meson distribution amplitudes from lattice qcd - distribution amplitudes from lattice qcd james...

30
Meson Distribution Amplitudes from Lattice QCD James Zanotti University of Edinburgh August 1, 2006 J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 1 / 27

Upload: ngokien

Post on 12-Apr-2018

227 views

Category:

Documents


1 download

TRANSCRIPT

Meson Distribution Amplitudes from Lattice QCD

James Zanotti

University of Edinburgh

August 1, 2006

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 1 / 27

Acknowledgments

QCDSF:

V. Braun, M. Gockeler, R. Horsley, H. Perlt, D. Pleiter, P. Rakow,G. Schierholz, A. Schiller, W. Schroers

hep-lat/0606012

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 2 / 27

Outline

1 Motivation

2 Moments of Distribution AmplitudesMomentsOperatorsExtracting Matrix Elements

3 Results〈ξ2〉π〈ξ2〉K〈ξ〉K

4 ReconstructionGegenbauer Moments

5 Summary

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 3 / 27

Motivation

Exclusive processes at large Q2 → ∞ can be factorised into:

perturbative hard scattering amplitude (process dependent)

nonperturbative wave functions describing the hadron’s overlap withlowest Fock state (process independent)

γ

xp

xpyp′

yp′

π(p)

π(p′)

φ†

φ T (x, y, Q2)

x + x = 1

F (Q2) =

∫ 1

0dx

∫ 1

0dyφ†(y ,Q2)T (x , y ,Q2)φ(x ,Q2)

[

1 + O(m2/Q2)]

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 4 / 27

Distribution Amplitudes

Since distribution amplitudes φπ, φK , . . . are universal, there are manyrelevant processes:

exclusive non-leptonic decays (B → ππ,KK )

semi-leptonic decays (B → πlν)

electromagnetic form factors

vector meson production, etc.

Distribution Amplitude:

Related to the meson’s Bethe–Salpeter wave function by an integralover transverse momenta

φΠ(x , µ2) = Z2(µ2)

∫ |k⊥|<µ

d2k⊥ φΠ,BS(x , k⊥).

Describes the momentum distribution of the valence quarks in themeson Π

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 5 / 27

Distribution Amplitudes

πq

q

γ

γ

φ

Amplitude for converting a pion into qq pair

〈0|q(−z)γµγ5[−z , z ]u(z)|Π+(p)〉 = ifΠpµ

∫ 1

−1dξ e−iξp·zφΠ(ξ, µ2) ,

where z2 = 0 and ξ = x − x

Normalisation:∫ 1

−1dξ φΠ(ξ, µ2) = 1 .

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 6 / 27

Distribution Amplitudes

Separate transverse and longitudinal variables

transverse – scale dependence

longitudinal – Gegenbauer polynomials C3/2n (ξ)

φΠ(ξ, µ2) =3

4(1 − ξ2)

(

1 +∞∑

n=1

aΠn (µ2)C

3/2n (ξ)

)

.

At LO an renormalise multiplicatively: an(µ2) = Lγ

(0)n /(2β0) an(µ

20)

[L ≡ αs (µ2)/αs (µ

20), β0 = 11 − 2Nf /3]

Anomalous dimensions γ(0)n rise with spin, n, ⇒ higher-order

contributions are suppressed at large scales

φ(ξ, µ2 → ∞) = φas(ξ) =3

4(1 − ξ2).

an must be calculated nonperturbatively

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 7 / 27

Selection of results [hep-ph/0603063]

aK1 (1 GeV2)

0.12 (Chernyak & Zhitnitski, 1983),0.05(2) (Khodjamirian et al., 2004),0.010(12) (Braun & Lenz, 2004),0.06(3) (Ball & Zwicky, 2006)

aπ2 (1 GeV2)

0.56 (Chernyak & Zhitnitski, 1983),0.19(5) (Schmedding & Yakovlev, 2000),0.19(6) (Bakulev, Mikhailov & Stefanis, 2001),0.26(21) (Khodjamirian et al., 2004),0.20(3) ([Agaev, 2005),0.19(19) (Braun & Lenz, 2005),0.028(8) (Ball, Braun & Lenz, 2006)

CZ: aK2 /a

π2 = 0.59 ± 0.04 BBL, 2006: aK

2 /aπ2 ≃ 1

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 8 / 27

Moments of Distribution Amplitudes

nth moment of the pion’s distribution amplitude

〈ξn〉 ≡

dξ ξn φ(ξ,Q2), ξ = xq − xq

extracted from matrix elements of twist-2 operators

〈0|O{µ0...µn}(0)|π(p)〉 = fπpµ0 . . . pµn〈ξn〉 + · · ·

Oµ0...µn(0) = (−i)nψγµ0γ5

↔Dµ1 . . .

