-0 540-18-1

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

PROPRIETARY 1 2011 - 2 0.02 0.44 0.00 0.08 0.19 0.18 CAMAROSA 2011 - 2 0.00 0.46 0.00 0.38 0.14 0.37 FESTIVAL 2011 - 2 0.45 2.54 0.54 0.62 0.75 0.81

MARA DES BOIS 2011 - 2 0.06 0.27 0.33 0.27 0.43 0.27 RADIANCE 2011 - 2 0.14 0.25 0.00 0.53 0.77 0.22

PROPRIETARY 2 2011 - 3 0.26 0.81 0.83 3.10 0.91 1.72 CAMAROSA 2011 - 3 0.03 0.26 0.58 0.58 0.37 0.50

SWEET CHARLIE 2011 - 3 0.10 1.39 0.41 0.42 0.70 0.66 TREASURE 2011 - 3 0.04 0.28 0.00 0.49 0.72 0.37

WINTER DAWN 2011 - 3 0.20 1.01 0.00 0.39 0.60 0.31 PROPRIETARY 3 2011 - 4 0.30 1.23 1.27 0.69 0.69 0.09

CAMINO REAL 2011 - 4 0.00 0.00 0.73 0.00 0.12 0.33 FESTIVAL 2011 - 4 0.00 0.87 0.20 0.00 0.07 0.22

WINTERSTAR 2011 - 5 0.00 0.63 0.00 0.00 0.05 0.23 FESTIVAL 2011 - 5 0.00 0.22 0.00 0.00 0.04 0.16 RADIANCE 2011 - 5 0.00 0.36 0.00 0.00 0.09 0.09

PROPRIETARY 4 2011 - 5 0.21 0.20 1.02 0.60 0.53 1.03 FL 05-85 2011 - 6 0.09 0.39 0.29 0.00 0.15 0.18 ELYANA 2011 - 6 0.03 2.22 0.66 0.91 0.04 0.54

FESTIVAL 2011 - 6 0.08 2.03 0.15 0.00 0.04 0.28 RED MERLIN 2011 - 6 0.12 1.60 0.00 0.00 0.07 0.21

SAN ANDREAS 2011 - 6 0.26 2.54 0.38 0.00 0.08 0.49 ALBION 2011 - 7 0.03 0.52 0.13 0.00 0.23 0.35

CHARLOTTE 2011 - 7 0.06 0.07 0.45 0.00 0.06 0.03 FESTIVAL 2011 - 7 0.05 0.00 0.00 0.00 0.12 0.22

MARA DES BOIS 2011 - 7 0.00 0.27 0.00 0.00 0.06 0.29 MONTERREY 2011 - 7 0.08 0.33 0.21 0.33 0.11 0.04

ALBION 2012 - 1 0.55 0.61 1.07 1.02 0.26 0.98 FESTIVAL 2012 - 1 0.12 0.23 0.41 0.21 0.19 0.34 MOJAVE 2012 - 1 0.26 0.78 0.66 0.19 0.20 0.36

PROPRIETARY 3 2012 - 1 0.19 0.59 0.48 0.23 0.56 0.26 CHANDLER 2012 - 4 0.00 0.77 1.40 0.60 0.00 1.07 FESTIVAL 2012 - 4 0.08 0.12 0.29 0.20 0.22 0.26 FL 09-127 2012 - 4 0.46 3.18 3.09 1.17 0.65 2.03

TREASURE 2012 - 4 0.21 0.37 0.37 0.13 0.27 0.45 WINTER DAWN 2012 - 4 0.13 0.24 0.09 0.32 0.25 0.23

PROPRIETARY 5 2012 - 5 0.24 0.22 0.21 0.12 0.22 0.37 ALBION 2012 - 5 0.56 1.07 1.22 1.39 0.47 0.71

FESTIVAL 2012 - 5 0.37 1.07 1.19 0.33 0.60 0.49 RUBYGEM 2012 - 5 0.09 0.14 0.14 0.19 0.16 0.32

CAMINO REAL 2012 - 6 0.06 0.40 0.68 0.51 0.44 0.80 DARSELECT 2012 - 6 0.12 1.78 1.75 0.92 0.40 1.16

FESTIVAL 2012 - 6 0.26 1.12 1.68 0.21 0.51 0.79 SWEET ANNE 2012 - 6 0.07 0.40 0.22 0.16 0.08 0.22

BENICIA 2012 - 7 0.06 0.14 0.32 0.17 0.22 0.06 FESTIVAL 2012 - 7 0.12 1.46 2.00 0.40 0.35 0.55 FL 06-38 2012 - 7 0.15 1.74 1.95 0.70 0.59 1.16

PORTOLA 2012 - 7 0.06 8.78 0.12 0.06 0.15 0.13 VENTANA 2012 - 7 0.03 0.21 0.04 0.21 0.13 0.20

PROPRIETARY 6 2012 - 9 0.07 0.43 0.89 0.31 0.43 0.46 EVIE 2 2012 - 9 0.02 0.26 0.21 0.22 0.02 0.17

FESTIVAL 2012 - 9 0.45 2.49 2.55 0.63 0.77 1.36 GALLETA 2012 - 9 0.07 0.31 0.42 0.41 0.22 0.48

SWEET ANNE 2012 - 9 0.15 0.97 1.23 0.55 0.57 0.88

Page 82: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

82

Table 2-2. Continued.

CULTIVAR HARVEST 4077-47-8 20664-46-4 821-55-6 5989-33-3 78-70-6 124-19-6

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

PROPRIETARY 1 2011 - 2 1.24 1.10 0.30 0.43 5.05 1.58 CAMAROSA 2011 - 2 1.83 1.98 1.01 0.67 6.97 3.82 FESTIVAL 2011 - 2 3.87 6.71 1.24 1.45 13.84 7.92

MARA DES BOIS 2011 - 2 5.64 7.27 0.71 0.45 3.21 0.77 RADIANCE 2011 - 2 2.40 0.85 0.14 0.69 8.26 6.76

PROPRIETARY 2 2011 - 3 4.81 6.21 0.75 0.30 6.31 2.07 CAMAROSA 2011 - 3 2.61 2.91 0.77 0.32 7.51 0.50

SWEET CHARLIE 2011 - 3 5.78 6.26 2.52 1.68 32.80 10.51 TREASURE 2011 - 3 5.22 0.82 0.88 0.19 5.85 2.04

WINTER DAWN 2011 - 3 3.47 2.95 0.70 0.31 9.43 2.27 PROPRIETARY 3 2011 - 4 2.02 5.76 0.00 0.49 16.75 1.36

CAMINO REAL 2011 - 4 0.61 3.14 0.00 0.74 24.74 2.30 FESTIVAL 2011 - 4 1.21 1.70 0.00 0.30 0.78 0.65

WINTERSTAR 2011 - 5 0.41 0.38 0.00 0.04 3.14 0.53 FESTIVAL 2011 - 5 0.24 1.07 0.00 0.41 5.04 0.36 RADIANCE 2011 - 5 0.46 0.99 0.00 0.15 17.25 0.48

PROPRIETARY 4 2011 - 5 0.49 0.63 0.00 0.19 5.62 1.11 FL 05-85 2011 - 6 0.86 1.85 0.00 0.10 4.58 0.78 ELYANA 2011 - 6 1.89 1.81 0.51 0.27 10.60 1.81

FESTIVAL 2011 - 6 0.39 2.23 0.00 0.38 5.85 0.85 RED MERLIN 2011 - 6 0.79 1.03 0.00 0.32 4.69 0.49

SAN ANDREAS 2011 - 6 0.85 5.29 0.00 0.55 17.29 1.18 ALBION 2011 - 7 0.32 1.00 0.00 0.26 6.34 0.43

CHARLOTTE 2011 - 7 1.24 1.97 0.00 0.34 3.50 0.49 FESTIVAL 2011 - 7 0.61 1.74 0.00 0.17 4.46 0.40

MARA DES BOIS 2011 - 7 0.25 1.85 0.00 0.38 2.78 0.22 MONTERREY 2011 - 7 2.48 2.07 0.00 0.19 10.27 0.35

ALBION 2012 - 1 1.63 0.55 0.61 0.73 15.67 0.86 FESTIVAL 2012 - 1 0.23 0.50 0.45 0.24 0.57 0.51 MOJAVE 2012 - 1 0.66 0.69 0.57 0.10 1.90 0.35

PROPRIETARY 3 2012 - 1 1.94 2.68 0.72 1.79 40.69 2.95 CHANDLER 2012 - 4 0.00 1.74 0.00 0.65 5.11 1.43 FESTIVAL 2012 - 4 1.46 0.59 0.00 0.12 0.90 0.18 FL 09-127 2012 - 4 1.04 6.62 24.14 0.99 11.98 1.33

TREASURE 2012 - 4 1.16 0.52 6.32 0.15 1.37 0.19 WINTER DAWN 2012 - 4 0.50 0.07 23.60 0.14 1.05 0.37

PROPRIETARY 5 2012 - 5 0.51 0.16 1.60 0.17 2.51 0.16 ALBION 2012 - 5 2.62 2.30 5.42 1.01 45.20 1.38

FESTIVAL 2012 - 5 2.28 1.63 2.83 0.72 21.82 1.42 RUBYGEM 2012 - 5 0.32 0.21 1.05 0.11 2.04 0.45

CAMINO REAL 2012 - 6 0.75 3.80 2.32 1.08 21.67 1.10 DARSELECT 2012 - 6 4.00 10.28 0.14 0.89 23.49 1.10

FESTIVAL 2012 - 6 2.87 3.52 0.66 1.12 12.24 1.90 SWEET ANNE 2012 - 6 0.36 0.97 3.81 0.18 13.29 2.99

BENICIA 2012 - 7 1.41 1.12 3.23 0.18 19.18 0.22 FESTIVAL 2012 - 7 1.33 2.18 1.77 0.37 8.86 0.80 FL 06-38 2012 - 7 4.67 3.17 1.59 0.31 18.49 0.88

PORTOLA 2012 - 7 0.16 0.40 1.64 0.22 1.59 0.13 VENTANA 2012 - 7 0.37 0.39 1.72 0.59 4.59 1.38

PROPRIETARY 6 2012 - 9 0.20 0.32 0.53 0.16 1.19 0.31 EVIE 2 2012 - 9 0.95 1.56 0.41 0.25 3.32 0.34

FESTIVAL 2012 - 9 1.68 4.44 0.00 0.55 10.58 1.64 GALLETA 2012 - 9 1.83 3.22 0.69 0.21 10.60 1.17

SWEET ANNE 2012 - 9 2.21 6.96 0.00 2.51 76.16 1.87

Page 83: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

83

Table 2-2. Continued.

CULTIVAR HARVEST 103-09-3 140-11-4 2639-63-6 53398-83-7 106-32-1 112-14-1

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

PROPRIETARY 1 2011 - 2 0.21 0.26 0.10 0.35 0.05 0.87 CAMAROSA 2011 - 2 0.58 1.11 0.55 0.80 0.02 3.18 FESTIVAL 2011 - 2 0.46 1.89 3.15 4.98 0.34 2.67

MARA DES BOIS 2011 - 2 0.28 0.68 0.22 1.05 0.01 1.03 RADIANCE 2011 - 2 0.10 0.07 0.65 0.22 0.07 0.45

PROPRIETARY 2 2011 - 3 0.80 2.80 1.98 0.73 0.09 1.53 CAMAROSA 2011 - 3 0.30 1.69 1.02 0.51 0.13 2.90

SWEET CHARLIE 2011 - 3 0.53 5.54 3.23 0.46 0.23 4.92 TREASURE 2011 - 3 0.05 1.51 2.99 0.70 0.09 0.86

WINTER DAWN 2011 - 3 0.49 2.21 0.32 0.27 0.05 0.49 PROPRIETARY 3 2011 - 4 0.63 0.84 0.13 0.08 0.42 1.65

CAMINO REAL 2011 - 4 0.58 2.91 0.35 0.18 0.18 2.09 FESTIVAL 2011 - 4 0.33 0.30 1.10 0.14 0.09 1.09

WINTERSTAR 2011 - 5 0.31 0.95 0.53 0.34 0.12 1.43 FESTIVAL 2011 - 5 0.17 0.73 0.25 0.31 0.05 0.15 RADIANCE 2011 - 5 0.21 1.43 0.30 0.42 0.02 0.48

PROPRIETARY 4 2011 - 5 0.23 1.69 2.82 0.81 0.17 0.99 FL 05-85 2011 - 6 0.04 0.51 0.15 0.41 0.03 0.36 ELYANA 2011 - 6 0.19 3.56 0.00 0.22 0.29 16.97

FESTIVAL 2011 - 6 0.20 0.80 1.59 0.56 0.15 0.75 RED MERLIN 2011 - 6 0.24 1.21 0.12 0.15 0.02 0.21

SAN ANDREAS 2011 - 6 0.32 1.96 0.70 0.24 0.12 0.26 ALBION 2011 - 7 0.18 0.62 0.09 0.13 0.06 0.32

CHARLOTTE 2011 - 7 0.06 0.37 0.07 0.07 0.13 0.17 FESTIVAL 2011 - 7 0.03 0.90 0.15 0.07 0.14 0.03

MARA DES BOIS 2011 - 7 0.38 0.49 0.59 0.93 0.17 1.05 MONTERREY 2011 - 7 0.09 1.50 0.14 0.06 0.10 3.06

ALBION 2012 - 1 0.14 0.20 3.06 0.39 0.25 1.75 FESTIVAL 2012 - 1 0.12 0.25 0.34 0.44 0.24 0.58 MOJAVE 2012 - 1 0.08 0.54 2.39 0.47 0.20 4.85

PROPRIETARY 3 2012 - 1 0.16 1.62 0.12 0.00 0.21 0.64 CHANDLER 2012 - 4 0.77 3.57 1.44 0.11 0.00 5.14 FESTIVAL 2012 - 4 0.39 0.24 0.94 0.31 0.00 4.32 FL 09-127 2012 - 4 0.59 1.24 4.69 0.63 8.31 11.26

TREASURE 2012 - 4 0.18 0.60 0.26 0.38 3.35 6.88 WINTER DAWN 2012 - 4 0.51 0.16 0.54 0.37 11.86 9.93

PROPRIETARY 5 2012 - 5 0.35 0.44 0.06 0.10 0.00 1.79 ALBION 2012 - 5 1.16 2.12 1.12 0.35 2.43 5.30

FESTIVAL 2012 - 5 0.96 1.37 1.24 1.16 0.00 2.05 RUBYGEM 2012 - 5 0.31 0.22 0.14 0.14 0.00 0.79

CAMINO REAL 2012 - 6 0.16 2.50 1.84 1.43 1.69 1.63 DARSELECT 2012 - 6 0.80 5.08 4.18 1.42 0.98 15.49

FESTIVAL 2012 - 6 0.59 0.93 2.16 6.45 2.55 3.07 SWEET ANNE 2012 - 6 0.20 0.29 0.31 0.58 4.39 4.06

BENICIA 2012 - 7 0.37 2.30 0.12 0.18 1.18 1.71 FESTIVAL 2012 - 7 0.26 0.59 0.86 1.47 1.75 1.12 FL 06-38 2012 - 7 0.56 1.86 1.68 0.05 4.83 6.28

PORTOLA 2012 - 7 0.51 0.23 0.05 0.07 5.57 3.71 VENTANA 2012 - 7 0.45 1.79 0.04 0.14 1.55 2.47

PROPRIETARY 6 2012 - 9 0.39 0.32 0.49 0.23 0.34 0.33 EVIE 2 2012 - 9 0.13 0.36 0.19 0.04 0.34 0.99

FESTIVAL 2012 - 9 0.55 1.56 0.76 0.75 1.59 2.46 GALLETA 2012 - 9 0.76 0.60 0.37 0.43 1.70 2.61

SWEET ANNE 2012 - 9 3.42 4.24 2.02 0.61 1.70 3.25

Page 84: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

84

Table 2-2. Continued.

CULTIVAR HARVEST 564-94-3 3913-81-3 134-20-3 110-39-4 110-38-3 29811-50-5

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

PROPRIETARY 1 2011 - 2 0.48 0.09 0.00 1.14 0.00 0.55 CAMAROSA 2011 - 2 0.80 0.34 0.00 3.75 0.00 1.15 FESTIVAL 2011 - 2 1.48 0.63 0.00 9.77 0.59 0.08

MARA DES BOIS 2011 - 2 0.77 0.07 0.00 1.43 0.11 0.14 RADIANCE 2011 - 2 1.15 0.39 0.00 0.73 0.00 0.03

PROPRIETARY 2 2011 - 3 1.68 0.85 0.00 5.71 0.00 0.61 CAMAROSA 2011 - 3 1.29 0.92 0.00 9.09 0.00 1.84

SWEET CHARLIE 2011 - 3 2.57 0.58 0.00 10.25 0.89 0.74 TREASURE 2011 - 3 1.11 0.48 0.00 7.17 0.00 0.66

WINTER DAWN 2011 - 3 0.82 0.41 0.00 0.37 0.00 0.13 PROPRIETARY 3 2011 - 4 0.75 0.19 0.00 0.20 0.00 0.24

CAMINO REAL 2011 - 4 0.49 0.19 0.00 1.95 0.00 0.18 FESTIVAL 2011 - 4 0.93 0.11 0.00 2.25 0.49 0.21

WINTERSTAR 2011 - 5 0.46 0.15 0.00 2.09 0.13 0.08 FESTIVAL 2011 - 5 0.38 0.06 0.00 0.51 0.16 0.06 RADIANCE 2011 - 5 0.12 0.09 0.00 0.10 0.03 0.12

PROPRIETARY 4 2011 - 5 1.90 0.45 0.00 5.75 0.09 0.04 FL 05-85 2011 - 6 0.40 0.11 0.00 0.08 0.42 0.12 ELYANA 2011 - 6 0.68 0.28 0.00 72.84 0.72 1.09

FESTIVAL 2011 - 6 0.65 0.14 0.00 2.95 0.76 0.08 RED MERLIN 2011 - 6 0.66 0.10 0.00 0.11 0.00 0.13

SAN ANDREAS 2011 - 6 0.55 0.09 0.00 0.52 0.18 0.01 ALBION 2011 - 7 2.91 0.04 0.00 0.45 0.00 0.05

CHARLOTTE 2011 - 7 0.54 0.11 0.31 0.00 0.00 0.03 FESTIVAL 2011 - 7 0.22 0.11 0.00 0.22 0.18 0.10

MARA DES BOIS 2011 - 7 0.58 0.06 0.72 1.35 0.45 0.03 MONTERREY 2011 - 7 0.09 0.04 0.00 2.38 0.13 1.83

ALBION 2012 - 1 0.45 0.04 0.00 10.53 0.31 0.19 FESTIVAL 2012 - 1 0.16 0.26 0.00 3.26 0.10 0.13 MOJAVE 2012 - 1 0.15 0.21 0.00 17.01 0.31 0.74

PROPRIETARY 3 2012 - 1 0.33 0.21 0.00 0.64 0.00 0.14 CHANDLER 2012 - 4 0.94 0.00 0.00 7.29 0.00 1.79 FESTIVAL 2012 - 4 0.25 0.18 0.00 2.09 0.45 0.15 FL 09-127 2012 - 4 3.06 0.45 0.00 15.98 1.28 0.81

TREASURE 2012 - 4 0.99 0.16 0.00 0.47 0.29 0.07 WINTER DAWN 2012 - 4 0.40 0.08 0.00 0.74 0.75 0.00

PROPRIETARY 5 2012 - 5 0.72 0.10 0.00 0.26 0.00 0.00 ALBION 2012 - 5 0.99 0.12 0.00 3.71 0.40 0.40

FESTIVAL 2012 - 5 1.22 0.38 0.00 1.42 0.42 0.14 RUBYGEM 2012 - 5 0.61 0.13 0.00 0.86 0.47 0.12

CAMINO REAL 2012 - 6 1.31 0.08 0.00 5.59 0.14 0.13 DARSELECT 2012 - 6 0.84 0.52 0.00 14.71 0.38 2.63

FESTIVAL 2012 - 6 1.00 0.49 0.00 2.63 0.48 0.17 SWEET ANNE 2012 - 6 0.19 0.26 0.00 0.29 0.35 0.10

BENICIA 2012 - 7 1.52 0.25 0.00 0.34 0.10 0.00 FESTIVAL 2012 - 7 0.58 0.12 0.00 1.09 0.23 0.12 FL 06-38 2012 - 7 1.36 0.19 0.00 2.16 0.50 0.21

PORTOLA 2012 - 7 0.28 0.11 0.00 0.54 0.24 0.23 VENTANA 2012 - 7 0.16 0.14 0.00 0.06 0.00 0.00

PROPRIETARY 6 2012 - 9 0.25 0.21 0.00 0.77 0.25 0.11 EVIE 2 2012 - 9 0.84 0.08 0.00 2.42 0.00 0.21

FESTIVAL 2012 - 9 2.40 0.40 0.00 2.23 0.84 0.34 GALLETA 2012 - 9 1.40 0.12 0.00 1.18 0.00 0.15

SWEET ANNE 2012 - 9 1.19 0.20 0.00 1.09 2.16 0.13

Page 85: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

85

Table 2-2. Continued.

CULTIVAR HARVEST 7786-58-5 15111-96-3 706-14-9 10522-34-6 5881-17-4 128-37-0

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

PROPRIETARY 1 2011 - 2 0.46 0.09 0.04 0.05 1.84 0.08 CAMAROSA 2011 - 2 1.09 0.16 0.34 0.10 1.44 0.13 FESTIVAL 2011 - 2 0.25 0.31 0.04 0.29 1.87 0.31

MARA DES BOIS 2011 - 2 0.40 0.20 0.08 0.13 0.88 0.12 RADIANCE 2011 - 2 0.05 0.11 2.08 0.23 0.42 0.20

PROPRIETARY 2 2011 - 3 4.44 0.02 0.00 0.38 2.33 0.32 CAMAROSA 2011 - 3 2.89 0.35 0.27 0.07 2.81 0.35

SWEET CHARLIE 2011 - 3 2.66 0.72 58.21 0.09 2.93 0.87 TREASURE 2011 - 3 1.58 0.17 0.57 0.43 2.93 0.04

WINTER DAWN 2011 - 3 0.13 0.22 0.28 0.01 1.29 0.11 PROPRIETARY 3 2011 - 4 0.52 0.12 0.42 0.06 0.55 0.08

CAMINO REAL 2011 - 4 0.15 0.26 1.49 0.14 0.94 0.21 FESTIVAL 2011 - 4 0.12 0.21 0.20 0.06 0.56 0.07

WINTERSTAR 2011 - 5 0.04 0.09 1.67 0.11 0.24 0.05 FESTIVAL 2011 - 5 0.00 0.11 0.63 0.07 0.56 0.06 RADIANCE 2011 - 5 0.00 0.10 3.89 0.04 0.52 0.44

PROPRIETARY 4 2011 - 5 0.24 0.10 0.03 0.26 1.10 0.09 FL 05-85 2011 - 6 0.00 0.19 0.06 0.05 0.44 0.16 ELYANA 2011 - 6 11.17 0.41 7.71 0.90 1.02 0.14

FESTIVAL 2011 - 6 0.04 0.31 0.26 0.20 0.90 0.21 RED MERLIN 2011 - 6 0.00 0.13 1.14 0.00 0.32 0.00

SAN ANDREAS 2011 - 6 0.18 0.14 11.84 0.06 0.97 0.03 ALBION 2011 - 7 0.14 0.06 0.48 0.01 0.45 0.10

CHARLOTTE 2011 - 7 0.03 0.01 0.12 0.00 0.29 0.00 FESTIVAL 2011 - 7 0.07 0.30 0.00 0.02 0.28 0.08

MARA DES BOIS 2011 - 7 0.05 0.20 0.00 0.06 0.31 0.00 MONTERREY 2011 - 7 0.91 0.03 0.00 0.03 0.21 0.17

ALBION 2012 - 1 1.17 0.13 10.49 0.17 0.16 0.61 FESTIVAL 2012 - 1 0.20 0.04 0.40 0.02 0.09 0.89 MOJAVE 2012 - 1 4.30 0.01 3.13 0.11 0.56 0.00

PROPRIETARY 3 2012 - 1 0.28 0.03 0.20 0.00 0.43 2.01 CHANDLER 2012 - 4 3.69 0.00 6.46 0.25 1.43 1.59 FESTIVAL 2012 - 4 0.10 0.05 0.17 0.07 0.15 0.65 FL 09-127 2012 - 4 5.04 0.09 16.87 0.33 1.13 1.47

TREASURE 2012 - 4 0.30 0.08 0.17 0.13 0.30 0.18 WINTER DAWN 2012 - 4 0.00 0.07 0.12 0.00 0.29 0.44

PROPRIETARY 5 2012 - 5 0.09 0.05 0.23 0.00 0.04 0.45 ALBION 2012 - 5 1.60 0.06 18.44 0.06 0.95 1.89

FESTIVAL 2012 - 5 0.14 0.15 0.56 0.09 1.15 3.78 RUBYGEM 2012 - 5 0.17 0.06 0.76 0.14 0.05 0.30

CAMINO REAL 2012 - 6 0.46 0.05 7.53 0.19 0.63 2.05 DARSELECT 2012 - 6 24.77 0.07 37.59 0.11 1.05 2.43

FESTIVAL 2012 - 6 0.24 0.09 0.17 0.27 0.88 1.84 SWEET ANNE 2012 - 6 0.14 0.05 2.15 0.08 0.20 0.70

BENICIA 2012 - 7 0.28 0.05 2.63 0.00 0.42 2.08 FESTIVAL 2012 - 7 0.11 0.04 0.19 0.08 0.60 1.88 FL 06-38 2012 - 7 0.82 0.07 12.91 0.14 0.46 2.36

PORTOLA 2012 - 7 0.13 0.05 0.11 0.00 0.25 1.13 VENTANA 2012 - 7 0.17 0.04 0.51 0.00 0.14 0.91

PROPRIETARY 6 2012 - 9 0.16 0.04 0.62 0.08 0.59 0.78 EVIE 2 2012 - 9 3.84 0.14 0.85 0.10 0.21 1.14

FESTIVAL 2012 - 9 0.25 0.33 0.45 0.23 1.24 3.38 GALLETA 2012 - 9 0.42 0.07 2.00 0.10 0.44 0.94

SWEET ANNE 2012 - 9 0.37 0.20 8.74 0.13 1.39 2.39

Page 86: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

86

Table 2-2. Continued.

CULTIVAR HARVEST 40716-66-3 4887-30-3 5454-09-1 2305-05-7

ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1 ng

1 gFW

-1 hr

-1

PROPRIETARY 1 2011 - 2 13.53 0.55 0.40 0.53 CAMAROSA 2011 - 2 3.15 1.96 0.82 0.51 FESTIVAL 2011 - 2 10.95 2.51 0.98 1.18

MARA DES BOIS 2011 - 2 0.50 0.71 0.36 0.40 RADIANCE 2011 - 2 1.11 1.08 0.81 0.14

PROPRIETARY 2 2011 - 3 0.70 0.31 0.20 0.65 CAMAROSA 2011 - 3 10.66 2.38 1.39 0.98

SWEET CHARLIE 2011 - 3 145.11 15.86 10.01 2.63 TREASURE 2011 - 3 3.66 1.50 0.24 2.66

WINTER DAWN 2011 - 3 31.29 0.00 0.00 1.48 PROPRIETARY 3 2011 - 4 4.80 0.14 0.00 1.77

CAMINO REAL 2011 - 4 3.16 0.88 0.24 0.12 FESTIVAL 2011 - 4 3.19 1.11 0.06 0.16

WINTERSTAR 2011 - 5 4.98 0.62 0.11 0.28 FESTIVAL 2011 - 5 7.73 0.26 0.14 0.45 RADIANCE 2011 - 5 52.91 0.00 0.00 1.15

PROPRIETARY 4 2011 - 5 0.81 0.26 0.13 0.35 FL 05-85 2011 - 6 2.01 0.30 0.15 0.57 ELYANA 2011 - 6 3.53 32.68 4.93 0.56

FESTIVAL 2011 - 6 12.81 26.69 0.29 0.79 RED MERLIN 2011 - 6 0.00 0.00 0.00 0.02

SAN ANDREAS 2011 - 6 2.99 1.87 0.00 0.60 ALBION 2011 - 7 1.60 0.00 0.00 0.19

CHARLOTTE 2011 - 7 0.00 0.00 0.00 0.18 FESTIVAL 2011 - 7 2.23 0.25 0.00 0.14

MARA DES BOIS 2011 - 7 0.34 0.13 0.21 0.15 MONTERREY 2011 - 7 1.60 0.84 0.48 0.05

ALBION 2012 - 1 8.54 1.04 0.52 1.41 FESTIVAL 2012 - 1 19.39 0.75 0.50 1.68 MOJAVE 2012 - 1 0.34 5.17 0.86 1.15

PROPRIETARY 3 2012 - 1 6.30 0.00 0.00 1.37 CHANDLER 2012 - 4 1.77 2.16 0.23 1.70 FESTIVAL 2012 - 4 3.46 0.47 0.02 0.22 FL 09-127 2012 - 4 19.31 4.64 1.14 0.58

TREASURE 2012 - 4 2.83 0.91 0.29 2.22 WINTER DAWN 2012 - 4 1.75 0.00 0.00 0.11

PROPRIETARY 5 2012 - 5 1.12 0.00 0.00 0.39 ALBION 2012 - 5 34.32 1.23 0.20 2.14

FESTIVAL 2012 - 5 20.89 0.78 0.23 1.10 RUBYGEM 2012 - 5 2.79 0.19 0.29 0.28

CAMINO REAL 2012 - 6 4.89 2.42 0.89 0.38 DARSELECT 2012 - 6 14.62 15.57 0.73 1.49

FESTIVAL 2012 - 6 15.13 0.74 0.25 1.33 SWEET ANNE 2012 - 6 5.06 0.07 0.00 0.30

BENICIA 2012 - 7 7.92 0.23 0.00 0.34 FESTIVAL 2012 - 7 10.79 0.20 0.26 0.47 FL 06-38 2012 - 7 24.58 2.12 0.52 1.21

PORTOLA 2012 - 7 0.43 0.22 0.00 0.21 VENTANA 2012 - 7 0.92 0.00 0.00 0.11

PROPRIETARY 6 2012 - 9 0.61 0.01 0.05 0.16 EVIE 2 2012 - 9 0.92 0.62 0.10 0.20

FESTIVAL 2012 - 9 14.75 1.10 0.28 1.09 GALLETA 2012 - 9 3.21 0.19 0.16 0.30

SWEET ANNE 2012 - 9 26.45 1.18 0.25 1.06

Page 87: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

87

Table 2-3. Fruit attribute bivariate fit to harvest week.

