meson-photon transition form factors and the evaluation of...

41
F.-G. Cao, Massey Uni 1 Meson-photon Transition Form Factors and the Evaluation of Muon g-2 Fu-Guang Cao Institute of Fundamental Sciences Massey University 1. Introduction – hadronic LxL contribution 2. Meson-photon TFFs Predictions from QCD and light-front holographic QCD Experimental results (BaBar and Belle) Meson-virtual-photon TFFs – parameterization vs QCD 3. Evaluation of hadronic LxL contribution 4. Summary Tau2016, IHEP Beijing 20/09/2016

Upload: others

Post on 22-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

F.-G. Cao, Massey Uni 1

Meson-photon Transition Form Factors and the Evaluation of Muon g-2

Fu-Guang CaoInstitute of Fundamental Sciences

Massey University

1.  Introduction – hadronic LxL contribution2.  Meson-photon TFFs

•  Predictions from QCD and light-front holographic QCD

•  Experimental results (BaBar and Belle)

•  Meson-virtual-photon TFFs – parameterization vs QCD

3.  Evaluation of hadronic LxL contribution4.  Summary

Tau2016, IHEP Beijing 20/09/2016

Page 2: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

F.-G. Cao, Massey Uni 2Tau2016, IHEP Beijing 20/09/2016

1.  Hadronic LxL contribution to muon g-2•  The discrepancy is about 3 sigma.

•  In the unit of 10−11

aµ = (g− 2) 2

SM Contribution Value ± Error Ref

QED (incl. 5-loops) 116584718.951 ± 0.080 [3]

HVP LO 6949 ± 43 [4]

HVP NLO −98.4± 0.7 [4, 5]

HVP NNLO 12.4 ± 0.1 [5]

HLbL 105 ± 26 [6]

Weak (incl. 2-loops) 153.6 ± 1.0 [7]

SM Total (0.51 ppm) 116591840 ± 59 [3]

Experiment (0.54 ppm) 116592089 ± 63 [2]

Difference (Exp− SM) 249 ± 87 [3]

Table I. Comparison between experiment and the standard model prediction for (gµ−2)/2 (in units

of 10−11). Other recent analyses [4, 8] give similar values for the difference between experiment and

standard model theory. Note that the HVP NNLO contribution is not included in the standard

model totals, while LO, NLO and NNLO indicates leading order, next-leading order and next-next-

leading order.

mentally measured cross-section for the single photon e+– e− annihilation into hadrons using

a dispersion relation — a well-developed method with fractional percent errors. These same

non-perturbative strong interaction effects can be determined using lattice QCD [9] but

accuracy comparable to that obtained from experimentallly measured e+– e− annihilation

has yet to be achieved. The determination of the HVP contribution by both methods is an

active area of research [10, 11] and further reduction of these errors is expected.

q = p′ − p, ν

p p′

q = p′ − p, ν

p p′

Figure 1. Feynman diagrams depicting the hadronic vacuum polarization (left) and hadronic light-

by-light scattering (right) contributions to gµ − 2.

The HLbL contribution is less well studied and is the topic of this paper. Unlike the HVP

3

T. Blum et al, arXiv:1510.071 [hep-lat]

•  QED and week interaction contributions are well understood.

•  Main source of uncertainties: ���HVP and HLxL

•  Anomalous magnetic moment

Page 3: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

F.-G. Cao, Massey Uni 3Tau2016, IHEP Beijing 20/09/2016

•  HLxL contributions can be calculated with the help of meon-photon-photon transitions form factor (TFF).

T2T1

Figure 2: The pion-pole contributions to light-by-light scattering. The shaded blobs representthe form factor Fπ0γ∗γ∗ . The first and second graphs give rise to identical contributions, in-volving the function T1(q1, q2; p) in Eq. (3.4), whereas the third graph gives the contributioninvolving T2(q1, q2; p).

