meizhong wang

305
GRADES 7โˆ’12+ 10612BEP The Critical Thinking Co. โ„ข Empower the mind! Meizhong Wang x 1 x 2 x 3 x 4 A B Focus Focus (1, 1) (0, 0) (1, 5) y = 5x y x f (x) = a -x f (x) = a x y x 1

Upload: others

Post on 04-Dec-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

GRADES 7โˆ’12+10612BEP

The Critical Thinking Co.โ„ขE m p o w e r t h e m i n d !

Algebra I & IIKey Concepts,

Practice, and Quizzes

Meizhong Wang

x1

x2

x3 x4

A

B

FocusFocus

(1, 1)

(0, 0)

(1, 5)

y = 5xy

x

f (x) = a -x f (x) = a x

y

x

1

Written by

Meizhong Wang

Edited byJoe Walker

Chip Dombrowski

Graphic Design byChip Dombrowski

ยฉ 2017, 2014THE CRITICAL THINKING CO.โ„ขwww.CriticalThinking.com Phone: 800-458-4849 โ€ข Fax: 541-756-17581991 Sherman Ave., Suite 200 โ€ข North Bend โ€ข OR 97459 ISBN 978-1-60144-885-9

Reproduction of This Copyrighted Material The intellectual material in this product is the copyrighted property of The Critical Thinking Co.โ„ข The individual or entity who initially purchased this product from The Critical Thinking Co.โ„ข or one of its authorized resellers is licensed to reproduce (print or duplicate on paper) up to 35 copies of each page in this product per year for use within one home or one classroom. Our copyright and this limited reproduction permission (user) agreement strictly prohibit the sale of any of the copyrighted material in this product. Any reproduction beyond these expressed limits is strictly prohibited without the written permission of The Critical Thinking Co.โ„ข Please visit http://www.criticalthinking.com/copyright for more information. The Critical Thinking Co.โ„ข retains full intellectual property rights on all its products (eBooks, books, and software).

Copy Protected PDFThe buyer of an eBook can legally keep a copy of the eBook on two different devices. The pages in the eBook are watermarked, digitally monitored, and contain a unique sales identifier, tagged to each buyer, to ensure adherence to the terms of this agreement. Illegal distribution of the copyrighted material in an eBook can result in fines and/or jail time.

Algebra I & IIKey Concepts,

Practice, and QuizzesAlgebra I & II product available in print or eBook form.

ii ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Table of Contents

Table of Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v-xIntroduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vReview and Test-Taking Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viiiAbout the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Unit 1 Fundamental Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-221-1 The Real Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

the real number system, sets, basic mathematic symbols, absolute value1-2 Operations With Real Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61-3 Exponents & Order of Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81-4 Algebraic Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

evaluating expressions, translating words into algebraic expressions, properties of addition and multiplication1-5 Simplifying Algebraic Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

equivalent expressions, combining like terms, removing parentheses1-6 Exponents&ScientificNotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Practice Quiz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

Unit 2 Equations and Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23-582-1 Solving Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

linear equations, properties of equality, procedure for solving equations, equations involving decimals/fractions2-2 Linear Equations and Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

geometry formulas, consecutive integers, business problems, motion problems, concentration/mixture problems2-3 Sets and Inequalities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

intervals, properties of inequalities, solving inequalities2-4 Intersections and Unions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .452-5 Absolute-Value Equations & Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 Practice Quiz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

Unit 3 Functions and Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59-823-1 Graphing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59

the coordinate plane, graphs of linear equations, graphing nonlinear equation with two variables3-2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

findingfunctionvalues,graphingafunction,theverticallinetest3-3 Domain, Range, and Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .663-4 Linear Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68

slope-intercept function of a line, slope 3-5 Graphing Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

graphing using the slope and the y-intercept, vertical and horizontal lines, perpendicular and parallel lines3-6 Straight Line Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75

point-slopeequationofaline,findinganequationofaline Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 Practice Quiz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 iii

Algebra I & II Key Concepts, Practice, and Quizzes Table of Contents

Unit 4 Systems of Equations & Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83-964-1 Systems of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83

solving linear systems by graphing, properties of a linear system4-2 Solving Systems by Substitution or Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86

systems involving decimals or fractions, applications4-3 Systems of Linear Inequalities in Two Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 Practice Quiz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96

Unit 5 Polynomial Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97-1165-1 Addition & Subtraction of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

polynomials, degree of polynomial, evaluating polynomial functions5-2 Multiplying Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

FOIL method to multiply binomials, special binomial products5-3 Factoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

greatest common factor, factoring polynomials by grouping, factoring x2 + bx + c5-4 Factoring ax2 + bx + c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

factoring trinomials, AC method5-5 Factoring Special Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

sum&differenceofcubes Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Practice Quiz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Unit 6 Rational Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117-1416-1 Rational Expressions & Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

rational functions, multiplying and dividing rational expressions6-2 Adding & Subtracting Rational Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1206-3 Polynomial Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

long division of polynomials, synthetic division6-4 Complex Rational Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1286-5 Rational Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1306-6 Applications of Rational Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

number problems, work problems, proportions, motion problems Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Practice Quiz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Unit 7 Radicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142-1687-1 Roots and Radicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

square roots, square root functions, odd and even roots7-2 Rational Exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

powers of roots7-3 Simplify Radicals Using Product & Quotient Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1497-4 Operations With Radicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

adding and subtracting radicals, multiplying radicals7-5 Dividing Radicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

rationalizing denominators 7-6 Solving Equations With Radicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

square root equations, extraneous solutions, equations with two radicals7-7 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

imaginary unit i, operations with complex numbers, complex conjugates, complex division Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Practice Quiz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

iv ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Table of Contents

Unit 8 Quadratic Equations and Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169-1938-1 Solving Quadratic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1698-2 Completing the Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1718-3 The Quadratic Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1748-4 Applications of Quadratic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1778-5 Discriminant of Quadratic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

writing equation from solutions 8-6 Solving Equations in Quadratic Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1838-7 Quadratic and Rational Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

solving quadratic inequalities, solving rational inequalities Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 Practice Quiz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Unit 9 Conics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194-2229-1 Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

the distance formula 9-2 Parabolas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1969-3 Ellipses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2049-4 Hyperbolas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2089-5 The General Conic Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

function transformations, general-form conic equations9-6 Nonlinear Systems of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 Practice Quiz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Unit 10 Exponential and Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223-25410-1 Exponential Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22310-2 Inverse and Composite Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22710-3 Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23510-4 Rules of Logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24010-5 Common and Natural Logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

changing the base of a logarithm10-6 Exponential and Logarithmic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 Practice Quiz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Unit 11 Determinants and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255-28111-1 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

expansion by diagonals, expansion by minors, expansion by any row/column11-2 Cramerโ€™s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25911-3 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

matrix addition & subtraction, matrix multiplication11-4 Matrix Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

identitymatrix,Gauss-JordaneliminationmethodtofindA-1, solving a linear system, using a graphing calculator (TI-83 Plus) Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 Practice Quiz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Answers & Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283-293Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 v

Algebra I & II Key Concepts, Practice, and Quizzes Introduction

Introduction

If you are looking for a quick exam, homework guide, and review book in algebra, โ€œAlgebra I & II Key Concepts, Practice, and Quizzesโ€ is an excellent source . Skip the lengthy and distracting books and instead use this concise book as a guideline for your studies, quick reviewing, tutoring, or helping children with homework .