X Y R2 CORR COEFF p-VALUE n MEAN X STD DEV X MEAN Y STD DEV Y

WEEK 1629-58-9 0.489 -0.699 0.000 54 5.0 2.2 117.9 65.9 WEEK 1576-87-0 0.485 -0.697 0.000 54 5.0 2.2 37.5 20.1 WEEK SWEETNESS INTENSITY 0.471 -0.686 0.000 54 5.0 2.2 23.0 4.8 WEEK SSC 0.444 -0.666 0.000 54 5.0 2.2 7.4 1.4 WEEK STRAWBERRY FLAVOR INTENSITY 0.430 -0.656 0.000 54 5.0 2.2 26.9 3.9 WEEK OVERALL LIKING 0.422 -0.650 0.000 54 5.0 2.2 23.8 5.7 WEEK 1576-86-9 0.402 -0.634 0.000 54 5.0 2.2 37.8 21.7 WEEK SUCROSE 0.350 -0.592 0.000 54 5.0 2.2 1112.6 646.5 WEEK 6728-26-3 0.348 -0.590 0.000 54 5.0 2.2 8666.5 3359.7 WEEK TOTAL VOLATILES 0.338 -0.581 0.000 54 5.0 2.2 15814.0 5238.5 WEEK 5881-17-4 0.315 -0.561 0.000 54 5.0 2.2 6.2 2.5 WEEK 105-54-4 0.294 -0.542 0.000 54 5.0 2.2 42.0 17.1 WEEK TOTAL SUGAR 0.287 -0.536 0.000 54 5.0 2.2 4473.9 1037.2 WEEK 124-19-6 0.264 -0.513 0.000 54 5.0 2.2 8.5 7.5 WEEK 3913-81-3 0.252 -0.502 0.000 54 5.0 2.2 1.9 1.4 WEEK 96-22-0 0.242 -0.492 0.000 54 5.0 2.2 51.2 18.6 WEEK 2305-05-7 0.240 -0.490 0.000 54 5.0 2.2 6.7 6.7 WEEK 110-93-0 0.179 -0.423 0.001 54 5.0 2.2 2.7 1.5 WEEK 616-25-1 0.158 -0.398 0.003 54 5.0 2.2 15.9 7.3 WEEK 75-85-4 0.148 -0.385 0.004 54 5.0 2.2 3.9 2.2 WEEK 2639-63-6 0.141 -0.375 0.005 54 5.0 2.2 10.8 13.0 WEEK 116-53-0 0.139 -0.372 0.006 54 5.0 2.2 19.7 16.0 WEEK 142-92-7 0.137 -0.370 0.006 54 5.0 2.2 53.5 49.7 WEEK 111-71-7 0.134 -0.366 0.006 54 5.0 2.2 3.2 2.3 WEEK TEXTURE LIKING 0.132 -0.364 0.007 54 5.0 2.2 23.8 5.7 WEEK L* int 0.127 -0.357 0.008 54 5.0 2.2 54.9 5.8 WEEK 60415-61-4 0.118 -0.343 0.011 54 5.0 2.2 0.7 1.6 WEEK 5454-09-1 0.112 -0.335 0.013 54 5.0 2.2 3.7 6.2 WEEK 66-25-1 0.106 -0.325 0.017 54 5.0 2.2 2545.9 1722.0 WEEK 106-32-1 0.101 0.317 0.019 54 5.0 2.2 2.2 3.0 WEEK 7452-79-1 0.098 -0.312 0.021 54 5.0 2.2 50.0 31.0 WEEK 109-21-7 0.097 -0.311 0.022 54 5.0 2.2 72.1 157.2 WEEK 4077-47-8 0.089 -0.298 0.028 54 5.0 2.2 11.7 8.3 WEEK 123-86-4 0.087 -0.296 0.030 54 5.0 2.2 73.5 85.0 WEEK 1534-08-3 0.082 -0.286 0.036 54 5.0 2.2 0.4 0.2 WEEK 638-11-9 0.078 -0.280 0.041 54 5.0 2.2 72.7 67.2 WEEK 628-63-7 0.071 -0.266 0.052 54 5.0 2.2 4.6 1.7 WEEK A* ext 0.070 -0.265 0.053 54 5.0 2.2 36.4 3.1 WEEK 40716-66-3 0.069 -0.262 0.055 54 5.0 2.2 84.3 107.5 WEEK GLUCOSE 0.064 -0.254 0.064 54 5.0 2.2 1594.6 378.2 WEEK 110-43-0 0.060 -0.244 0.075 54 5.0 2.2 14.8 19.6 WEEK 53398-83-7 0.050 -0.223 0.105 54 5.0 2.2 5.0 4.6 WEEK 110-39-4 0.049 -0.222 0.107 54 5.0 2.2 40.8 70.0 WEEK 109-60-4 0.044 0.210 0.128 54 5.0 2.2 3.8 2.7 WEEK 564-94-3 0.043 -0.208 0.132 54 5.0 2.2 6.5 7.4 WEEK 591-78-6 0.043 -0.207 0.134 54 5.0 2.2 10.3 13.9 WEEK FRUCTOSE 0.041 -0.203 0.141 54 5.0 2.2 1766.7 381.5 WEEK TA 0.041 -0.201 0.144 54 5.0 2.2 0.8 0.1 WEEK 706-14-9 0.040 -0.200 0.146 54 5.0 2.2 44.5 81.1 WEEK 5989-33-3 0.040 -0.199 0.149 54 5.0 2.2 2.8 2.4 WEEK 104-76-7 0.038 -0.195 0.158 54 5.0 2.2 6.0 4.9 WEEK 2548-87-0 0.036 -0.191 0.167 54 5.0 2.2 2.4 1.5 WEEK 15111-96-3 0.030 -0.173 0.212 54 5.0 2.2 1.2 1.2 WEEK 109-19-3 0.029 -0.171 0.217 54 5.0 2.2 2.7 3.8 WEEK pH 0.029 -0.169 0.221 54 5.0 2.2 3.7 0.2 WEEK 108-10-1 0.028 0.167 0.228 54 5.0 2.2 1.5 2.6 WEEK 10522-34-6 0.025 -0.159 0.252 54 5.0 2.2 1.1 1.1 WEEK L* ext 0.025 -0.158 0.255 54 5.0 2.2 33.6 2.6 WEEK A* int 0.024 0.156 0.261 54 5.0 2.2 28.8 7.6 WEEK 134-20-3 0.024 0.156 0.261 54 5.0 2.2 0.1 0.7 WEEK 123-66-0 0.021 0.146 0.292 54 5.0 2.2 108.2 128.0 WEEK 623-42-7 0.019 -0.139 0.316 54 5.0 2.2 2780.2 1376.8 WEEK FORCE 0.019 -0.139 0.316 54 5.0 2.2 0.6 0.2 WEEK 4887-30-3 0.019 -0.138 0.319 54 5.0 2.2 16.9 32.5 WEEK 123-92-2 0.018 0.132 0.340 54 5.0 2.2 23.0 21.5 WEEK 96-04-8 0.016 -0.127 0.359 54 5.0 2.2 3.1 8.0 WEEK 821-55-6 0.015 -0.123 0.374 54 5.0 2.2 3.5 8.2 WEEK 539-82-2 0.012 -0.111 0.425 54 5.0 2.2 3.3 3.9 WEEK 540-18-1 0.012 -0.108 0.435 54 5.0 2.2 3.5 3.2 WEEK 128-37-0 0.010 0.099 0.475 54 5.0 2.2 4.1 3.7 WEEK 55514-48-2 0.009 0.097 0.485 54 5.0 2.2 0.5 0.5 WEEK 124-13-0 0.009 -0.096 0.491 54 5.0 2.2 5.9 3.0 WEEK 112-14-1 0.009 -0.095 0.495 54 5.0 2.2 18.3 24.0 WEEK CITRIC ACID 0.009 -0.094 0.499 54 5.0 2.2 741.0 147.2 WEEK SOURNESS INTENSITY 0.009 0.093 0.505 54 5.0 2.2 18.1 3.1 WEEK 623-43-8 0.008 0.090 0.518 54 5.0 2.2 3.4 3.4 WEEK 105-66-8 0.008 -0.088 0.528 54 5.0 2.2 5.0 3.7 WEEK B* int 0.007 0.084 0.544 54 5.0 2.2 25.8 4.5 WEEK 110-62-3 0.005 -0.074 0.597 54 5.0 2.2 7.9 8.9 WEEK 1576-95-0 0.005 -0.072 0.604 54 5.0 2.2 2.1 2.0 WEEK B* ext 0.005 -0.070 0.613 54 5.0 2.2 19.0 3.3 WEEK 2311-46-8 0.004 -0.066 0.637 54 5.0 2.2 3.9 4.4 WEEK MALIC ACID 0.004 -0.065 0.641 54 5.0 2.2 212.4 51.6 WEEK 29811-50-5 0.004 -0.064 0.643 54 5.0 2.2 3.2 5.3 WEEK 103-09-3 0.003 0.057 0.680 54 5.0 2.2 3.0 1.1 WEEK 140-11-4 0.003 -0.054 0.700 54 5.0 2.2 11.1 8.6 WEEK 2432-51-1 0.002 0.048 0.729 54 5.0 2.2 4.4 5.8 WEEK 556-24-1 0.002 -0.044 0.752 54 5.0 2.2 46.6 57.0

Page 88: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

88

Table 2-3. Continued.

X Y R2 CORR COEFF p-VALUE n MEAN X STD DEV X MEAN Y STD DEV Y

WEEK 78-70-6 0.001 -0.038 0.787 54 5.0 2.2 128.8 113.0 WEEK 589-38-8 0.001 0.036 0.798 54 5.0 2.2 1.9 1.2 WEEK 2497-18-9 0.001 0.033 0.815 54 5.0 2.2 24.9 21.5 WEEK 1191-16-8 0.001 0.029 0.837 54 5.0 2.2 5.5 7.0 WEEK 928-95-0 0.001 0.028 0.838 54 5.0 2.2 66.8 61.7 WEEK 106-70-7 0.001 -0.027 0.845 54 5.0 2.2 252.7 164.0 WEEK 71-41-0 0.001 -0.026 0.854 54 5.0 2.2 1.0 1.3 WEEK 20664-46-4 0.000 -0.020 0.887 54 5.0 2.2 20.6 19.0 WEEK 7786-58-5 0.000 -0.019 0.890 54 5.0 2.2 12.2 28.4 WEEK 29674-47-3 0.000 -0.019 0.892 54 5.0 2.2 5.0 5.0 WEEK 110-38-3 0.000 -0.019 0.893 54 5.0 2.2 2.0 2.6 WEEK 105-37-3 0.000 0.017 0.903 54 5.0 2.2 10.1 14.1 WEEK 624-41-9 0.000 -0.010 0.945 54 5.0 2.2 18.9 18.1 WEEK 624-24-8 0.000 -0.007 0.960 54 5.0 2.2 5.6 3.7 WEEK 111-27-3 0.000 0.004 0.976 54 5.0 2.2 45.5 94.6

Note: Regression of harvest week during season (X) on panel responses and metabolite concentration (Y). Coefficient of determination (R2), correlation coefficient, p-value, sample size (n), mean and standard deviation of X and Y derived from bivariate fit in JMP 8.

Page 89: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

89

Table 2-4. Fruit attribute bivariate fir to consumer measure.

X Y R2 CORR COEFF p-VALUE n MEAN X STD DEV X MEAN Y STD DEV Y

TOTAL SUGAR OVERALL LIKING 0.489 0.699 0.000 54 4473.9 1037.2 23.8 5.7 SSC OVERALL LIKING 0.457 0.676 0.000 54 7.4 1.4 23.8 5.7

SUCROSE OVERALL LIKING 0.442 0.665 0.000 54 1112.6 646.5 23.8 5.7 1629-58-9 OVERALL LIKING 0.437 0.661 0.000 54 117.9 65.9 23.8 5.7 1576-87-0 OVERALL LIKING 0.371 0.609 0.000 54 37.5 20.1 23.8 5.7 2305-05-7 OVERALL LIKING 0.310 0.557 0.000 54 6.7 6.7 23.8 5.7 1576-86-9 OVERALL LIKING 0.301 0.549 0.000 54 37.8 21.7 23.8 5.7 111-71-7 OVERALL LIKING 0.288 0.537 0.000 54 3.2 2.3 23.8 5.7 540-18-1 OVERALL LIKING 0.244 0.494 0.000 54 3.5 3.2 23.8 5.7

3913-81-3 OVERALL LIKING 0.241 0.491 0.000 54 1.9 1.4 23.8 5.7 110-93-0 OVERALL LIKING 0.228 0.477 0.000 54 2.7 1.5 23.8 5.7

2639-63-6 OVERALL LIKING 0.200 0.447 0.001 54 10.8 13.0 23.8 5.7 124-19-6 OVERALL LIKING 0.196 0.443 0.001 54 8.5 7.5 23.8 5.7

2548-87-0 OVERALL LIKING 0.191 0.437 0.001 54 2.4 1.5 23.8 5.7 4077-47-8 OVERALL LIKING 0.189 0.434 0.001 54 11.7 8.3 23.8 5.7 104-76-7 OVERALL LIKING 0.187 0.432 0.001 54 6.0 4.9 23.8 5.7

TOTAL VOLATILES OVERALL LIKING 0.179 0.424 0.001 54 15814.0 5238.5 23.8 5.7 638-11-9 OVERALL LIKING 0.179 0.423 0.001 54 72.7 67.2 23.8 5.7

60415-61-4 OVERALL LIKING 0.177 0.421 0.002 54 0.7 1.6 23.8 5.7 GLUCOSE OVERALL LIKING 0.175 0.419 0.002 54 1594.6 378.2 23.8 5.7 5989-33-3 OVERALL LIKING 0.168 0.410 0.002 54 2.8 2.4 23.8 5.7

40716-66-3 OVERALL LIKING 0.164 0.405 0.002 54 84.3 107.5 23.8 5.7 5881-17-4 OVERALL LIKING 0.157 0.397 0.003 54 6.2 2.5 23.8 5.7 109-19-3 OVERALL LIKING 0.154 0.392 0.003 54 2.7 3.8 23.8 5.7

L* int OVERALL LIKING 0.147 0.384 0.004 54 54.9 5.8 23.8 5.7 109-21-7 OVERALL LIKING 0.143 0.378 0.005 54 72.1 157.2 23.8 5.7 142-92-7 OVERALL LIKING 0.138 0.371 0.006 54 53.5 49.7 23.8 5.7 110-43-0 OVERALL LIKING 0.137 0.370 0.006 54 14.8 19.6 23.8 5.7

FRUCTOSE OVERALL LIKING 0.129 0.359 0.008 54 1766.7 381.5 23.8 5.7 5454-09-1 OVERALL LIKING 0.125 0.353 0.009 54 3.7 6.2 23.8 5.7 706-14-9 OVERALL LIKING 0.122 0.349 0.010 54 44.5 81.1 23.8 5.7 591-78-6 OVERALL LIKING 0.118 0.343 0.011 54 10.3 13.9 23.8 5.7 123-86-4 OVERALL LIKING 0.108 0.329 0.015 54 73.5 85.0 23.8 5.7

6728-26-3 OVERALL LIKING 0.108 0.329 0.015 54 8666.5 3359.7 23.8 5.7 53398-83-7 OVERALL LIKING 0.106 0.325 0.016 54 5.0 4.6 23.8 5.7

A* int OVERALL LIKING 0.105 -0.324 0.017 54 28.8 7.6 23.8 5.7 TA OVERALL LIKING 0.099 0.314 0.021 54 0.8 0.1 23.8 5.7

110-38-3 OVERALL LIKING 0.094 0.307 0.024 54 2.0 2.6 23.8 5.7 105-66-8 OVERALL LIKING 0.094 0.306 0.024 54 5.0 3.7 23.8 5.7 105-54-4 OVERALL LIKING 0.088 0.297 0.029 54 42.0 17.1 23.8 5.7 616-25-1 OVERALL LIKING 0.082 0.286 0.036 54 15.9 7.3 23.8 5.7 96-22-0 OVERALL LIKING 0.079 0.280 0.040 54 51.2 18.6 23.8 5.7

134-20-3 OVERALL LIKING 0.076 -0.276 0.043 54 0.1 0.7 23.8 5.7 10522-34-6 OVERALL LIKING 0.076 0.276 0.044 54 1.1 1.1 23.8 5.7

623-42-7 OVERALL LIKING 0.075 0.275 0.045 54 2780.2 1376.8 23.8 5.7 1191-16-8 OVERALL LIKING 0.072 -0.268 0.050 54 5.5 7.0 23.8 5.7 110-39-4 OVERALL LIKING 0.067 0.258 0.059 54 40.8 70.0 23.8 5.7

55514-48-2 OVERALL LIKING 0.065 -0.254 0.064 54 0.5 0.5 23.8 5.7 2311-46-8 OVERALL LIKING 0.061 0.247 0.072 54 3.9 4.4 23.8 5.7

B* int OVERALL LIKING 0.059 -0.242 0.078 54 25.8 4.5 23.8 5.7 116-53-0 OVERALL LIKING 0.058 0.240 0.080 54 19.7 16.0 23.8 5.7

CITRIC ACID OVERALL LIKING 0.056 0.237 0.084 54 741.0 147.2 23.8 5.7 pH OVERALL LIKING 0.053 0.231 0.094 54 3.7 0.2 23.8 5.7

29674-47-3 OVERALL LIKING 0.051 0.226 0.100 54 5.0 5.0 23.8 5.7 4887-30-3 OVERALL LIKING 0.051 0.226 0.101 54 16.9 32.5 23.8 5.7 564-94-3 OVERALL LIKING 0.047 0.218 0.114 54 6.5 7.4 23.8 5.7 623-43-8 OVERALL LIKING 0.041 -0.203 0.142 54 3.4 3.4 23.8 5.7 539-82-2 OVERALL LIKING 0.039 0.196 0.155 54 3.3 3.9 23.8 5.7 66-25-1 OVERALL LIKING 0.035 0.187 0.175 54 2545.9 1722.0 23.8 5.7

628-63-7 OVERALL LIKING 0.035 0.187 0.177 54 4.6 1.7 23.8 5.7 FORCE OVERALL LIKING 0.034 0.185 0.181 54 0.6 0.2 23.8 5.7

7786-58-5 OVERALL LIKING 0.033 0.182 0.188 54 12.2 28.4 23.8 5.7 A* ext OVERALL LIKING 0.033 0.182 0.189 54 36.4 3.1 23.8 5.7

71-41-0 OVERALL LIKING 0.029 0.172 0.215 54 1.0 1.3 23.8 5.7 624-41-9 OVERALL LIKING 0.028 -0.168 0.225 54 18.9 18.1 23.8 5.7 109-60-4 OVERALL LIKING 0.027 -0.166 0.231 54 3.8 2.7 23.8 5.7

MALIC ACID OVERALL LIKING 0.027 0.165 0.234 54 212.4 51.6 23.8 5.7 111-27-3 OVERALL LIKING 0.027 -0.164 0.236 54 45.5 94.6 23.8 5.7 124-13-0 OVERALL LIKING 0.024 0.154 0.267 54 5.9 3.0 23.8 5.7 78-70-6 OVERALL LIKING 0.023 0.153 0.270 54 128.8 113.0 23.8 5.7

821-55-6 OVERALL LIKING 0.022 0.148 0.286 54 3.5 8.2 23.8 5.7 624-24-8 OVERALL LIKING 0.022 0.147 0.289 54 5.6 3.7 23.8 5.7

7452-79-1 OVERALL LIKING 0.022 0.147 0.289 54 50.0 31.0 23.8 5.7 106-70-7 OVERALL LIKING 0.021 0.145 0.296 54 252.7 164.0 23.8 5.7 112-14-1 OVERALL LIKING 0.021 0.144 0.298 54 18.3 24.0 23.8 5.7

1534-08-3 OVERALL LIKING 0.018 0.135 0.332 54 0.4 0.2 23.8 5.7 20664-46-4 OVERALL LIKING 0.018 0.133 0.339 54 20.6 19.0 23.8 5.7

589-38-8 OVERALL LIKING 0.018 0.133 0.340 54 1.9 1.2 23.8 5.7 123-66-0 OVERALL LIKING 0.017 0.132 0.341 54 108.2 128.0 23.8 5.7

2432-51-1 OVERALL LIKING 0.016 0.127 0.360 54 4.4 5.8 23.8 5.7 75-85-4 OVERALL LIKING 0.014 0.119 0.390 54 3.9 2.2 23.8 5.7

928-95-0 OVERALL LIKING 0.012 -0.111 0.422 54 66.8 61.7 23.8 5.7 140-11-4 OVERALL LIKING 0.012 -0.111 0.423 54 11.1 8.6 23.8 5.7 103-09-3 OVERALL LIKING 0.011 -0.106 0.446 54 3.0 1.1 23.8 5.7 123-92-2 OVERALL LIKING 0.010 -0.099 0.475 54 23.0 21.5 23.8 5.7

B* ext OVERALL LIKING 0.009 -0.095 0.492 54 19.0 3.3 23.8 5.7 128-37-0 OVERALL LIKING 0.007 0.086 0.536 54 4.1 3.7 23.8 5.7

2497-18-9 OVERALL LIKING 0.006 -0.075 0.590 54 24.9 21.5 23.8 5.7

Page 90: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

90

Table 2-4. Continued.

X Y R2 CORR COEFF p-VALUE n MEAN X STD DEV X MEAN Y STD DEV Y

556-24-1 OVERALL LIKING 0.004 0.065 0.638 54 46.6 57.0 23.8 5.7 29811-50-5 OVERALL LIKING 0.004 -0.062 0.658 54 3.2 5.3 23.8 5.7

110-62-3 OVERALL LIKING 0.003 0.057 0.680 54 7.9 8.9 23.8 5.7 96-04-8 OVERALL LIKING 0.003 -0.052 0.711 54 3.1 8.0 23.8 5.7

1576-95-0 OVERALL LIKING 0.002 0.040 0.773 54 2.1 2.0 23.8 5.7 106-32-1 OVERALL LIKING 0.001 -0.032 0.817 54 2.2 3.0 23.8 5.7 108-10-1 OVERALL LIKING 0.001 -0.023 0.870 54 1.5 2.6 23.8 5.7

15111-96-3 OVERALL LIKING 0.000 0.018 0.897 54 1.2 1.2 23.8 5.7 105-37-3 OVERALL LIKING 0.000 -0.009 0.946 54 10.1 14.1 23.8 5.7

L* ext OVERALL LIKING 0.000 0.004 0.976 54 33.6 2.6 23.8 5.7 FORCE TEXTURE LIKING 0.358 0.598 0.000 54 0.6 0.2 23.8 5.7

MALIC ACID TEXTURE LIKING 0.282 0.531 0.000 54 212.4 51.6 23.8 5.7 134-20-3 TEXTURE LIKING 0.277 -0.526 0.000 54 0.1 0.7 23.8 5.7 104-76-7 TEXTURE LIKING 0.231 0.480 0.000 54 6.0 4.9 23.8 5.7 623-43-8 TEXTURE LIKING 0.179 -0.423 0.001 54 3.4 3.4 23.8 5.7

1629-58-9 TEXTURE LIKING 0.151 0.388 0.004 54 117.9 65.9 23.8 5.7 103-09-3 TEXTURE LIKING 0.145 -0.381 0.004 54 3.0 1.1 23.8 5.7

1576-87-0 TEXTURE LIKING 0.145 0.381 0.005 54 37.5 20.1 23.8 5.7 638-11-9 TEXTURE LIKING 0.141 0.375 0.005 54 72.7 67.2 23.8 5.7

40716-66-3 TEXTURE LIKING 0.132 0.364 0.007 54 84.3 107.5 23.8 5.7 2548-87-0 TEXTURE LIKING 0.129 0.360 0.008 54 2.4 1.5 23.8 5.7 111-71-7 TEXTURE LIKING 0.122 0.349 0.010 54 3.2 2.3 23.8 5.7 110-38-3 TEXTURE LIKING 0.117 0.342 0.011 54 2.0 2.6 23.8 5.7

2305-05-7 TEXTURE LIKING 0.116 0.341 0.012 54 6.7 6.7 23.8 5.7 60415-61-4 TEXTURE LIKING 0.104 0.322 0.018 54 0.7 1.6 23.8 5.7 SUCROSE TEXTURE LIKING 0.102 0.320 0.018 54 1112.6 646.5 23.8 5.7 556-24-1 TEXTURE LIKING 0.097 -0.312 0.022 54 46.6 57.0 23.8 5.7 123-92-2 TEXTURE LIKING 0.090 -0.300 0.027 54 23.0 21.5 23.8 5.7

5454-09-1 TEXTURE LIKING 0.080 0.282 0.039 54 3.7 6.2 23.8 5.7 5989-33-3 TEXTURE LIKING 0.078 0.280 0.040 54 2.8 2.4 23.8 5.7 110-62-3 TEXTURE LIKING 0.076 0.276 0.043 54 7.9 8.9 23.8 5.7

55514-48-2 TEXTURE LIKING 0.076 -0.275 0.044 54 0.5 0.5 23.8 5.7 109-21-7 TEXTURE LIKING 0.067 0.260 0.058 54 72.1 157.2 23.8 5.7

TOTAL SUGAR TEXTURE LIKING 0.067 0.260 0.058 54 4473.9 1037.2 23.8 5.7 124-19-6 TEXTURE LIKING 0.065 0.256 0.062 54 8.5 7.5 23.8 5.7 110-93-0 TEXTURE LIKING 0.065 0.256 0.062 54 2.7 1.5 23.8 5.7 540-18-1 TEXTURE LIKING 0.063 0.251 0.068 54 3.5 3.2 23.8 5.7 105-66-8 TEXTURE LIKING 0.062 0.250 0.068 54 5.0 3.7 23.8 5.7 110-43-0 TEXTURE LIKING 0.062 0.249 0.070 54 14.8 19.6 23.8 5.7 109-60-4 TEXTURE LIKING 0.059 -0.244 0.076 54 3.8 2.7 23.8 5.7

1576-86-9 TEXTURE LIKING 0.058 0.241 0.079 54 37.8 21.7 23.8 5.7 4077-47-8 TEXTURE LIKING 0.058 0.241 0.080 54 11.7 8.3 23.8 5.7

pH TEXTURE LIKING 0.056 0.237 0.084 54 3.7 0.2 23.8 5.7 SSC TEXTURE LIKING 0.055 0.234 0.089 54 7.4 1.4 23.8 5.7

10522-34-6 TEXTURE LIKING 0.048 0.218 0.113 54 1.1 1.1 23.8 5.7 109-19-3 TEXTURE LIKING 0.045 0.213 0.123 54 2.7 3.8 23.8 5.7 706-14-9 TEXTURE LIKING 0.044 0.210 0.128 54 44.5 81.1 23.8 5.7