in general not known. It has, however, been shown in several instances (see, e.g., the review[26] and references therein) that keeping, in each channel, only a finite number of resonances,supplemented with information on the QCD short-distance properties coming from the operatorproduct expansion [27, 28], already gives a good description of quantities like form factors orcorrelation functions in the Euclidean region, especially when they occur in weighted integralsover the whole range of momenta. In particular, the form factor Fπ0γ∗γ∗ has recently beenstudied [29] from the point of view of this lowest meson dominance (LMD) or minimal hadronicAnsatz (MHA) approximation to large-NC QCD. Since the analyses carried out in Refs. [21, 22]rely on models of Fπ0γ∗γ∗ , vector meson dominance (VMD) or extended Nambu–Jona-Lasinio(ENJL) (see [22] and references therein), that do not reproduce the correct QCD short-distanceproperties, a second motivation for the present study was to compare the results (1.4) and (1.5)with those derived from a representation of Fπ0γ∗γ∗ that complies with these QCD constraints.Finally, let us mention for completeness that the pion-pole contribution we are interested incorresponds to the lowest-mass part of Πµνλρ(q1, q2, q3) that is leading in the large-NC limit [30],which might provide an explanation as to why it happens to constitute the dominant fractionof the light-by-light scattering correction to aµ.

The remaining material of this paper is organized as follows. Section 2 recalls a few defini-tions that are relevant for the light-by-light contribution to aµ, and also serves the purpose ofintroducing our notation. The expression for the two-loop integral which gives the pion-polecontribution aLbyL;π0

µ to the anomalous magnetic moment of the muon in terms of Fπ0γ∗γ∗ is de-rived in Sec. 3. In Sec. 4 we discuss a generic class of form factors to which those inspired fromlarge-NC QCD and considered here belong, but that also covers other cases, like the constantform factor, given by the Wess-Zumino-Witten term [31], or the vector meson dominance formfactor. The method of Gegenbauer polynomials is presented in Sec. 5 and used in order toperform the angular integrations. This then leads to a two-dimensional integral representationfor aLbyL;π0

µ in terms of Fπ0γ∗γ∗ and of several weight functions (Sec. 6). Numerical results foraLbyL;π0

µ are presented in Sec. 7, where the contributions from the η and η′ poles are also briefly

3

Figure 2: The pion-pole contributions to light-by-light scattering. The shaded blobs representthe form factor Fπ0γ∗γ∗ . The first and second graphs give rise to identical contributions, in-volving the function T1(q1, q2; p) in Eq. (3.4), whereas the third graph gives the contributioninvolving T2(q1, q2; p).

in general not known. It has, however, been shown in several instances (see, e.g., the review[26] and references therein) that keeping, in each channel, only a finite number of resonances,supplemented with information on the QCD short-distance properties coming from the operatorproduct expansion [27, 28], already gives a good description of quantities like form factors orcorrelation functions in the Euclidean region, especially when they occur in weighted integralsover the whole range of momenta. In particular, the form factor Fπ0γ∗γ∗ has recently beenstudied [29] from the point of view of this lowest meson dominance (LMD) or minimal hadronicAnsatz (MHA) approximation to large-NC QCD. Since the analyses carried out in Refs. [21, 22]rely on models of Fπ0γ∗γ∗ , vector meson dominance (VMD) or extended Nambu–Jona-Lasinio(ENJL) (see [22] and references therein), that do not reproduce the correct QCD short-distanceproperties, a second motivation for the present study was to compare the results (1.4) and (1.5)with those derived from a representation of Fπ0γ∗γ∗ that complies with these QCD constraints.Finally, let us mention for completeness that the pion-pole contribution we are interested incorresponds to the lowest-mass part of Πµνλρ(q1, q2, q3) that is leading in the large-NC limit [30],which might provide an explanation as to why it happens to constitute the dominant fractionof the light-by-light scattering correction to aµ.

The remaining material of this paper is organized as follows. Section 2 recalls a few defini-tions that are relevant for the light-by-light contribution to aµ, and also serves the purpose ofintroducing our notation. The expression for the two-loop integral which gives the pion-polecontribution aLbyL;π0

µ to the anomalous magnetic moment of the muon in terms of Fπ0γ∗γ∗ is de-rived in Sec. 3. In Sec. 4 we discuss a generic class of form factors to which those inspired fromlarge-NC QCD and considered here belong, but that also covers other cases, like the constantform factor, given by the Wess-Zumino-Witten term [31], or the vector meson dominance formfactor. The method of Gegenbauer polynomials is presented in Sec. 5 and used in order toperform the angular integrations. This then leads to a two-dimensional integral representationfor aLbyL;π0

µ in terms of Fπ0γ∗γ∗ and of several weight functions (Sec. 6). Numerical results foraLbyL;π0

µ are presented in Sec. 7, where the contributions from the η and η′ poles are also briefly

3

aµHLxL =

2α 3

3π 2 dQ10

∫ dQ20

∫ dτ 1−τ 2−1

1∫ Q1

3Q23 Ti (Q1,Q2,τ )Πi (Q1,Q2,τ )i=1

2

τ is the cosine of the angle between the Eucliden momenta Q1 and Q2.