This unique and well-structured book is an excellent supplement and convenient reference book for algebra textbooks . It provides a concise, understandable, andeffectiveguideonbasicalgebraplusthe following topics: factoring, radicals, exponents, graphing, linear equations, quadratic equations, inequalities, functions, conics, logarithms, determinants, matrices, and more .

Lecture notes that built the foundation of this book have been class-tested for many years, and received very good response from students . The following are some sample evaluation comments from students:

โ€ข โ€œExcellentabilitytomakedifficultmaterialunderstandable.โ€

โ€ข โ€œI feel Mei is an excellent teacher . She makes everything seem black and white and straight to the point .โ€

โ€ข โ€œThe material is presented in a manner that is readily understood .โ€

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

vi ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Introduction

Key Features

As an aid to readers, the book provides some noteworthy features:

โ€ข An excellent supplemental and convenient reference book for any algebra textbook . Each topic, concept,term,andphrasehasacleardefinitionfollowedbyexamplesoneachpage.

โ€ข A concise study guide, quickly getting to the heart of each particular topic, helping students with a quick review before doing mathematics homework as well as preparation for tests .

โ€ข Keyterms,definitions,properties,phrases,concepts,formulas,rules,equations,etc.areeasilylocated . Clear step-by-step procedures for applying theorems .

โ€ข Clear and easy-to-understand written format and style . Materials presented in visual and color format with less text and more outlines, tables, boxes, charts, etc .

โ€ข Tables that organize and summarize procedures, methods, and equations; clearly presenting informationandmakingstudyingmoreeffective.

โ€ข Procedures and strategies for solving word problems, using realistic real-world application examples .

โ€ข Summary at the end of each unit to emphasize the key points and formulas in the chapter, which is convenient for students reviewing before exams .

โ€ข Quizzes at the end of each unit test studentsโ€™ understanding of the material . Students can take the quiz before beginning the unit to determine how much they know about the topic . Those who do well may decide to move on to the next unit .

โ€ข โ€œReviewing and Test Taking Tipsโ€ to help students improve their test score .

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 vii

Algebra I & II Key Concepts, Practice, and Quizzes Introduction

Suitable Readers

This book can be used for:

โ€ข Adult Basic Education programs at colleges .

โ€ข Students in community colleges, high schools, tutoring, or resource rooms .

โ€ข Self-study readers, including new teachers to brush up on their mathematics .

โ€ข Professionals as a quick review of some mathematic formulas and concepts, or parents to help their children with homework .

There are many algebra books on the market, but this unique Algebra I & II Key Concepts, Practice, and Quizzesprovidesaconcise,understandable,andeffectiveguidetoalgebra.

Acknowledgements

I want to thank Michael O . Baker, the president of The Critical Thinking Co .โ„ข, for his support in publishing this book .

Special thanks to Patricia Gray, the editorial coordinator of The Critical Thinking Co .โ„ข, for her hard work in helping and supporting me throughout the entire process .

I would also like to express my sincere gratitude for the math editors of The Critical Thinking Co .โ„ข, Joe Walker and Chip Dombrowski, for their accuracy in reviewing the book and checking all the answers.Theirthoughtfulandinvaluablecorrectionsandsuggestionshavehelpedtorefinethewritingof this book .

I also appreciate my daughter Alice Wang, who deserves an acknowledgment for proofreading this book .

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

viii ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Introduction

Reviewing and Test Taking Tips

Test Taking Tips

โ€ข Scan the entire test as soon as you receive it.

Mark the easy questions you know that you can answer quickly .

Mark the hard questions and do those later .

Mark the questions that you donโ€™t know .

โ€ข Skip the questions you donโ€™t know.

Donโ€™t waste time on tough questions that youโ€™re not sure about . You can always go back

if there is time .

โ€ข Keep an eye on the time.

Make sure you are sticking to some kind of time schedule, so you can finish the entire

test within the time limit . Allow a few minutes to check your work at the end of the

testing time .

โ€ข Read each question carefully.

Donโ€™t make some silly errors by misreading the information in the question .

โ€ข Ask questions.

If youโ€™re confused about the wording or meaning of a question, ask your teacher .

Donโ€™t risk getting a question wrong because you misunderstood it .

โ€ข Write each step of the answer neatly.

It will make it easier to check, and you may get partial credit for correct steps, even if

your final answer is wrong .

โ€ข Check your answers.

Always check your work after youโ€™ve finished the test . Make sure you didnโ€™t make any

careless mistakes .

Reviewing and Test-Taking Tips

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 ix

Algebra I & II Key Concepts, Practice, and Quizzes Introduction

Reviewing Tips

โ€ข Make a review schedule.

Make a review schedule and make sure you have enough time to review all contents

before the test .

โ€ข Go over materials and make notes.

Go over lecture notes, homework, practice tests, review material, the textbook, and

exams of a previous class if available, etc . and make key notes .

โ€ข Make a summary sheet.

Write the key concepts/principles/rules/formulas etc . on a sheet of paper and do a quick

review before the test .

โ€ข Form a study group.

A study group is a good way for students to help each other, review material quickly, and

benefit from otherโ€™s strengths .

โ€ข Go to review sessions.

Ask your teacher about concepts and problems that you are not sure about . Also ask

which topics will be included on the test .

โ€ข Get a good nightโ€™s sleep.

Try to study earlier (a little bit each night) before the test, do a quick review on the last

night, and get a good nightโ€™s sleep before the exam .

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

x ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes About the Author

About the Author

Meizhong Wang (Mei) has been an instructor at the College of New Caledonia (CNC) in Canada for more than 23 years . She teaches algebra I and II for students of Adult Basic Education . She has also taughtprobabilityandstatistics,finitemath,calculus,technologymath,electronicsmath,fundamentalmath,andothermathematicalcoursesindifferentprogramsatCNC.

In addition to being an instructor of math, Mei teaches computer studies at CNC, and has taught physics, electronics, and Mandarin at colleges and universities in Canada and China .

The Higher Education Press, one of the largest and most prominent publishers of educational books in China, published the Chinese version of Meiโ€™s book โ€œ็ฎ€ๆ˜Ž็”ต่ทฏๅŸบ็ก€โ€ (Understandable Electric Circuits) in 2005, and reprinted it in 2009 .

Michael Faraday House of the Institution of Engineering and Technology (IET), one of the worldโ€™s leading professional societies for the engineering and technology community, published the English version of Meiโ€™s book Understandable Electric Circuits in 2010 .

CNC Press published Math Made Easy โ€“ Essential Math Concepts Review in Canada in July 2011, and issued the second edition in April 2013 .

Lily Chow and Meizhong Wang published the English and Chinese versions of the book Legends of Four Chinese Sages in 2007 .