2639-63-6 TEXTURE LIKING 0.040 0.200 0.147 54 10.8 13.0 23.8 5.7 111-27-3 TEXTURE LIKING 0.039 -0.199 0.150 54 45.5 94.6 23.8 5.7

2432-51-1 TEXTURE LIKING 0.035 0.187 0.176 54 4.4 5.8 23.8 5.7 564-94-3 TEXTURE LIKING 0.035 0.186 0.177 54 6.5 7.4 23.8 5.7 110-39-4 TEXTURE LIKING 0.034 0.184 0.183 54 40.8 70.0 23.8 5.7

3913-81-3 TEXTURE LIKING 0.034 0.184 0.183 54 1.9 1.4 23.8 5.7 539-82-2 TEXTURE LIKING 0.030 0.173 0.212 54 3.3 3.9 23.8 5.7 624-24-8 TEXTURE LIKING 0.028 0.168 0.226 54 5.6 3.7 23.8 5.7 116-53-0 TEXTURE LIKING 0.026 0.163 0.240 54 19.7 16.0 23.8 5.7

TA TEXTURE LIKING 0.026 0.161 0.244 54 0.8 0.1 23.8 5.7 123-86-4 TEXTURE LIKING 0.026 0.160 0.247 54 73.5 85.0 23.8 5.7

TOTAL VOLATILES TEXTURE LIKING 0.025 0.158 0.254 54 15814.0 5238.5 23.8 5.7 5881-17-4 TEXTURE LIKING 0.025 0.157 0.256 54 6.2 2.5 23.8 5.7

66-25-1 TEXTURE LIKING 0.023 0.153 0.269 54 2545.9 1722.0 23.8 5.7 78-70-6 TEXTURE LIKING 0.023 0.152 0.272 54 128.8 113.0 23.8 5.7

124-13-0 TEXTURE LIKING 0.023 -0.152 0.273 54 5.9 3.0 23.8 5.7 142-92-7 TEXTURE LIKING 0.023 0.151 0.274 54 53.5 49.7 23.8 5.7

2311-46-8 TEXTURE LIKING 0.023 0.151 0.276 54 3.9 4.4 23.8 5.7 928-95-0 TEXTURE LIKING 0.020 -0.143 0.302 54 66.8 61.7 23.8 5.7 96-04-8 TEXTURE LIKING 0.019 -0.138 0.319 54 3.1 8.0 23.8 5.7

20664-46-4 TEXTURE LIKING 0.019 -0.137 0.324 54 20.6 19.0 23.8 5.7 821-55-6 TEXTURE LIKING 0.018 0.135 0.329 54 3.5 8.2 23.8 5.7

53398-83-7 TEXTURE LIKING 0.018 0.133 0.338 54 5.0 4.6 23.8 5.7 29811-50-5 TEXTURE LIKING 0.017 -0.131 0.346 54 3.2 5.3 23.8 5.7

128-37-0 TEXTURE LIKING 0.017 0.129 0.352 54 4.1 3.7 23.8 5.7 140-11-4 TEXTURE LIKING 0.016 -0.127 0.359 54 11.1 8.6 23.8 5.7

4887-30-3 TEXTURE LIKING 0.016 0.126 0.363 54 16.9 32.5 23.8 5.7 75-85-4 TEXTURE LIKING 0.015 0.124 0.371 54 3.9 2.2 23.8 5.7 L* ext TEXTURE LIKING 0.015 -0.123 0.377 54 33.6 2.6 23.8 5.7

1191-16-8 TEXTURE LIKING 0.015 -0.121 0.385 54 5.5 7.0 23.8 5.7 GLUCOSE TEXTURE LIKING 0.013 0.115 0.408 54 1594.6 378.2 23.8 5.7

B* ext TEXTURE LIKING 0.013 -0.113 0.417 54 19.0 3.3 23.8 5.7 624-41-9 TEXTURE LIKING 0.012 -0.111 0.424 54 18.9 18.1 23.8 5.7

6728-26-3 TEXTURE LIKING 0.012 0.108 0.435 54 8666.5 3359.7 23.8 5.7 A* ext TEXTURE LIKING 0.010 0.099 0.475 54 36.4 3.1 23.8 5.7

2497-18-9 TEXTURE LIKING 0.008 -0.092 0.508 54 24.9 21.5 23.8 5.7 71-41-0 TEXTURE LIKING 0.008 0.087 0.530 54 1.0 1.3 23.8 5.7

589-38-8 TEXTURE LIKING 0.007 0.087 0.534 54 1.9 1.2 23.8 5.7 106-32-1 TEXTURE LIKING 0.007 -0.085 0.542 54 2.2 3.0 23.8 5.7 616-25-1 TEXTURE LIKING 0.007 0.082 0.555 54 15.9 7.3 23.8 5.7 106-70-7 TEXTURE LIKING 0.006 -0.076 0.587 54 252.7 164.0 23.8 5.7

Page 91: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

91

Table 2-4. Continued.

X Y R2 CORR COEFF p-VALUE n MEAN X STD DEV X MEAN Y STD DEV Y

B* int TEXTURE LIKING 0.006 -0.075 0.588 54 25.8 4.5 23.8 5.7 7452-79-1 TEXTURE LIKING 0.005 0.072 0.607 54 50.0 31.0 23.8 5.7 105-54-4 TEXTURE LIKING 0.005 0.068 0.626 54 42.0 17.1 23.8 5.7

A* int TEXTURE LIKING 0.004 -0.060 0.666 54 28.8 7.6 23.8 5.7 628-63-7 TEXTURE LIKING 0.003 -0.055 0.693 54 4.6 1.7 23.8 5.7 591-78-6 TEXTURE LIKING 0.003 0.054 0.700 54 10.3 13.9 23.8 5.7

7786-58-5 TEXTURE LIKING 0.003 -0.052 0.707 54 12.2 28.4 23.8 5.7 FRUCTOSE TEXTURE LIKING 0.002 0.050 0.720 54 1766.7 381.5 23.8 5.7 1576-95-0 TEXTURE LIKING 0.002 0.047 0.736 54 2.1 2.0 23.8 5.7

CITRIC ACID TEXTURE LIKING 0.002 -0.047 0.736 54 741.0 147.2 23.8 5.7 112-14-1 TEXTURE LIKING 0.001 -0.028 0.843 54 18.3 24.0 23.8 5.7 105-37-3 TEXTURE LIKING 0.001 -0.026 0.851 54 10.1 14.1 23.8 5.7

29674-47-3 TEXTURE LIKING 0.001 0.023 0.867 54 5.0 5.0 23.8 5.7 108-10-1 TEXTURE LIKING 0.001 0.023 0.869 54 1.5 2.6 23.8 5.7

15111-96-3 TEXTURE LIKING 0.000 -0.022 0.875 54 1.2 1.2 23.8 5.7 623-42-7 TEXTURE LIKING 0.000 0.017 0.905 54 2780.2 1376.8 23.8 5.7 96-22-0 TEXTURE LIKING 0.000 0.015 0.915 54 51.2 18.6 23.8 5.7

L* int TEXTURE LIKING 0.000 -0.014 0.919 54 54.9 5.8 23.8 5.7 123-66-0 TEXTURE LIKING 0.000 -0.007 0.957 54 108.2 128.0 23.8 5.7

1534-08-3 TEXTURE LIKING 0.000 0.002 0.988 54 0.4 0.2 23.8 5.7 SSC SWEETNESS INTENSITY 0.690 0.831 0.000 54 7.4 1.4 23.0 4.8

TOTAL SUGAR SWEETNESS INTENSITY 0.687 0.829 0.000 54 4473.9 1037.2 23.0 4.8 SUCROSE SWEETNESS INTENSITY 0.445 0.667 0.000 54 1112.6 646.5 23.0 4.8 1629-58-9 SWEETNESS INTENSITY 0.377 0.614 0.000 54 117.9 65.9 23.0 4.8 GLUCOSE SWEETNESS INTENSITY 0.338 0.581 0.000 54 1594.6 378.2 23.0 4.8

FRUCTOSE SWEETNESS INTENSITY 0.300 0.548 0.000 54 1766.7 381.5 23.0 4.8 2639-63-6 SWEETNESS INTENSITY 0.296 0.544 0.000 54 10.8 13.0 23.0 4.8 2305-05-7 SWEETNESS INTENSITY 0.295 0.543 0.000 54 6.7 6.7 23.0 4.8 540-18-1 SWEETNESS INTENSITY 0.254 0.504 0.000 54 3.5 3.2 23.0 4.8

1576-87-0 SWEETNESS INTENSITY 0.242 0.492 0.000 54 37.5 20.1 23.0 4.8 142-92-7 SWEETNESS INTENSITY 0.239 0.489 0.000 54 53.5 49.7 23.0 4.8

60415-61-4 SWEETNESS INTENSITY 0.233 0.482 0.000 54 0.7 1.6 23.0 4.8 1576-86-9 SWEETNESS INTENSITY 0.217 0.466 0.000 54 37.8 21.7 23.0 4.8 109-21-7 SWEETNESS INTENSITY 0.198 0.445 0.001 54 72.1 157.2 23.0 4.8 111-71-7 SWEETNESS INTENSITY 0.195 0.441 0.001 54 3.2 2.3 23.0 4.8

3913-81-3 SWEETNESS INTENSITY 0.192 0.438 0.001 54 1.9 1.4 23.0 4.8 L* int SWEETNESS INTENSITY 0.187 0.432 0.001 54 54.9 5.8 23.0 4.8

109-19-3 SWEETNESS INTENSITY 0.184 0.429 0.001 54 2.7 3.8 23.0 4.8 5989-33-3 SWEETNESS INTENSITY 0.171 0.414 0.002 54 2.8 2.4 23.0 4.8 123-86-4 SWEETNESS INTENSITY 0.158 0.397 0.003 54 73.5 85.0 23.0 4.8 706-14-9 SWEETNESS INTENSITY 0.151 0.388 0.004 54 44.5 81.1 23.0 4.8 638-11-9 SWEETNESS INTENSITY 0.151 0.388 0.004 54 72.7 67.2 23.0 4.8 110-93-0 SWEETNESS INTENSITY 0.151 0.388 0.004 54 2.7 1.5 23.0 4.8 591-78-6 SWEETNESS INTENSITY 0.144 0.379 0.005 54 10.3 13.9 23.0 4.8

A* int SWEETNESS INTENSITY 0.139 -0.373 0.005 54 28.8 7.6 23.0 4.8 TOTAL VOLATILES SWEETNESS INTENSITY 0.139 0.373 0.005 54 15814.0 5238.5 23.0 4.8

124-19-6 SWEETNESS INTENSITY 0.139 0.372 0.006 54 8.5 7.5 23.0 4.8 5454-09-1 SWEETNESS INTENSITY 0.132 0.363 0.007 54 3.7 6.2 23.0 4.8

CITRIC ACID SWEETNESS INTENSITY 0.124 0.353 0.009 54 741.0 147.2 23.0 4.8 110-39-4 SWEETNESS INTENSITY 0.123 0.351 0.009 54 40.8 70.0 23.0 4.8

53398-83-7 SWEETNESS INTENSITY 0.123 0.351 0.009 54 5.0 4.6 23.0 4.8 104-76-7 SWEETNESS INTENSITY 0.118 0.343 0.011 54 6.0 4.9 23.0 4.8

5881-17-4 SWEETNESS INTENSITY 0.112 0.334 0.014 54 6.2 2.5 23.0 4.8 4077-47-8 SWEETNESS INTENSITY 0.109 0.330 0.015 54 11.7 8.3 23.0 4.8 110-43-0 SWEETNESS INTENSITY 0.106 0.326 0.016 54 14.8 19.6 23.0 4.8

TA SWEETNESS INTENSITY 0.094 0.307 0.024 54 0.8 0.1 23.0 4.8 616-25-1 SWEETNESS INTENSITY 0.094 0.307 0.024 54 15.9 7.3 23.0 4.8

10522-34-6 SWEETNESS INTENSITY 0.092 0.304 0.026 54 1.1 1.1 23.0 4.8 40716-66-3 SWEETNESS INTENSITY 0.092 0.303 0.026 54 84.3 107.5 23.0 4.8

623-42-7 SWEETNESS INTENSITY 0.085 0.292 0.032 54 2780.2 1376.8 23.0 4.8 2311-46-8 SWEETNESS INTENSITY 0.085 0.291 0.033 54 3.9 4.4 23.0 4.8 6728-26-3 SWEETNESS INTENSITY 0.078 0.278 0.041 54 8666.5 3359.7 23.0 4.8 105-66-8 SWEETNESS INTENSITY 0.077 0.278 0.042 54 5.0 3.7 23.0 4.8

B* int SWEETNESS INTENSITY 0.075 -0.275 0.044 54 25.8 4.5 23.0 4.8 4887-30-3 SWEETNESS INTENSITY 0.075 0.274 0.045 54 16.9 32.5 23.0 4.8 110-38-3 SWEETNESS INTENSITY 0.070 0.264 0.054 54 2.0 2.6 23.0 4.8

7786-58-5 SWEETNESS INTENSITY 0.069 0.262 0.056 54 12.2 28.4 23.0 4.8 112-14-1 SWEETNESS INTENSITY 0.066 0.257 0.061 54 18.3 24.0 23.0 4.8

2548-87-0 SWEETNESS INTENSITY 0.064 0.253 0.064 54 2.4 1.5 23.0 4.8 96-22-0 SWEETNESS INTENSITY 0.063 0.250 0.068 54 51.2 18.6 23.0 4.8

1191-16-8 SWEETNESS INTENSITY 0.063 -0.250 0.068 54 5.5 7.0 23.0 4.8 105-54-4 SWEETNESS INTENSITY 0.062 0.249 0.069 54 42.0 17.1 23.0 4.8 124-13-0 SWEETNESS INTENSITY 0.053 0.231 0.093 54 5.9 3.0 23.0 4.8

29674-47-3 SWEETNESS INTENSITY 0.051 0.226 0.101 54 5.0 5.0 23.0 4.8 pH SWEETNESS INTENSITY 0.048 0.220 0.110 54 3.7 0.2 23.0 4.8

71-41-0 SWEETNESS INTENSITY 0.045 0.213 0.122 54 1.0 1.3 23.0 4.8 628-63-7 SWEETNESS INTENSITY 0.040 0.199 0.149 54 4.6 1.7 23.0 4.8 556-24-1 SWEETNESS INTENSITY 0.039 0.198 0.151 54 46.6 57.0 23.0 4.8 564-94-3 SWEETNESS INTENSITY 0.030 0.173 0.211 54 6.5 7.4 23.0 4.8

20664-46-4 SWEETNESS INTENSITY 0.029 0.171 0.215 54 20.6 19.0 23.0 4.8 624-41-9 SWEETNESS INTENSITY 0.026 -0.162 0.243 54 18.9 18.1 23.0 4.8 539-82-2 SWEETNESS INTENSITY 0.025 0.158 0.255 54 3.3 3.9 23.0 4.8

1534-08-3 SWEETNESS INTENSITY 0.021 0.146 0.292 54 0.4 0.2 23.0 4.8 106-70-7 SWEETNESS INTENSITY 0.020 0.142 0.307 54 252.7 164.0 23.0 4.8

B* ext SWEETNESS INTENSITY 0.019 -0.137 0.324 54 19.0 3.3 23.0 4.8 116-53-0 SWEETNESS INTENSITY 0.018 0.133 0.339 54 19.7 16.0 23.0 4.8

A* ext SWEETNESS INTENSITY 0.017 0.130 0.348 54 36.4 3.1 23.0 4.8 78-70-6 SWEETNESS INTENSITY 0.017 0.130 0.350 54 128.8 113.0 23.0 4.8

Page 92: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

92

Table 2-4. Continued.

X Y R2 CORR COEFF p-VALUE n MEAN X STD DEV X MEAN Y STD DEV Y

123-66-0 SWEETNESS INTENSITY 0.017 0.129 0.352 54 108.2 128.0 23.0 4.8 55514-48-2 SWEETNESS INTENSITY 0.014 -0.120 0.387 54 0.5 0.5 23.0 4.8 7452-79-1 SWEETNESS INTENSITY 0.013 0.116 0.405 54 50.0 31.0 23.0 4.8 821-55-6 SWEETNESS INTENSITY 0.013 0.113 0.416 54 3.5 8.2 23.0 4.8 66-25-1 SWEETNESS INTENSITY 0.011 0.104 0.455 54 2545.9 1722.0 23.0 4.8

928-95-0 SWEETNESS INTENSITY 0.010 -0.101 0.468 54 66.8 61.7 23.0 4.8 589-38-8 SWEETNESS INTENSITY 0.009 0.097 0.484 54 1.9 1.2 23.0 4.8 110-62-3 SWEETNESS INTENSITY 0.009 -0.095 0.496 54 7.9 8.9 23.0 4.8 109-60-4 SWEETNESS INTENSITY 0.009 -0.095 0.496 54 3.8 2.7 23.0 4.8 111-27-3 SWEETNESS INTENSITY 0.009 -0.094 0.501 54 45.5 94.6 23.0 4.8 140-11-4 SWEETNESS INTENSITY 0.009 -0.093 0.501 54 11.1 8.6 23.0 4.8

MALIC ACID SWEETNESS INTENSITY 0.009 -0.093 0.506 54 212.4 51.6 23.0 4.8 FORCE SWEETNESS INTENSITY 0.005 -0.074 0.594 54 0.6 0.2 23.0 4.8 128-37-0 SWEETNESS INTENSITY 0.004 0.061 0.664 54 4.1 3.7 23.0 4.8 106-32-1 SWEETNESS INTENSITY 0.003 -0.055 0.694 54 2.2 3.0 23.0 4.8 623-43-8 SWEETNESS INTENSITY 0.003 -0.050 0.718 54 3.4 3.4 23.0 4.8 108-10-1 SWEETNESS INTENSITY 0.002 -0.050 0.721 54 1.5 2.6 23.0 4.8

29811-50-5 SWEETNESS INTENSITY 0.002 0.048 0.728 54 3.2 5.3 23.0 4.8 15111-96-3 SWEETNESS INTENSITY 0.002 0.048 0.731 54 1.2 1.2 23.0 4.8 2432-51-1 SWEETNESS INTENSITY 0.002 0.041 0.770 54 4.4 5.8 23.0 4.8 624-24-8 SWEETNESS INTENSITY 0.002 0.039 0.779 54 5.6 3.7 23.0 4.8 134-20-3 SWEETNESS INTENSITY 0.001 0.030 0.827 54 0.1 0.7 23.0 4.8

1576-95-0 SWEETNESS INTENSITY 0.000 0.018 0.899 54 2.1 2.0 23.0 4.8 123-92-2 SWEETNESS INTENSITY 0.000 -0.017 0.905 54 23.0 21.5 23.0 4.8

2497-18-9 SWEETNESS INTENSITY 0.000 -0.012 0.934 54 24.9 21.5 23.0 4.8 L* ext SWEETNESS INTENSITY 0.000 0.010 0.943 54 33.6 2.6 23.0 4.8

103-09-3 SWEETNESS INTENSITY 0.000 -0.007 0.960 54 3.0 1.1 23.0 4.8 105-37-3 SWEETNESS INTENSITY 0.000 0.005 0.973 54 10.1 14.1 23.0 4.8 75-85-4 SWEETNESS INTENSITY 0.000 -0.001 0.995 54 3.9 2.2 23.0 4.8 96-04-8 SWEETNESS INTENSITY 0.000 -0.001 0.996 54 3.1 8.0 23.0 4.8

TA SOURNESS INTENSITY 0.314 0.561 0.000 54 0.8 0.1 18.1 3.1 MALIC ACID SOURNESS INTENSITY 0.189 0.435 0.001 54 212.4 51.6 18.1 3.1 CITRIC ACID SOURNESS INTENSITY 0.146 0.382 0.004 54 741.0 147.2 18.1 3.1

134-20-3 SOURNESS INTENSITY 0.137 -0.370 0.006 54 0.1 0.7 18.1 3.1 pH SOURNESS INTENSITY 0.118 -0.344 0.011 54 3.7 0.2 18.1 3.1

15111-96-3 SOURNESS INTENSITY 0.106 -0.325 0.016 54 1.2 1.2 18.1 3.1 624-41-9 SOURNESS INTENSITY 0.097 0.311 0.022 54 18.9 18.1 18.1 3.1

FRUCTOSE SOURNESS INTENSITY 0.089 -0.298 0.029 54 1766.7 381.5 18.1 3.1 GLUCOSE SOURNESS INTENSITY 0.075 -0.274 0.045 54 1594.6 378.2 18.1 3.1 4887-30-3 SOURNESS INTENSITY 0.073 -0.270 0.048 54 16.9 32.5 18.1 3.1 1191-16-8 SOURNESS INTENSITY 0.068 0.261 0.056 54 5.5 7.0 18.1 3.1

78-70-6 SOURNESS INTENSITY 0.068 0.260 0.058 54 128.8 113.0 18.1 3.1 5454-09-1 SOURNESS INTENSITY 0.067 -0.259 0.058 54 3.7 6.2 18.1 3.1 110-39-4 SOURNESS INTENSITY 0.066 -0.257 0.061 54 40.8 70.0 18.1 3.1 589-38-8 SOURNESS INTENSITY 0.062 0.248 0.070 54 1.9 1.2 18.1 3.1 624-24-8 SOURNESS INTENSITY 0.054 -0.233 0.090 54 5.6 3.7 18.1 3.1 928-95-0 SOURNESS INTENSITY 0.050 0.223 0.106 54 66.8 61.7 18.1 3.1 128-37-0 SOURNESS INTENSITY 0.049 0.221 0.108 54 4.1 3.7 18.1 3.1 110-62-3 SOURNESS INTENSITY 0.047 -0.218 0.113 54 7.9 8.9 18.1 3.1

2497-18-9 SOURNESS INTENSITY 0.036 0.189 0.171 54 24.9 21.5 18.1 3.1 111-27-3 SOURNESS INTENSITY 0.036 0.189 0.172 54 45.5 94.6 18.1 3.1 96-04-8 SOURNESS INTENSITY 0.033 0.182 0.188 54 3.1 8.0 18.1 3.1

104-76-7 SOURNESS INTENSITY 0.032 -0.178 0.198 54 6.0 4.9 18.1 3.1 10522-34-6 SOURNESS INTENSITY 0.031 -0.177 0.201 54 1.1 1.1 18.1 3.1

140-11-4 SOURNESS INTENSITY 0.031 0.176 0.203 54 11.1 8.6 18.1 3.1 L* ext SOURNESS INTENSITY 0.030 0.172 0.212 54 33.6 2.6 18.1 3.1

556-24-1 SOURNESS INTENSITY 0.028 -0.167 0.226 54 46.6 57.0 18.1 3.1 55514-48-2 SOURNESS INTENSITY 0.027 0.165 0.232 54 0.5 0.5 18.1 3.1 2548-87-0 SOURNESS INTENSITY 0.027 0.165 0.233 54 2.4 1.5 18.1 3.1 623-43-8 SOURNESS INTENSITY 0.024 -0.154 0.267 54 3.4 3.4 18.1 3.1

TOTAL SUGAR SOURNESS INTENSITY 0.022 -0.148 0.287 54 4473.9 1037.2 18.1 3.1 L* int SOURNESS INTENSITY 0.021 -0.145 0.296 54 54.9 5.8 18.1 3.1 SSC SOURNESS INTENSITY 0.020 -0.142 0.305 54 7.4 1.4 18.1 3.1

112-14-1 SOURNESS INTENSITY 0.020 -0.141 0.311 54 18.3 24.0 18.1 3.1 B* ext SOURNESS INTENSITY 0.020 0.140 0.312 54 19.0 3.3 18.1 3.1 B* int SOURNESS INTENSITY 0.020 0.140 0.314 54 25.8 4.5 18.1 3.1

103-09-3 SOURNESS INTENSITY 0.017 0.129 0.354 54 3.0 1.1 18.1 3.1 1534-08-3 SOURNESS INTENSITY 0.016 -0.127 0.359 54 0.4 0.2 18.1 3.1 106-70-7 SOURNESS INTENSITY 0.016 -0.125 0.366 54 252.7 164.0 18.1 3.1 110-43-0 SOURNESS INTENSITY 0.015 -0.121 0.381 54 14.8 19.6 18.1 3.1

53398-83-7 SOURNESS INTENSITY 0.014 -0.120 0.389 54 5.0 4.6 18.1 3.1 5989-33-3 SOURNESS INTENSITY 0.014 0.117 0.398 54 2.8 2.4 18.1 3.1 5881-17-4 SOURNESS INTENSITY 0.014 0.117 0.401 54 6.2 2.5 18.1 3.1 7452-79-1 SOURNESS INTENSITY 0.013 -0.114 0.411 54 50.0 31.0 18.1 3.1 1576-95-0 SOURNESS INTENSITY 0.013 0.114 0.413 54 2.1 2.0 18.1 3.1

20664-46-4 SOURNESS INTENSITY 0.012 0.111 0.423 54 20.6 19.0 18.1 3.1 29811-50-5 SOURNESS INTENSITY 0.012 0.108 0.436 54 3.2 5.3 18.1 3.1

110-38-3 SOURNESS INTENSITY 0.012 -0.108 0.437 54 2.0 2.6 18.1 3.1 2639-63-6 SOURNESS INTENSITY 0.011 -0.107 0.443 54 10.8 13.0 18.1 3.1 123-92-2 SOURNESS INTENSITY 0.011 0.105 0.450 54 23.0 21.5 18.1 3.1 109-21-7 SOURNESS INTENSITY 0.011 -0.105 0.451 54 72.1 157.2 18.1 3.1 110-93-0 SOURNESS INTENSITY 0.011 0.105 0.452 54 2.7 1.5 18.1 3.1

29674-47-3 SOURNESS INTENSITY 0.011 0.104 0.454 54 5.0 5.0 18.1 3.1 SUCROSE SOURNESS INTENSITY 0.010 0.099 0.476 54 1112.6 646.5 18.1 3.1 4077-47-8 SOURNESS INTENSITY 0.009 0.092 0.507 54 11.7 8.3 18.1 3.1 539-82-2 SOURNESS INTENSITY 0.008 0.092 0.510 54 3.3 3.9 18.1 3.1 591-78-6 SOURNESS INTENSITY 0.008 0.091 0.514 54 10.3 13.9 18.1 3.1

A* int SOURNESS INTENSITY 0.008 0.088 0.525 54 28.8 7.6 18.1 3.1

Page 93: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

93

Table 2-4. Continued.