G. Colangelo et al, JHEP 09 (2015) 074

1.  Hadronic LxL contribution to muon g-2

Ti integral kernels

qi (in Minkowski space) →Wick rotation→ Qi (in Euclidean space)

Qi2 = −qi

2

Page 4: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

F.-G. Cao, Massey Uni 4Tau2016, IHEP Beijing 20/09/2016

•  Have data for pion-real-photon TFF but not for the pion-virtual- photon TFF

Π1(Q1,Q2,τ ) =1

s−Mπ2 Fπ γ*γ* −Q1

2,−Q22( ) Fπ γ γ* −Q3

2, 0( )

Π2 (Q1,Q2,τ ) =1

t −Mπ2 Fπ γ*γ* −Q1

2,−Q32( ) Fπ γ γ* −Q2

2, 0( )

s = −Q32 = − Q1

2 + 2Q1Q2τ +Q22( ), t = −Q2

2

1.  Hadronic LxL contribution to muon g-2

Page 5: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

F.-G. Cao, Massey Uni 5Tau2016, IHEP Beijing 20/09/2016

•  Various parameterizations of TFF have been used in pervious calculations.

1.  Hadronic LxL contribution to muon g-2

•  Will use QCD calculations for those TFFs

VMD: Fπ γ*γ* Q12,Q2

2( ) = 14π 2 f π

MV2

Q12 +MV

2MV

2

Q22 +MV

2

LMD: Fπ γ*γ* Q12,Q2

2( ) = fπ3

Q12 +Q2

2 +MV

4

4π 2 f 2π

Q12 +MV

2( ) Q22 +MV

2( )

Does not have the correct large Q behavior!

Does not reproduce the pion-real-photon TFF!

Page 6: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

Two-photon reactions in electron-electron collisions

•  Electrons are scattered predominantly at small angles

• For pseudoscalar meson production (P = π 0, η, !η , etc) the cross section depends on only one form factor F(q1

2,q22 )

• q12, q2

2 ≈ 0, Γγγ is measured

F.-G. Cao, Massey Uni 6Tau2016, IHEP Beijing 20/09/2016

The simplest bound-state process in QCD

2.  Meson-photon TFFs

Page 7: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

• Single-tag mode Q2 = −q1

2, q22 ≈ 0, one electron is detected and F(Q2 ) is measured

• Data from TPC/2γ (90), CELLO(91), CLEO(95,98), L3(97), BaBar(09,10), Belle (12)• time-like=space-like (at s =Q2 ) to LO

time-like

F.-G. Cao, Massey Uni 7Tau2016, IHEP Beijing 20/09/2016

e+space-like

Page 8: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

Pre-2009 •  Theoretical foundations for exclusive processes

•  G. P. Lepage and S. J. Bordsky, Phys Rev 22 (1980) 2157

•  A. V. Efremov, and A. V. Radyushkin, Phys Lett B 94 (1980) 245

F.-G. Cao, Massey Uni 8Tau2016, IHEP Beijing 20/09/2016

•  Questions/Issues•  Applicability of pQCD to exclusive processes

•  What form for the pion distribution amplitude (DA)

•  Answers/Solutions: •  Considering transverse momentum effects

•  Not well determined

Page 9: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

QCD predictions

F.-G. Cao, Massey Uni 9Tau2016, IHEP Beijing 20/09/2016

Q2Fπ γ Q2( ) = dxTH (x,µ)φ x,µ( )

0

1∫

TH − hard scattering amplitude for γ γ*→ qq transition

φ − pion distribution amplitude describing transition π → qq

Data can be used to test phenomenological models for the meson DA.

x is the fraction of the meson momentum carried by one of the quarks.