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 1

Algebra I & II Key Concepts, Practice, and Quizzes Unit 1 โ€“ Fundamental Concepts

UNIT 1 FUNDAMENTAL CONCEPTS1-1 THE REAL NUMBERS

The Real Number System

โ€ข Natural numbers are the numbers used for counting . {1,2,3,4,5,6, โ€ฆ}

โ€ข Whole numbers are the natural numbers including 0 . {0,1,2,3,4,5,6, โ€ฆ}

โ€ข Integers are all the whole numbers and their negatives . {โ€ฆ -3, -2, -1, 0, 1, 2, 3, โ€ฆ}

โ€ข A number line is a straight line on which every point corresponds to an integer .

Negative numbers Origin Positive numbers

โ€ข Rational numbers are numbers that can be expressed as a fraction ๐‘Ž๐‘Ž ๐‘๐‘

, where a and b are integers and b โ‰  0. Rational numbers can be expressed as decimal terminates or repeats .Example: 3

4 = 0 .75 Terminating

2 3

= 0 .66666โ€ฆ = 0. 6๏ฟฝ Repeating

Example of rational numbers: 0.52 = 52100

, -4 .5 = -92

, 07

, -11 = -111

โ€ข Irrational numbers are real numbers that cannot be represented by a fraction (or the

ratio of two integers) .

Irrational numbers can be expressed as non-terminating, non-repeating decimals .

Example: ฯ€ = 3 .1415926 โ€ฆ Non-terminating

โˆš2 = 1 .1414213562 Non-repeating

Example of irrational numbers: ,7 2ฯ€, - ,19 135

โ€ข Real numbers are the rational numbers plus irrational numbers .

โ€ข The real number system a

Real Numbers Rational Numbers: 3

4 , -2 .13

Integers: โ€ฆ -2, -1, 0, 1, โ€ฆ Irrational Numbers Whole Numbers: 0 . 1, 2, 3 โ€ฆ โˆš5, ฯ€ , โ€ฆ Natural Numbers: 1,2, 3 โ€ฆ

&

Page 1- 1

Rational Numbers: 34, -2 .13

Integers: โ€ฆ -2, -1, 0, 1, โ€ฆWhole Numbers: 0, 1, 2, 3 โ€ฆNatural Numbers: 1, 2, 3 โ€ฆ

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

2 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 1 โ€“ Fundamental Concepts

Sets

โ€ข A set is a group of elements or numbers (in mathematics) .

Example: โ€œthe set of things in an emergency boxโ€ can be written as:

{A bottle of water, cookies, flash light, bandages, blanket, โ€ฆ} The curly braces { } represent a set .

โ€ข Roster Notation { }

Roster Notation { } ExampleList all the elements or numbers of the set .

The set of odd numbers between 3 and 17: { 5, 7, 9, 11, 13, 15}Note: โ€œbetweenโ€ not including 3 and 17 .

โ€ข Set-builder notation: a mathematic form { x | x โ€ฆ} used to represent a set of numbers .

Set-Builder Notation Example{ x | x โ€ฆ }

The set of x such as condition of x

{ x | x > 3 }

The set of x such as x greater than 3

Example: Write in roster notation .

1. The set of all letters in the word โ€œhope .โ€

{ h, o, p, e}

2. A = { x | x is a number between -4 and 6 }

A = {-3, -2, -1, 0, 1, 2, 3, 4, 5} โ€œBetweenโ€ โ€” not including -4 and 6 .

Example: Write the following in a. set- builder notation and b. roster notation .

โ€œThe set of numbers between -3 and 4 .โ€

1. A = { x | x is a number between -3 and 4} Set-builder notation

2. A = {-2, -1, 0, 1, 2, 3} Roster notation

โ€ข Elements of a set: In set notation, x โˆˆ Z means x belongs to the set Z .

Page 1- 2

Sets

โ€ข A set is a group of elements or numbers (in mathematics) .

Example: โ€œthe set of things in an emergency boxโ€ can be written as:

{A bottle of water, cookies, flash light, bandages, blanket, โ€ฆ} The curly braces { } represent a set .

โ€ข Roster Notation { }

Roster Notation { } ExampleList all the elements or numbers of the set .

The set of odd numbers between 3 and 17: { 5, 7, 9, 11, 13, 15}Note: โ€œbetweenโ€ not including 3 and 17 .

โ€ข Set-builder notation: a mathematic form { x | x โ€ฆ} used to represent a set of numbers .

Set-Builder Notation Example{ x | x โ€ฆ }

The set of x such as condition of x

{ x | x > 3 }

The set of x such as x greater than 3

Example: Write in roster notation .

1. The set of all letters in the word โ€œhope .โ€

{ h, o, p, e}

2. A = { x | x is a number between -4 and 6 }

A = {-3, -2, -1, 0, 1, 2, 3, 4, 5} โ€œBetweenโ€ โ€” not including -4 and 6 .

Example: Write the following in a. set- builder notation and b. roster notation .

โ€œThe set of numbers between -3 and 4 .โ€

1. A = { x | x is a number between -3 and 4} Set-builder notation

2. A = {-2, -1, 0, 1, 2, 3} Roster notation

โ€ข Elements of a set: In set notation, x โˆˆ Z means x belongs to the set Z .

Page 1- 2

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 3

Algebra I & II Key Concepts, Practice, and Quizzes Unit 1 โ€“ Fundamental Concepts

Real Numbers and Sets

โ€ข Real numbers summaryName Set of Numbers Example

natural numbers {1,2,3,4,5,6, โ€ฆ} 2, 7, 11, 35, 167whole numbers {0,1,2,3,4,5,6, โ€ฆ} 0, 4, 8, 23, 2009

integers {โ€ฆ -4, -3, -2, -1, 0, 1, 2, 3, -4 โ€ฆ} -215, -31, -6, 0, 8, 24, 190

rational numbers(or fractions) { ๐’‚๐’‚

๐’ƒ๐’ƒ | a and b are integers, b โ‰  0}

terminating: 45

= 0 .8

repeating: - 89 = - 0 .8888 โ€ฆ = 0 .8๏ฟฝ

irrational numbers {x | x cannot be expressed as a fraction for any integers}

nonterminating, nonrepeating 236 .25 โ‰ˆ ฯ€ โ‰ˆ 3.1416

โ€ข A real number line is a straight line on which every point corresponds to a real number .

Example: Put the following numbers in order from least to greatest on the real number line .

34

, -2 13 , -0 .67 , ,73 .13 โ‰ˆ ฯ€ โ‰ˆ 3.1416

โ€ข A prime number is a whole number that only has two factors, 1 and itself .

Example: 2, 3, 5, and 7 are prime numbers . They all have two factors: 1 and itself .

โ€ข A composite number is a whole number that has more than two factors .

Example: 4, 6, 8, 9, and 10 are composite numbers .