X Y R2 CORR COEFF p-VALUE n MEAN X STD DEV X MEAN Y STD DEV Y

109-19-3 SOURNESS INTENSITY 0.007 -0.086 0.537 54 2.7 3.8 18.1 3.1 60415-61-4 SOURNESS INTENSITY 0.007 -0.084 0.545 54 0.7 1.6 18.1 3.1

142-92-7 SOURNESS INTENSITY 0.007 -0.081 0.559 54 53.5 49.7 18.1 3.1 111-71-7 SOURNESS INTENSITY 0.006 0.075 0.589 54 3.2 2.3 18.1 3.1 106-32-1 SOURNESS INTENSITY 0.006 0.075 0.591 54 2.2 3.0 18.1 3.1 66-25-1 SOURNESS INTENSITY 0.005 0.072 0.605 54 2545.9 1722.0 18.1 3.1

564-94-3 SOURNESS INTENSITY 0.005 0.072 0.606 54 6.5 7.4 18.1 3.1 116-53-0 SOURNESS INTENSITY 0.005 -0.068 0.625 54 19.7 16.0 18.1 3.1 109-60-4 SOURNESS INTENSITY 0.005 0.068 0.626 54 3.8 2.7 18.1 3.1

2432-51-1 SOURNESS INTENSITY 0.004 -0.064 0.644 54 4.4 5.8 18.1 3.1 1576-86-9 SOURNESS INTENSITY 0.004 0.064 0.645 54 37.8 21.7 18.1 3.1 124-13-0 SOURNESS INTENSITY 0.004 0.061 0.660 54 5.9 3.0 18.1 3.1

3913-81-3 SOURNESS INTENSITY 0.004 -0.060 0.669 54 1.9 1.4 18.1 3.1 1629-58-9 SOURNESS INTENSITY 0.003 0.058 0.678 54 117.9 65.9 18.1 3.1 628-63-7 SOURNESS INTENSITY 0.003 -0.052 0.709 54 4.6 1.7 18.1 3.1

7786-58-5 SOURNESS INTENSITY 0.003 -0.051 0.713 54 12.2 28.4 18.1 3.1 96-22-0 SOURNESS INTENSITY 0.002 0.050 0.721 54 51.2 18.6 18.1 3.1

616-25-1 SOURNESS INTENSITY 0.002 0.048 0.731 54 15.9 7.3 18.1 3.1 75-85-4 SOURNESS INTENSITY 0.002 0.047 0.737 54 3.9 2.2 18.1 3.1

706-14-9 SOURNESS INTENSITY 0.002 -0.040 0.772 54 44.5 81.1 18.1 3.1 A* ext SOURNESS INTENSITY 0.002 -0.040 0.774 54 36.4 3.1 18.1 3.1

2311-46-8 SOURNESS INTENSITY 0.002 0.039 0.779 54 3.9 4.4 18.1 3.1 TOTAL VOLATILES SOURNESS INTENSITY 0.001 0.029 0.834 54 15814.0 5238.5 18.1 3.1

40716-66-3 SOURNESS INTENSITY 0.001 -0.029 0.838 54 84.3 107.5 18.1 3.1 123-66-0 SOURNESS INTENSITY 0.001 -0.027 0.849 54 108.2 128.0 18.1 3.1

1576-87-0 SOURNESS INTENSITY 0.001 0.026 0.851 54 37.5 20.1 18.1 3.1 71-41-0 SOURNESS INTENSITY 0.001 -0.025 0.855 54 1.0 1.3 18.1 3.1

124-19-6 SOURNESS INTENSITY 0.000 0.021 0.883 54 8.5 7.5 18.1 3.1 108-10-1 SOURNESS INTENSITY 0.000 0.020 0.886 54 1.5 2.6 18.1 3.1 638-11-9 SOURNESS INTENSITY 0.000 -0.018 0.899 54 72.7 67.2 18.1 3.1

6728-26-3 SOURNESS INTENSITY 0.000 0.016 0.909 54 8666.5 3359.7 18.1 3.1 123-86-4 SOURNESS INTENSITY 0.000 -0.016 0.910 54 73.5 85.0 18.1 3.1 105-66-8 SOURNESS INTENSITY 0.000 0.011 0.938 54 5.0 3.7 18.1 3.1 105-54-4 SOURNESS INTENSITY 0.000 -0.011 0.939 54 42.0 17.1 18.1 3.1 FORCE SOURNESS INTENSITY 0.000 0.008 0.953 54 0.6 0.2 18.1 3.1 540-18-1 SOURNESS INTENSITY 0.000 -0.008 0.957 54 3.5 3.2 18.1 3.1

2305-05-7 SOURNESS INTENSITY 0.000 -0.007 0.962 54 6.7 6.7 18.1 3.1 105-37-3 SOURNESS INTENSITY 0.000 -0.006 0.964 54 10.1 14.1 18.1 3.1 623-42-7 SOURNESS INTENSITY 0.000 -0.006 0.966 54 2780.2 1376.8 18.1 3.1 821-55-6 SOURNESS INTENSITY 0.000 0.001 0.997 54 3.5 8.2 18.1 3.1

SSC STRAWBERRY FLAVOR INTENSITY 0.584 0.764 0.000 54 7.4 1.4 26.9 3.9 TOTAL SUGAR STRAWBERRY FLAVOR INTENSITY 0.569 0.755 0.000 54 4473.9 1037.2 26.9 3.9

SUCROSE STRAWBERRY FLAVOR INTENSITY 0.498 0.705 0.000 54 1112.6 646.5 26.9 3.9 1629-58-9 STRAWBERRY FLAVOR INTENSITY 0.356 0.597 0.000 54 117.9 65.9 26.9 3.9 2305-05-7 STRAWBERRY FLAVOR INTENSITY 0.283 0.532 0.000 54 6.7 6.7 26.9 3.9 540-18-1 STRAWBERRY FLAVOR INTENSITY 0.260 0.509 0.000 54 3.5 3.2 26.9 3.9

TA STRAWBERRY FLAVOR INTENSITY 0.256 0.506 0.000 54 0.8 0.1 26.9 3.9 1576-87-0 STRAWBERRY FLAVOR INTENSITY 0.239 0.488 0.000 54 37.5 20.1 26.9 3.9 2639-63-6 STRAWBERRY FLAVOR INTENSITY 0.235 0.485 0.000 54 10.8 13.0 26.9 3.9

CITRIC ACID STRAWBERRY FLAVOR INTENSITY 0.235 0.485 0.000 54 741.0 147.2 26.9 3.9 60415-61-4 STRAWBERRY FLAVOR INTENSITY 0.233 0.482 0.000 54 0.7 1.6 26.9 3.9

142-92-7 STRAWBERRY FLAVOR INTENSITY 0.227 0.477 0.000 54 53.5 49.7 26.9 3.9 1576-86-9 STRAWBERRY FLAVOR INTENSITY 0.222 0.472 0.000 54 37.8 21.7 26.9 3.9 5989-33-3 STRAWBERRY FLAVOR INTENSITY 0.208 0.456 0.001 54 2.8 2.4 26.9 3.9 GLUCOSE STRAWBERRY FLAVOR INTENSITY 0.205 0.453 0.001 54 1594.6 378.2 26.9 3.9 123-86-4 STRAWBERRY FLAVOR INTENSITY 0.205 0.453 0.001 54 73.5 85.0 26.9 3.9 111-71-7 STRAWBERRY FLAVOR INTENSITY 0.201 0.448 0.001 54 3.2 2.3 26.9 3.9 109-21-7 STRAWBERRY FLAVOR INTENSITY 0.194 0.440 0.001 54 72.1 157.2 26.9 3.9 591-78-6 STRAWBERRY FLAVOR INTENSITY 0.180 0.425 0.001 54 10.3 13.9 26.9 3.9 109-19-3 STRAWBERRY FLAVOR INTENSITY 0.179 0.424 0.001 54 2.7 3.8 26.9 3.9 706-14-9 STRAWBERRY FLAVOR INTENSITY 0.179 0.423 0.001 54 44.5 81.1 26.9 3.9

TOTAL VOLATILES STRAWBERRY FLAVOR INTENSITY 0.167 0.409 0.002 54 15814.0 5238.5 26.9 3.9 FRUCTOSE STRAWBERRY FLAVOR INTENSITY 0.166 0.407 0.002 54 1766.7 381.5 26.9 3.9

638-11-9 STRAWBERRY FLAVOR INTENSITY 0.164 0.405 0.002 54 72.7 67.2 26.9 3.9 3913-81-3 STRAWBERRY FLAVOR INTENSITY 0.158 0.398 0.003 54 1.9 1.4 26.9 3.9 616-25-1 STRAWBERRY FLAVOR INTENSITY 0.154 0.392 0.003 54 15.9 7.3 26.9 3.9

5881-17-4 STRAWBERRY FLAVOR INTENSITY 0.153 0.391 0.003 54 6.2 2.5 26.9 3.9 110-93-0 STRAWBERRY FLAVOR INTENSITY 0.137 0.370 0.006 54 2.7 1.5 26.9 3.9 124-19-6 STRAWBERRY FLAVOR INTENSITY 0.129 0.359 0.008 54 8.5 7.5 26.9 3.9

40716-66-3 STRAWBERRY FLAVOR INTENSITY 0.112 0.335 0.013 54 84.3 107.5 26.9 3.9 L* int STRAWBERRY FLAVOR INTENSITY 0.109 0.330 0.015 54 54.9 5.8 26.9 3.9

4077-47-8 STRAWBERRY FLAVOR INTENSITY 0.108 0.328 0.015 54 11.7 8.3 26.9 3.9 2311-46-8 STRAWBERRY FLAVOR INTENSITY 0.103 0.322 0.018 54 3.9 4.4 26.9 3.9 110-43-0 STRAWBERRY FLAVOR INTENSITY 0.101 0.318 0.019 54 14.8 19.6 26.9 3.9 623-42-7 STRAWBERRY FLAVOR INTENSITY 0.097 0.312 0.022 54 2780.2 1376.8 26.9 3.9

6728-26-3 STRAWBERRY FLAVOR INTENSITY 0.096 0.310 0.022 54 8666.5 3359.7 26.9 3.9 105-54-4 STRAWBERRY FLAVOR INTENSITY 0.089 0.299 0.028 54 42.0 17.1 26.9 3.9

A* int STRAWBERRY FLAVOR INTENSITY 0.087 -0.295 0.030 54 28.8 7.6 26.9 3.9 110-62-3 STRAWBERRY FLAVOR INTENSITY 0.079 -0.281 0.039 54 7.9 8.9 26.9 3.9 110-39-4 STRAWBERRY FLAVOR INTENSITY 0.079 0.281 0.040 54 40.8 70.0 26.9 3.9 78-70-6 STRAWBERRY FLAVOR INTENSITY 0.074 0.272 0.046 54 128.8 113.0 26.9 3.9

29674-47-3 STRAWBERRY FLAVOR INTENSITY 0.069 0.263 0.055 54 5.0 5.0 26.9 3.9 5454-09-1 STRAWBERRY FLAVOR INTENSITY 0.067 0.259 0.059 54 3.7 6.2 26.9 3.9

96-22-0 STRAWBERRY FLAVOR INTENSITY 0.066 0.258 0.060 54 51.2 18.6 26.9 3.9 104-76-7 STRAWBERRY FLAVOR INTENSITY 0.064 0.252 0.066 54 6.0 4.9 26.9 3.9

10522-34-6 STRAWBERRY FLAVOR INTENSITY 0.060 0.246 0.073 54 1.1 1.1 26.9 3.9 7786-58-5 STRAWBERRY FLAVOR INTENSITY 0.059 0.243 0.077 54 12.2 28.4 26.9 3.9 124-13-0 STRAWBERRY FLAVOR INTENSITY 0.057 0.239 0.081 54 5.9 3.0 26.9 3.9

Page 94: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

94

Table 2-4. Continued.

X Y R2 CORR COEFF p-VALUE n MEAN X STD DEV X MEAN Y STD DEV Y

112-14-1 STRAWBERRY FLAVOR INTENSITY 0.056 0.237 0.084 54 18.3 24.0 26.9 3.9 2548-87-0 STRAWBERRY FLAVOR INTENSITY 0.056 0.236 0.086 54 2.4 1.5 26.9 3.9 628-63-7 STRAWBERRY FLAVOR INTENSITY 0.042 0.206 0.135 54 4.6 1.7 26.9 3.9

B* int STRAWBERRY FLAVOR INTENSITY 0.039 -0.198 0.152 54 25.8 4.5 26.9 3.9 105-66-8 STRAWBERRY FLAVOR INTENSITY 0.037 0.193 0.162 54 5.0 3.7 26.9 3.9

20664-46-4 STRAWBERRY FLAVOR INTENSITY 0.037 0.193 0.162 54 20.6 19.0 26.9 3.9 564-94-3 STRAWBERRY FLAVOR INTENSITY 0.037 0.192 0.165 54 6.5 7.4 26.9 3.9

4887-30-3 STRAWBERRY FLAVOR INTENSITY 0.034 0.185 0.180 54 16.9 32.5 26.9 3.9 110-38-3 STRAWBERRY FLAVOR INTENSITY 0.031 0.176 0.204 54 2.0 2.6 26.9 3.9

53398-83-7 STRAWBERRY FLAVOR INTENSITY 0.029 0.172 0.215 54 5.0 4.6 26.9 3.9 539-82-2 STRAWBERRY FLAVOR INTENSITY 0.026 0.160 0.247 54 3.3 3.9 26.9 3.9 134-20-3 STRAWBERRY FLAVOR INTENSITY 0.021 -0.145 0.295 54 0.1 0.7 26.9 3.9

29811-50-5 STRAWBERRY FLAVOR INTENSITY 0.020 0.143 0.303 54 3.2 5.3 26.9 3.9 556-24-1 STRAWBERRY FLAVOR INTENSITY 0.019 0.137 0.324 54 46.6 57.0 26.9 3.9 589-38-8 STRAWBERRY FLAVOR INTENSITY 0.018 0.136 0.328 54 1.9 1.2 26.9 3.9 821-55-6 STRAWBERRY FLAVOR INTENSITY 0.017 0.130 0.348 54 3.5 8.2 26.9 3.9

2432-51-1 STRAWBERRY FLAVOR INTENSITY 0.017 -0.129 0.351 54 4.4 5.8 26.9 3.9 7452-79-1 STRAWBERRY FLAVOR INTENSITY 0.016 0.125 0.369 54 50.0 31.0 26.9 3.9

66-25-1 STRAWBERRY FLAVOR INTENSITY 0.016 0.125 0.369 54 2545.9 1722.0 26.9 3.9 116-53-0 STRAWBERRY FLAVOR INTENSITY 0.015 0.122 0.379 54 19.7 16.0 26.9 3.9 128-37-0 STRAWBERRY FLAVOR INTENSITY 0.013 0.115 0.407 54 4.1 3.7 26.9 3.9

pH STRAWBERRY FLAVOR INTENSITY 0.010 0.102 0.464 54 3.7 0.2 26.9 3.9 B* ext STRAWBERRY FLAVOR INTENSITY 0.009 -0.097 0.488 54 19.0 3.3 26.9 3.9

106-70-7 STRAWBERRY FLAVOR INTENSITY 0.009 0.096 0.491 54 252.7 164.0 26.9 3.9 624-24-8 STRAWBERRY FLAVOR INTENSITY 0.009 -0.094 0.498 54 5.6 3.7 26.9 3.9 623-43-8 STRAWBERRY FLAVOR INTENSITY 0.008 -0.088 0.529 54 3.4 3.4 26.9 3.9

1534-08-3 STRAWBERRY FLAVOR INTENSITY 0.007 0.086 0.535 54 0.4 0.2 26.9 3.9 71-41-0 STRAWBERRY FLAVOR INTENSITY 0.007 0.084 0.548 54 1.0 1.3 26.9 3.9

123-66-0 STRAWBERRY FLAVOR INTENSITY 0.006 0.078 0.576 54 108.2 128.0 26.9 3.9 A* ext STRAWBERRY FLAVOR INTENSITY 0.005 0.073 0.599 54 36.4 3.1 26.9 3.9

15111-96-3 STRAWBERRY FLAVOR INTENSITY 0.005 -0.071 0.608 54 1.2 1.2 26.9 3.9 106-32-1 STRAWBERRY FLAVOR INTENSITY 0.005 -0.070 0.616 54 2.2 3.0 26.9 3.9

1191-16-8 STRAWBERRY FLAVOR INTENSITY 0.004 -0.064 0.646 54 5.5 7.0 26.9 3.9 75-85-4 STRAWBERRY FLAVOR INTENSITY 0.004 0.059 0.670 54 3.9 2.2 26.9 3.9

105-37-3 STRAWBERRY FLAVOR INTENSITY 0.002 -0.049 0.723 54 10.1 14.1 26.9 3.9 108-10-1 STRAWBERRY FLAVOR INTENSITY 0.002 -0.048 0.729 54 1.5 2.6 26.9 3.9 140-11-4 STRAWBERRY FLAVOR INTENSITY 0.002 0.048 0.729 54 11.1 8.6 26.9 3.9 FORCE STRAWBERRY FLAVOR INTENSITY 0.002 -0.048 0.730 54 0.6 0.2 26.9 3.9 111-27-3 STRAWBERRY FLAVOR INTENSITY 0.002 -0.045 0.744 54 45.5 94.6 26.9 3.9

2497-18-9 STRAWBERRY FLAVOR INTENSITY 0.002 0.045 0.746 54 24.9 21.5 26.9 3.9 624-41-9 STRAWBERRY FLAVOR INTENSITY 0.002 0.045 0.748 54 18.9 18.1 26.9 3.9 96-04-8 STRAWBERRY FLAVOR INTENSITY 0.002 0.040 0.776 54 3.1 8.0 26.9 3.9

109-60-4 STRAWBERRY FLAVOR INTENSITY 0.001 -0.037 0.792 54 3.8 2.7 26.9 3.9 L* ext STRAWBERRY FLAVOR INTENSITY 0.001 0.034 0.809 54 33.6 2.6 26.9 3.9

123-92-2 STRAWBERRY FLAVOR INTENSITY 0.001 0.032 0.819 54 23.0 21.5 26.9 3.9 55514-48-2 STRAWBERRY FLAVOR INTENSITY 0.000 -0.020 0.884 54 0.5 0.5 26.9 3.9

MALIC ACID STRAWBERRY FLAVOR INTENSITY 0.000 0.015 0.914 54 212.4 51.6 26.9 3.9 928-95-0 STRAWBERRY FLAVOR INTENSITY 0.000 -0.010 0.943 54 66.8 61.7 26.9 3.9 103-09-3 STRAWBERRY FLAVOR INTENSITY 0.000 0.006 0.968 54 3.0 1.1 26.9 3.9

1576-95-0 STRAWBERRY FLAVOR INTENSITY 0.000 -0.003 0.983 54 2.1 2.0 26.9 3.9

Note: Regression of chemical and physical measures of fruit (X) and panel responses (Y). Coefficient of determination (R2), correlation coefficient, p-value, sample size (n), mean and standard deviation of X and Y derived from bivariate fit in JMP 8.

Page 95: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

95

Table 2-5. Multiple regression for identification of sweetness enhancing volatiles.

CAS # FRUCTOSE

t RATIO FRUCTOSE

p-VALUE

SUCROSE t RATIO

SUCROSE p-VALUE

GLUCOSE

t RATIO GLUCOSE p-VALUE

1629-58-9 5.097 0 * 2.41 0.02 * 4.696 0 * 1576-87-0 4.566 0 * 1.024 0.311 4.301 0 * 1576-86-9 4.16 0 * 0.935 0.354 3.915 0 * 2305-05-7 3.933 0 * 2.784 0.008 * 3.549 0.001 * 3913-81-3 3.694 0.001 * 1.411 0.164 3.494 0.001 * 124-19-6 3.696 0.001 * 0.226 0.822 3.402 0.001 *

6728-26-3 3.349 0.002 * -0.816 0.418 3.314 0.002 * 591-78-6 2.807 0.007 * 0.767 0.447 2.788 0.007 *

5881-17-4 2.894 0.006 * 0.608 0.546 2.662 0.01 * 540-18-1 2.71 0.009 * 2.292 0.026 * 2.515 0.015 *

2639-63-6 2.865 0.006 * 2.892 0.006 * 2.512 0.015 * 105-54-4 2.533 0.014 * 0.034 0.973 2.493 0.016 * 564-94-3 2.588 0.013 * -1.322 0.192 2.455 0.018 * 111-71-7 2.599 0.012 * 1.342 0.186 2.283 0.027 *

4077-47-8 2.414 0.019 * 0.299 0.766 2.185 0.034 * 110-93-0 2.527 0.015 * 1.43 0.159 2.165 0.035 * 638-11-9 2.311 0.025 * 1.256 0.215 2.14 0.037 * 142-92-7 2.346 0.023 * 2.943 0.005 * 2.096 0.041 *

60415-61-4 2.309 0.025 * 2.119 0.039 * 2.062 0.044 * 116-53-0 2.01 0.05 * -0.286 0.776 2.035 0.047 * 123-86-4 2.179 0.034 * 1.147 0.257 2.008 0.05 *

7452-79-1 1.959 0.056 -0.785 0.436 1.993 0.052 * 109-21-7 2.181 0.034 * 1.65 0.105 1.961 0.055 109-19-3 2.005 0.05 * 1.662 0.103 1.954 0.056 616-25-1 1.773 0.082 0.795 0.43 1.628 0.11

5454-09-1 1.804 0.077 2.085 0.042 * 1.579 0.12 96-22-0 1.82 0.075 0.912 0.366 1.576 0.121

5989-33-3 1.869 0.067 1.953 0.056 1.561 0.125 2548-87-0 1.76 0.084 0.067 0.947 1.509 0.138 623-42-7 1.455 0.152 0.419 0.677 1.452 0.153

29674-47-3 1.339 0.187 0.035 0.972 1.362 0.179 53398-83-7 1.482 0.144 2.556 0.014 * 1.283 0.205 40716-66-3 1.521 0.134 1 0.322 1.202 0.235

66-25-1 1.229 0.225 0.21 0.835 1.178 0.244 104-76-7 1.189 0.24 2.046 0.046 * 0.982 0.331 556-24-1 0.732 0.468 0.972 0.336 0.88 0.383 706-14-9 1.247 0.218 1.65 0.105 0.879 0.384 110-39-4 0.96 0.341 2.645 0.011 * 0.814 0.419 628-63-7 0.882 0.382 0.427 0.671 0.749 0.457 78-70-6 0.872 0.387 -0.1 0.921 0.7 0.487 124-13-0 0.871 0.388 0.169 0.866 0.685 0.497 75-85-4 0.736 0.465 -0.306 0.761 0.667 0.508 110-43-0 1.054 0.297 1.899 0.063 0.657 0.514 105-66-8 0.88 0.383 2.421 0.019 * 0.638 0.526 623-43-8 0.248 0.805 -1.396 0.169 0.54 0.592

1534-08-3 0.488 0.628 1.035 0.305 0.429 0.67 71-41-0 0.448 0.656 1.938 0.058 0.296 0.769

10522-34-6 0.536 0.594 2.049 0.046 * 0.288 0.775 112-14-1 0.413 0.681 2.292 0.026 * 0.284 0.777

4887-30-3 0.392 0.697 2.71 0.009 * 0.254 0.801 7786-58-5 0.362 0.718 2.027 0.048 * 0.227 0.821 103-09-3 0.172 0.864 -1.053 0.297 0.21 0.835 134-20-3 -0.009 0.993 1.386 0.172 0.2 0.842

15111-96-3 0.23 0.819 0.927 0.358 0.192 0.849 110-38-3 0.281 0.78 2.621 0.012 * 0.055 0.956 96-04-8 0.142 0.887 -0.646 0.521 0.002 0.998 123-66-0 0.066 0.948 1.064 0.292 -0.001 0.999

2311-46-8 0.238 0.813 2.211 0.032 * -0.058 0.954 29811-50-5 0.016 0.987 0.358 0.722 -0.098 0.922 1576-95-0 -0.186 0.853 -0.304 0.762 -0.231 0.819 2497-18-9 -0.313 0.756 -0.056 0.955 -0.331 0.742

Page 96: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

96

Table 2-5. Continued.

CAS # FRUCTOSE

t RATIO FRUCTOSE

p-VALUE

SUCROSE t RATIO

SUCROSE p-VALUE

GLUCOSE

t RATIO GLUCOSE p-VALUE

20664-46-4 -0.17 0.865 1.383 0.173 -0.395 0.694 624-24-8 -0.406 0.686 0.662 0.511 -0.416 0.679 589-38-8 -0.217 0.829 0.592 0.557 -0.427 0.671 109-60-4 -0.491 0.626 -0.224 0.823 -0.454 0.652 821-55-6 -0.267 0.791 1.192 0.239 -0.467 0.642 624-41-9 -0.433 0.667 -1.323 0.192 -0.494 0.624 140-11-4 -0.361 0.72 -1.357 0.181 -0.513 0.61

1191-16-8 -0.581 0.564 -2.268 0.028 * -0.529 0.599 106-70-7 -0.321 0.75 0.802 0.426 -0.531 0.598 110-62-3 -0.572 0.57 0.997 0.323 -0.568 0.573 105-37-3 -0.623 0.536 1.964 0.055 -0.674 0.503

55514-48-2 -0.644 0.523 -0.889 0.378 -0.675 0.502 123-92-2 -0.725 0.472 0.108 0.914 -0.771 0.444 539-82-2 -0.48 0.633 2.273 0.027 * -0.802 0.426

2432-51-1 -0.956 0.344 2.033 0.047 * -1.092 0.28 128-37-0 -0.856 0.396 0.482 0.632 -1.17 0.247 111-27-3 -1.253 0.216 -0.542 0.59 -1.481 0.145 928-95-0 -1.842 0.071 -0.516 0.608 -1.521 0.134 108-10-1 -2.185 0.034 * 0.898 0.374 -2.138 0.037 * 106-32-1 -1.436 0.157 0.193 0.848 -2.36 0.022 *

Note: Individual volatile compound concentrations are regressed against perceived sweetness intensity independent of effect from glucose, fructose, or sucrose, separately. Thirty compounds (asterisk) were found to enhance intensity of sweetness independent of at least one of the three sugars. Six compounds were found to significantly enhance intensity of sweetness independent of all three sugars (α = 0.05). Analysis conducted using the “enter” method in SPSS

Page 97: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

97

Table 2-6. Index of CAS registry number, chemical name, and formula.

CAS Registry Number

Chemical Name Formula

75-85-4 2-Butanol, 2-methyl- C5 H12 O 616-25-1 1-Penten-3-ol C5 H10 O 1629-58-9 1-Penten-3-one C5 H8 O

96-22-0 3-Pentanone C5 H10 O 110-62-3 Pentanal C5 H10 O 1534-08-3 Ethanethioic acid, S-methyl ester (9CI) C3 H6 O S 105-37-3 Propanoic acid, ethyl ester C5 H10 O2 109-60-4 Acetic acid, propyl ester C5 H10 O2 623-42-7 Butanoic acid, methyl ester C5 H10 O2 591-78-6 2-Hexanone C6 H12 O 108-10-1 2-Pentanone, 4-methyl- C6 H12 O 1576-87-0 2-Pentenal, (2E)- C5 H8 O 1576-86-9 2-Pentenal, (2Z)- C5 H8 O 623-43-8 2-Butenoic acid, methyl ester, (2E)- C5 H8 O2 71-41-0 1-Pentanol C5 H12 O

1576-95-0 2-Penten-1-ol, (2Z)- C5 H10 O 556-24-1 Butanoic acid, 3-methyl-, methyl ester C6 H12 O2 589-38-8 3-Hexanone C6 H12 O 105-54-4 Butanoic acid, ethyl ester C6 H12 O2 66-25-1 Hexanal C6 H12 O

123-86-4 Acetic acid, butyl ester C6 H12 O2 624-24-8 Pentanoic acid, methyl ester C6 H12 O2

29674-47-3 Butanoic acid, 2-hydroxy-, methyl ester C5 H10 O3 96-04-8 2,3-Heptanedione C7 H12 O2

638-11-9 Butanoic acid, 1-methylethyl ester C7 H14 O2 116-53-0 Butanoic acid, 2-methyl- C5 H10 O2 7452-79-1 Butanoic acid, 2-methyl-, ethyl ester C7 H14 O2 6728-26-3 2-Hexenal, (2E)- C6 H10 O 928-95-0 2-Hexen-1-ol, (2E)- C6 H12 O 111-27-3 Heptanal C7 H14 O 123-92-2 1-Butanol, 3-methyl-, 1-acetate C7 H14 O2 624-41-9 1-Butanol, 2-methyl-, 1-acetate C7 H14 O2 110-43-0 2-Heptanone C7 H14 O 2432-51-1 Butanethioic acid, S-methyl ester C5 H10 O S 105-66-8 Butanoic acid, propyl ester C7 H14 O2 539-82-2 Pentanoic acid, ethyl ester C7 H14 O2 111-71-7 1-Hexanol C6 H14 O 628-63-7 Acetic acid, pentyl ester C7 H14 O2 1191-16-8 2-Buten-1-ol, 3-methyl-, 1-acetate C7 H12 O2 106-70-7 Hexanoic acid, methyl ester C7 H14 O2

55514-48-2 2-Butenoic acid, 2-methyl-, ethyl ester C7 H12 O2 110-93-0 5-Hepten-2-one, 6-methyl- C8 H14 O 109-21-7 Butanoic acid, butyl ester C8 H16 O2 123-66-0 Hexanoic acid, ethyl ester C8 H16 O2 124-13-0 Octanal C8 H16 O 142-92-7 Acetic acid, hexyl ester C8 H16 O2 2497-18-9 2-Hexen-1-ol, 1-acetate, (2E)- C8 H14 O2 60415-61-4 Butanoic acid, 1-methylbutyl ester C9 H18 O2 104-76-7 1-Hexanol, 2-ethyl- C8 H18 O 2311-46-8 Hexanoic acid, 1-methylethyl ester C9 H18 O2

Page 98: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

98

Table 2-6. Continued.