Page 10: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

Tau2016, IHEP Beijing 20/09/2016

F.-G. Cao, Massey Uni 10

Theoretical challenges: estimation of end-point contributions •  N. Isgur and C. H. Smith, PRL 52 (1984) 1080•  N. Isgur and C. H. Smith, NPB317 (1989) 526•  N. Isgur and C. H. Smith, PLB 52 (1989) 535

Pion EM FF Proton EM FF

Is pQCD applicable to exclusive processes?

Page 11: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

Tau2016, IHEP Beijing 20/09/2016

F.-G. Cao, Massey Uni 11

“We reanalyse the pionic form factor by using perturbative QCD theory and contributions from endpoint regions. We find that the perturbative QCD can be applied to the pionic form factor as Q^2 >4 GeV^2 and they become unreliable

as Q^2≦4 GeV^2. Therefore the applicability of perturbative QCD to the form factor is questionable only as Q^2≦4 GeV^2.” [ZPC 50 (1991) 139]

Solutions•  Transverse momentum cut-off; pion EM FF

T. Huang, Q.-X. Shen, ZPC 50 (1991) 139

•  Sudakov suppression in b-space; covariant pQCD; pion EM FF•  H.-N. Li and G. Sterman, NPB381 (1992) 129•  FGC and T. Huang, PRD 52 (1995) 5358

•  Transverse momentum effects; pion TFF •  Sudakov suppression, R. Jakob et al, JPG 22 (1996) 22•  LC pQCD, FGC, T. Huang and B. Q. Ma, PRD53 (1996) 6582

Page 12: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

F.-G. Cao, Massey Uni 12Tau2016, IHEP Beijing 20/09/2016

Pion-photon transition form factor

R. Jakob et al, JPG 22 (1996) 45FGC, B.-Q Ma, and T. Huang, PRD53 (1996) 6582

•  It seems ok to apply pQCD to exclusive processes.•  The pion DA is not well determined via only pion TFF.•  pQCD has been applied to many other exclusive

processes.

Page 13: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

F.-G. Cao, Massey Uni 13

BaBar surprise and ways out

The data show a rapid growth with Q2, which is a surprise and hard

to explain.

Tau2016, IHEP Beijing 20/09/2016

[Phys. Rev. D 80 (2009) 052002]

•  Extraordinary form for the pion DA: flat form•  Determining the coefficients for the pion DA•  Examining corrections to pQCD calculations•  Non-perturbative calculations: sum rules, AdS/QCD

Ways out

Page 14: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

Models suggested for the pion distribution amplitude

0.0 0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

x

DAs of pion at m02 : Asymptotic , AdS, CZ, flat

F.-G. Cao, Massey Uni 14

asymptotic

CZ

“flat”AdS/QCD

(a) Asymptotic form

φAS x,µ0( ) = 3 fπ x(1− x);(b) AdS/QCD form

φAdS x,µ0( ) = 43π

fπ x(1− x);

(c) Chernyak-Zhitnitsky form

φCZ x,µ0( ) = 5 3 fπ x(1− x)(1− 2x)2;(d) "Flat" form

φ flat x,µ0( ) = fπ2 3

N + 6(1− N )x(1− x)[ ].

Tau2016, IHEP Beijing 20/09/2016

Page 15: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

F.-G. Cao, Massey Uni 15Tau2016, IHEP Beijing 20/09/2016

Construction of the pion wave function

Hard evolution is governed by the ERBL equation.

QCD prediction: leading-order results

BHL prescription

1980ψqq π

soft x,k⊥2( ) = φ(x) 8π

κ 21

x(1− x)exp −

k⊥2

2κ 2x(1− x)#

$%

&

'(

φ x,Q( ) = d 2k⊥2

8π 20

Q2

∫ ψqq πsoft x,k⊥

2( )Soft evolution

φ x,Q( ) = φ x( ) 1− exp −Q2

2κ 2x(1− x)#

$%

&

'(

*

+,

-

./

Page 16: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

Tau2016, IHEP Beijing 20/09/2016

F.-G. Cao, Massey Uni 16

Q2Fπ γ Q2( ) = 4

3dx φ(x, xQ)

x01∫ 1− exp xQ

2κ 2x#

$%

&

'(

)

*+

,

-.

QCD prediction

Leading order

Correctionsi. Replacement of φ(x, xQ) with φ(x,Q) and evolution effectii. Higher order contributionsiii. Higher twist contributions

“Evolved QCD predictions for the meson-photon transition form factors”,S. J. Brodsky, F.-G. Cao, and G. F. de Teramond, PRD 84 (2011) 033001.