↔Dµn ψ

normalisation → 〈ξ0〉 = 1

〈ξ1〉π = 0, 〈ξ1〉K 6= 0

〈ξ2〉π ≈ 〈ξ2〉K

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 9 / 27

Moments of Distribution Amplitudes

H(4)-representation =⇒ use operators

~p = (1, 0, 0) :

Oa41 =

1

2(O41 + O14)

~p :

Ob44 = O{44} −

1

3

(

O{11} + O{22} + O{33}

)

~p = (1, 1, 0) :

Oa412 =

1

6(O412 + O421 + O124 + O142 + O214 + O241)

~p = (1, 0, 0) :

Ob411 =

(

O{411} −O{422} + O{433}

2

)

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 10 / 27

Extracting Matrix Elements

CO(t, ~p) =∑

~x

e−i~p·~x⟨

O{µ0...µn}(~x , t)J(~0, 0)†⟩

,

→A

2E〈0|O{µ0...µn}(0)|Π(p)〉

[

e−Et + τOτJe−E(Lt−t)

]

, 0 ≪ t ≪ Lt

whereA = 〈Π(p)|J(0)†|0〉

J(x) ≡ Π(x) = q(x)γ5u(x), J(x) ≡ A4(x) ≡ O4 = q(x)γ4γ5u(x)

First moment

R1a =COa

4i (t)

CO4(t)= −i pi 〈ξ〉a

R1b = −E 2

~p + 13~p

2

E~p〈ξ〉bF (E~p, t)

Second moment

R2a =C

Oa4ij (t)

CO4(t)= −pipj 〈ξ

2〉a

R2b =COb

4ii (t)

CO4(t)= p2

i 〈ξ2〉b

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 11 / 27

Ratios

R1a = −i pi 〈ξ〉a

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0 5 10 15 20 25 30 35 40 45

Im[R

(t)]

t/a

R1b =

−E2

~p+ 1

3~p2

E~p〈ξ〉b tanh [E~p(t − Lt/2)]

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0 5 10 15 20 25 30 35 40 45

R(t

)

t/a

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 12 / 27

Operator Renormalisation

Renormalise bare lattice operators in scheme, S and at scale, M

OS(M) = ZSO(M)Obare

If there are more operators withsame quantum numberssame or lower dimension

OSi (M) =

j

ZSOiOj

(M, a)Oj(a)

Renormalisation Group Invariant quantites are defined as

ORGI = ZRGIO Obare = ∆ZMS

O (µ)OMS(µ)

= ∆ZMOMO (p)OMOM(p)

= ∆Z�O (a)O(a)

(LHS is independent of scale) with

[∆ZS

O(M)]−1 =h

2b0gS(M)2

i−d02b0 exp

(

Z gS (M)

0

»

γS(ξ)

βS(ξ)+

d0

b0ξ

)

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 13 / 27

Operator Renormalisation

Nonperturbative renormalisation:

“Rome-Southhampton Method” [Martinelli et al., hep-lat/9411010]

mimics (continuum) perturbation theory in a (RI’)-’MOM’ scheme

Amputated Green’sfunction:

pp

) (b, β )(a, α

ΓO(p) = S−1(p)CO(p)S−1(p)

ZRI ′−MOMO

(ap, g0)) =ZRI ′−MOM

q (ap′, g0)

112 tr

[

ΓO(ap′)Γ−1O,Born(ap

′)]

|p′2=p2

Born → Fourier transform of free operator (U = I )scheme valid both pert. and non-pert

Convert to RGI form perturbatively ∆ZRI ′−MOMO (p)

Switch to MS scheme with a perturbative calculation of [∆ZMSO (µ)]−1

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 13 / 27

Operator Renormalisation

∆ZRI ′−MOMO (p)ZRI ′−MOM

O (p, g0)

10 20 30 40 50 60 70 80 90 1002

(GeV2)

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

ZR

GI

{5}

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 13 / 27

Renormalisation and Mixing

Renormalise bare lattice operators in scheme, S and at scale, M

OS(M) = ZSO(M)Obare

〈ξn〉S(M) =ZSO(M)

ZSO4

(M)〈ξn〉bare

We use S = MS at M2 = µ2 = 4 (GeV)2

Non-forward matrix elements: hep-lat/0410009

Mix with operators containing external ordinary derivatives

Oa, ∂∂412 = ∂{4∂1

(

qγ2}γ5q)

OS412 = ZS

412Oa412 + ZS

mixOa,∂∂412 .

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 14 / 27

Renormalisation and Mixing

Renormalation of 〈ξ2〉:

〈ξ2〉 =ZS

412

ZO4

〈ξ2〉bare +ZS

mix

ZO4

.