CAS Registry Number

Chemical Name Formula

109-19-3 Butanoic acid, 3-methyl-, butyl ester C9 H18 O2 2548-87-0 2-Octenal, (2E)- C8 H14 O 540-18-1 Butanoic acid, pentyl ester C9 H18 O2 4077-47-8 3(2H)-Furanone, 4-methoxy-2,5-dimethyl- C7 H10 O3 20664-46-4 2-Octenal, (2Z)- C8 H14 O 821-55-6 2-Nonanone C9 H18 O 5989-33-3 2-Furanmethanol, 5-ethenyltetrahydro-α,α,5-trimethyl-, (2R,5S)-rel- C10 H18 O2

78-70-6 1,6-Octadien-3-ol, 3,7-dimethyl- C10 H18 O 124-19-6 Nonanal C9 H18 O 103-09-3 Acetic acid, 2-ethylhexyl ester C10 H20 O2 140-11-4 Acetic acid, phenylmethyl ester C9 H10 O2 2639-63-6 Butanoic acid, hexyl ester C10 H20 O2 53398-83-7 Butanoic acid, (2E)-2-hexen-1-yl ester C10 H18 O2 106-32-1 Octanoic acid, ethyl ester C10 H20 O2 112-14-1 Acetic acid, octyl ester C10 H20 O2 564-94-3 Bicyclo[3.1.1]hept-2-ene-2-carboxaldehyde, 6,6-dimethyl- C10 H14 O 3913-81-3 2-Decenal, (2E)- C10 H18 O 134-20-3 Benzoic acid, 2-amino-, methyl ester C8 H9 N O2 110-39-4 Butanoic acid, octyl ester C12 H24 O2 110-38-3 Decanoic acid, ethyl ester C12 H24 O2

29811-50-5 Butanoic acid, 2-methyl-, octyl ester C13 H26 O2 7786-58-5 Butanoic acid, 3-methyl-, octyl ester C13 H26 O2 15111-96-3 1-Cyclohexene-1-methanol, 4-(1-methylethenyl)-, 1-acetate C12 H18 O2 706-14-9 2(3H)-Furanone, 5-hexyldihydro- C10 H18 O2

10522-34-6 Propanoic acid, 2-methyl-, nonyl ester C13 H26 O2 5881-17-4 Octane, 3-ethyl- C10 H22 128-37-0 Phenol, 2,6-bis(1,1-dimethylethyl)-4-methyl- C15 H24 O

40716-66-3 1,6,10-Dodecatrien-3-ol, 3,7,11-trimethyl-, (6E)- C15 H26 O 4887-30-3 Hexanoic acid, octyl ester C14 H28 O2 5454-09-1 Butanoic acid, decyl ester C14 H28 O2 2305-05-7 2(3H)-Furanone, dihydro-5-octyl- C12 H22 O2

Note: Chemical Abstract Services (CAS) registry numbers were used to query SciFinder® substances database for associated chemical name and molecular formula. Listed in order of increasing retention time.

Page 99: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

99

MALIC

CITRIC

GLUCOSEFRUCTOSE

SUCROSE

75-85-4

616-25-1

1629-58-9

96-22-0

110-62-3

1534-08-3

105-37-3

109-60-4

623-42-7

591-78-6

108-10-1

1576-87-01576-86-9

623-43-8

71-41-0

1576-95-0

556-24-1

589-38-8

105-54-4

66-25-1

123-86-4

624-24-8

29674-47-3

96-04-8

638- 11-9

116-53-07452-79-1

6728-26-3

928-95-0

111-27-3

123-92-2

624-41-9

110-43-0

2432-51-1

105-66-8539-82-2

111-71-7

628-63-7

1191-16-8

106-70-7

55514-48-2

110-93-0

109-21-7

123-66-0

124-13-0

142-92-7

2497-18-9

60415-61-4

104-76-7

2311-46-8

109-19-3

2548-87-0

540-18-1

4077-47-8

20664-46-4

821-55-6

5989-33-378-70-6

124-19-6

103-09-3

140- 11-4

2639-63-6

53398-83-7

106-32-1

112-14-1

564-94-3

3913-81-3

134-20-3

110-39-4

110-38-3

29811-50-5

7786-58-5

15111-96-3

706-14-9

10522-34-6

5881-17-4

128-37-0

40716-66-3

4887-30-3

5454-09-1

2305-05-7

Page 100: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

100

Figure 2-1. Cluster analysis of strawberry samples and quantified metabolites. Two-

way Ward cluster analysis of strawberry samples (diagonal bottom) and quantified single metabolites (right) with overall liking score of sample (top) constructed using JMP 8. Standardization of metabolite concentration is by row mean and standard deviation, with high values represented as red, average as green, and low as blue. The hierarchy and distance of segments within the vertical dendrogram indicates relatedness of concentration across samples for single metabolites. Structure of the horizontal dendrogram indicates relatedness of all metabolite concentrations among individual samples.

Page 101: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

101

40

50

60

70

80

90

100

RE

LA

TIV

E H

UM

IDITY

(%

)

50

100

150

200

250

SO

LA

R R

AD

IAT

ION

(w

1 m

-2)

0

10

20

30

TE

MP

ER

AT

UR

E R

AN

GE

(C

)

27 D

ec 2

010

03 J

an

201

1

10 J

an

201

1

17 J

an

201

1

WK

-2

24 J

an

201

1

WK

-3

31 J

an

201

1

WK

-4

07 F

eb

201

1

WK

-5

14 F

eb

201

1

WK

-6

21 F

eb

201

1

WK

-7

28 F

eb

201

1

07 M

ar

201

1

0

1

2

3

4

TO

TA

L R

AIN

(cm

)

14 M

ar

201

1

2011 HARVEST WEEK AND DATE

40

50

60

70

80

90

100

50

100

150

200

250

0

10

20

30

26 D

ec 2

011

02 J

an

2012

09 J

an

2012

WK

-1

16 J

an

2012

23 J

an

2012

30 J

an

2012

WK

-4

06 F

eb

2012

WK

-5

13 F

eb

2012

WK

-6

20 F

eb

2012

WK

-7

27 F

eb

2012

05 M

ar

2012

0

1

2

3

4

WK

-9

12 M

ar

2012

2012 HARVEST WEEK AND DATE

A R2 = 0.250, p-value < 0.001*�

R2 = 0.068, p-value = 0.051

B R2 = 0.227, p-value < 0.001*�

R2 = 0.239, p-value < 0.001*

C R2 = 0.177, p-value = 0.001* D R2 = 0.147, p-value < 0.001*

E R2 < 0.001, p-value = 0.884 F R2 = 0.003, p-value = 0.649

G R2 = 0.037, p-value = 0.154 H R2 = 0.014, p-value = 0.307

Page 102: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

102

Figure 2-2. Season Environmental Conditions. Daily maximum and minimum temperatures (A and B), daily average solar radiation (C and D), daily average relative humidity (E and F), and daily total rain fall (G and H) during the 2011 (A, C, E, and G) and 2012 (B, D, F, and H) seasons. Data for Balm, FL obtained from Florida Automated Weather Network (http://fawn.ifas.ufl.edu). Data spans three weeks prior to first harvest through last harvest of each season with individual harvests indicated by dotted vertical line and harvest week number. Dashed horizontal lines represent means of environmental measures. Solid lines are the bivariate fit of environmental measure across season. Coefficients of determination (R2) and p-value of fit is listed above individual scatterplots and are calculated using bivariate fit in JMP.

Page 103: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

103

C R2 = 0.041, p-value = 0.142

0

500

1000

1500

2000

2500

3000

FR

UCT

OS

E (

mg

1 1

00

gF

W-1)

0 1 2 3 4 5 6 7 8 9 10

WEEK

B R2 = 0.064, p-value = 0.064

0

500

1000

1500

2000

2500

3000

GL

UC

OS

E (

mg1

10

0g

FW

-1)

0 1 2 3 4 5 6 7 8 9 10

WEEK

A R2 = 0.350, p-value < 0.001*

SU

CR

OS

E (

mg1

10

0g

FW

-1)

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7 8 9 10

WEEK

D R2 = 0.338, p-value < 0.001*

TO

TA

L V

OL

AT

ILE

S (

ng1

gF

W-1 h

-1)

WEEK

0

5000

10000

15000

20000

25000

30000

0 1 2 3 4 5 6 7 8 9 10

TO

TA

L V

OL

AT

ILE

S (

ng1

gF

W-1 h

-1)

SUCROSE (mg1 100gFW-1)

E R2 = 0.305, p-value < 0.001*

TO

TA

L V

OL

AT

ILE

S (

ng1

gF

W-1 h

-1)

FRUCTOSE (mg1 100gFW-1)

F R2 = 0.001, p-value = 0.785

0

5000

10000

15000

20000

25000

30000

0 500 1000 1500 2000 2500 3000

0

5000

10000

15000

20000

25000

30000

0 500 1000 1500 2000 2500 3000

Figure 2-3. Individual sugars and total volatiles regressed against season progression.

Regression of sucrose (A), glucose (B), fructose (C), and total volatiles (D) by harvest week during the seasons. Total volatile concentration is regressed against sucrose (E) and fructose (F). Sucrose (A) and total volatiles (D) demonstrate a significant negative fit to harvest week, unlike glucose (B) and fructose (C). A strong relationship between total volatile emission and sucrose concentration is found (E) that is not observed between total volatiles and glucose (data not shown) and fructose (F). Coefficient of determination (R2) and p-value of fit is listed above individual scatterplots and is calculated using bivariate fit in JMP 8. Dashed line represents mean of independent variable, solid line represents linear fit, dashed/dotted ellipse indicates 95% confidence range of data, and asterisk denotes significant fit (α = 0.05).

Page 104: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

104

Page 105: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

105

Figure 2-4. Regression of hedonic and sensory measures to physical and chemical fruit attributes. Hedonic overall liking is regressed against hedonic texture liking (A), sweetness intensity (B), sourness intensity (C), and strawberry flavor intensity (D). Overall liking is fitted to harvest week (E), total sugars (F), titratable acidity (G), and total volatiles (H). Texture liking is examined against puncture force (I) and harvest week (J), and forces is examined against harvest week (K). Sweetness intensity is regressed against total sugars (L), sucrose (M), glucose (N), and total volatiles (O). Intensity of sourness is fitted to titratable acidity (P), malic acid (Q), citric acid (R), and total sugars (S). Strawberry flavor intensity is regressed by total volatiles (T) and select single volatile compounds 1576-87-0 (U), 623-42-7 (V), and 110-62-3 (W).Coefficient of determination (R2) and p-value of fit is listed above individual scatterplots and is calculated using bivariate fit in JMP 8. Dashed line represents mean of independent variable, solid line represents linear fit, dashed/dotted ellipse indicates 95% confidence range of data, and asterisk denotes significant fit (α = 0.05).

Page 106: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

106

15111-96-3 706-14-9 10522-34-6 5881-17-4 128-37-0 40716-66-3 4887-30-3 5454-09-1 2305-05-7

616-25-1 1629-58-9 96-22-0 110-62-3 1534-08-3 105-37-375-85-4 109-60-4 623-42-7

109-21-7 123-66-0 124-13-0111-71-7 628-63-7 1191-16-8 106-70-7 55514-48-2 110-93-0

142-92-7 2497-18-9 60415-61-4 104-76-7 2311-46-8 109-19-3 2548-87-0 540-18-1 4077-47-8

20664-46-4 821-55-6 5989-33-3 78-70-6 124-19-6 103-09-3 140-11-4 2639-63-6 53398-83-7

106-32-1 112-14-1 564-94-3 3913-81-3 134-20-3 110-39-4 110-38-3 29811-50-5 7786-58-5

71-41-0 1576-95-0 556-24-1 589-38-8591-78-6 108-10-1 1576-87-0 1576-86-9 623-43-8

624-24-8 29674-47-3 96-04-8 638-11-9 116-53-0 7452-79-1105-54-4 66-25-1 123-86-4

6728-26-3 539-82-2928-95-0 111-27-3 123-92-2 624-41-9 110-43-0 2432-51-1 105-66-8

Page 107: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

107

Figure 2-5. Volatile Chemical Structure. Chemical structure of volatile compounds quantified in strawberry. Sorted by increasing retention time (left to right, top row to bottom row) and identified by CAS #.

Page 108: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

108

CHAPTER 3 ENGINEERING OF THE AROMA FLAVOR VOLATILE METHYL ANTHRANILATE IN

PETUNIA AND STRAWBERRY

Background

Methyl anthranilate is a distinguishing constituent of volatile mixtures emitted or

synthesized by diverse plant species. Emission of methyl anthranilate originates in

multiple plant structures, often alluding to the biological role within that plant species.

The biosynthesis in reproductive structures is well known, as methyl anthranilate is a

characteristic component of the headspace of Citrus and jasmine flower (Jasminum

sambac) (Edris et al., 2008; Najman, 1993), ‘Concord’ grape (Vitis labrusca) (Massa et

al., 2008), wild strawberry (F. vesca) (Ulrich et al., 1997). Its effectiveness as a bee

attractant facilitates pollination in floral structures (Najman, 1993), while its potential

antimicrobial and antifungal capacities in essential oil of Retama raetam suggest a role

in promoting survivability of flowers and fruits (Edziri et al., 2010). Emission from

developing fruit may prevent premature foraging, as methyl anthranilate is a potent

irritant to starlings (Sturnus vulgaris) and is avoided whether in air or water (Stevens

and Clark, 1998). The leaves of Zea mays are known to emit methyl anthranilate upon

herbivory (Turlings and Benrey, 1998) and it is shown to be an indirect defense

mechanism for attraction of parasitic wasps that require specific herbivores for

oviposition (Turlings et al., 2005). With respect to humans, flowers and fruits possessing

methyl anthranilate are regarded as having favorable aromas and flavors. Also, it was

used as one of the first artificial flavors. As with most plant volatiles, methyl anthranilate

presents a means for the plant to interact with other biological entities through chemical

emission and sensory mechanisms.

Page 109: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

109

Methyl anthranilate constitutes nine percent of volatile content in the juice of

‘Concord’ grapes (Vitis labrusca). This dominance makes these grapes one of the

richest biological sources of methyl anthranilate. Acyltransferase activity capable of

producing methyl anthranilate was identified in crude protein extracts of ripe grape

mesocarp (Figure 3-1). This activity was dependent upon precursor anthaniloyl-CoA

and methanol. Accumulation of anthranilic acid and methyl anthranilate peaked at

approximately 40 µM as grapes reached full maturity, and the concentration of methanol

also increased during the ripening of grape further supporting this biosynthesic

mechanism (Wang and De Luca, 2005).

Purified protein of ANTHRANILOYL-CoA:METHANOL ACYLTRANSFERASE

(VlAMAT) was digested, sequenced, and the transcript subsequently cloned (Wang and

De Luca, 2005). Characterization of recombinant and native protein indicates a higher

affinity and catalytic rate of VlAMAT for anthraniloyl-CoA and methanol than structurally

similar benzoyl-CoA and benzyl alcohol. However, the greatest in vitro activity of

recombinant protein is with anthraniloyl-CoA and benzyl alcohol as substrates and

relatively small amounts of benzyl alcohol is present in grape. VlAMAT transcript

abundance increases with the progression of ripening, as does anthranilic acid, VlAMAT

protein activity, and thus methyl anthranilate in ‘Concord’ grape varieties. Conversely, in

Vitis vinifera penultimate precursor, protein, and product are not detectable (Wang and

De Luca, 2005). This first instance of tissue specific methyl anthranilate biosynthesis is

due to a ripening paradigm and enzymatic specificity of VlAMAT. As a result,

biosynthesis results in a significant concentration of methyl anthranilate, contributing to

‘Concord’ grape aroma and flavor.

Page 110: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

110

A second instance of tissue specific methyl anthranilate biosynthesis is induced

in herbivory damaged leaves of Zea mays (Koellner et al., 2010). Three paralogs of

ANTHRANILIC ACID METHYL TRANSFERASE (ZmAAMT) were cloned. Within thirty

minutes following Spodoptera larvae herbivory, jasmonic acid signaling up regulated

ZmAAMT1.1 and ZmAAMT3. Methyl anthranilate is detectable in the leaves after 30

minutes, but emission from the tissue does not occur until two hours after feeding.

Crude protein extract from herbivory damaged leaves, but not control leaves, is capable

of producing methyl anthranilate. The extract exhibits a methyl transferase activity that

is highest with S-adenosyl methionine and anthranilic acid for the synthesis of methyl

anthranilate (Figure 3-1). Crude extracts confirm biosynthesis of methyl anthranilate is

in response to herbivory. However, that alone does not distinguish which of the two

upregulated paralogs is responsible for the majority of methyl anthranilate biosynthesis.

Recombinant proteins of ZmAAMT1.1, 1.2, 2, and 3 show the highest relative

activity with anthranilic acid. Benzoic acid as substrate reaches a quarter of anthranilic

acid activity for ZmAAMT3, while ZmAAMT1.1 has only three percent relative activity.

Following herbivory, anthranilic acid increases by 12-fold to a concentration of 0.12

nmol1 gFW-1. A Km of over 2 mM for anthranilic acid is limiting to the ZmAAMT3 rate of

reaction and excludes it as the major contributor to induced methyl anthranilate

production. The 641 µM Km of ZmAAMT1.1 is at least three orders of magnitude greater

than the whole leaf anthranilic acid levels (Koellner et al., 2010), which is not optimal.

Anthranilic acid is an intermediate of tryptophan biosynthesis, which occurs in the

chloroplast. Subcellular compartmentalization of anthranilic acid produced by

ANTHRANILATE SYNTHASE, which is localized to the chloroplast (Bohlmann et al.,

Page 111: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

111

1996), can provide the enriched environment necessary for efficient methyl anthranilate

biosynthesis.

Colocalization of protein and substrate is one means of ensuring enzymatic

specificity in vivo. Another mechanism of specificity is derived from the protein structure

as it can be exclusive to certain substrates. Comparison of homologs in Zea mays and

other species as well as site directed mutagenesis indicates substrate specificity for

anthranilic acid over salicylic acid is conferred by tyrosine 246 (Tyr-246 to Trp), while

benzoic acid is excluded by glutamine 167 (Gln-167 to His) (Koellner et al., 2010). Two

specific amino acid residues result in highly specific activity of ZmAAMT1.1 for

anthranilic acid compared to benzoic acid or salicylic acid which is preferred by other

members of the SABATH gene family (Koo et al., 2007)

Methyl anthranilate is absent from a vast majority of commercial cultivars of

strawberry. Comparison of whole fruit and GC-olfactometry of methyl anthranilate

containing F. vesca to deficient F. x ananassa imparted a ‘heavy sweet’ and a jasmine-

like orthonasal and retronasal characteristic (Ulrich et al., 2007). The sole transgenic

effort to alter strawberry aroma in literature focused on an endogenous O-

METHYLTRANSFERASE responsible for S-adenosyl methionine dependent

methylation of 3(2H)-furanone, 4-hydroxy-2,5-dimethyl- to DMF (Lunkenbein et al.,

2006). Up and downregulation of volatile synthesis is observed using sense and

antisense constructs of O-METHYLTRANSFERASE. This work attempts to introduce

methyl anthranilate into the deficient, yet commercially viable cultivar, ‘Strawberry

Festival’ through the overexpression of ZmAAMT1.1. Over-expression of tomato

(Solanum lycopersicum) PHENYLACETALDEHYDE REDUCTASE in Petunia x hybrida

Page 112: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

112

cv. ‘Mitchell Diploid’ increased 2-phenylethanol floral emission by ten-fold (Tieman et

al., 2007). For this reason, ZmAAMT1.1 is also transformed into petunia, as an

established pipeline for efficiently generating and analyzing altered volatile phenotypes

exists. The methyl transferase of Zea mays is preferred over alcohol acyltranserase

mechanism of Vitis labrusca, mainly for its direct methylation of the primary metabolite

anthranilic acid, while the ZmAAMT1.1 paralog is selected due to its higher specificity.

Results

Methyl Anthranilate Content among Fragaria

In order to understand the extent of genetic variability for methyl anthranilate

synthesis in Fragaria methyl anthranilate had to be identified using a GC coupled to an

electron impact mass spectrometer (GC-MS). Fragaria volatile collection samples were

run on the GC-MS followed by a dilution of analytical standard methyl anthranilate.

Mass spectra corresponding to the retention time of the analytical standard from

Fragaria samples were compared to one another, methyl anthranilate standard, and

National Institute of Standards and Technology (NIST) mass reference spectra (Figure

3-2). NIST reference (Figure 3-2.A), methyl anthranilate standard (Figure 3-2.B), and F.

vesca cv. ‘Fragola Quattro Stagioni’ mass spectra showed characteristic ions 119, 151,

92, and 65 in decreasing relative abundance. However, none of these particular ions

were detected in F. x ananassa cv. ‘Strawberry Festival’.

The content of methyl anthranilate was quantified in 17 cultivars of four Fragaria

species using GC-FID to ascertain the biological variation: nine diploid F. vesca

cultivars, two hexaploid F. moschata, one octoploid F. virginiana, and five octoploid F. x

ananassa (Figure 3-3). The mean content of each cultivar was from a minimum of five

biological replicates from at least two harvest dates.

Page 113: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

113

Within F. vesca there were eight cultivars with an average content of less than 10

ng1 gFW-1 hr-1 with ‘Hawaii-4’ having the lowest content at 2.65 ng1 gFW-1 hr-1. ‘Reine

des Vallees’ on the other hand had a mean methyl anthranilate emission of 28.77 ng1

gFW-1 hr-1, but large variance of the mean was due to phenotypic variation from harvest

to harvest. The cultivars ‘Capron’ and ‘Profumata di Tortona’ of F. moschata, a

hexaploid species, exhibited the highest mean methyl anthranilate emission quantified

in this study at 52.62 and 38.64 ng1 gFW-1 hr-1, respectively. The volatile emission from

‘Capron’ was nearly two-fold greater than the highest F. vesca accession. F. virginiana

was one of the progenitor species to modern F. x ananassa, and the F. virginiana

cultivar ‘Intensity’ did not produce any detectable amounts of methyl anthranilate. The

same was observed for four of five F. x ananassa cultivars. In fact, ‘Mara des Bois’ is

the only octoploid in which methyl anthranilate was detected. However, it was not

detectable at all points within a season and therefore had the lowest mean content of

the twelve cultivars in which methyl anthranilate was measured. A range of methyl

anthranilate emission was observed across Fragaria accession with a strong correlation

to species. Reliable and appreciable emission in diploid and hexaploid material is for all

practical purposes isolated from introgression into octoploid due to genetic architecture.

ZmAAMT1.1 Expression Analysis in Transgenic Plants

Overexpression construct and plant transformation

The coding sequence (CDS) of Zea mays ANTHRANILIC ACID METHYL

TRANSFERASE 1.1 (ZmAAMT1.1) was cloned into a Gateway entry vector,

pDONR222, and subsequently recombined with a destination vector, pHK-DEST-OE,

which generated a binary plant expression vector, pEXP-ZmAAMT1.1 (Figure 3-4), for

transformation of P. x hybrida cv. ‘Mitchell Diploid’ and F. x ananassa cv. ‘Strawberry

Page 114: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

114

Festival’. The ZmAAMT1.1 CDS is under the control of figwort mosaic virus 34S (pFMV

34S) promoter and Agrobacterium NOPALINE SYNTHASE 3’ terminator (NOSt). Also,

within the transfer-DNA borders of the binary vector is the NEOMYCIN

PHOSPOTRANSFERASE II (NPTII) CDS, which confers kanamycin resistance in

transformed plants. Following transformation with pEXP-ZmAAMT1.1 50 ‘Mitchell

Diploid’ and 25 ‘Strawberry Festival’ T0 plantlets were regenerated in the presence of

kanamycin.

Petunia expression analysis

To determine penetrance of the ZmAAMT1.1 transgene in transformed ‘Mitchell

Diploid’ background a one-step semi-quantitative reverse transcription polymerase

chain reaction (sqRT-PCR) was used to first generate gene specific complimentary

DNA from isolated total RNA of each T0 line which was then amplified in the same

reaction. Visualization of ZmAAMT1.1 sqRT-PCR products after thirty cycles of

amplification allowed for distinguishing differences in transcript abundance among

transgenic lines. Thirty-eight lines were screened for sqRT-PCR transcript abundance of

ZmAAMT1.1 and scored by comparing electrophoresis band intensity among one

another and referencing sqRT-PCR of endogenous 18S, a consistent control for RNA

loading (Figure 3-5). All but three lines exhibited expression of ZmAAMT1.1, (transgenic

lines13, 23, and 38) while three lines exhibited very low, three low, twelve average, nine

high, and eight very high relative expression. A ZmAAMT1.1 sqRT-PCR product was

not visible in the transgenic background P. x hybrida cv. ‘Mitchell Diploid’ demonstrating

the specificity for amplification of the transgene.

Six transgenic lines were chosen for quantitative real time PCR (qRT-PCR) to

measure relative transcript based off initial semi-quantitative results (Figure 3-6).

Page 115: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

115

ZmAAMT1.1 transcript was quantified relative to PhFBP7 using comparative Ct method.

The greatest expression was found in line 1 and 45, while 7, 13, 16, and 38 exhibited

moderate expression, and as expected no amplification was detected in wild-type

‘Mitchell Diploid’.

Strawberry expression analysis

Transcript abundance was also determined in pEXP-ZmAAMT1.1 transformed F.

x ananassa ‘Strawberry Festival’ using sqRT-PCR as in ‘Mitchell Diploid’. The RNA

loading control sqRT-PCR of endogenous 18S exhibits modest variability from sample

to sample and was taken into account when scoring ZmAAMT1.1 expression (Figure 3-

9). Two transgenic lines were scored as very low expression, four lines as low, ten as

moderate, four as high, and three as very high. The highest expression was likely found

in ZmAAMT1.1-OE 3, and therefore the best candidate for emission of greatest amount

methyl anthranilate. Purified pEXP-ZmAAMT1.1 was used as a positive amplification

control and exhibits very efficient amplification, while the negative amplification control

water ddi not amplify, as expected.

ZmAAMT1.1 Volatile Analysis in Transgenic Plants

Volatile compounds emitted from transgenic ZmAAMT1.1-OE and non-transgenic

(wild type) ‘Mitchell Diploid’ petunia were collected and quantified to determine if methyl

anthranilate phenotype was present. Mean methyl anthranilate content from two

biological replicates in 24 transgenic lines and ‘Mitchell Diploid’ is depicted in Figure 3-

7. No methyl anthranilate was detected in ‘Mitchell Diploid’ and six transgenic lines (5,

11, 13, 14, 44, and 45) using GC. Thirteen transgenic lines had detectable amounts less

than 10 ng1 gFW-1 hr-1, while four lines had methyl anthranilate content greater than 10

ng1 gFW-1 hr-1. The highest content was found in ZmAAMT1.1-OE 1 with a mean of

Page 116: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

116

41.98 ng1 gFW-1 hr-1. GC-MS analysis of ZmAAMT1.1-OE, wild type ‘Mitchell Diploid’,

and analytical standard confirmed introduction of a novel petunia volatile compound,

methyl anthranilate, by presence of four predominant ions (119, 151, 92, and 65

determined from analytical standard and NIST) in transgenic lines, but not wild type

(Figure 3-8).

Volatile analysis of wild type and transgenic lines of ‘Strawberry Festival’ has yet

to be accomplished. Regeneration of F. x ananassa ‘Strawberry Festival’ is markedly

longer than that of P. x hybrida ‘Mitchell Diploid’. Also, short-day photoperiod flower

induction dependence of ‘Strawberry Festival’ is limiting to fruit set during long days of

summer. Volatile analysis of transgenic strawberry for presence of methyl anthranilate

will be conducted as fruit makes itself available.

Discussion

The emission of methyl anthranilate from various F. vesca and F. moschata

accessions is confirmed using MS and analytical standards. Previously, F. moschata cv

‘Cotta’ exhibited nearly three-fold greater emission of methyl anthranilate than F. vesca

ssp. vesca f. alba (Ulrich et al.). Similar results are observed with different F. vesca and

F. moschata accessions used in this work. The highest level of methyl anthranilate

emission from F. moschata cv. ‘Capron’, in excess of 50 ng1 gFW-1 hr-1, overshadows

the majority of F. vesca, approximately 5-10 ng1 gFW-1 hr-1. The only octoploid

accession to emit detectable levels of methyl anthranilate is F. x ananassa cv. ‘Mara

des Bois’ while it is undetected in four commercial cultivars. These results underscore

the lack of potential impactful volatile compound in commercial material, but the

pervasive emission in lower ploidy material justifies engineering efforts to understand

methyl anthranilate effect on aroma and flavor of Petunia and ‘Strawberry Festival’.

Page 117: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

117

The overexpression of heterologous Z. mays ANTHRANILIC ACID METHYL

TRANSFERASE is successful at introducing emission into otherwise deficient P. x

hybrida cv. ‘Mitchell Diploid’. The use of Agrobacterium for the generation of transgenic

petunia is an effective method, especially when taking advantage of kanamycin

resistance for positive selection during plantlet regeneration (Jorgensen et al., 1996).

This is evident in the fact that all but three T0 petunias had detectable levels of

expression, while eight lines exhibited very high expression of ZmAAMT1.1 using sqRT-

PCR methods. Expression or unspecific amplification is not detected in ‘Mitchell

Diploid’, which validates the methods of the transgene transcript abundance assay.