The behavior at the asymptotic limit Q2 →∞

is well predicted, Q2Fπ γ (Q2 →∞) = 2 fπ .

Q2Fπ γ Q2( ) = 4

3dxφ x,Q( )

x0

1∫ 1+O αs,

mq2

Q2

"

#$$

%

&''

(

)**

+

,--

LB result in 80’

Page 17: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

Evolution of pion DA

AdS/QCD form φ(x,µ0 ) = 43π

fπ x(1− x)

0.0 0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

0.4

0.5

x

fHx,Q2 Lêf p

F.-G. Cao, Massey Uni 17

Q2 =1,10,100,1000 GeV2, and asymptotic DA

Tau2016, IHEP Beijing 20/09/2016

0.0 0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

x

fHx,Q2 Lêf p

CZ form φ(x,µ0 ) = 5 3 fπ x(1− x)(1− 2x)2

Page 18: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

Tau2016, IHEP Beijing 20/09/2016

F.-G. Cao, Massey Uni 18

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 10 20 30 40

Q2F !

" (Q

2)(

GeV

)

Q2(GeV2)

BaBar

CLEO

CELLO

AdS

AdS

AdS

asy

�(x)

�(x,Q)

�(x, xQ)

�(x)

Replacing φ(x, xQ) with φ(x,Q) brings very small changes.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 10 20 30 40 50

Q2F !

"(Q

2)(

GeV

) Q2(GeV2)

BaBar

CLEO

CELLO

CZ

CZ

CZ

asy

�(x)

�(x, xQ)

�(x,Q)

�(x)

AdS model CZ model

Page 19: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

QCD corrections: NLO contributions

F.-G. Cao, Massey Uni 19Tau2016, IHEP Beijing 20/09/2016

Page 20: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

NLO contributions are about 10~20% for Q > a few GeV.

F.-G. Cao, Massey Uni 20Tau2016, IHEP Beijing 20/09/2016

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 10 20 30 40 50

Q2F !

"(Q

2)(

GeV

)

Q2(GeV2)

pion-gamma transition form factor, Q2Fpigamma

BaBar

CLEO

CELLO

asy #(x)

asy NLO

AdS #(x)

AdS NLO

CZ #(x)

CZ NLO

flat #(x)

flat NLO

Page 21: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

QCD corrections: higher Fock state contributions

� q

⇡0

�⇤ q

⇡0

�⇤

u

u

d

d

(a) (b)

Valence Fock state Higher Fock states

F.-G. Cao, Massey Uni 21Tau2016, IHEP Beijing 20/09/2016

Estimation of HFS contributions

Q2Fπ γHFS Q2( ) =

Fπ γ 0( )1+Q2 Λ2( )

Pqq = 0.5; Λ =1.1 GeV

<10% for Q2 >10 GeV2

[X. G. Wu and T. Huang, PRD 82 (2010) 034024]

Page 22: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

QCD prediction for the pion-photon TFF

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 10 100 1000 10000

Q2F !

"(Q

2)(

GeV)

Q2(GeV2)

pion-gamma transition form factor, Q2Fpigamma

BaBar

CLEO

CELLO

asy

AdS

CZ

flat

F.-G. Cao, Massey Uni 22Tau2016, IHEP Beijing 20/09/2016

Page 23: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

eta-photon and eta’-photon TFFs

F.-G. Cao, Massey Uni 23Tau2016, IHEP Beijing 20/09/2016

FηγF !η γ

"

#

$$

%

&

''= cosθ −sinθ

sinθ cosθ

"

#$

%

&'

Fη8γFη1γ

"

#

$$

%

&

''

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 10 100 1000

Q2 F!" (Q

2)(

GeV

)

Q2(GeV2)

Q2Feta

BaBar

CLEO

asy

AdS

CZ

flat 0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

1 10 100 1000

Q2 F!'"

(Q

2)(

GeV

)

Q2(GeV2)

TFF eta prime

BaBar

CLEO

asy

AdS

CZ

flat

Page 24: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

F.-G. Cao, Massey Uni 24

QCD calculations are in agreement with data

for the eta- and eta’- photon transition form

factors, but disagree with BaBar data for the

pion-photon transition from factor.

