meta engg

Upload: itsmejanu

Post on 05-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 Meta Engg

    1/43

    3G1 Introduction to Biosciences (for engineers) 2010-2011

    Lectures 10-12. Metabolic Engineering

    Objectives:

    Basic understanding of cellular metabolism, metabolic control,

    metabolic engineering strategies and examples

  • 8/2/2019 Meta Engg

    2/43

    3G1 Introduction to Biosciences (for engineers) 2010-2011

    Metabolic Engineering

    Bailey, J. A. (1991) Science 252, 1668-1675

  • 8/2/2019 Meta Engg

    3/43

    3G1 Introduction to Biosciences (for engineers) 2010-2011

    Metabolic Engineering

    Metabolic engineering can be defined as the optimization of genetic and

    regulatory processes to increase the cells production of a certain substance

    and to reduce waste production.

    Cells are complex systems. Metabolic and biological networks are robust,

    optimized for each organism through evolution. Genetic and regulatory

    changes may have relevant effects in growth and viability of the selected

    cells.

    (e.g. Kohlstedt, M. et al., (2010) Metabolic fluxes and beyondsystems biology understanding

    and engineering of microbial metabolism. Appl. Microb. Biotechnol. 88, 1065-1075 ).

    Future: -- > Systems level understanding and rational engineering/optimization.

  • 8/2/2019 Meta Engg

    4/43

    3G1 Introduction to Biosciences (for engineers) 2010-2011

    Metabolic Engineering

    (e.g. Stephanopoulos, G. N., Aristidou, A. A., Nielsen, J. (1998). "Metabolic

    Engineering: Principles and Methodologies". San Diego: Academic Press.

    Metabolic Engineering courses. Basic Contents

    - Introduction

    - Review of Central Metabolism (Transport; Catabolism; Anabolism;

    Biosynthesis of macromolecules/polymerization; Energetics).

    - Mass, redox and energy balances

    - Regulation of Metabolic Pathways (Enzymatic activities; Allosteric

    mechanisms; Enzyme levels; Global regulation).

    - Metabolic Engineering in Practice (Optimization of yield and

    productivity of homologous and/or heterologous products;

    Extension to a broader range of substrates and products;

    degradation of toxic compounds; new metabolic pathways;

    secondary metabolites).

    - Metabolic Flux Analysis and Metabolic Control Analysis.

    - Metabolic and Biological Networks. Modelling. --> Integration. -- >

    Systems Biology.

  • 8/2/2019 Meta Engg

    5/43

    L10. Cellular Metabolism. Fundamentals. Core molecular types

    State-of-the-art (Mon, 8th Nov, 2pm. LR3. / Supervision: Tues, 9th Nov, 4pm. LT2)

    L11. Metabolic Fluxes and Metabolic Control. Systems Biology

    approaches towards Metabolic Engineering (Thu, 11th Nov, 3pm, LR4)

    L12. Metabolic engineering in Practice. Strategies. Case studies

    (advanced studies/patents) (Mon, 15th Nov. 2pm. LR3 / Superv: Tues, 16th Nov, 4pm. LT2)

    3G1 Introduction to Biosciences (for engineers) 2010-2011

    Lectures 10-12. Metabolic Engineering

    Schedule:

  • 8/2/2019 Meta Engg

    6/43

  • 8/2/2019 Meta Engg

    7/43

    Metabolism and Metabolic

    networks. Fundamentals

    ( Alberts, B. et al., (2008) Molecular Biology of the Cell,5th Edition. Garland Science ).