Example: Set-Builder Notation Roster Notation

{x | x is a natural number greater than 2 and less than 7} . {3, 4, 5, 6} {y | y is a prime number between 2 and 9} . {3, 5, 7} {a | a is an integer greater than -2 and less than 4} . {-1, 0, 1, 2, 3}

Example: Given A = {-2, ฯ€, โˆš7, 45

} . Specify the following sets . {x | x is a negative number} . {-2}

{b | b is an irrational number} . { ฯ€, โˆš๐Ÿ•๐Ÿ•}

Example: If I = irrational numbers, Z = integers, and N = natural numbers, then list the

numbers in the following sets .

1. A = { x | x โˆˆ Z, x is less than or equal to -4 and greater than -7} . {-7 < x โ‰ค -4}

2. A = { a | a โˆˆ N, a is a prime number between 15 and 25} . {17, 19, 23}3. A = { y | y โˆˆ I, y is greater than 7

8and less than 3

8} . โˆ…

โˆ… is an empty set that has no numbers .

34

-213

ฯ€ โ‰ˆ 3.1416 -0.67 โˆš3 โ‰ˆ 1.73

Page 1- 3

-5 -4 -3 -2 -1 0 1 2 3 4 5

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

4 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 1 โ€“ Fundamental Concepts

Basic Mathematic Symbols

โ€ข Basic mathematic symbolsSymbol Meaning Example

= equal a = b, 2 + 1 = -1 + 4โ‰  not equal a โ‰  b, 2 + 7 โ‰  6โ‰ˆ approximately a โ‰ˆ b, 3.667 โ‰ˆ 4> is greater than a > b, 4 > -2< is less than a < b, -3 < 0โ‰ฅ is greater than or equal to a โ‰ฅ b, 4 โ‰ฅ 3โ‰ค is less than or equal to a โ‰ค b, 8 โ‰ค 9ยฑ plus or minus a ยฑ b, 3 ยฑ 2 = 5 and 1โˆ“ minus or plus a โˆ“ b, 2 โˆ“ 7 = -5 and 9

( ) or โ—‹ open (empty) circle:the point is not included

orx < 3 3 x < 3 3

[ ] or โ— closed (filled) circle: the point is included

or -5 x โ‰ฅ -5 -5 x โ‰ฅ -5

Example: Sketch the graphs of the following inequalities .

1. x < - 4 or ) -4 -4

2. - 2 .3 โ‰ค x โˆ™ or [ -2.3 -2.3

3. { y | -4 โ‰ค y < 8 } [ ) -4 0 8

โ€ข A positive real number > 0, and a negative real number < 0. x

Example: 3 > 0 -2 < 0

โ€ข Memory aid for > and < x

bigger > smaller smaller < bigger

โ€ข x > y also means y < x x

Example: Write an equivalent inequality . Answer

-3 < y y > -3

x โ‰ฅ 2 57

2 ๐Ÿ“๐Ÿ“๐Ÿ•๐Ÿ•

โ‰ค x

Example: Insert an appropriate symbol for the following numbers . Answer-2 .3 and -9 .6 -2.3 > -9.6 or -9.6 < -2.354

and 34

๐Ÿ“๐Ÿ“๐Ÿ’๐Ÿ’

> ๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’

or ๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’

< ๐Ÿ“๐Ÿ“๐Ÿ’๐Ÿ’

Page 1- 4

)

[

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 5

Algebra I & II Key Concepts, Practice, and Quizzes Unit 1 โ€“ Fundamental Concepts

Absolute Value

โ€ข Absolute value: geometrically, it is the distance (how far) of a number x from zero on the

number line . It is symbolized by โ€œ|๐‘ฅ๐‘ฅ|โ€ .

Example: |5| is 5 units away from 0 .

โ€ข No negatives for absolute value: Distance is always positive, and absolute value is

distance, so the absolute value is never negative .

Example: |2| is 2 units away from 0 . 2 units

-2 0 2

๏ฟฝ-2๏ฟฝ is also 2 units away from 0 . 2 units

-2 0 2

Example: Evaluate the following .

๏ฟฝ-18๏ฟฝ = 18

|0 โˆ’ 11| = ๏ฟฝ-11๏ฟฝ = 11

๏ฟฝ- 5

7๏ฟฝ = ๐Ÿ“๐Ÿ“

๐Ÿ•๐Ÿ•

-๏ฟฝ-5๏ฟฝ = - (5) = -5

๏ฟฝ-2 โˆ™ 7๏ฟฝ = ๏ฟฝ-14๏ฟฝ = 14

|7 โˆ’ 5| โˆ’ |3 โˆ’ 8| = 2 โˆ’ 5 = -3

Page 1- 5

Absolute Value

โ€ข Absolute value: geometrically, it is the distance (how far) of a number x from zero on the

number line . It is symbolized by โ€œ|๐‘ฅ๐‘ฅ|โ€ .

Example: |5| is 5 units away from 0 .

โ€ข No negatives for absolute value: Distance is always positive, and absolute value is

distance, so the absolute value is never negative .

Example: |2| is 2 units away from 0 . 2 units

-2 0 2

๏ฟฝ-2๏ฟฝ is also 2 units away from 0 . 2 units

-2 0 2

Example: Evaluate the following .

๏ฟฝ-18๏ฟฝ = 18

|0 โˆ’ 11| = ๏ฟฝ-11๏ฟฝ = 11

๏ฟฝ- 5

7๏ฟฝ = ๐Ÿ“๐Ÿ“

๐Ÿ•๐Ÿ•

-๏ฟฝ-5๏ฟฝ = - (5) = -5

๏ฟฝ-2 โˆ™ 7๏ฟฝ = ๏ฟฝ-14๏ฟฝ = 14

|7 โˆ’ 5| โˆ’ |3 โˆ’ 8| = 2 โˆ’ 5 = -3

Page 1- 5

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

6 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 1 โ€“ Fundamental Concepts

1-2 OPERATIONS WITH REAL NUMBERS

Operations With Signed Numbers

โ€ข Terms of operationsOperations

addition addend + addend = sumsubtraction subtrahend โ€“ minuend = difference

multiplication multiplicand ร— multiplier (factor) (factor)

= product

division dividend รท divisor = quotient

โ€ข Examples of positive and negative numbers (signed numbers)Meaning Example

temperature + ยฐC: above 0 degree โ€“ ยฐC: below 0 degree

+20ยฐC-5ยฐC

money + $: gain or own โ€“ $: loss or owe

own +$10,000 owe -$500

sports + points : gain โ€“ points: loss

gain 3 points: +3lost 2 points: -2

โ€ข Adding signed numbers Example

To add two numbers with the same sign: add their values, 3 + 4 = 7

and keep their common sign . (-2) + (-3) = -5

To add two numbers with different signs: subtract their values, 2 + (-5) = -3

and keep the sign of the larger absolute value . (-3) + 7 = 4

โ€ข Subtracting signed numbers Example

Subtract a number by adding its opposite . 3 โ€“ (-4) = 3 + (4) = 7-5 โ€“ 3 = -5 + (-3) = -8