Tau2016, IHEP Beijing 20/09/2016

Any inconsistence in the BaBar data?

Need new measurements!!

Page 25: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

Belle data ring the bell !?

Tau2016, IHEP Beijing 20/09/2016

F.-G. Cao, Massey Uni 25

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 10 100

Q2F π

γ(Q

2)(

GeV

)

Q2(GeV2)

pion-gamma transition form factor, Q2Fpigamma

Belle

BaBar

CLEO

CELLO

asy

AdS

CZ

flat

Belle data: PRD86 (2012) 092007

More data at large Q region will be able to distinguish these DA models.

Page 26: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

An effective gravity theory

on a higher dimensional anti-de Sitter (AdS) space

F.-G. Cao, Massey Uni 26

AdS/CFT correspondenceConformal

field theories in physical space-time

Semi-classical approximation for strongly-coupled QCD (insights into non-perturbative dynamics)

Matching the EM current matrix elements in AdS space to the Drell-Yan-West expression leads to light-front holographic QCD

Tau2016, IHEP Beijing 20/09/2016

Light-front holographic QCD prediction

Page 27: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

F.-G. Cao, Massey Uni 27

Meson TFFs in Light-Front Holographic QCD

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 10 20 30 40

Q2

F! " (

Q2)(

GeV

)

Q2(GeV2)

pion-gamma transition form factor, Q2Fpigamma

BaBar

CLEO

CELLO

Free current; Twist 2

Dressed current; Twist 2

Dressed current; Twist 2+4

Tau2016, IHEP Beijing 20/09/2016

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 1 2 3 4 5 6

F ! " (Q

2)(

GeV

-1)

Q2(GeV2)

pion-gamma transition form factor, Q2Fpigamma

BaBar

CLEO

CELLO

Free current; Twist 2

Dressed current; Twist 2

Dressed current; Twist 2+4

S. J. Brodsky, F.-G. Cao, and G. F. de Teramond, PRD 84 (2011) 075012

0.00

0.05

0.10

0.15

0.20

0.25

1.0 10.0 100.0

Q2 F

! " (Q

2)(

GeV

)

Q2(GeV2)

Q2Feta

BaBar

CLEO

Free current; Twist 2

Dressed current; Twist 2

Dressed current; Twist 2+4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1.0 10.0 100.0

Q2 F

!' "

(Q

2)(

GeV

)

Q2(GeV2)

TFF eta prime

BaBar

CLEO

Free current; Twist 2

Dressed current; Twist 2

Dressed current; Twist 2+4

pion pion

eta eta’

Page 28: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

F.-G. Cao, Massey Uni 28

LF holographic QCD calculations are in

agreement with data for the eta- and eta’-

photon transition form factors, but disagree

with BaBar data for the pion-photon transition

from factor.

Tau2016, IHEP Beijing 20/09/2016

Page 29: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

QCD prediction for the pion-virtual-photon TFF

F.-G. Cao, Massey Uni 29Tau2016, IHEP Beijing 20/09/2016

0.00

0.05

0.10

0.15

0.20

0 10 20 30 40

Q12

F! "*

(Q12! Q

22)(

GeV

)

Q12(GeV2)

pion-gamma transition form factor, Q2Fpigamma

asy

AdS

CZ

flat

THγ*γ*→π (x,Q1,Q2 ) =

1xQ1 + xQ2

Q12Fπ γ*(Q1,Q2 =Q1)⇒

23fπ

Fπ γ*(Q1→ 0,Q2 → 0)⇒ 14π 2 fπ

Q12Fπ γ*(Q1,Q2 = 0) =Q1

2Fπ γ (Q1)

Page 30: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

F.-G. Cao, Massey Uni 30Tau2016, IHEP Beijing 20/09/2016

•  Various parameterizations of TFF have been used in pervious calculations.

•  Need QCD calculations for those TFFs.

VMD: Fπ γ*γ* Q12,Q2

2( ) = 14π 2 f π

MV2

Q12 +MV

2MV

2

Q22 +MV

2

LMD: Fπ γ*γ* Q12,Q2

2( ) = fπ3

Q12 +Q2

2 −MV

4

4π 2 f 2π

Q12 +MV

2( ) Q22 +MV

2( )

Does not have the correct large Q behavior!

Does not reproduce the pion-real-photon TFF!