  • 8/2/2019 Meta Engg

    8/43

    Metabolic Networks.Central metabolism at the core of biological networks

  • 8/2/2019 Meta Engg

    9/43Figure 2-32 Molecular Biology of the Cell( Garland Science 2008)

    Metabolic networks and pathways.From subunits to macromolecules

  • 8/2/2019 Meta Engg

    10/43Figure 2-34 Molecular Biology of the Cell( Garland Science 2008)

    Metabolic networks based on metabolic pathways

  • 8/2/2019 Meta Engg

    11/43Figure 2-47 Molecular Biology of the Cell( Garland Science 2008)

    Metabolic pathways catalyzed by enzymes

  • 8/2/2019 Meta Engg

    12/43Figure 2-44 Molecular Biology of the Cell( Garland Science 2008)

    Enzymes lower the activation energyof the catalyzed reaction

  • 8/2/2019 Meta Engg

    13/43Figure 2-35 Molecular Biology of the Cell( Garland Science 2008)

    Existence of a main core of central metabolic networks

  • 8/2/2019 Meta Engg

    14/43Figure 2-41 Molecular Biology of the Cell( Garland Science 2008)

    In Nature (and throughout evolution)

    Different organisms -> Differences in Metabolic Networks(e.g. Photosynthesis Respiration. Complementary processes)

  • 8/2/2019 Meta Engg

    15/43Figure 2-29 Molecular Biology of the Cell( Garland Science 2008)

    What makes a cell?Cellular components. Bacterial cell

  • 8/2/2019 Meta Engg

    16/43Table 2-3 Molecular Biology of the Cell( Garland Science 2008)

    Bacterial vs mammalian cell.Differences in macromolecular composition

  • 8/2/2019 Meta Engg

    17/43Figure 2-17 Molecular Biology of the Cell( Garland Science 2008)

    Metabolic networksresponsible for conversion of building blocksinto macromolecules/polymerization. How?

  • 8/2/2019 Meta Engg

    18/43

    Figure 2-36 Molecular Biology of the Cell( Garland Science 2008)

    Coupling of catabolic and anabolic (biosynthetic) pathways

  • 8/2/2019 Meta Engg

    19/43

    Figure 2-26 Molecular Biology of the Cell( Garland Science 2008)

    Adenosine triphosphate (ATP), energy carrier

  • 8/2/2019 Meta Engg

    20/43

    Figure 2-55 Molecular Biology of the Cell( Garland Science 2008)

    Activated energy carriers link catabolism and anabolism

  • 8/2/2019 Meta Engg

    21/43

    Figure 2-27 Molecular Biology of the Cell( Garland Science 2008)

    ATP, main energy carrier in cells

  • 8/2/2019 Meta Engg

    22/43

    Catabolism and Anabolism.Definitions

    Catabolism. Biochemical processes involved in the breakdown of organic

    compounds, usually leading to the production of energy.

    Anabolism. Metabolic processes involved in the synthesis of cell constituents

    from simpler molecules such as organic and/or inorganic precursors. An

    anabolic process usually requires energy.

    (Stephanopoulos, G. N., Aristidou, A. A., Nielsen, J. (1998). "Metabolic

    Engineering: Principles and Methodologies". San Diego: Academic Press)

  • 8/2/2019 Meta Engg

    23/43

    Figure 2-69 Molecular Biology of the Cell( Garland Science 2008)

    Catabolism strategy.Storage of energy as activated carrier molecules

  • 8/2/2019 Meta Engg

    24/43

    Figure 2-70 Molecular Biology of the Cell( Garland Science 2008)

    Main catabolic pathways.Glycolysis. From glucose to pyruvate. Outline

    ( Cytosol )

    1

    2

    3

  • 8/2/2019 Meta Engg

    25/43

    Glycolysis. Net result

    D-[glucose] + 2 [NAD]+ + 2 [ADP] + 2 [P]i 2 [Pyruvate] + 2 [NADH] + 2 H+ + 2 [ATP]

    http://en.wikipedia.org/wiki/File:Pyruvate2_wpmp.pnghttp://en.wikipedia.org/wiki/File:Biochem_reaction_arrow_foward_NNNN_horiz_med.pnghttp://en.wikipedia.org/wiki/File:D-glucose_wpmp.png
  • 8/2/2019 Meta Engg

    26/43

    Figure 2-71b Molecular Biology of the Cell( Garland Science 2008)

    Two pathways for the anaerobic breakdown of pyruvateI. Alcoholic fermentation

    (not

    NADH)