โ€ข Multiplying signed numbersSigns Multiplication Example

(+)(+) = (+) (a)(b) = ab 5 โˆ™ 6 = 30(โ€“)(+) = (โ€“) (-a)(b) = -ab (-5)(6) = -30(+)(โ€“) = (โ€“) (a)(-b) = -ab (5)(-6) = -30(โ€“)(โ€“) = (+) (-a)(-b) = ab (-5)(-6) = 30

Example

the same sign + (-2) (-5) = 10

different signs โ€“ (-3) (2) = -6

even number of negative numbers + (-2)(-3)(-1)(-4) = 24

odd number of negative numbers โ€“ (-3)(-1)(-5) = -15

Page 1- 6

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 7

Algebra I & II Key Concepts, Practice, and Quizzes Unit 1 โ€“ Fundamental Concepts

Dividing Signed Numbers

โ€ข Dividing signed numbers Signs Division Example

++

= +๐‘Ž๐‘Ž๐‘๐‘

= ๐‘๐‘ 93

= 3

โˆ’โˆ’

= +โ€“๐‘Ž๐‘Žโ€“๐‘๐‘

= ๐‘๐‘ -9-3

= 3

+โˆ’

= โˆ’๐‘Ž๐‘Ž

โ€“๐‘๐‘= โˆ’๐‘๐‘ 9

-3= โˆ’3

โˆ’+

= โˆ’โ€“๐‘Ž๐‘Ž๐‘๐‘

= โˆ’๐‘๐‘ -93

= โˆ’3

Note: - ๐‘Ž๐‘Ž๐‘๐‘

= โˆ’๐‘Ž๐‘Ž๐‘๐‘

= ๐‘Ž๐‘Žโˆ’๐‘๐‘

โ€ข Properties of zero in division x The number 0 divided by any nonzero number is 0 . ๐ŸŽ๐ŸŽ

๐‘จ๐‘จ= ๐ŸŽ๐ŸŽ (A โ‰  0)

Example: 09

= 0 0 apples divided by 9 kids, each kid gets 0 apples .

A number divided by 0 is undefined (not allowed) . ๐‘จ๐‘จ๐ŸŽ๐ŸŽ

๐ข๐ข๐ข๐ข ๐ฎ๐ฎ๐ฎ๐ฎ๐ฎ๐ฎ๐ฎ๐ฎ๐ฎ๐ฎ๐ข๐ข๐ฎ๐ฎ๐ฎ๐ฎ๐ฎ๐ฎ

Example: 90

=? 9 apples shared by zero kids has no meaning .

dividing fractions

- Change the divisor to its reciprocal (switch the numerator and denominator) .

- Multiply the resulting fractions . 2110

3752

35

72

53

72

=ร—ร—

=ร—=รท

- Signed numbers summary

Operation Method

adding signed numbers

- Add two numbers with the same sign:add their values, and keep their common sign .

- Add two numbers with different signs:subtract their values, and keep the sign of the larger number .

subtracting signed numbers Subtract a number by adding its opposite .multiplying signed numbers (+)(+) = (+), (-)(-) = (+), (-)(+) = (-), (+)(-) = (-)

dividing signed numbers++ = + ,

โˆ’โˆ’ = + ,

+โˆ’ = โˆ’ ,

โˆ’+ = โˆ’

Note: 0๐ด๐ด

= 0 , ๐ด๐ด0

is undefined

โ€ข Opposite (or additive or negative inverse): the opposite of a number (two numbers whose

sum is 0) .

Example: 1. The additive inverse of 5 is -5 . 5 + (-5) = 0

2. The additive inverse of - 34

is๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’

. - 34

+ 34

= 0

3. The additive inverse of 0 is 0 . 0 + 0 = 0

Page 1- 7

Dividing Signed Numbers

โ€ข Dividing signed numbers Signs Division Example

++

= +๐‘Ž๐‘Ž๐‘๐‘

= ๐‘๐‘ 93

= 3

โˆ’โˆ’

= +โ€“๐‘Ž๐‘Žโ€“๐‘๐‘

= ๐‘๐‘ -9-3

= 3

+โˆ’

= โˆ’๐‘Ž๐‘Ž

โ€“๐‘๐‘= โˆ’๐‘๐‘ 9

-3= โˆ’3

โˆ’+

= โˆ’โ€“๐‘Ž๐‘Ž๐‘๐‘

= โˆ’๐‘๐‘ -93

= โˆ’3

Note: - ๐‘Ž๐‘Ž๐‘๐‘

= โˆ’๐‘Ž๐‘Ž๐‘๐‘

= ๐‘Ž๐‘Žโˆ’๐‘๐‘

โ€ข Properties of zero in division x The number 0 divided by any nonzero number is 0 . ๐ŸŽ๐ŸŽ

๐‘จ๐‘จ= ๐ŸŽ๐ŸŽ (A โ‰  0)

Example: 09

= 0 0 apples divided by 9 kids, each kid gets 0 apples .

A number divided by 0 is undefined (not allowed) . ๐‘จ๐‘จ๐ŸŽ๐ŸŽ

๐ข๐ข๐ข๐ข ๐ฎ๐ฎ๐ฎ๐ฎ๐ฎ๐ฎ๐ฎ๐ฎ๐ฎ๐ฎ๐ข๐ข๐ฎ๐ฎ๐ฎ๐ฎ๐ฎ๐ฎ

Example: 90

=? 9 apples shared by zero kids has no meaning .

dividing fractions

- Change the divisor to its reciprocal (switch the numerator and denominator) .

- Multiply the resulting fractions . 2110

3752

35

72

53

72

=ร—ร—

=ร—=รท

- Signed numbers summary

Operation Method

adding signed numbers

- Add two numbers with the same sign:add their values, and keep their common sign .

- Add two numbers with different signs:subtract their values, and keep the sign of the larger number .

subtracting signed numbers Subtract a number by adding its opposite .multiplying signed numbers (+)(+) = (+), (-)(-) = (+), (-)(+) = (-), (+)(-) = (-)

dividing signed numbers++ = + ,

โˆ’โˆ’ = + ,

+โˆ’ = โˆ’ ,

โˆ’+ = โˆ’

Note: 0๐ด๐ด

= 0 , ๐ด๐ด0

is undefined

โ€ข Opposite (or additive or negative inverse): the opposite of a number (two numbers whose

sum is 0) .

Example: 1. The additive inverse of 5 is -5 . 5 + (-5) = 0

2. The additive inverse of - 34

is๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’

. - 34

+ 34

= 0

3. The additive inverse of 0 is 0 . 0 + 0 = 0

Page 1- 7

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

8 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 1 โ€“ Fundamental Concepts

1-3 EXPONENTS & ORDER OF OPERATIONS

Exponential Notation

โ€ข Exponent (power) is a number repeatedly multiplied by itself .