Greater resolution of transcript level is achieved using qPCR on a subset of transgenic

lines. Lines 45 and 1 have high semi-quantitative levels and demonstrate approximately

20- and 30-fold greater expression, respectively, than line 38, all of which is estimated

to have low to average expression using semi-quantitative methods. Again, ‘Mitchell

Diploid’ exhibits no expression. The much greater magnitude of expression in line 1 is

otherwise under estimated if not for the qRT-PCR methods.

Despite detection of expression in 35 of 38 lines, the emission of methyl

anthranilate is only detectable in flowers from 18 of 24 lines analyzed. Exclusion of

enzyme from substrate or limitations in substrate flux can potentially account for this

observed discrepancy. Estimated expression in these deficient lines is far from the

highest and more often than not at the lowest end of detection. A caveat however is line

45, which exhibited second highest relative transcript abundance in qRT-PCR analysis,

but has no detectable levels of methyl anthranilate. Conversely, line 1 demonstrates the

greatest level of methyl anthranilate emission, just under 30 ng1 gFW-1 hr-1, and the

Page 118: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

118

greatest relative expression in qRT-PCR. Lines 13 and 16 have similar expression

levels; however 13 has no detectable methyl anthranilate while 16 emits over 10 ng1

gFW-1 hr-1. The efficiency of generating petunia with transgene expression is greater

than actual detectable phenotype, and relative expression level does not always

coordinate with emission levels of methyl anthranilate. These discrepancies are quite

common with petunia transgenics (David G. Clark, personal communication). Transcript

and volatile screening of numerous ZmAAMT1.1 overexpressing ‘Mitchell Diploid’ lines

found transgenic line 1 to have the greatest transcript and methyl anthranilate

expression, successfully introducing a heterologous enzyme for the production of a

novel volatile compound.

After normalizing for mass, the headspace emission of flowers from thirteen lines

of transgenic petunia is within the range of most F. vesca fruit assayed. Of special

interest is transgenic petunia ZmAAMT1.1-OE 1 with emission measured at just under

30 ng1 gFW-1 hr-1. This quantity is on par with F. vesca ‘Reine des Vallees’, which emits

roughly three-fold more methyl anthranilate than the rest of F. vesca cultivars. Given the

success in petunia, anticipation is high that the to be determined methyl anthranilate

content of transgenic ‘Strawberry Festival’ will be comparable to F. vesca, in which the

volatile is believed to impart favorable aroma and flavor (Ulrich et al., 2007).

The transformation of strawberry is not as inherently simple as that of petunia,

but can be an effective method when taking advantage of kanamycin resistance for

positive selection during plantlet regeneration (Folta et al., 2006). A range in relative

expression is observed in all regenerated strawberry demonstrated expression of

ZmAAMT1.1 using sqRT-PCR. The greatest expression is observed in line 3, while line

Page 119: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

119

5 has the lowest relative intensity. Observable discrepancies between transcript and

volatile emission in petunia requires a volatile screen of transformed ‘Strawberry

Festival’ prior to making assumptions of lines with methyl anthranilate emission, let

alone high levels of emission.

Successful engineering of methyl anthranilate biosynthesis likely requires

appropriate targeting of ZmAAMT1.1 to subcellular compartment containing appropriate

substrate, anthranilic acid. Anthranilic acid is the direct product of ANTHRANILATE

SYNTHASE which enzymatically cleaves a pyruvate moiety from chorismate (Bohlmann

et al., 1996), an intermediate reaction of tryptophan biosynthesis. The entirety of this

necessary pathway occurs exclusively in the chloroplast (Mano and Nemoto, 2012),

therefore transgenes need to localizes there. Web-based chloroplast transit peptide

prediction of ZmAAMT1.1 using ChloroP gives a weak probability of 0.446 at amino acid

residue 56 (Emanuelsson et al., 1999). Also, a small N-terminal helix from residue 24 to

47 is predicted by PredictProtein (Rost et al., 2004) and SWISS-MODEL (Arnold et al.,

2006). This is a characteristic motif for some chloroplast transit peptides (Bruce, 2000),

however, exact defining constituents are still poorly understood (Li and Chiu, 2010). The

detection of methyl anthranilate in transgenic petunia and previously reported

compartmentalization of tryptophan biosynthesis, including intermediate anthranilic acid,

suggests successful targeting of ZmAAMT1.1 to the plastid.

Chemical supplier Material Safety Data Sheet lists physical properties of methyl

anthranilate, which are interesting given its role as an emitted volatile. An astonishing

low vapor pressure of 3.6 Pascal and a melting point of 24º C are not conducive to high

volatility. A lag of over an hour between detection in tissue versus headspace is

Page 120: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

120

observed in herbivory-damaged Zea mays leaves (Koellner et al., 2010), perhaps

requiring concentration to build or requiring extra time for diffusion. The hypothesized

chloroplast localized biosynthesis would require at a minimum the volatile compound to

traverse three lipid bilayer membranes. Plastid formation occurs early in petunia corolla

development, before degrading at anthesis, coinciding with maximum endogenous floral

emission (Colquhoun et al., 2010b) possibly freeing otherwise membrane constrained

methyl anthranilate. Headspace methyl anthranilate of petunia will contribute directly to

the floral fragrance perceived through orthonasal olfaction. Conversely, internal methyl

anthranilate could potentially contribute to retronasal olfaction detection while

consuming strawberry fruit. Comparison of internal and emitted volatiles will provide

insights into the relationship between emitted and pooled methyl anthranilate, which

may influence orthonasal and retronasal olfaction perception.

Petunia emission of methyl anthranilate at levels comparable to F. vesca is

attained by over-expression of ZmAAMT1.1, successfully producing a previously

unreported volatile in petunia and potentially altering floral fragrance. Previously,

alteration of endogenous petunia volatiles greatly affected pollinator/herbivore

interaction (Kessler et al.). Introduction of a novel petunia floral volatile could have

similar effects in nature, but human perception is of more immediate interest. The

widespread presence of methyl anthranilate in flavoring and aroma of natural and

synthetic products suggests a positive response to transgenic petunia would be

observed in consumer fragrance panels.

These results are also promising for efforts to engineer methyl anthranilate

emission in ‘Strawberry Festival’. In the event of methyl anthranilate phenotype, multiple

Page 121: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

121

consequences are possible. The emission of methyl anthranilate may serve as an avian

repellent, reducing loss of ripe fruit to birds. Also, the ability to attract parasitic wasps

can alleviate herbivory pressure. In regards to postharvest, the presence of methyl

anthranilate in fruit may result in less microbial and fungal growth leading to prolonged

shelf life. The primary question however, is whether flavor or aroma of ‘Strawberry

Festival’ is enhanced by the presence of methyl anthranilate, a sweet, floral component

of F. vesca.

Future Work

Ultimately, it must be known if consumer perception is altered by the presence of

methyl anthranilate in ‘Mitchell Diploid’ or ‘Strawberry Festival’. Seed of T1

ZmAAMT1.1-OE petunia will be sown, an individual of high emission selected,

propagated, and grown out in a climate controlled glasshouse. Flowers will be

harvested for a consumer panel triangle test to ascertain a difference and/or preference

of petunia fragrance with or without methyl anthranilate, and to see if humans perceive

them as positive.

Screening of T0 ZmAAMT1.1 ‘Strawberry Festival’ fruit will hopefully identify

multiple lines with capabilities of producing methyl anthranilate. Once identified, the

appropriate line will need to be propagated and grown out in climate controlled

glasshouse for consumer flavor panels. Internal Review Board approval and consumer

written consent for the consumption of transgenic material will be obtained. Consumers

will directly compare wild-type ‘Strawberry Festival’ to a methyl anthranilate containing

transgenic line to discern any perceptual differences in overall liking, sweetness

intensity and flavor intensity.

Page 122: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

122

More fundamental work could involve crossing homozygous petunia lines of

ZmAAMT1.1-OE x CHORISMATE MUTASE-RNAi (CM). CHORISMATE MUTASE

competes with ANTHRANILATE SYNTHASE for substrate, diverting it from tryptophan

biosynthesis to phenylpropanoid biosynthesis (Colquhoun et al., 2010a). Hypothetically,

increased flux through tryptophan biosynthesis will allow greater methyl anthranilate

biosynthesis. Metabolite analysis will rely on aqueous supernatant from centrifuged

flower tissue. Solid phase extraction will aid in sample preparation prior to analysis on

high pressure liquid chromatograph coupled to triple quadrupole MS. Multiple reaction

monitoring mode will allow for quantification of MS/MS product ions, particularly of

chorismate, anthranilic acid, methyl anthranilate, and tryptophan. Comparison of these

compounds in wild type ‘Mitchell Diploid’, ZmAAMT1.1-OE, CM-RNAi, and

ZmAAMT1.1-OE x CM-RNAi could provide insights on metabolic flux at key nodes of

aromatic amino acid synthesis in plants.

Materials and Methods

Plant Material

Inbred P. x hybrida Mitchell Diploid plants were the wild-type control and

background for transformation in all petunia experiments (Mitchell et al., 1980), while

commercially available F. x ananassa cv. ‘Strawberry Festival’ was the wild-type control

and background for transformation of strawberry experiments. All petunia were grown in

glass greenhouses (Dexter et al., 2007). Wild-type and transformed ‘Strawberry

Festival’ were grown in glass greenhouses and watered daily with Verti-Gro©

hydroponic fertilizer (0.6 grams per liter 8-12-32 with trace elements and 2%

magnesium) and supplemented with calcium nitrate (0.3 g per liter 15-0-0). Materials of

Page 123: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

123

Figure 3-3 were grown in Citra, FL according to current commercial practices for annual

strawberry plasticulture in Florida (Whitaker et al., 2011) (Santos et al., 2012).

Generation of Transgenic ZmAAMT1.1 Plants

Overexpression construct

A pUC57 vector containing the synthesized CDS of ZmAAMT1.1 (Koellner et al.,

2010) was obtained from GenScript©. Use of Gateway® Cloning (Invitrogen) for the

generation of entry vector requires a two-step amplification scheme to incorporate

recombination site adapters to CDS of ZmAAMT1.1. The first step used Phusion

(Finnzymes) recombinant polymerase to amplify the CDS with partial attB adapters

(forward primer 5’ – AAAAAGCAGGCTTCATGCCGATGAGAATCGAGCGTGAT – 3’

and reverse primer 5’ – AGAAAGCTGGGTCTCACACATGAATTATTGCTTTCTC – 3’).

The second amplification used the first product as a template and completes the

recombination sites using attB primers (forward primer 5’ –

GGGGACAAGTTTGTACAAAAAAGCAGGC – 3’ and 5’ –

GGGGACCACTTTGTACAAGAAAGCTGGGT – 3’). BP Clonase catalyzed a

recombination reaction between polyethylene glycol purified attB PCR product and attP

pDONR222 vector for site directed recombination of ZmAAMT1.1 CDS for lethal ccdB

CDS to generate pENTR – ZmAAMT1.1. Mach1 E. coli transformation with BP Clonase

reaction was selectively screened for NPTII containing pENTR - ZmAAMT on LB agar

plates containing kanamycin. Digestion and Sanger sequencing confirmed

recombination and identity of ZmAAMT1.1.

LR Clonase catalyzed recombination between attL containing pENTR –

ZmAAMT1.1 and attR contain pHK-DEST OE for site directed recombination of

ZmAAMT1.1 CDS for lethal ccdB CDS to generate pEXP – ZmAAMT1.1.

Page 124: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

124

The binary expression vector ultimately for plant transformation places ZmAAMT1.1

under the control of pFMV 34S (Richins et al., 1987) and nosT. The recombination

product was transformed into Mach1 E. coli. ccdB lethality selected against unreacted

pHK-DEST OE and undesired recombination products, while streptomycin LB agar

plates selected for pEXP-ZmAAMT1.1-OE, which contains the aadA1 resistance gene.

Colonies were qualified via digestion of both vector and insert of pEXP – ZmAAMT1.1,

as well as amplifying across recombination site from pFMV 34S into ZmAAMT1.1.

Plant transformation and regeneration

Fifty independent pEXP-ZmAAMT1.1-OE ‘Mitchell Diploid’ petunia were

generated using Agrobacterium mediated transformation of sterile leaf disc and

subsequent plantlet regeneration (Jorgensen et al., 1996). Twenty-five independent

pEXP-ZmAAMT1.1-OE ‘Strawberry Festival’ were generated using Agrobacterium

mediated transformation of sterilized leaf and petiole segments and subsequent plantlet

regeneration (Folta et al., 2006). Kanamycin resistance conferred by presence of NPTII

within T-DNA of pEXP – ZmAAMT1.1 allows for initial screening of plantlets. T0 petunia

were self-pollinated to maintain transgenic events through seed. T0 ‘Strawberry

Festival’ is maintained through propagation of daughter plants due to heterozygosity of

octoploid background.

RNA Isolation

Petunia

Developmental stage six petunia flower buds are tagged two days prior to

harvest of stage eight fully expanded flowers (Colquhoun et al., 2010b). At 16:00

flowers were excised from the plant at the peduncle and frozen immediately in liquid

nitrogen. Whole flower was then ground in liquid nitrogen. Total RNA was extracted

Page 125: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

125

from approximately 500 mg of tissue according to Verdonk et al., (2003) and

reconstituted in 50 µl DEPC treated water. Residual DNA was digested with TURBO

DNase (Ambion Inc.) and RNeasy Mini Spin Column (QIAGEN) removes carry-over

metabolites prior to downstream applications.

Strawberry

Young expanding leaf tissue was harvested at 16:00 and frozen immediately in

liquid nitrogen. Leaf tissue was then ground in liquid nitrogen. Total RNA was extracted

from approximately 100 mg of tissue using 1 ml phenol extraction solution consisting of

Tris pH 6.7 +/- 0.2 saturated phenol, 0.1% SDS (w/v), 0.32 M NaOAc, and 0.01M EDTA

and 0.4 ml DEPC treated water (Ghawana et al., 2011). Ten seconds of vortex was

followed by 5 minute incubation, which was followed by the addition of 0.2 ml

chloroform. Five seconds of vortex, 5 minutes of incubation, and centrifugation at

16,000 rcf allowed for the separation of approximately 0.5 ml aqueous phase which was

transferred to a new 1.5 ml Eppendorf tube. Nucleic acids were precipitated in 0.3 ml

isopropanol and centrifuged for 5 minutes following 5 seconds of vortex and 10 minutes

of incubation. Pellet was washed in 70% ethanol, dried and reconstituted in 50 µl DEPC

treated water. TURBO DNase (Ambion Inc.) treatment digested residual DNA and

RNeasy Mini Spin Column (QIAGEN) removed carry-over metabolites prior to

downstream applications.

Expression Analysis

Abundance of ZmAAMT1.1 transcript in all viable transgenic events of petunia

and strawberry was estimated via sqRT-PCR using One-Step RT-PCR kit (QIAGEN

Co.) with 50 ng total RNA (ZmAAMT1.1 forward primer 5’ –

AGGCACCAGAGCAACTGAAG – 3’ and reverse primer 5’ –

Page 126: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

126

CACCAGACACGAGTTCCTCA – 3’). P. x hybrida and F. x ananassa 18S were

amplified (Ph18S forward primer 5’ – TTAGCAGGCTGAGGTCTCGT – 3’ and 5’ –

AGCGGATGTTGCTTTTAGGA – 3’; Fa18s 5’ – ACCGTAGTAATTCTAGAGCT – 3’ and

5’ – CCACTATCCTACCATCGAAA – 3’) from all petunia and strawberry samples,

respectively, to visualize RNA-loading concentration and to act as a positive control for

reverse transcription and amplification. Sub-saturation amplification of 18S was

achieved at 22 and 18 cycles, while ZmAAMT1.1 requires 30 and 37 cycles for Petunia

and Fragaria, respectively. No template (H2O) controls were used in all reactions.

Products of sqRT-PCR were analyzed under ultraviolet light following electrophoresis

on 1% agarose gel with 0.5 ug1 ml-1 ethidium bromide.

∆∆Ct Quantitative qRT-PCR was performed and analyzed using a

StepOnePlus™ real-time PCR system (Applied Biosystems, Foster City, CA). Power

SYBR® Green PCR (Applied Biosystems, Foster City, CA) was used to amplify and

detect the products according to the manufacturer’s protocol. Gene specificity is

confirmed through analysis of melt curve.

Volatile Analysis

Developmental stage 8 petunia flowers were excised at the peduncle at 18:00 for

an immediate one hour volatile collection. Each sample comprised of two flowers from a

single line with at least two biological replicates of each line.

Ripe glass greenhouse grown F. x ananassa were harvested at 16:00 and then

kept at 4°C until 9:00 the following morning at which time they were prepared for a two

hour volatile collection. Each sample comprised of 15 grams of quartered and diced

berries from a single line with technical replication as possible.

Page 127: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

127

Ripe field grown F. vesca were harvested at 9:00 in Citra, FL and kept on ice for

transport to Gainesville, FL for immediate two hour volatile collection. Each sample

comprised of approximately 15 grams of whole fruit, 5-10 berries from a single genotype

with two to three biological replicates per cultivar per harvest. Reported average volatile

content was pooled from at least two harvests.

Volatile collection apparatus was a dynamic headspace system in which emitted

volatiles are concentrated on HaySep 80-100 porous polymer adsorbent (Hayes

Separations Inc.) (Underwood et al., 2005) and then eluted as described by Schmelz

(Schmelz et al., 2003).

Quantification of volatiles in an elution was performed on an Agilent 7890A

Series GC (carrier gas; He at 3.99 mL min-1; splitless injector, temperature 220°C,

injection volume 2 µl) equipped with a DB-5 column ((5%-Phenyl)-methylpolysiloxane,

30 m length × 250 µm i.d. × 1 µm film thickness; Agilent Technologies, Santa Clara,

CA, USA). Oven temperature was programmed from 40°C (0.5 min hold) at 5°C min-1 to

250°C (4 min hold). Signals were captured with a FID at 280°C. Peaks from FID signal

were integrated manually with Chemstation B.04.01 software (Agilent Technologies,

Santa Clara, CA). Volatile emissions (ng1 gFW-1 h-1) were calculated based on

individual peak area relative to sample elution standard peak area. GC-Mass

Spectrometry (MS) analysis of elutions were performed on an Agilent 6890N GC in

tandem with an Agilent 5975 MS (Agilent Technologies, Santa Clara, CA, USA) and

retention times were compared with authentic standards (Sigma Aldrich, St Louis, MO,

USA) for volatile identification (Schmelz et al., 2001).

Page 128: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

128

Statistical Analysis

Histograms constructed in JMP 8.0 (SAS Institute Inc.) and depict mean volatile

content per line/cultivar including standard error bars.

Page 129: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

129

Figure 3-1. Alternative methyl anthranilate biosynthetic pathways in Zea mays and Vitis

labrusca. ATP-dependent ligation of CoA to anthranilic acid provides substrate for Vitis labrusca ANTHRANILOYL-CoA:METHANOL ACYLTRANSFERASE (VlAMAT), which catalyzes the methanol dependent acyl transfer to create methyl anthranilate. Conversely, Zea mays ANTHRANILIC ACID METHYL TRANSFERASE (ZmAAMT) directly synthesizes methyl anthranilate upon methyl donation by S-adenosyl methionine. Chloroplast compartmentalized tryptophan biosynthesis is depicted for relation to primary metabolism.

Page 130: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

130

Figure 3-2. Identification of methyl anthranilate in Fragaria. GC-MS electron ionization spectra at retention time of 29.2 minutes for methyl anthranilate analytical standard (B), Fragaria vesca cv. ‘Fragola Quattro Stagioni’ captured volatiles (C), and Fragaria x ananassa cv. “Strawberry Festival’ captured volatiles (D). Presence of ions 119, 151, 92, and 65 (listed in decreasing relative abundance) in National Institute of Standards and Technology mass reference spectra (A), analytical standard (B), and ‘Fragola Quatrol Satgioni (C) confirms the presence of methyl anthranilate, however absence of ions in ‘Strawberry Festival’(D) indicates a lack of detectable production.

Page 131: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

131

Figure 3-3. Methyl anthranilate content among various lines of Fragaria species.

Histograms depict average content and standard error of methyl anthranilate from at least five biological replicates across a minimum of two harvests. Diploid (2x) Fragaria vesca cultivars emit approximately 5-10 ng1 gFW-1 h-1,

except for ‘Reine des Vallees’, which emits 28.77 ng1 gFW-1 h-1. In octoploid (8X) Fragaria x ananassa methyl anthranilate is only detectable in ‘Mara des Bois’ but not any commercially relevant material. Emissions from both hexaploid (6x) Fragaria moschata cultivars are the highest measured, especially ‘Capron’ with approximately ten-fold higher content than most Fragaria vesca accessions assayed. Analysis conducted in JMP.

Page 132: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

132

Figure 3-4. Binary vector for stable transformation of petunia and strawberry with

ZmAAMT1.1. T-DNA region within left (LB) and right borders (RB) is stably integrated into host plants. Expression of NPTII confers resistance to kanamycin selection during plantlet regeneration and is regulated by Agrobacterium NOPALINE SYNTHASE 5’ promoter (pNOS) and 3’ terminator (NOSt). Figwort mosaic virus 34S promoter (pFMV 34S) and NOSt constitutively regulate transcription of ZmAAMT1.1 coding sequence. Protein translated from transcript will have enzymatic capability of synthesizing methyl anthranilate from anthranilic acid. Forward and reverse primers 1075 and 1076 are used in expression analysis of transgenic and wild type Petunia x hybrida ‘Mitchell Diploid’ and Fragaria x ananassa ‘Strawberry Festival’. In silico vector constructed in VectorNTI.

Page 133: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

133

Figure 3-5. ZmAAMT1.1 transcript abundance in overexpressing Petunia x hybrida cv. ‘Mitchell Diploid’. Screening of ZmAAMT1.1 transcript abundance in total RNA of T0 stage eight flower tissue to determine high expressing lines. Expected product of 156bp reached sub-saturation and differential amplification across T0 using a one-step RT-PCR at 30 cycles. The transformation plasmid, pEXP-ZmAAMT1.1, is used for an amplification control and no amplification was observed in untransformed ‘Mitchell Diploid’. A second one-step RT-PCR of 18S ribosomal RNA is used as a loading control for gene specific reaction. Lines 13, 23, and 38 had no observable expression, while three lines exhibited very low, three low, twelve average, nine high, and eight very high relative expression.

Page 134: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

134

Figure 3-6. ZmAAMT1.1 transcript abundance in overexpressing Petunia x hybrida cv.

‘Mitchell Diploid’. Quantitative real-time PCR was used determine relative abundance of ZmAAMT1.1 transcript in over-expressing lines using ΔΔCt method relative to line 38. Line 1 exhibits the greatest expression by far, followed by 45. Lines 7, 13, 16, and 38 demonstrate moderate expression, and wild-type ‘Mitchell Diploid’ (MD) does not express ZmAAMT1.1 (ND not detected). Results compiled using StepOne.

ND ND

Page 135: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

135

Figure 3-7. Emission of methyl anthranilate from petunia flowers over-expressing

ZmAAMT1.1. Eluents of solid phase captured headspace of T0 ZmAAMT1.1-OE Petunia x hybrida ‘Mitchell Diploid’ are run on GC-FID for quantification of volatile compounds. Methyl anthranilate, chromatograph signal at 30.54 minutes, is not detected in wild-type ‘Mitchell Diploid’ and multiple transgenic lines. A range of emission is quantified in various transgenic events, most notably ZmAAMT1.1-OE 1 with an emission of 29.5 ng1 gFW-1 h-1. Means and standard errors calculated from two biological replicates of two flowers for each transgenic line and wild-type using JMP 8.

Page 136: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

136

Figure 3-8. Identification of methyl anthranilate in petunia flower over-expressing

ZmAAMT1.1 .GC/MS electron ionization spectra at retention time of 29.2 minutes for methyl anthranilate analytical standard (B), Petunia x hybrida cv. ‘Mitchell Diploid’ ZmAAMT1.1-OE 1 captured volatiles (C), and non-transgenic ‘Mitchell Diploid’ captured volatiles (D). Presence of ions 119, 151, 92, and 65 (listed in decreasing relative abundance) in National Institute of Standards and Technology mass reference spectra (A), analytical standard (B), and ZmAAMT1.1-OE 1 (C) confirms the presence of methyl anthranilate, however absence of ions in ‘Mitchell Diploid’ (D) indicates a lack of detectable production.

Page 137: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

137

Figure 3-9. ZmAAMT1.1 transcript abundance in overexpressing Fragaria x ananassa

cv. ‘Strawberry Festival’. Screening of ZmAAMT1.1 transcript abundance in total RNA of T0 leaf tissue to determine high expressing lines. Expected product of 156bp reached sub-saturation and differential amplification across T0 using a one-step RT-PCR at 37 cycles. The transformation plasmid, pEXP-ZmAAMT1.1, is used for an amplification control and no amplification was observed in untransformed ‘Strawberry Festival’. A second one-step RT-PCR of 18S ribosomal RNA is used as a loading control for gene specific reaction. All lines display at least minor amplification and highest estimated expression when taking into account 18S control is in line ZmAAMT1.1-OE 3.

Page 138: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

138

CHAPTER 4 EFFECTS OF ENHANCED LIGHT ENVIRONMENTS ON POSTHARVEST VOLATILE

PROFILES OF ‘STRAWBERRY FESTIVAL’

Background

The development of plants and specific tissues is the result of an interaction

among intrinsic genetic potentials and external environmental factors. A particularly

important environmental factor to plant development is light. In fact, a suit of

photoreceptors exist to sense and transduce information concerning light quality.

Characterization of pathways in Arabidopsis describe how signals are transduced to

ultimately influence numerous aspects of growth and development (Chen et al., 2004).

The susceptibility of strawberry fruit development and ripening to environmental

differences has become evident in regard to temperature in chapter 2 of this dissertation

as well in other studies (MacKenzie et al., 2011; Watson et al., 2002). The content of

specific sugars and general SSC is sensitive to variations in temperature and can affect

other metabolites including volatile compounds. Also, variation in light quantity and

quality during development has been shown to influence volatile content of ripe

strawberry (Kasperbauer et al., 2001; Watson et al., 2002). Previous work in North

Carolina comparing the effects of red and black plastic mulch on strawberry fruit

indicates significant increases in 12 of 19 aroma compounds, likely due to increased red

and far-red light reflected to developing fruit (Kasperbauer et al., 2001). Red mulch work

in Egypt using ‘Strawberry Festival’ indicates increases in fruit weight and total yield

compared to black reflective mulch (El-Yazied and Mady, 2012). However, mixed

results are observed in regard to yield at multiple locations within Florida using cv.

‘Camarosa’ (Locascio et al., 2005). The phenomena of volatile profiles changing in

response to environmental conditions led to exploring the effect of narrow-bandwidth

Page 139: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

139

postharvest light and in-field selective reflective mulch to alter volatile content in

strawberry.

Two pilot experiments were conducted to gain an understanding of the effects of

light quality on strawberry volatile synthesis. The use of narrow-bandwidth light in a

postharvest system to alter volatile profiles of fruits and flowers is explored in a

published work with Postharvest Biology and Technology, Light Modulation of Volatile

Organic Compounds from Petunia Flowers and Select Fruits (Colquhoun et al., 2013).

Also, an application for patent (#61/794,406) has been submitted to the United States

Patent and Trademark Office for technology associated with this work. Within this work

light treatments are shown to specifically change the content of individual volatiles but

not all volatiles in strawberry. These specific instances and literature support

encouraged development of a field scale application to alter light environment through

the use of plastic mulches with different reflective properties.

Results

Postharvest Exposure to Narrow-Bandwidth Light Alters Strawberry Volatile Content

Volatile emissions from strawberry fruits contain a large array of compounds (Du

et al., 2011a; Maarse, 1991). A focused subset of volatile compounds is presented here,

some of which contribute to strawberry sensory perception. These include: 2-hexn-1-ol,

(2E)- (928-95-0); hexanoic acid (142-62-1); butanoic acid, 1-methylethyl ester (638-11-

9); and linalool (78-70-6). Mature strawberry fruit was harvested in the morning and

chilled at 4°C overnight in dark conditions before being exposed to 8 hours of narrow-

bandwidth light of the blue, red, or far red spectrum (Figure 4-2) as well as controls of

white fluorescent light and darkness. Volatile analysis immediately followed treatment to

Page 140: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

140

identify light conditions capable of altering content of specific volatiles. All forms of light,

including white control, decreased the content of 2-hexen-1-ol, (2E)- compared to dark

(Figure 4-2A). Far-red light treatment selectively increased hexanoic acid (Figure 4-2B)

compared to all other treatments. Blue light decreased butanoic acid, 1-methylethyl

ester (Figure 4-2C) while negligibly affected in other treatments. Certain compounds,

such as linalool, are not affected by light treatments (Figure 4-2D). The effect of light

treatments on these selected volatile compounds in Fragaria x. ananassa cv.