  • 8/2/2019 Meta Engg

    27/43

    Figure 2-71a Molecular Biology of the Cell( Garland Science 2008)

    II. Lactic fermentation

  • 8/2/2019 Meta Engg

    28/43

    Figure 2-82 Molecular Biology of the Cell( Garland Science 2008)

    In the presence of oxygen, pyruvate is transported intothe mitochondria to yield acetyl-CoA and enters the

    tricarboxylic acid (TCA) cycle. TCA (Krebs cycle) overview

    Pyruvate(H3C-CO-COOH)

    Pyruvate

    (H3C-CO-COOH)

    ? (PDH complex)

    CO2

    ( Mitochondrion )

    NADH

  • 8/2/2019 Meta Engg

    29/43

    Figure 2-86 Molecular Biology of the Cell( Garland Science 2008)

    Final stages of catabolism.Generation of ATP by oxidative phosphorylation.

    P/O ratio and ATPsynthase determine total ATP per NADH

    Chemiosmotic mechanism (Mitchell, 1960): n sites of proton H+ (e-) translocation and a separate F1Fo ATP synthase. Each

    site translocates H+ (e-) generating a proton electrochemical gradient or proton motive force in volts which drives ATP synthesis.

    (P/O ratio = f ( H+ (e-) translocated per site and ATP generated per H+ translocated ); -- > latest , see next slide -- > )

    ( P/O ratio. Number of ATP molecules synthesized by oxidative phosphorylation for each pairof electrons passing from a particular substrate, typically NADH, via a respiratory chain, to O2 ).

    ATP synthase

  • 8/2/2019 Meta Engg

    30/43

    ATP synthase: From sequence to the P/O ratio(different ATP/H+stoichiometries in different organisms)

    Watt, I. N. et al., (2010)Proc Natl Acad Sci U S A. 2010 Sep 28;107,16823-16827

    Comment on:

    Ferguson SJ. (2010) ATP synthase: from sequence to ring size to the P/O ratio.

    Proc Natl Acad Sci U S A. 2010 Sep 28;107,16755-16756.

    http://www.ncbi.nlm.nih.gov/pubmed/20858734

    !!

  • 8/2/2019 Meta Engg

    31/43

    Figure 2-84 Molecular Biology of the Cell( Garland Science 2008)

    Glycolysis and the TCA cycle provide the precursorsto synthesize relevant cellular components

    (link to anabolism)

  • 8/2/2019 Meta Engg

    32/43

    Figure 2-88 Molecular Biology of the Cell( Garland Science 2008)

    Glycolysis and the TCA cycle at the coreof central metabolic networks

  • 8/2/2019 Meta Engg

    33/43

    Figure 2-80 Molecular Biology of the Cell( Garland Science 2008)

    Catabolism of fats and fatty acids.Sugars and fats catabolic pathways converge

    at the level of acetyl-CoA

  • 8/2/2019 Meta Engg

    34/43

    Figure 2-67 Molecular Biology of the Cell( Garland Science 2008)

    Anabolism. Activated carrier molecules/high energyintermediates lead to polymerization

    (biosynthesis of macromolecules)

  • 8/2/2019 Meta Engg

    35/43

    Figure 2-65 Molecular Biology of the Cell( Garland Science 2008)

    Anabolism. Activated carrier molecules lead tothe biosynthesis of the essential cellular macromolecules:

    polysaccharides, proteins and nucleic acids

  • 8/2/2019 Meta Engg

    36/43

    Table 2-5 Molecular Biology of the Cell( Garland Science 2008)

    Activated carrier molecules/high energy intermediates

  • 8/2/2019 Meta Engg

    37/43

    Figure 2-60a Molecular Biology of the Cell( Garland Science 2008)

    Activated carrier NADPH essential in anabolic/biosynthetic pathways is generated in the

    pentose-phosphate pathway

    ( Pentose-phosphate

    pathway )

    Pentoses

    (5-carbon sugars)

    (Biosynthesis

    )

  • 8/2/2019 Meta Engg

    38/43

    Metabolic Networks. Central metabolism. Summary

  • 8/2/2019 Meta Engg

    39/43

    Cells are rich in complexity, with a central core of metabolic and biological

    networks robust, together with specific networks optimized for each

    organism through evolution ( = interaction with the environment and other

    organisms).