โ€ข Exponent review

โ€ข Basic properties

Name Property Examplezero exponent a0 a0 = 1 (a โ‰  0, 00 is undefined) 150 = 1one exponent a1 a1 = a (But 1n = 1) 71 = 7 , 113 = 1

negative exponent ๐‘Ž๐‘Ž-๐‘›๐‘› ๐‘Ž๐‘Ž-๐‘›๐‘› = 1

๐‘Ž๐‘Ž๐‘›๐‘› (a โ‰  0) 4โ€“2 = 1

42= 1

16 1

๐‘Ž๐‘Ž-๐‘›๐‘› = ๐‘Ž๐‘Ž๐‘›๐‘› or ๐‘Ž๐‘Ž-๐‘›๐‘› โˆ™ ๐‘Ž๐‘Ž๐‘›๐‘› = 11

4-2 = 42 = 16

an and a-n are reciprocals: ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐‘Ž๐‘Ž-๐‘›๐‘› โˆ™ ๐‘Ž๐‘Ž๐‘›๐‘› = 1๐‘Ž๐‘Ž๐‘›๐‘›โˆ™ ๐‘Ž๐‘Ž๐‘›๐‘› = ๐‘Ž๐‘Ž๐‘›๐‘›

๐‘Ž๐‘Ž๐‘›๐‘›= 1

Examples: Evaluate the following .

(-3)2 = (-3) (-3) = 9 an = a ยท a ยท a โ€ฆ a

(- 0 .3)3 = - 0.027

-52 = - (52) = -25n โˆ™ n โˆ™ n โˆ™ n โˆ™ n = n5

๏ฟฝ-13๏ฟฝ3

= ๏ฟฝ-13๏ฟฝ ๏ฟฝ-1

3๏ฟฝ ๏ฟฝ-1

3๏ฟฝ = -๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๏ฟฝ-13๏ฟฝ1

= -๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

a1 = a

(-111)0 = 1 a0 = 1

๏ฟฝ32๏ฟฝ

-2= 1

๏ฟฝ32๏ฟฝ2 = 1

๏ฟฝ94๏ฟฝ1 = 1 รท 9

4= 1 ร— 4

9= ๐Ÿ’๐Ÿ’

๐Ÿ—๐Ÿ— ๐‘Ž๐‘Ž-๐‘›๐‘› = 1

๐‘Ž๐‘Ž๐‘›๐‘›

13-2 = 32 = 9 1

๐‘Ž๐‘Ž-๐‘›๐‘› = ๐‘Ž๐‘Ž๐‘›๐‘›

Exponential Notation Example Exponent or power

an = a ยท a ยท a ยท a โ€ฆ a Base Read โ€œa to the nthโ€

or โ€œthe nth power of a .โ€

24 = 2 โˆ™ 2 โˆ™ 2 โˆ™ 2 = 16

Read โ€œ2 to the 4th .โ€

Page 1- 8

1-3 EXPONENTS & ORDER OF OPERATIONS

Exponential Notation

โ€ข Exponent (power) is a number repeatedly multiplied by itself .

โ€ข Exponent review

โ€ข Basic properties

Name Property Examplezero exponent a0 a0 = 1 (a โ‰  0, 00 is undefined) 150 = 1one exponent a1 a1 = a (But 1n = 1) 71 = 7 , 113 = 1

negative exponent ๐‘Ž๐‘Ž-๐‘›๐‘› ๐‘Ž๐‘Ž-๐‘›๐‘› = 1

๐‘Ž๐‘Ž๐‘›๐‘› (a โ‰  0) 4โ€“2 = 1

42= 1

16 1

๐‘Ž๐‘Ž-๐‘›๐‘› = ๐‘Ž๐‘Ž๐‘›๐‘› or ๐‘Ž๐‘Ž-๐‘›๐‘› โˆ™ ๐‘Ž๐‘Ž๐‘›๐‘› = 11

4-2 = 42 = 16

an and a-n are reciprocals: ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐‘Ž๐‘Ž-๐‘›๐‘› โˆ™ ๐‘Ž๐‘Ž๐‘›๐‘› = 1๐‘Ž๐‘Ž๐‘›๐‘›โˆ™ ๐‘Ž๐‘Ž๐‘›๐‘› = ๐‘Ž๐‘Ž๐‘›๐‘›

๐‘Ž๐‘Ž๐‘›๐‘›= 1

Examples: Evaluate the following .

(-3)2 = (-3) (-3) = 9 an = a ยท a ยท a โ€ฆ a

(- 0 .3)3 = - 0.027

-52 = - (52) = -25n โˆ™ n โˆ™ n โˆ™ n โˆ™ n = n5

๏ฟฝ-13๏ฟฝ3

= ๏ฟฝ-13๏ฟฝ ๏ฟฝ-1

3๏ฟฝ ๏ฟฝ-1

3๏ฟฝ = -๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๏ฟฝ-13๏ฟฝ1

= -๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

a1 = a

(-111)0 = 1 a0 = 1

๏ฟฝ32๏ฟฝ

-2= 1

๏ฟฝ32๏ฟฝ2 = 1

๏ฟฝ94๏ฟฝ1 = 1 รท 9

4= 1 ร— 4

9= ๐Ÿ’๐Ÿ’

๐Ÿ—๐Ÿ— ๐‘Ž๐‘Ž-๐‘›๐‘› = 1

๐‘Ž๐‘Ž๐‘›๐‘›

13-2 = 32 = 9 1

๐‘Ž๐‘Ž-๐‘›๐‘› = ๐‘Ž๐‘Ž๐‘›๐‘›

Exponential Notation Example Exponent or power

an = a ยท a ยท a ยท a โ€ฆ a Base Read โ€œa to the nthโ€

or โ€œthe nth power of a .โ€

24 = 2 โˆ™ 2 โˆ™ 2 โˆ™ 2 = 16

Read โ€œ2 to the 4th .โ€

Page 1- 8

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 9

Algebra I & II Key Concepts, Practice, and Quizzes Unit 1 โ€“ Fundamental Concepts

Order of Operations

โ€ข Order of operations

Order of Operations 1 . brackets or parentheses and absolute values

(innermost first) ( ), [ ], { },

2 . exponent an

3 . multiplication or division (from left-to-right) ร— and รท 4 . addition or subtraction (from left-to-right) + and -

โ€ข Memory aid - BEDMAS

B E D M A SBrackets Exponents Divide or Multiply Add or Subtract

โ€ข Grouping symbols: If parentheses are inside one another, calculate the inside set first .

Parentheses ( ) are used in the inner most grouping .

Square brackets [ ] are used in the second higher level grouping .

Braces { } are used in the most outer grouping .

Example: Evaluate the following .