With

ZS412, ZO4 determined nonperturbatively

ZSmix determined perturbatively

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 15 / 27

Lattice Parameters

β κsea Volume Ntraj a (fm) mπ (GeV)

5.20 0.13420 163 × 32 O(5000) 0.1226 0.9407(19)5.20 0.13500 163 × 32 O(8000) 0.1052 0.7780(24)5.20 0.13550 163 × 32 O(8000) 0.0992 0.5782(30)5.25 0.13460 163 × 32 O(5800) 0.1056 0.9217(20)5.25 0.13520 163 × 32 O(8000) 0.0973 0.7746(25)5.25 0.13575 243 × 48 O(5900) 0.0904 0.5552(14)5.29 0.13400 163 × 32 O(4000) 0.1039 1.0952(18)5.29 0.13500 163 × 32 O(5600) 0.0957 0.8674(17)5.29 0.13550 243 × 48 O(2000) 0.0898 0.7180(13)5.29 0.13590 243 × 48 O(5000) 0.0857 0.5513(16)5.40 0.13500 243 × 48 O(3700) 0.0821 0.9692(14)5.40 0.13560 243 × 48 O(3500) 0.0784 0.7826(17)5.40 0.13610 243 × 48 O(3500) 0.0745 0.5856(22)

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 16 / 27

〈ξ2〉π – Quark Mass Dependence

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4

<ξ2 >

mπ2 [GeV2]

5.20

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4

<ξ2 >

mπ2 [GeV2]

5.25

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4

<ξ2 >

mπ2 [GeV2]

5.29

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4

<ξ2 >

mπ2 [GeV2]

5.40

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 17 / 27

〈ξ2〉π – Continuum Limit

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.002 0.004 0.006 0.008 0.01

<ξ2 >

a2 [fm2]

〈ξ2〉MSπ (4 GeV2) = 0.269(39)

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 18 / 27

〈ξ2〉MS

K (µ2 = 4 GeV2) = 0.260(6), β = 5.29

〈ξ2〉K = α+ βm2π(κsea, κsea) + γm2

K (κval1, κval2)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4

<ξ2 >

mK2 [GeV2]

κsea = 0.13400

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4

<ξ2 >

mK2 [GeV2]

κsea = 0.13500

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4

<ξ2 >

mK2 [GeV2]

κsea = 0.13550

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4

<ξ2 >

mK2 [GeV2]

κsea = 0.13590J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 19 / 27

〈ξ〉MS

K (µ2 = 4 GeV2) = 0.0272(5), β = 5.29

〈ξ〉K = B(m2K − m2

π)

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.1 0.2 0.3 0.4 0.5

<ξ> 5

a

(mK2 - mπ

2) [GeV2]

κsea = 0.13500,Oa

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.2 0.4 0.6 0.8 1 1.2 1.4

<ξ> 5

a

mπ2 [GeV2]

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.1 0.2 0.3 0.4 0.5

<ξ> 5

b

(mK2 - mπ

2) [GeV2]

κsea = 0.13590,Ob

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.2 0.4 0.6 0.8 1 1.2 1.4

<ξ> 5

b

mπ2 [GeV2]

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 20 / 27

UKQCD: Nf = 2 + 1 DWF [hep-lat/0607018]

〈 ξ 〉bare = 0.0057(4); 0.0119(10); 0.0181(18)

4 6 8 10 12 14 16

−0.02

−0.01

0

0.01

0.02

0.03

t/a

〈ξ〉b

are

amud = 0.01amud = 0.02amud = 0.03

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 21 / 27

UKQCD: Nf = 2 + 1 DWF [hep-lat/0607018]

〈 ξ 〉bare = 0.0262(23)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

amq + amres

〈ξ〉b

are

amud = 0.01amud = 0.02amud = 0.03

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 21 / 27

Gegenbauer Moments

Expansion in terms of Gegenbauer polynomials C32n

φ(x , µ2) = 6x(1 − x)∞∑

n=0

an(µ2)C

32n (2x − 1)

a1 =5

3〈ξ〉 a2 =

7

12

(

5〈ξ2〉 − 1)

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 22 / 27

Gegenbauer Moments

aπ2 (µ2 = 4 GeV2) = 0.201(114)

aK1 (µ2 = 4 GeV2) = 0.0453(9)(29)

aK2 (µ2 = 4 GeV2) = 0.175(18)(47)

Comparsion with results in the literature

aK1 (4GeV

2) = 0.055 ± 0.05 UKQCD

aπ2 (4GeV

2) = 0.17 ± 0.15

aK2 /a

π2 ≃ 1

aK1 (4GeV

2) = 0.05 ± 0.03

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 23 / 27

Pion Distribution Amplitude

a2 = 0.201(114) a4 = 0.0φ π

(ξ)

ξ

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 24 / 27

Pion Distribution Amplitude

a2 = 0.201(114) a4 = −0.10(5)φ π

(ξ)

ξ

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 25 / 27

Kaon Distribution Amplitude

a1 = 0.0453(9)(29) a2 = 0.175(18)(47)φ K

(ξ)

ξ

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 26 / 27

Summary and Future Work

Lattice calculation of 〈ξ〉, 〈ξ2〉 leads to:

aπ2 (4 GeV2) = 0.201(114): larger then asymptotic value, distinguishes

models

aK2 (4 GeV2) = 0.175(18)(47) ⇒ aπ

2/aK2 ≈ 1

aK1 (4 GeV2) = 0.0453(9)(29): agrees well with DWF result

(0.055(5)), confirms sum-rule estimate

Finite volume effects

Higher twist

Vector mesons, (K ∗)

Nucleon distribution amplitudes

J.M.Zanotti (University of Edinburgh ) Meson Distribution Amplitudes August 1, 2006 27 / 27