    Metabolic pathways and metabolic patterns may vary in different organisms

    (some appearing in specific organisms only) (e.g.

    photosynthesis/respiration; lactic/alcoholic fermentation).

    In one specific organism, different environmental conditions (e.g. O2

    availability) may lead to different metabolic patterns (e.g. respiratory vs.

    respirofermentative metabolism) and/or distribution of metabolic fluxes.

    Some organisms are able to respond to stressful conditions by triggering the

    expression of specific pathways/networks and compounds (e.g. secondary

    metabolism; complex organic compounds/antibiotics).

    Metabolic Networks.Central metabolism and other specific metabolic networks

  • 8/2/2019 Meta Engg

    40/43

    3G1 Introduction to Biosciences (for engineers) 2010-2011

    Further reading

    Main texts

    Molecular Biology of the Cell.

    Alberts, Johnson, Walter, Lewis, Raff, Roberts

    http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mboc4

    Molecular Cell Biology

    Lodish, Berk, Kaiser, Krieger, Scott, Bretscher, Ploegh, Matsudaira

    http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mcb

    Intro. to Genetic Analysis

    Griffiths, Wessler, Lewontin, Carroll

    http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=iga

    All can be looked up on NCBI bookshelf.

    http://www.ncbi.nlm.nih.gov/sites/entrez?db=Books

    http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mboc4http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mcbhttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=igahttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=igahttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=igahttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=igahttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=igahttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=igahttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=igahttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=igahttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=igahttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=igahttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=igahttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=igahttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=igahttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=igahttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mcbhttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mcbhttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mcbhttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mcbhttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mcbhttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mcbhttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mcbhttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mcbhttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mcbhttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mcbhttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mcbhttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mcbhttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mcbhttp://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mboc4http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mboc4http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mboc4http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mboc4http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mboc4http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mboc4http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mboc4http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mboc4http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mboc4http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mboc4http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mboc4http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mboc4http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mboc4http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mboc4
  • 8/2/2019 Meta Engg

    41/43

  • 8/2/2019 Meta Engg

    42/43

    1. Name three activated carriers needed in anabolic reactions and where they

    are synthesized.

    2. Would a mammalian cell culture be a good system to produce bioethanol? Explain.

    3. Possible reasons why some organisms are not able to assimilate specific sugars

    (e.g. pentoses; disaccharides such as lactose). Any solution?

    4. Net result of complete oxidation of glucose (100% respiratory metabolism).

    Could the total ATP per glucose generated by a microorganism (e.g. yeast) be

    different compared to animal cells? Explain.

    5. Net result and possible phenotypes of complete catabolism of glucose

    in absence of oxygen: a) In mammalian cells. b) In yeast.

    Supervision L10. Examples of questions

    http://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Books
  • 8/2/2019 Meta Engg

    43/43

    6. Net result of catabolism of glucose by an anaerobe facultative organism

    (e.g. Saccharomyces cerevisiae ,budding yeast, able to assimilate carbon by both

    respiratory and fermentative pathways, i.e. respirofermentative metabolism)

    under environmental conditions leading to: 25% of carbon being metabolized by

    respiration; 75% by fermentation.

    7. Main cause (and consequences) of appearance of lactic fermentation in animal cells.

    Among the organisms and conditions mentioned in 4), 5) and 6) :

    8. What organisms would be adequate for production of bioethanol/biofuels?

    9. Which ones would be preferable as hosts for synthesis of biomass and

    coupled-to-growth (type-1) products? (e.g. recombinant proteins).

    10. Would an environmental medium containing sugars, fats, nitrogen sources, salts

    and vitamins be a good substrate for biotechnological processes? Suggest

    Supervision L10. Examples of questions

    http://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Bookshttp://www.ncbi.nlm.nih.gov/sites/entrez?db=Books