1. 4 ร— 32 + {[5 + (2+1)] - 3} = 4 ร— 32 + {[5 + 3] - 3} ( ), [ ]

= 4 ร— 32 + {8 - 3} { }

= 4 ร— 32 + 5 an

= 4 ร— 9 + 5 ร—

= 36 + 5 +

= 41

2. |๐Ÿ’๐Ÿ’โˆ’๐Ÿ”๐Ÿ”|+๐Ÿ‘๐Ÿ‘โˆ™๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ+๐Ÿ”๐Ÿ”

= 2+3โˆ™24+6

| | and an

= 2+64+6

ร—

= 810

= ๐Ÿ’๐Ÿ’๐Ÿ“๐Ÿ“

รท and simplify

3. ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘+๐Ÿ’๐Ÿ’๐Ÿ๐Ÿโˆ’๐Ÿ‘๐Ÿ‘โˆ™๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ|๐Ÿ‘๐Ÿ‘โˆ’๐Ÿ“๐Ÿ“|รท(โˆ’๐Ÿ’๐Ÿ’)

= 23+42โˆ’3โˆ™52โˆ™2รท(โˆ’4)

= 8+16โˆ’3โˆ™52โˆ™2รท(-4)

| | and an

= 8+16โˆ’15-1

= 9-1

= -๐Ÿ—๐Ÿ— ร— and รท

Page 1- 9

Order of Operations

โ€ข Order of operations

Order of Operations 1 . brackets or parentheses and absolute values

(innermost first) ( ), [ ], { },

2 . exponent an

3 . multiplication or division (from left-to-right) ร— and รท 4 . addition or subtraction (from left-to-right) + and -

โ€ข Memory aid - BEDMAS

B E D M A SBrackets Exponents Divide or Multiply Add or Subtract

โ€ข Grouping symbols: If parentheses are inside one another, calculate the inside set first .

Parentheses ( ) are used in the inner most grouping .

Square brackets [ ] are used in the second higher level grouping .

Braces { } are used in the most outer grouping .

Example: Evaluate the following .

1. 4 ร— 32 + {[5 + (2+1)] - 3} = 4 ร— 32 + {[5 + 3] - 3} ( ), [ ]

= 4 ร— 32 + {8 - 3} { }

= 4 ร— 32 + 5 an

= 4 ร— 9 + 5 ร—

= 36 + 5 +

= 41

2. |๐Ÿ’๐Ÿ’โˆ’๐Ÿ”๐Ÿ”|+๐Ÿ‘๐Ÿ‘โˆ™๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ+๐Ÿ”๐Ÿ”

= 2+3โˆ™24+6

| | and an

= 2+64+6

ร—

= 810

= ๐Ÿ’๐Ÿ’๐Ÿ“๐Ÿ“

รท and simplify

3. ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘+๐Ÿ’๐Ÿ’๐Ÿ๐Ÿโˆ’๐Ÿ‘๐Ÿ‘โˆ™๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ|๐Ÿ‘๐Ÿ‘โˆ’๐Ÿ“๐Ÿ“|รท(โˆ’๐Ÿ’๐Ÿ’)

= 23+42โˆ’3โˆ™52โˆ™2รท(โˆ’4)

= 8+16โˆ’3โˆ™52โˆ™2รท(-4)

| | and an

= 8+16โˆ’15-1

= 9-1

= -๐Ÿ—๐Ÿ— ร— and รท

Page 1- 9

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

10 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 1 โ€“ Fundamental Concepts

Page 1- 10

1-4 ALGEBRAIC EXPRESSIONS

Evaluating Expressions

โ€ข Review of basic algebraic terms

Algebraic Term Description Example

algebraic expression A mathematical phrase that contains numbers, variables, and arithmetic operations.

5x + 2, 3a โ€“ 4b + 6, 2๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ3 + 4

constant A number. x + 2 constant: 2 variable A letter that can be assigned different values. 3 โ€“ x variable: x

coefficient The number that is in front of a variable. -6 x coefficient: -6 xz3 coefficient: 1

term A term can be a constant, variable, or the product of a number and variable(s). Terms are separated by addition or subtraction.

3x โˆ’25 + 13y2 + 73x

Terms: 3x, - 25 , 13y2 , 73x

like terms The terms that have the same variables and exponents.

2x โ€“ y2 โˆ’25 + 5x โ€“ 7 + 13y2

Like terms: 2x and 5x -y2 and 13y2 , - 2

5 and -7

Note: - In algebra we usually do not write the multiplication sign โ€œร—โ€ (to avoid confusing it with the letter x).

- If there is no symbol or sign between a number and letter, it means multiplication, such as 5x = 5 โˆ™ x .

โ€ข To evaluate an expression: x - Replace the variable(s) with number(s).

- Calculate.

Example: Evaluate the following.

1. ๐’™๐’™๐’™๐’™๐’š๐’š๐’š๐’š , given x = -3 and y = 5. Substitute x for -3 and y for 5.

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = -๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“

2. 3a โ€“ 4 + 2, given a = 5.

3a โ€“ 4 + 2 = 3 โˆ™ 5 โ€“ 4 + 2 Substitute a for 5.

= 15 โ€“ 4 + 2 Calculate.

= 13

3. 6๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2

๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆโˆ’3+ 7๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ 2, given x = 1 and y = 9.

6๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2

๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆโˆ’3+ 7๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ 2 = 6 โˆ™ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ2

๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—โˆ’3+ 7 โˆ™ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ 2 Substitute x for 1 and y for 9.

= 6 6

+ 7 โˆ’ 2 = 6 Calculate.

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 11

Algebra I & II Key Concepts, Practice, and Quizzes Unit 1 โ€“ Fundamental Concepts

Translating Words Into Algebraic Expressions

โ€ข Key or clue words in word problemsAddition

(+)Subtraction

(-)Multiplication

(ร—)Division

(รท)Equals to

(=)add subtract times divided by equals

sum (of) difference product quotient isplus take away multiplied by over was

total (of) minus double split up arealtogether less (than) twice fit into were

increased by decreased by triple per amounts togain (of) loss (of) of each totalscombined balance how much (total) goes into results in

entire (amount) left how many as much as the same as in all savings out of gives

greater than withdraw ratio (of) yieldscomplete reduced by percenttogether fewer (than) share

more (than) how much more distributeand how many extra average

additional how farexceed

โ€ข Translate words into an algebraic expressionAlgebraic

Expression Word PhrasesAlgebraic

Expression Word Phrases

7 + y

the sum of 7 and y

t โ€“ 8

8 less than t7 more than y t decreased (or reduced) by 8y increased by 7 subtract 8 from t7 plus y the difference between t and 8

AlgebraicExpression Word Phrases

AlgebraicExpression Word Phrases

2x or2 โ€ข x

the product of 2 and xz รท 3 or ๐’›๐’›

๐Ÿ‘๐Ÿ‘

the quotient of z and 32 multiplied by x z divided by 3double (or twice) of x one third of z

AlgebraicExpression Word Phrases

AlgebraicExpression Word Phrases

y3

the third power of y 4y โ€“ 9 9 less than 4 times yy cubed 2(t โ€“ 5) twice the difference of t and 5

y raised to the third power ๐Ÿ”๐Ÿ” +๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ 6 more than the quotient of 2x by 3