‘Strawberry Festival’ validates treatment specificity for altering volatile content.

Red and Black Plastic Mulch

Reflective light qualities from red and black mulch

Light reflected from red and black plastic mulch was measured at 15 cm above

raised beds, in which “Strawberry Festival’ was growing. New red plastic mulch

reflected 8.5% more of direct photosynthetic active radiation (PAR, 400-700nm) back up

to plant canopy than black mulch (Table 4-1)(Figure 4-3A). The majority of this reflected

radiation difference was that of red light (600-700nm), but also a 7% gain in far-red light

(700-800nm) was observed to be reflected from red mulch (Figure 4-3B). Therefore the

ratio of red to far-red light reflected from red mulch is nearly identical to direct sunlight.

Black mulch exhibited a variable difference of red: far-red depending on age of mulch,

but the reflected radiation was only 1-2% of direct sunlight (Table 4-1)(Figure 4-3C).

Therefore, increased radiation was observed over red mulch, but an enhanced

spectrum in regard to the red to far-red ratio was not observed.

Page 141: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

141

Strawberry volatile profiles are not consistently different between red and black mulch treatments

Fruit was harvested from three replicated plots of both black and red mulch

treatments for simultaneous consumer panel and volatile analysis. Fruit was harvested

in the morning and stored at 4°C overnight in the dark. Seventy-two volatile compounds

were quantified in ‘Strawberry Festival’ fruit from the same harvests as consumer

panels (Table 4-3). Significant differences in volatile content for nine compounds was

determined for January 18th, 2013, while only three varied significantly on February 13th,

2013. One of the volatiles that varied between treatments in January, hexanoic acid,

was shown to be enhanced using postharvest far-red light treatments. However, the

field effect was not reproducible, as none of the three volatiles significantly different

between mulch treatments in February overlapped with those from January. Therefore,

it can be concluded that red plastic mulch does not alter the volatile profile of

commercially produced and stored ‘Strawberry Festival’ fruit as hypothesized or

suggested by literature.

Consumers do not distinguish or prefer strawberry from red or black plastic mulch

The morning following harvest, and simultaneous to volatile collections,

approximately 100 panelists consumed and rated multiple berries from each treatment

for overall liking, texture liking, sweetness intensity, sourness intensity, and strawberry

flavor intensity. The experiment was conducted on January 18th and February 13th of

2013. No statistically significant differences were determined for any consumer rated

measures, except for sourness intensity in February (Table 4-2). Mean sourness

intensity of 13.7 and 15.7 for black and red was determined to be statistically significant

using Tukey’s honestly significant difference test. Despite this one significant difference

Page 142: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

142

in sourness intensity it was found that red plastic mulch did not impart any difference to

overall liking, sweetness intensity, or flavor intensity compared to black mulch as

hypothesized.

Discussion

A variable response of volatile compounds to distinct light treatments is

potentially a result of photoreceptor mediated regulation of expression, stability, or

activity of enzymes required for volatile synthesis. Hexanoic acid was selectively

increased by narrow-bandwidth far-red light compared to all other treatments. This is

potentially due to a phytochrome mediated response. On the other hand, butanoic acid,

1-methlethyl ester is decreased by blue light. Therefore, perception of blue light by an

appropriate photoreceptor, such as cryptochrome, may down regulate production of this

volatile. Butanoic acid, 1-methylethyl ester has been previously reported to be

associated with flavor (Hakala et al., 2002) as well as linalool (Jetti et al., 2007; Olbricht

et al.; Ulrich et al., 1997). Both of which were found to have significant correlations to

flavor intensity in the study conducted in chapter 2 of this dissertation. Knowing the

amount of a flavor volatile can be preferentially altered presents the potential to test its

effect in an otherwise unaltered whole fruit.

Despite first-hand experience of altering volatile profiles of various fruits and

flowers, including strawberry, using postharvest light treatments, a similar effect could

not be reproducibly measured in a field scale application. Red plastic mulch does exhibit

an enhanced reflective spectrum compared to black plastic mulch. The red to far-red

ratio reflected from red mulch is similar to that of direct sunlight; therefore, the only

difference is a negligible increase in PAR. No detectable or reproducible significant

differences are observed in both consumer panels and volatile analysis.

Page 143: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

143

The effect of colored mulch on volatile content is possibly dependent upon

genetic background, as response differences to light quality and quantity are known in

strawberry, particularly in flower induction (Hancock, 1999). Previously described

reflective mulch induced volatile differences was documented in cultivar ‘Chandler’.

Also, in that experiment significant gains in glucose, fructose, and sucrose were

attributed to red mulch verse black mulch (Kasperbauer et al., 2001). However, in this

work the cultivar ‘Strawberry Festival’ was used. Previous work in Egypt using cultivar

‘Strawberry Festival’ with red and black plastic mulch describes significant differences in

numerous growth parameters including fruit weight and yield. Soluble solid content was

not significantly affected by the mulch treatment in Egypt (El-Yazied and Mady, 2012).

The previous lack of influence on soluble solid content potentially explains no consistent

differences in volatile content measured in this work, as volatile content has been

correlated to SSC.

Differences in location and season are also potentially explanatory for lack of

consistent volatile differences or consumer perception differences. Strawberry

production in Florida occurs during the winter months when solar radiation reaching the

soil surface has the greatest proportion of red and far red light. This is due to a lower

angle of incidence and thus greater atmosphere the radiation must travel through. Egypt

and Florida sit at the same latitudes, which may account for the lack of red mulch

inducing greater volatile content. North Carolina production occurs in late spring to early

summer when the angle of incidence of sunlight is lower, thus a decreased amount of

red and far-red light reaches the soil surface. Red mulch reflects more red and far-red

light compared to black plastic mulch. Therefore, in a solar environment with less red

Page 144: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

144

and far-red light, such as May in North Carolina compared to January in Florida, the

enhancements by red mulch may elicit a more pronounced effect.

The manner in which fruits were assayed for volatile differences in the previous

work in North Carolina (Kasperbauer et al., 2001) and this study is potentially

explanatory of differences in effects observed. Kasperbauer harvested fruit in the late

afternoon, following a full day of exposure to sunlight. Also, the fruit was frozen

immediately for later volatile analysis. Conversely, this work in Florida followed an

approach more relevant to commercial fresh strawberry. Fruit was harvested in the

mornings and stored at 4ºC in the dark overnight. It is possible the cold and/or dark

treatment negated any effects of the red mulch on volatile emission. If this is true, red

mulch may present itself as a means to enhance flavor of frozen strawberry products,

but the effects will not stand up to current postharvest practices of fresh strawberry.

Materials and Methods

Postharvest Narrow-Bandwidth Light Treatment

Fragaria x ananassa cv. ‘Strawberry Festival’ was grown according to current

commercial practices for annual strawberry plasticulture in Florida (MacKenzie et al.,

2011; Santos et al., 2012) beginning in the Fall of 2011 and continuing through the

Winter of 2012. Fully-ripe fruit by commercial standards (Strand, 2008) was harvested

at 9:00 in the morning. Fruit was transported from Citra, FL to Gainesville, FL and

stored at 4°C in the dark overnight prior to light treatments and subsequent analysis of

fresh strawberry fruit volatiles at 9:30 the following morning.

Seven berries were selected based on uniformity of appearance per treatment,

and were placed into clear plastic containers for each treatment. A dark treatment and

four light treatments were tested: white, blue, red, and far-red (Figure 4-1).

Page 145: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

145

Monochromatic light treatments were generated using a light emitting diode (LED)

platform (Zhang et al., 2011b)}. In all cases, light treatments were 50 µmol m-2 s-1 in

separate illumination chambers within an environmentally-controlled and actively

ventilated area (22°C ± 1.5°C). The light treatments were generated using the Flora

Lamp LED arrays (Light Emitting Computers, Victoria, B.C.). The control treatment

(white light) was generated by cool white fluorescent bulbs, while the dark treatments

were performed in an identical light-tight enclosure under the same ambient conditions.

Fruit was treated for eight hours without photoperiod prior to volatile collection.

Spectroradiometer readings were obtained with a StellarNet device and visualized on

SpectraWiz software (Stellar Net, Tampa, FL).

Red and Black Plastic Mulch Field Conditions

Two treatments were replicated in three blocks consisting of approximately 150

plants per treatment replicate at the University of Florida and Institute of Food and

Agricultural Sciences Plant Science Research and Education Unit in Citra, Florida.

Planting of bare root propagules occurred on October 18th, 2012 and transplant

establishment is facilitated by ten days of overhead irrigation. Laying of Black and Red

Selective Reflective Mulch (Garden Trends, Inc.) over existing black polyethylene

occurred on November 5th, 2012. Spectroradiometer readings were obtained with a

StellarNet device and visualized on SpectraWiz software (Stellar Net, Tampa, FL).

Reflected light quality was measured at 15 cm above plastic mulch.

Harvests were conducted twice per week beginning December 18th, 2012

through March 14th, 2013. In which, fully-ripe fruit by commercial standards (Strand,

2008) was harvested at 9:00 in the morning, weather permitting. Count and mass (kg) of

marketable and cull was recorded for each replicated treatment in the field. Fruit was

Page 146: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

146

transported from Citra to Gainesville, FL and stored at 4°C in the dark overnight in the

event of simultaneous analysis of fresh strawberry fruit volatiles and/or sensory analysis

the following morning beginning at 9:30.

Flavor Panel

All consumer panels were approved by the University of Florida Institutional

Review Board. One hundred panelists on January 18th, 2013 and 88 panelists on

February 13th, 2013 evaluated strawberry fruit grown over red and black plastic mulch

raised beds (Tieman et al., 2012). Fresh, fully-ripe strawberry fruit was removed from

overnight 4°C dark storage and allowed to warm to room temperature prior to sensory

analysis. Each panelist was given two to three whole strawberries for evaluation,

depending on cultivar availability. Panelist bit each sample, chewed, and swallowed it.

Ratings for overall liking and texture liking were scaled on hedonic gLMS in the context

of all pleasure/displeasure experiences. Perceived intensity of sweetness, sourness,

and strawberry flavor are scaled in context of all sensory experiences using sensory

gLMS (Bartoshuk et al., 2004; Bartoshuk et al., 2003; Bartoshuk et al., 2005; Tieman et

al., 2012). Scales were employed to mediate valid comparisons across subjects and

sessions.

Volatile Analysis

At least 100 grams or seven berries of each sample were removed from 4°C dark

overnight storage or postharvest narrow-bandwidth light treatment prior to volatile

collection. A single biological replicate technically replicated three times was used per

postharvest light treatment. For plastic mulch experiment volatiles were collected in

technical triplicates per three biological replicates of each treatment to achieve precise

quantitative measurement of volatile compounds emitted from strawberry fruit. Samples

Page 147: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

147

were homogenized in a blender prior to splitting into three 15 gram technical replicates

for immediate capturing of volatile emissions and the remainder frozen in N2 (l) and

stored at -80°C. A two hour collection in a dynamic headspace volatile collection system

(Underwood et al., 2005) allowed for concentration of emitted volatiles on HaySep 80-

100 porous polymer adsorbent (Hayes Seperations Inc., Bandera, TX, USA). Elution

from polymer was described by Schmelz et al. (Schmelz et al., 2003).

Quantification of volatiles in an elution was performed on an Agilent 7890A

Series gas chromatograph (GC) (carrier gas; He at 3.99 mL min-1; splitless injector,

temperature 220°C, injection volume 2 µl) equipped with a DB-5 column ((5%-Phenyl)-

methylpolysiloxane, 30 m length × 250 µm i.d. × 1 µm film thickness; Agilent

Technologies, Santa Clara, CA, USA). Oven temperature was programmed from 40°C

(0.5 min hold) at 5°C min-1 to 250°C (4 min hold). Signals were captured with a flame

ionization detector (FID) at 280°C. Peaks from FID signal were integrated manually with

Chemstation B.04.01 software (Agilent Technologies, Santa Clara, CA). Volatile

emissions (ng1 gFW-1 h-1) were calculated based on individual peak area relative to

sample elution standard peak area. GC-Mass Spectrometry (MS) analysis of elutions

was performed on an Agilent 6890N GC in tandem with an Agilent 5975 MS (Agilent

Technologies, Santa Clara, CA, USA) and retention times were compared with

authentic standards (Sigma Aldrich, St Louis, MO, USA) for volatile identification

(Schmelz et al., 2001). Chemical Abstract Services (CAS) registry numbers were used

to query SciFinder® substances database for associated chemical name and molecular

formula presented in Table 2-6.

Page 148: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

148

Statistical Analysis

One-way ANOVA determined statistically significant differences between

volatiles of postharvest narrow-bandwidth light treatments, volatiles of plastic mulch

treatments, and consumer ratings of plastic mulch treatments. Tukey’s honestly

significant difference test was conducted to separate means. All analyses were

conducted in JMP 8.

Page 149: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

149

Table 4-1. Photosynthetically active, red, and far-red radiation reflected by

selective reflective mulch.

PAR (400-700 nm)

Red (600-700 nm)

Far-red (700-800 nm)

Red:Far-red

Unexposed Exposed Unexposed Exposed Unexposed Exposed Unexposed Exposed

Direct Sun µmol

1 m

-2 s

-1 2324 853 754

1.1 % Direct PAR 100.0 63.7 32.4

Black Reflective µmol

1 m

-2 s

-1 101 77 34 25 19 52

1.8 0.5 % Direct PAR 4.3 3.3 1.5 1.1 0.8 2.2

Red Reflective µmol

1 m

-2 s

-1 298 238 200 146 193 194

1.0 0.8 % Direct PAR 12.8 10.3 8.6 6.3 8.3 8.3

Difference µmol1 m

-2 s

-1 197 162 165 122 174 141

0.9 0.9 (red-black) % Direct PAR 8.5 7.0 7.1 5.2 7.5 6.1

Note: Radiation measured from unexposed mulch and 4 month exposed mulch on March 14th, 2013. Relative value is average of three replicates divided by direct PAR at time of measurement. Absolute value is product of relative and general direct PAR of 2324 µmol1 m-2 s-1.

Page 150: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

150

Table 4-2. Consumer panels do not perceive differences between red and black plastic mulch grown strawberries.

Black Red Black verse Red Ideal

n Mean Standard Deviation

Mean Standard Deviation

ANOVA p-value

Tukey's HSD

(α=0.05) Mean

Standard Deviation

1/18/2013

Overall Liking 88 34.4 28.2 34.1 27.9 0.87 a, a

Texture Liking 88 38.0 28.4 37.8 28.9 0.92 a, a

Sweetness Intensity 88 28.7 23.4 28.9 24.1 0.93 a, a 41.2 26.1

Sourness Intensity 88 19.9 19.2 18.8 18.6 0.32 a, a 16.7 15.9

Strawberry Flavor Intensity

88 32.1 23.9 32.7 24.0 0.72 a, a 43.1 26.2

2/13/2013

Overall Liking 100 37.3 27.6 36.6 28.3 0.66 a, a

Texture Liking 100 35.9 26.9 34.4 27.0 0.24 a, a

Sweetness Intensity 100 33.8 25.5 32.2 24.9 0.22 a, a 41.7 26.1

Sourness Intensity 100 13.7 14.5 15.8 16.1 0.02 b, a 16.5 15.5

Strawberry Flavor Intensity

100 34.4 25.0 34.1 24.3 0.81 a, a 44.3 26.6

Note: Panels were conducted at two separate points of the season in which consumers rated overall liking, texture liking, sweetness intensity, sourness intensity, and strawberry flavor intensity of strawberries grown over red or black plastic mulch. All attributes were statistically indistinguishable across treatments on both dates, except for sourness intensity being greater in the red treatment on February 13, 2013. One-way ANOVA analysis conducted in JMP 8.

Page 151: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

151

Table 4-3. Volatile analysis does not detect consistent differences between red and black plastic mulch grown strawberries.

1/18/2013 2/13/2013

Black Red Black Red

Volatile CAS #

n Mean Std

Error Mean

Std Error

ANOVA p-value

Mean Std

Error Mean

Std Error

ANOVA p-value

616-25-1 9 17.99 1.18 22.27 1.18 0.021 29.97 0.99 29.09 0.99 0.533

1629-58-9 9 127.91 6.93 147.77 6.93 0.060 223.19 7.13 222.48 7.13 0.945

96-22-0 9 50.19 2.19 52.03 2.19 0.562 63.10 2.23 65.76 2.23 0.412

110-62-3 9 43.30 2.57 42.02 2.57 0.729 35.63 1.84 34.85 1.84 0.770

1534-08-3 9 0.27 0.03 0.33 0.03 0.226 0.44 0.03 0.40 0.03 0.405

105-37-3 9 1.04 0.17 0.47 0.17 0.032 16.96 4.95 12.16 4.95 0.503

109-60-4 9 0.49 0.04 0.41 0.04 0.197 0.94 0.18 0.59 0.18 0.184

623-42-7 9 3238.9 97.71 2667.3 97.71 0.001 2633.3 214.16 2541.5 214.16 0.766

591-78-6 9 5.94 0.21 5.00 0.21 0.005 4.50 0.24 4.82 0.24 0.357

1576-87-0 9 39.84 1.95 44.77 1.95 0.093 62.39 2.17 62.14 2.17 0.937

1576-86-9 9 34.39 1.48 38.62 1.48 0.060 56.46 2.80 56.20 2.80 0.948

623-43-8 9 63.94 10.88 106.48 10.88 0.014 150.19 8.42 147.79 8.42 0.843

66-25-1 9 1466.3 54.45 1419.39 54.45 0.551 2450.9 151.42 2532.3 151.42 0.709

123-86-4 9 8.70 0.83 9.40 0.83 0.561 22.28 2.26 22.41 2.26 0.968

624-24-8 9 17.52 0.54 14.55 0.54 0.001 14.29 1.10 12.92 1.10 0.388

29674-47-3

9 8.41 0.44 7.77 0.44 0.319 8.70 0.59 8.23 0.59 0.582

96-04-8 9 0.61 0.09 0.43 0.09 0.164 0.64 0.06 0.76 0.06 0.191

638-11-9 9 102.16 5.79 108.00 5.79 0.486 139.18 5.09 119.62 5.09 0.015

116-53-0 9 31.94 1.64 30.38 1.64 0.510 28.32 2.35 26.86 2.35 0.667

7452-79-1 9 22.83 3.66 28.67 3.66 0.277 35.22 3.00 31.71 3.00 0.419

6728-26-3 9 6854.7 207.40 6911.7 207.40 0.849 7585.6 235.65 7614.1 235.65 0.933

928-95-0 9 67.18 5.42 79.51 5.42 0.127 111.01 12.49 104.99 12.49 0.738

111-27-3 9 33.38 2.17 39.14 2.17 0.079 48.49 7.59 40.53 7.59 0.469

123-92-2 9 2.81 0.15 2.74 0.15 0.720 5.18 0.29 5.20 0.29 0.962

624-41-9 9 3.27 0.28 3.26 0.28 0.989 4.55 0.30 3.93 0.30 0.158

110-43-0 9 4.31 0.26 4.05 0.26 0.491 12.65 1.07 14.91 1.07 0.156

2432-51-1 9 24.04 1.45 22.22 1.45 0.389 23.58 1.23 22.61 1.23 0.583

105-66-8 9 1.00 0.08 0.81 0.08 0.102 4.95 0.67 4.45 0.67 0.599

111-71-7 9 2.39 0.13 2.47 0.13 0.676 3.44 0.15 3.60 0.15 0.474

628-63-7 9 1.86 0.12 1.83 0.12 0.864 3.04 0.11 2.90 0.11 0.391

106-70-7 9 208.04 10.13 161.34 10.13 0.005 223.92 19.03 215.28 19.03 0.752

55514-48-2

9 1.98 0.13 2.23 0.13 0.206 1.96 0.08 1.61 0.08 0.007

539-90-2 9 8.42 0.43 8.44 0.43 0.976 17.46 0.80 17.26 0.80 0.859

142-62-1 9 133.59 18.17 267.15 18.17 0.000 376.20 23.86 355.03 23.86 0.539

110-93-0 9 2.68 0.11 2.78 0.11 0.541 4.12 0.19 4.14 0.19 0.944

109-21-7 9 30.49 4.60 38.86 4.60 0.216 117.60 9.42 114.99 9.42 0.847

123-66-0 9 9.61 0.99 5.61 0.99 0.011 73.44 16.72 71.10 16.72 0.922

124-13-0 9 4.41 0.22 4.31 0.22 0.768 5.64 0.26 5.80 0.26 0.670

142-92-7 9 14.79 0.76 15.00 0.76 0.847 27.12 1.77 28.09 1.77 0.703

2497-18-9 9 8.29 1.42 8.39 1.42 0.958 8.56 2.46 8.72 2.46 0.963

60415-61-4

9 0.64 0.07 0.81 0.07 0.098 1.61 0.10 1.44 0.10 0.228

104-76-7 9 7.98 0.49 8.45 0.49 0.506 14.55 0.27 12.51 0.27 0.000

2548-87-0 9 1.59 0.08 1.67 0.08 0.471 0.91 0.23 1.45 0.23 0.112

540-18-1 9 0.78 0.07 0.85 0.07 0.520 1.67 0.12 1.68 0.12 0.937

4077-47-8 9 3.58 0.31 3.81 0.31 0.611 7.56 0.92 6.50 0.92 0.427

20664-46-4

9 13.59 1.44 17.53 1.44 0.071 31.64 1.68 31.86 1.68 0.930

821-55-6 9 1.28 0.15 1.62 0.15 0.133 3.80 0.18 3.95 0.18 0.545

5989-33-3 9 2.10 0.13 2.01 0.13 0.629 3.68 0.22 4.09 0.22 0.196

Page 152: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

152

Table 4-3. Continued

1/18/2013 2/13/2013

Black Red Black Red

Volatile CAS #

n Mean Std

Error Mean

Std Error

ANOVA p-value

Mean Std

Error Mean

Std Error

ANOVA p-value

78-70-6 9 51.04 3.26 48.20 3.26 0.547 58.38 4.60 57.13 4.60 0.850

124-19-6 9 4.02 0.34 4.22 0.34 0.687 9.34 0.78 9.72 0.78 0.734

103-09-3 9 0.41 0.03 0.45 0.03 0.341 0.72 0.08 0.69 0.08 0.827

140-11-4 9 1.97 0.16 1.73 0.16 0.304 1.86 0.14 1.92 0.14 0.754

2639-63-6 9 13.35 0.96 14.00 0.96 0.640 35.51 2.50 34.74 2.50 0.830

53398-83-7

9 14.13 0.81 14.68 0.81 0.642 16.99 3.00 17.91 3.00 0.830

106-32-1 9 0.10 0.03 0.07 0.03 0.488 0.97 0.33 0.83 0.33 0.759

112-14-1 9 2.83 0.22 3.14 0.22 0.328 4.36 0.36 3.97 0.36 0.451

564-94-3 9 0.65 0.04 0.63 0.04 0.710 0.52 0.05 0.47 0.05 0.474

3913-81-3 9 1.92 0.14 2.25 0.14 0.123 3.70 0.19 3.84 0.19 0.605

110-39-4 9 24.75 5.80 37.41 5.80 0.142 54.39 2.99 52.74 2.99 0.701

110-38-3 9 4.37 0.50 4.81 0.50 0.549 10.50 0.72 10.01 0.72 0.632

29811-50-5

9 0.19 0.01 0.16 0.01 0.052 0.30 0.04 0.30 0.04 0.970

7786-58-5 9 0.22 0.02 0.23 0.02 0.874 0.61 0.06 0.56 0.06 0.574

15111-96-3

9 0.23 0.04 0.35 0.04 0.061 0.76 0.06 0.83 0.06 0.465

706-14-9 9 2.52 0.58 0.94 0.58 0.073 2.12 0.15 1.94 0.15 0.393

10522-34-6

9 1.67 0.18 1.93 0.18 0.335 2.72 0.10 2.94 0.10 0.131

5881-17-4 9 1.21 0.09 1.07 0.09 0.265 1.67 0.08 1.72 0.08 0.634

128-37-0 9 0.36 0.02 0.35 0.02 0.782 0.58 0.06 0.58 0.06 0.971

40716-66-3

9 25.74 2.33 27.02 2.33 0.702 71.48 6.29 69.50 6.29 0.827

4887-30-3 9 1.82 0.31 2.46 0.31 0.160 10.99 1.03 11.65 1.03 0.658

5454-09-1 9 0.76 0.11 1.02 0.11 0.119 3.58 0.40 3.88 0.40 0.600

2305-05-7 9 3.40 0.31 3.91 0.31 0.267 11.76 0.79 10.59 0.79 0.309

TOTAL 9 12889.1

4 383.80

12535.55

383.80 0.524 15004.

39 488.73

14933.75

488.73 0.920

Note: Volatiles were collected from fresh F. x ananassa cv. ‘Strawberry Festival’ simultaneously with consumer panels. One-way ANOVA determined statistically significant differences of nine volatiles between treatments on January 18th, 2013 and three volatiles between treatments on February 13th, 2013. Significant values (α=0.05) are in bold. However, no volatile compounds showed consistent differences on both collections. One-way ANOVA analysis conducted in JMP 8.

Page 153: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

153

Figure 4-1. Spectroradiometer readings of the light qualities used in postharvest

treatments. All treatments represent the waveform generated at a fluence rate of 50 µmol m-2 s-1. B = blue, R = red, FR = far-red, HBW = half-bandwidth.

Page 154: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

154

Figure 4-2. Effect of light treatments on selected volatile compounds in Fragaria x.

ananassa cv. ‘Strawberry Festival’. Light decreases the content of 2-hexen-1-ol, (2E)- (928-95-0) (A) compared to dark. Far-red light treatment selectively increases hexanoic acid (142-62-1) (B) compared to all other treatments. Blue light decreases butanoic acid, 1-methylethyl ester (638-11-9) (C) while negligibly affecting other treatments. Certain compounds, like linalool (78-70-6) are not affected by light treatments (D). Volatile collections were conducted multiple times with similar results observed. Volatile content is the average of three technical replicates. Error bars represent one standard error. Data analysis conducted in JMP 8.

Page 155: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

155

A

B

C

D

Page 156: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

156

Figure 4-3. Spectrum of light reflected from red and black plastic mulch. Comparison of

direct sunlight to light reflected from unexposed red and black mulch (A). Difference spectrum of light reflected from red and black of unexposed and exposed mulch (B). Comparison of light reflected from unexposed and exposed black (C) and red (D) plastic mulch. Reflected measurements recorded at 15 cm above plastic mulch. Data normalized by averaging three replicates, dividing by direct PAR at time of measurement, and multiplying by general direct PAR of 2324 µmol1 m-2 s-1.

Page 157: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

157

LIST OF REFERENCES

Aharoni A, Giri AP, Verstappen FWA, Bertea CM, Sevenier R, Sun ZK, Jongsma MA, Schwab W, Bouwmeester HJ. 2004. Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 16.

Aharoni A, Keizer LCP, Bouwmeester HJ, Sun ZK, Alvarez-Huerta M, Verhoeven HA, Blaas J, van Houwelingen A, De Vos RCH, van der Voet H, Jansen RC, Guis M, Mol J, Davis RW, Schena M, van Tunen AJ, O'Connell AP. 2000. Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell 12.

Aharoni A, Keizer LCP, Van den Broeck HC, Blanco-Portales R, Munoz-Blanco J, Bois G, Smit P, De Vos RCH, O'Connell AP. 2002. Novel insight into vascular, stress, and auxin-dependent and -independent gene expression programs in strawberry, a non-climacteric fruit. Plant Physiology 129, 1019-1031.

Aharoni A, O'Connell AP. 2002. Gene expression analysis of strawberry achene and receptacle maturation using DNA microarrays. Journal of Experimental Botany 53, 2073-2087.

Arnold K, Bordoli L, Kopp J, Schwede T. 2006. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195-201.

Baldwin EA, Goodner K, Plotto A. 2008. Interaction of volatiles, sugars, and acids on perception of tomato aroma and flavor descriptors. Journal of Food Science 73.

Baldwin EA, Scott JW, Einstein MA, Malundo TMM, Carr BT, Shewfelt RL, Tandon KS. 1998. Relationship between sensory and instrumental analysis for tomato flavor. Journal of the American Society for Horticultural Science 123.

Bartoshuk LM, Duffy V, Green BG, Hoffman HJ, Ko CW, Lucchina LA, Marks LE, Snyder DJ, Weiffenbach JM. 2004. Valid across-group comparisons with labeled scales: the gLMS versus magnitude matching. Physiology & Behavior 82, 109-114.