Page 31: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

F.-G. Cao, Massey Uni 31Tau2016, IHEP Beijing 20/09/2016

Transition form factors – real photon

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4Q2 TFF(Q)real photon

LMD

Asy

AdSVMD

CZ

Page 32: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

F.-G. Cao, Massey Uni 32Tau2016, IHEP Beijing 20/09/2016

Transition form factors – virtual photon AdS

VMD

Asy

CZ

Page 33: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

F.-G. Cao, Massey Uni 33Tau2016, IHEP Beijing 20/09/2016

Transition form factors – virtual photon Asy AdS

CZ LMD

Page 34: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

Meson-real-photon TFFs •  The BaBar data for the pion TFF exhibit a rapid growth with

the momentum transfer, while the Belle data do not exhibit such a trend.

•  Perturbative QCD calculations and non-perturbative calculations with light-front holographic QCD show good agreement with all available data for the eta- and eta’-photon TFFs and all data for the pion-photon TFF except the data from the BaBar.

F.-G. Cao, Massey Uni 34Tau2016, IHEP Beijing 20/09/2016

•  The VMD does not have the correct large Q behavior.•  The LMD does not reproduce the pion-real-photon TFF.

Pion-virtual-photon TFFs

Page 35: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

F.-G. Cao, Massey Uni 35Tau2016, IHEP Beijing 20/09/2016

Π1(Q1,Q2,τ ) =1

s−Mπ2 Fπ γ*γ* −Q1

2,−Q22( ) Fπ γ γ* −Q3

2, 0( )

Π2 (Q1,Q2,τ ) =1

t −Mπ2 Fπ γ*γ* −Q1

2,−Q32( ) Fπ γ γ* −Q2

2, 0( )

s = −Q32 = − Q1

2 + 2Q1Q2τ +Q22( ), t = −Q2

2

aµHLxL =

2α 3

3π 2 dQ10

∫ dQ20

∫ dτ 1−τ 2−1

1∫ Q1

3Q23 Ti (Q1,Q2,τ )Πi (Q1,Q2,τ )i=1

2

τ is the cosine of the angle between the Eucliden momenta Q1 and Q2.

3.  Evaluation of muon g-2

Page 36: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

Integral kernels T2 and T1

F.-G. Cao, Massey Uni 36Tau2016, IHEP Beijing 20/09/2016

T2 term provides the dominant contribution.

Page 37: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

F.-G. Cao, Massey Uni 37Tau2016, IHEP Beijing 20/09/2016

T1 and T2 integrated over the angle.T2 term provides the dominant contribution.

Integral kernels T2 and T1

Page 38: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

F.-G. Cao, Massey Uni 38Tau2016, IHEP Beijing 20/09/2016

Contributions from T2 vs T1 T1T2

AdSQCD

AdSQCD

VMD VMD

aµHLxL ×

πα

"

#$

%

&'3

Page 39: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

F.-G. Cao, Massey Uni 39Tau2016, IHEP Beijing 20/09/2016

Contributions from T2 vs T1 T1T2AdS QCD

AdSQCD

LMD LMD

aµHLxL ×

πα

"

#$

%

&'3

Page 40: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

Results

F.-G. Cao, Massey Uni 40Tau2016, IHEP Beijing 20/09/2016

Pion eta eta’ TotalASY 60.1 17.4 17.1 94.5AdS 64.8 17.8 17.1 99.8CZ 39.7 11.4 10.8 61.6VMDLMD

5673

13 12 81

aµHLxL in the unit of 10−11

0.0 0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

x

DAs of pion at m02 : Asymptotic , AdS, CZ, flat

asymptotic

CZ

“flat”AdS/QCD

Page 41: Meson-photon Transition Form Factors and the Evaluation of …indico.ihep.ac.cn/.../contribution/19/material/slides/0.pdf · 2016-09-20 · F.-G. Cao, Massey Uni 1 Meson-photon Transition

•  Hadronic LxL is one of the main sources of uncertainty in computing muon g-2.

•  Calculations depend on the meson distribution amplitude.

•  Numerical results 60 ~ 100 using three models of DA.

•  Need better understanding of the DAs and/or other nonperturbative methods.

F.-G. Cao, Massey Uni 41Tau2016, IHEP Beijing 20/09/2016

4.  Summary