Bartoshuk LM, Duffy VB, Fast K, Green BG, Prutkin J, Snyder DJ. 2003. Labeled scales (eg, category, Likert, VAS) and invalid across-group comparisons: what we have learned from genetic variation in taste. Food Quality and Preference 14, 125-138.

Bartoshuk LM, Fast K, Snyder DJ. 2005. Differences in our sensory - Invalid comparisons with labeled scales. Current Directions in Psychological Science 14, 122-125.

Bartoshuk LM, Klee HJ. 2013. Better Fruits and Vegetables through Sensory Analysis. Current Biology 23, R374-R378.

Page 158: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

158

Basson CE, Groenewald JH, Kossmann J, Cronje C, Bauer R. 2010. Sugar and acid-related quality attributes and enzyme activities in strawberry fruits: Invertase is the main sucrose hydrolysing enzyme. Food Chemistry 121.

Bohlmann J, Lins T, Martin W, Eilert U. 1996. Anthranilate synthase from Ruta graveolens - Duplicated AS alpha genes encode tryptophan-sensitive and tryptophan-insensitive isoenzymes specific to amino acid and alkaloid biosynthesis. Plant Physiology 111, 507-514.

Breslin PAS. 2001. Human gustation and flavour. Flavour and Fragrance Journal 16, 439-456.

Brown EM, McDougall GJ, Stewart D, Pereira-Caro G, Gonzalez-Barrio R, Allsopp P, Magee P, Crozier A, Rowland I, Gill CIR. 2012. Persistence of Anticancer Activity in Berry Extracts after Simulated Gastrointestinal Digestion and Colonic Fermentation. Plos One 7.

Bruce BD. 2000. Chloroplast transit peptides: structure, function and evolution. Trends in Cell Biology 10, 440-447.

Brummell DA, Harpster MH. 2001. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Molecular Biology 47.

Burdach KJ, Kroeze JHA, Koster EP. 1984. Nasal, Retronasal, and Gustatory Perception - An Experimental Comparison. Perception & Psychophysics 36.

Castillejo C, de la Fuente JI, Iannetta P, Botella MA, Valpuesta V. 2004. Pectin esterase gene family in strawberry fruit: study of FaPE1, a ripening-specific isoform. Journal of Experimental Botany 55, 909-918.

Causse M, Saliba-Colombani V, Lesschaeve I, Buret M. 2001. Genetic analysis of organoleptic quality in fresh market tomato. 2. Mapping QTLs for sensory attributes. Theoretical and Applied Genetics 102, 273-283.

Chalavi V, Tabaeizadeh Z, Thibodeau P. 2003. Enhanced resistance to Verticillium dahliae in transgenic strawberry plants expressing a Lycopersicon chilense chitinase gene. Journal of the American Society for Horticultural Science 128, 747-753.

Chambers A, Carle S, Njuguna W, Chamala S, Bassil N, Whitaker VM, Barbazuk WB, Folta KM. 2013. A genome-enabled, high-throughput, and multiplexed fingerprinting platform for strawberry (Fragaria L.). Molecular Breeding 31, 615-629.

Chambers A, Whitaker VM, Gibbs B, Plotto A, Folta KM. 2012. Detection of the linalool-producing NES1 variant across diverse strawberry (Fragaria spp.) accessions. Plant Breeding 131.

Chandler CK, Legard DE, Dunigan DD, Crocker TE, Sims CA. 2000. 'Strawberry Festival' strawberry. Hortscience 35.

Page 159: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

159

Chen M, Chory J, Fankhauser C. 2004. Light signal transduction in higher plants. Annual Review of Genetics 38, 87-117.

Christensen CM. 1983. Effects of color on aroma, flavor and texture judgements of foods. Journal of Food Science 48, 787-790.

Cliff M, Noble AC. 1990. Time-intensity evaluation of sweetness and fruitiness and their interaction in a model solution. Journal of Food Science 55.

Colquhoun T, Schwieterman M, Gilbert J, Jaworski E, Langer K, Jones C, Rushing G, Hunter T, Olmstead J, Clark D, Folta K. 2013. Light modulation of volatile organic compounds from petunia flowers and select fruits. Postharvest Biology and Technology 86, 37-44.

Colquhoun TA, Levin LA, Moskowitz HR, Whitaker VM, Clark DG, Folta KM. 2012. Framing the perfect strawberry: an exercise in consumer-assisted selection of fruit crops. Journal of Berry Research 2, 45-61.

Colquhoun TA, Schimmel BCJ, Kim JY, Reinhardt D, Cline K, Clark DG. 2010a. A petunia chorismate mutase specialized for the production of floral volatiles. Plant Journal 61, 145-155.

Colquhoun TA, Verdonk JC, Schimmel BCJ, Tieman DM, Underwood BA, Clark DG. 2010b. Petunia floral volatile benzenoid/phenylpropanoid genes are regulated in a similar manner. Phytochemistry 71, 158-167.

Cumplido-Laso G, Medina-Puche L, Moyano E, Hoffmann T, Sinz Q, Ring L, Studart-Wittkowski C, Luis Caballero J, Schwab W, Munoz-Blanco J, Blanco-Portales R. 2012. The fruit ripening-related gene FaAAT2 encodes an acyl transferase involved in strawberry aroma biogenesis. Journal of Experimental Botany 63.

Darrow GM. 1966. The Strawberry: History, Breeding, and Physiology.

Dexter R, Qualley A, Kish CM, Ma CJ, Koeduka T, Nagegowda DA, Dudareva N, Pichersky E, Clark D. 2007. Characterization of a petunia acetyltransferase involved in the biosynthesis of the floral volatile isoeugenol. Plant Journal 49, 265-275.

Du X, Song M, Rouseff R. 2011a. Identification of New Strawberry Sulfur Volatiles and Changes during Maturation. Journal of Agricultural and Food Chemistry 59, 1293-1300.

Du XF, Plotto A, Baldwin E, Rouseff R. 2011b. Evaluation of Volatiles from Two Subtropical Strawberry Cultivars Using GC-Olfactometry, GC-MS Odor Activity Values, and Sensory Analysis. Journal of Agricultural and Food Chemistry 59, 12569-12577.

Edris AE, Chizzola R, Franz C. 2008. Isolation and characterization of the volatile aroma compounds from the concrete headspace and the absolute of Jasminum sambac (L.) Ait. (Oleaceae) flowers grown in Egypt. European Food Research and Technology 226, 621-626.

Page 160: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

160

Edziri H, Mastouri M, Cheraif I, Aouni M. 2010. Chemical composition and antibacterial, antifungal and antioxidant activities of the flower oil of Retama raetam (Forssk.) Webb from Tunisia. Natural Product Research 24, 789-796.

El-Yazied AA, Mady MA. 2012. Plastic mulch color and potassium foliar application affect growth and productivity of strawberry ( Fragaria * ananassa Duch). Journal of Applied Sciences Research.

Emanuelsson O, Nielsen H, Von Heijne G. 1999. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Science 8, 978-984.

Fait A, Hanhineva K, Beleggia R, Dai N, Rogachev I, Nikiforova VJ, Fernie AR, Aharoni A. 2008. Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development. Plant Physiology 148.

Finn CE, Retamales JB, Lobos GA, Hancock JF. 2013. The Chilean Strawberry (Fragaria chiloensis): Over 1000 Years of Domestication. Hortscience 48, 418-421.

Folta KM, Davis TM. 2006. Strawberry genes and genomics. Critical Reviews in Plant Sciences 25, 399-415.

Folta KM, Dhingra A, Howard L, Stewart PJ, Chandler CK. 2006. Characterization of LF9, an octoploid strawberry genotype selected for rapid regeneration and transformation. Planta 224, 1058-1067.

Frank RA, Byram J. 1988. Taste smell interactions are tastant and odorant dependent. Chemical Senses 13.

Fujimaru T, Lim J. 2013. Effects of Stimulus Intensity on Odor Enhancement by Taste. Chemosensory Perception 6, 1-7.

Ghawana S, Paul A, Kumar H, Kumar A, Singh H, Bhardwaj PK, Rani A, Singh RS, Raizada J, Singh K, Kumar S. 2011. An RNA isolation system for plant tissues rich in secondary metabolites. BMC research notes 4, 85-85.

Giampieri F, Alvarez-Suarez JM, Mazzoni L, Romandini S, Bompadre S, Diamanti J, Capocasa F, Mezzetti B, Quiles JL, Ferreiro MS, Tulipani S, Battino M. 2013. The potential impact of strawberry on human health. Natural Product Research 27, 448-455.

Giampieri F, Tulipani S, Alvarez-Suarez JM, Quiles JL, Mezzetti B, Battino M. 2012. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition 28.

Given NK, Venis MA, Grierson D. 1988. Hormonal-regulation of ripening in the strawberry, a non-climacteric fruit. Planta 174, 402-406.

Page 161: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

161

Goff SA, Klee HJ. 2006. Plant volatile compounds: Sensory cues for health and nutritional value? Science 311.

Hakala MA, Lapvetelainen AT, Kallio HP. 2002. Volatile compounds of selected strawberry varieties analyzed by purge-and-trap headspace GC-MS. Journal of Agricultural and Food Chemistry 50.

Hall RL. 1968. Flavor and flavoring seeking a concensus of definition. Food Technology 22, 1496-&.

Hancock JF. 1999. Strawberries.

Hancock JF, Callow PW, Dale A, Luby JJ, Finn CE, Hokanson SC, Hummer KE. 2001. From the Andes to the Rockies: Native strawberry collection and utilization. Hortscience 36, 221-225.

Hoffmann T, Kalinowski G, Schwab W. 2006. RNAi-induced silencing of gene expression in strawberry fruit (Fragaria x ananassa) by agroinfiltration: a rapid assay for gene function analysis. Plant Journal 48.

Hong V, Wrolstad RE. 1990. Use of HPLC separation photodiode array detection for characterization of anthocyanins. Journal of Agricultural and Food Chemistry 38.

Jetti RR, Yang E, Kurnianta A, Finn C, Qian MC. 2007. Quantification of selected aroma-active compounds in strawberries by headspace solid-phase microextraction gas chromatography and correlation with sensory descriptive analysis. Journal of Food Science 72.

Jia HF, Wang YH, Sun MZ, Li BB, Han Y, Zhao YX, Li XL, Ding N, Li C, Ji WL, Jia WS. 2013. Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening. New Phytologist 198, 453-465.

Jorgensen RA, Cluster PD, English J, Que QD, Napoli CA. 1996. Chalcone synthase cosuppression phenotypes in petunia flowers: Comparison of sense vs antisense constructs and single-copy vs complex T-DNA sequences. Plant Molecular Biology 31, 957-973.

Jouquand C, Chandler C, Plotto A, Goodner K. 2008. A Sensory and Chemical Analysis of Fresh Strawberries Over Harvest Dates and Seasons Reveals Factors That Affect Eating Quality. Journal of the American Society for Horticultural Science 133, 859-867.

Kasperbauer MJ, Loughrin JH, Wang SY. 2001. Light reflected from red mulch to ripening strawberries affects aroma, sugar and organic acid concentrations. Photochemistry and Photobiology 74, 103-107.

Page 162: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

162

Kessler D, Diezel C, Clark DG, Colquhoun TA, Baldwin IT. 2013. Petunia flowers solve the defence/apparency dilemma of pollinator attraction by deploying complex floral blends. Ecology Letters 16, 299-306.

Koellner TG, Lenk C, Zhao N, Seidl-Adams I, Gershenzon J, Chen F, Degenhardt J. 2010. Herbivore-Induced SABATH Methyltransferases of Maize That Methylate Anthranilic Acid Using S-Adenosyl-L-Methionine. Plant Physiology 153, 1795-1807.

Koo YJ, Kim MA, Kim EH, Song JT, Jung C, Moon JK, Kim JH, Seo HS, Song SI, Kim JK, Lee JS, Cheong JJ, Do Choi Y. 2007. Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana. Plant Molecular Biology 64, 1-15.

Lavid N, Schwab W, Kafkas E, Koch-Dean M, Bar E, Larkov O, Ravid U, Lewinsohn E. 2002. Aroma biosynthesis in strawberry: S-adenosylmethionine : furaneol O-methyltransferase activity in ripening fruits. Journal of Agricultural and Food Chemistry 50.

Lavin JG, Lawless HT. 1998. Effects of color and odor on judgments of sweetness among children and adults. Food Quality and Preference 9.

Lee YK, Kim I-J. 2011. Modulation of fruit softening by antisense suppression of endo-beta-1,4-glucanase in strawberry. Molecular Breeding 27, 375-383.

Li H-m, Chiu C-C. 2010. Protein Transport into Chloroplasts. Annual Review of Plant Biology, Vol 61 61, 157-180.

Lindemann B. 2001. Receptors and transduction in taste. Nature 413, 219-225.

Locascio SJ, Gilreath JP, Olson S, Hutchinson CM, Chase CA. 2005. Red and black mulch color affects production of Florida strawberries. Hortscience 40, 69-71.

Lunkenbein S, Salentijn EMJ, Coiner HA, Boone MJ, Krens FA, Schwab W. 2006. Up- and down-regulation of Fragariaxananassa O-methyltransferase: impacts on furanone and phenylpropanoid metabolism. Journal of Experimental Botany 57, 2445-2453.

Maarse H. 1991. Volatile Compounds in Foods and Beverages.

MacKenzie SJ, Chandler CK. 2009. The late season decline in strawberry fruit soluble solid content observed in Florida is caused by rising temperatures. Acta Horticulturae.

MacKenzie SJ, Chandler CK, Hasing T, Whitaker VM. 2011. The Role of Temperature in the Late-season Decline in Soluble Solids Content of Strawberry Fruit in a Subtropical Production System. Hortscience 46.

Manning K. 1994. Changes in gene-expression during strawberry fruit ripening and their regulation by auxin. Planta 194, 62-68.

Page 163: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

163

Manning K. 1998. Isolation of a set of ripening-related genes from strawberry: their identification and possible relationship to fruit quality traits. Planta 205, 622-631.

Mano Y, Nemoto K. 2012. The pathway of auxin biosynthesis in plants. Journal of Experimental Botany 63, 2853-2872.

Masaoka Y, Satoh H, Akai L, Homma I. 2010. Expiration: The moment we experience retronasal olfaction in flavor. Neuroscience Letters 473, 92-96.

Massa MJ, Robacker DC, Patt J. 2008. Identification of grape juice aroma volatiles and attractiveness to the Mexican fruit fly (Diptera : Tephritidae). Florida Entomologist 91, 266-276.

Menager I, Jost M, Aubert C. 2004. Changes in physicochemical characteristics and volatile constituents of strawberry (cv. Cigaline) during maturation. Journal of Agricultural and Food Chemistry 52.

Meng N, Liu Y, Sun L, Du A, Li H, Zhang Z, Meng N, Liu YX, Sun LR, Du AN, Li H, Zhang ZH. 2009. Transformation of cells in strawberry fruit with injection of Agrobacterium. Journal of Shenyang Agricultural University 40, 404-407.

Mezzetti B, Landi L, Pandolfini T, Spena A. 2004. The defH9-iaaM auxin-synthesizing gene increases plant fecundity and fruit production in strawberry and raspberry. Bmc Biotechnology 4.

Mikulic-Petkovsek M, Schmitzer V, Slatnar A, Stampar F, Veberic R. 2012. Composition of Sugars, Organic Acids, and Total Phenolics in 25 Wild or Cultivated Berry Species. Journal of Food Science 77, C1064-C1070.

Mitchell AZ, Hanson MR, Skvirsky RC, Ausubel FM. 1980. Anther culture of petunia - genotypes with high-frequency of callus, root, or plantlet formation. Zeitschrift Fur Pflanzenphysiologie 100, 131-146.

Miyawaki K, Fukuoka S, Kadomura Y, Hamaoka H, Mito T, Ohuchi H, Schwab W, Noji S. 2012. Establishment of a novel system to elucidate the mechanisms underlying light-induced ripening of strawberry fruit with an Agrobacterium-mediated RNAi technique. Plant Biotechnology 29, 271-277.

Murphy C, Cain WS. 1980. Taste and Olfaction - Independence vs Interaction. Physiology & Behavior 24.

Murphy C, Cain WS, Bartoshuk LM. 1977. Mutual action of taste and olfaction. Sensory Processes 1.

Najman D. 1993. Chemical characterization of scent of Citrus flower ( Citrus sinensis L. c.v. Shamouti) compounds and their attractiveness to the honey bee ( Apis mellifera L.) workers. Thesis, x + 51 pp.

Page 164: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

164

Nehra NS, Chibbar RN, Kartha KK, Datla RSS, Crosby WL, Stushnoff C. 1990. Agrobacterium-mediated transformation of strawberry calli and recovery of transgenic plants. Plant Cell Reports 9, 10-13.

Nitsch JP. 1950. Growth and morphogenesis of the strawberry as related to auxin. American Journal of Botany 37, 211-215.

Olbricht K, Grafe C, Weiss K, Ulrich D. 2008. Inheritance of aroma compounds in a model population of Fragaria x ananassa Duch. Plant Breeding 127.

Olender T, Waszak SM, Viavant M, Khen M, Ben-Asher E, Reyes A, Nativ N, Wysocki CJ, Ge DL, Lancet D. 2012. Personal receptor repertoires: olfaction as a model. Bmc Genomics 13, 16.

Pelayo-Zaldivar C, Ebeler SE, Kader AA. 2005. Cultivar and harvest date effects on flavor and other quality attributes of California strawberries. Journal of Food Quality 28.

Perez AG, Olias R, Luaces P, Sanz C. 2002. Biosynthesis of strawberry aroma compounds through amino acid metabolism. Journal of Agricultural and Food Chemistry 50.

Perkins-Veazie P. 1995. Growth and ripening of strawberry fruit. Horticultural Reviews 17, 267-297.

Pierce J, Halpern BP. 1996. Orthonasal and retronasal odorant identification based upon vapor phase input from common substances. Chemical Senses 21, 529-543.

Prescott J. 1999. Flavour as a psychological construct: implications for perceiving and measuring the sensory qualities of foods. Food Quality and Preference 10.

Prescott JJ. 2004. Psychological processes in flavour perception. Flavor perception.

Pyysalo T, Honkanen E, Hirvi T. 1979. Volatiles of wild strawberries, Fragaria vesca L., compared to those of cultivated berries, Fragaria x ananassa cv Senga Sengana. Journal of Agricultural and Food Chemistry 27, 19-22.

Quesada MA, Blanco-Portales R, Pose S, Garcia-Gago JA, Jimenez-Bermudez S, Munoz-Serrano A, Caballero JL, Pliego-Alfaro F, Mercado JA, Munoz-Blanco J. 2009. Antisense Down-Regulation of the FaPG1 Gene Reveals an Unexpected Central Role for Polygalacturonase in Strawberry Fruit Softening. Plant Physiology 150.

Raab T, Lopez-Raez JA, Klein D, Caballero JL, Moyano E, Schwab W, Munoz-Blanco J. 2006. FaQR, required for the biosynthesis of the strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone, encodes an enone oxidoreductase. Plant Cell 18.

Richins RD, Scholthof HB, Shepherd RJ. 1987. Sequence of figwort mosaic virus DNA (Caulimovirus group). Nucleic Acids Research 15, 8451-8466.

Page 165: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

165

Rost B, Yachdav G, Liu JF. 2004. The PredictProtein server. Nucleic Acids Research 32, W321-W326.

Santos BM, Peres NA, Price JF, Whitaker VM, Dittmar PJ, Olson SM, Smith SA. 2012. Strawberry Production in Florida. Vegetable Production Handbook, Vol. HS710. Gainesville, FL: University of Florida Institute of Food and Agricultural Sciences.

Schestibratov KA, Dolgov SV. 2005. Transgenic strawberry plants expressing a thaumatin II gene demonstrate enhanced resistance to Botrytis cinerea. Scientia Horticulturae 106, 177-189.

Schieberle P, Hofmann T. 1997. Evaluation of the character impact odorants in fresh strawberry juice by quantitative measurements and sensory studies on model mixtures. Journal of Agricultural and Food Chemistry 45.

Schmelz EA, Alborn HT, Banchio E, Tumlinson JH. 2003. Quantitative relationships between induced jasmonic acid levels and volatile emission in Zea mays during Spodoptera exigua herbivory. Planta 216, 665-673.

Schmelz EA, Alborn HT, Tumlinson JH. 2001. The influence of intact-plant and excised-leaf bioassay designs on volicitin- and jasmonic acid-induced sesquiterpene volatile release in Zea mays. Planta 214, 171-179.

Settle RG, Meehan K, Williams GR, Doty RL, Sisley AC. 1986. Chemosensory properties of sour tastants. Physiology & Behavior 36, 619-623.

Shaw DV. 1997. Trait mean depression for second-generation inbred strawberry populations with and without parent selection. Theoretical and Applied Genetics 95, 261-264.

SjÖStrÖM Loren B, Cairncross Stanley E. 1955. Role of Sweeteners in Food Flavor. Use of Sugars and Other Carbohydrates in the Food Industry, Vol. 12: American Chemical Society, 108-113.

Small DM, Jones-Gotman M. 2001. Neural substrates of taste/smell interactions and flavour in the human brain. Vol. 26. Chemical Senses, 1034.

Small DM, Voss J, Mak YE, Simmons KB, Parrish T, Gitelman D. 2004. Experience-dependent neural integration of taste and smell in the human brain. Journal of Neurophysiology 92.

Smith BJ, Hokanson SC, Lewers KS, Maas JL, Hancock JF, Serce S. 2003. Evaluation of native strawberry germplasm for resistance to anthracnose. Phytopathology 93, S79-S80.

Page 166: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

166

Stevens GR, Clark L. 1998. Bird repellents: development of avian-specific tear gases for resolution of human-wildlife conflicts. International Biodeterioration & Biodegradation 42, 153-160.

Stevenson RJ, Prescott J, Boakes RA. 1999. Confusing tastes and smells: How odours can influence the perception of sweet and sour tastes. Chemical Senses 24.

Stommel J, Abbott JA, Saftner RA, Camp MJ. 2005. Sensory and objective quality attributes of beta-carotene and lycopene-rich tomato fruit. Journal of the American Society for Horticultural Science 130, 244-251.

Strand L. 2008. Integrated pest management for strawberries: ANR Publications.

Suutarinen J, Anakainen L, Autio K. 1998. Comparison of light microscopy and spatially resolved Fourier transform infrared (FT-IR) microscopy in the examination of cell wall components of strawberries. Food Science and Technology-Lebensmittel-Wissenschaft & Technologie 31, 595-601.

Tieman D, Bliss P, McIntyre LM, Blandon-Ubeda A, Bies D, Odabasi AZ, Rodriguez GR, van der Knaap E, Taylor MG, Goulet C, Mageroy MH, Snyder DJ, Colquhoun T, Moskowitz H, Clark DG, Sims C, Bartoshuk L, Klee HJ. 2012. The Chemical Interactions Underlying Tomato Flavor Preferences. Current Biology 22, 1035-1039.

Tieman DM, Loucas HM, Kim JY, Clark DG, Klee HJ. 2007. Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol. Phytochemistry 68, 2660-2669.

Trainotti L, Ferrarese L, Dalla Vecchia F, Rascio N, Casadoro G. 1999. Two different endo-beta-1,4-glucanases contribute to the softening of the strawberry fruits. Journal of Plant Physiology 154.

Tulipani S, Mezzetti B, Capocasa F, Bompadre S, Beekwilder J, De Vos CHR, Capanoglu E, Bovy A, Battino M. 2008. Antioxidants, phenolic compounds, and nutritional quality of different strawberry genotypes. Journal of Agricultural and Food Chemistry 56.

Turlings TCJ, Benrey B. 1998. Effects of plant metabolites on the behavior and development of parasitic wasps. Ecoscience 5, 321-333.

Turlings TCJ, Jeanbourquin PM, Held M, Degen T. 2005. Evaluating the induced-odour emission of a Bt maize and its attractiveness to parasitic wasps. Transgenic Research 14, 807-816.

Ulrich D, Hoberg E, Rapp A, Kecke S. 1997. Analysis of strawberry flavour - discrimination of aroma types by quantification of volatile compounds. Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschung a-Food Research and Technology 205.

Page 167: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

167

Ulrich D, Komes D, Olbricht K, Hoberg E. 2007. Diversity of aroma patterns in wild and cultivated Fragaria accessions. Genetic Resources and Crop Evolution 54, 1185-1196.

UN. 2013. FAOSTAT. Vol. 2013. faostat3.fao.org: Food and Agricultural Organization of the United Nations.

Underwood BA, Tieman DM, Shibuya K, Dexter RJ, Loucas HM, Simkin AJ, Sims CA, Schmelz EA, Klee HJ, Clark DG. 2005. Ethylene-regulated floral volatile synthesis in petunia corollas. Plant Physiology 138, 255-266.

Veldhuizen MG, Shepard TG, Wang MF, Marks LE. 2010. Coactivation of Gustatory and Olfactory Signals in Flavor Perception. Chemical Senses 35, 121-133.

Vellicce GR, Ricci JCD, Hernandez L, Castagnaro AP. 2006. Enhanced resistance to Botrytis cinerea mediated by the transgenic expression of the chitinase gene ch5B in strawberry. Transgenic Research 15, 57-68.

Verdonk JC, de Vos CHR, Verhoeven HA, Haring MA, van Tunen AJ, Schuurink RC. 2003. Regulation of floral scent production in petunia revealed by targeted metabolomics. Phytochemistry 62, 997-1008.

Wang J, De Luca V. 2005. The biosynthesis and regulation of biosynthesis of Concord grape fruit esters, including 'foxy' methylanthranilate. Plant Journal 44, 606-619.

Watson R, Wright CJ, McBurney T, Taylor AJ, Linforth RST. 2002. Influence of harvest date and light integral on the development of strawberry flavour compounds. Journal of Experimental Botany 53.

Whitaker VM, Hasing T, Chandler CK, Plotto A, Baldwin E. 2011. Historical Trends in Strawberry Fruit Quality Revealed by a Trial of University of Florida Cultivars and Advanced Selections. Hortscience 46, 553-557.

Zabetakis I, Holden MA. 1997. Strawberry flavour: Analysis and biosynthesis. Journal of the Science of Food and Agriculture 74.

Zhang J, Wang X, Yu O, Tang J, Gu X, Wan X, Fang C. 2011a. Metabolic profiling of strawberry (Fragariaxananassa Duch.) during fruit development and maturation. Journal of Experimental Botany 62.

Zhang T, Maruhnich SA, Folta KM. 2011b. Green light induces shade avoidance symptoms. Plant Physiology 157, 1528-1536.

Zozulya S, Echeverri F, Nguyen T. 2001. The human olfactory receptor repertoire. Genome Biology 2.

Page 168: METABOLITE ANALYSIS, ENVIRONMENTAL FACTORS, AND A TRANSGENIC …ufdcimages.uflib.ufl.edu/UF/E0/04/59/40/00001/... · 2013-10-18 · metabolite analysis, environmental factors, and

168

BIOGRAPHICAL SKETCH

Michael Lee Schwieterman was born in Sidney, Ohio. He was raised by Nancy

Louise Schwieterman and Dale Arthur Schwieterman along with one brother and three

sisters, Ryan Joseph Schwieterman, Sarah Elizabeth (Schwieterman) Hunsche, Diane

Marie Schwieterman, and Megan Rose Schwieterman. They resided on Schwiet Acres,

a small family farm focused on raising corn, soy, and steers near Sebastian, Ohio. After

graduating from Marion Local High School, Michael attended Miami University in

Oxford, Ohio where he earned a Bachelor of Science in botany and a Bachelor of

Science in zoology while also earning two minors, molecular biology and neuroscience.

Michael was engaged in mapping sensory and motor neuron integrative structures in rat

with Dr. Donna R. Scarborough, before reconnecting with his interest in plant science.

Michael developed a professional relationship with his biotechnology professor and

mentor Dr. Susan R. Barnum. Her enthusiasm for biotechnology led Michael to

participate in an undergraduate research internship at the University of Florida with Dr.

David G. Clark of the Plant Molecular and Cellular Biology (PMCB) graduate program.

After graduating from Miami University, Michael returned to the University of Florida to

pursue his Ph.D. with the PMCB. During his first year Michael completed research

rotations with Dr. Harry J. Klee, Dr. Gary F. Peter, and Dr. Wilfred Vermerris before

deciding on Dr. Clark as his Ph.D. advisor. Dr. Clark has provided invaluable advice and

mentorship in plant physiology and genetics, the philosophy and practice of science,

and professional development. It is through Dr. Clark where Michael realized his

potential, as well as developed a mature appreciation for plant science.