Page 1- 11

Translating Words Into Algebraic Expressions

โ€ข Key or clue words in word problemsAddition

(+)Subtraction

(-)Multiplication

(ร—)Division

(รท)Equals to

(=)add subtract times divided by equals

sum (of) difference product quotient isplus take away multiplied by over was

total (of) minus double split up arealtogether less (than) twice fit into were

increased by decreased by triple per amounts togain (of) loss (of) of each totalscombined balance how much (total) goes into results in

entire (amount) left how many as much as the same as in all savings out of gives

greater than withdraw ratio (of) yieldscomplete reduced by percenttogether fewer (than) share

more (than) how much more distributeand how many extra average

additional how farexceed

โ€ข Translate words into an algebraic expressionAlgebraic

Expression Word PhrasesAlgebraic

Expression Word Phrases

7 + y

the sum of 7 and y

t โ€“ 8

8 less than t7 more than y t decreased (or reduced) by 8y increased by 7 subtract 8 from t7 plus y the difference between t and 8

AlgebraicExpression Word Phrases

AlgebraicExpression Word Phrases

2x or2 โ€ข x

the product of 2 and xz รท 3 or ๐’›๐’›

๐Ÿ‘๐Ÿ‘

the quotient of z and 32 multiplied by x z divided by 3double (or twice) of x one third of z

AlgebraicExpression Word Phrases

AlgebraicExpression Word Phrases

y3

the third power of y 4y โ€“ 9 9 less than 4 times yy cubed 2(t โ€“ 5) twice the difference of t and 5

y raised to the third power ๐Ÿ”๐Ÿ” +๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ 6 more than the quotient of 2x by 3

Page 1- 11

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

12 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 1 โ€“ Fundamental Concepts

Properties of Addition and Multiplication

โ€ข Review properties of addition Additive Properties Example

commutative property a + b = b + a 4 + 7 = 7 + 4 associative property (a + b) + c = a + (b + c) (7 + 2) + 9 = 7 + (2 + 9)

identity property a + 0 = a 12 .7 + 0 = 12 .7 closure property If a and b are real numbers, If 9 and 11 are real numbers,

then a + b is a real number . then 9 + 11 = 20 is a real number .inverse property -a + a = 0 -100 + 100 = 0

Example: Name the properties . Answer

1. 7 x + 0 = 7x identity property of addition

2. (3 + x) + 11 = 3 + (x + 11) associative property of addition

3. 11y + 7 = 7 + 11y commutative property of addition

4. (4y + 3) + [- (4y + 3)] = 0 inverse property of addition

โ€ข Review properties of multiplication

Multiplicative Properties Examplecommutative property a b = b a 9 โˆ™ 5 = 5 โˆ™ 9associative property (a b) c = a (b c) (3 โˆ™ 7) 5 = 3 (7 โˆ™ 5)

identity property of 1 a โˆ™ 1 = a 100,000 โˆ™ 1 = 100,000

closure property If a and b are real numbers, If 3 and 5 are real numbers,then ab is a real number . then (3)(5) = 15 is a real number .

distributive property a (b + c) = ab + ac 2 (3 โ€“ 4) = 2 โˆ™ 3 โ€“ 2 โˆ™ 4zero product property a โˆ™ 0 = 0 -76 โˆ™ 0 = 0

inverse property ๐‘Ž๐‘Ž โˆ™

๐Ÿ๐Ÿ๐’‚๐’‚

= 1 1)97(

1)97( =โˆ’

โ‹…โˆ’ number its reciprocal

Example: Name the property which the given statement illustrates .Answer

1. 3(5x โ€“ 2) = 3 โˆ™ 5x โ€“ 3 โˆ™ 2 distributive property of multiplication= 15x โ€“ 6

2. xy = yx commutative property of multiplication

3. 1 โˆ™ -1(25+6๐‘Ž๐‘Ž)

= -1(25+6๐‘Ž๐‘Ž)

identity property of multiplication

4. (y x) 4z = y (x ยท 4z) associative property of multiplication

5. -(7 + 3๐‘ฅ๐‘ฅ) โˆ™ 1-(7+3๐‘ฅ๐‘ฅ)

= 1 inverse property of multiplication

6. 5a(2b โ€“ 3c) = 10ab โ€“ 15ac distributive property of multiplication

7. 14๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

ยท 0 = 0 zero product property of multiplication

(Switch the order)

(Switch the parentheses)

(Switch the order .)

(Switch the parentheses .)

Page 1- 12

Properties of Addition and Multiplication

โ€ข Review properties of addition Additive Properties Example

commutative property a + b = b + a 4 + 7 = 7 + 4 associative property (a + b) + c = a + (b + c) (7 + 2) + 9 = 7 + (2 + 9)

identity property a + 0 = a 12 .7 + 0 = 12 .7 closure property If a and b are real numbers, If 9 and 11 are real numbers,

then a + b is a real number . then 9 + 11 = 20 is a real number .inverse property -a + a = 0 -100 + 100 = 0

Example: Name the properties . Answer

1. 7 x + 0 = 7x identity property of addition

2. (3 + x) + 11 = 3 + (x + 11) associative property of addition

3. 11y + 7 = 7 + 11y commutative property of addition

4. (4y + 3) + [- (4y + 3)] = 0 inverse property of addition

โ€ข Review properties of multiplication

Multiplicative Properties Examplecommutative property a b = b a 9 โˆ™ 5 = 5 โˆ™ 9associative property (a b) c = a (b c) (3 โˆ™ 7) 5 = 3 (7 โˆ™ 5)

identity property of 1 a โˆ™ 1 = a 100,000 โˆ™ 1 = 100,000

closure property If a and b are real numbers, If 3 and 5 are real numbers,then ab is a real number . then (3)(5) = 15 is a real number .

distributive property a (b + c) = ab + ac 2 (3 โ€“ 4) = 2 โˆ™ 3 โ€“ 2 โˆ™ 4zero product property a โˆ™ 0 = 0 -76 โˆ™ 0 = 0

inverse property ๐‘Ž๐‘Ž โˆ™

๐Ÿ๐Ÿ๐’‚๐’‚

= 1 1)97(

1)97( =โˆ’

โ‹…โˆ’ number its reciprocal

Example: Name the property which the given statement illustrates .Answer

1. 3(5x โ€“ 2) = 3 โˆ™ 5x โ€“ 3 โˆ™ 2 distributive property of multiplication= 15x โ€“ 6

2. xy = yx commutative property of multiplication

3. 1 โˆ™ -1(25+6๐‘Ž๐‘Ž)

= -1(25+6๐‘Ž๐‘Ž)

identity property of multiplication

4. (y x) 4z = y (x ยท 4z) associative property of multiplication

5. -(7 + 3๐‘ฅ๐‘ฅ) โˆ™ 1-(7+3๐‘ฅ๐‘ฅ)

= 1 inverse property of multiplication

6. 5a(2b โ€“ 3c) = 10ab โ€“ 15ac distributive property of multiplication

7. 14๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

ยท 0 = 0 zero product property of multiplication

(Switch the order)

(Switch the parentheses)

(Switch the order .)

(Switch the parentheses .)

Page 1- 12

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 13

Algebra I & II Key Concepts, Practice, and Quizzes Unit 1 โ€“ Fundamental Concepts

1-5 SIMPLIFYING ALGEBRAIC EXPRESSIONS

Equivalent Expressions

Equivalent expressions: Two expressions are equivalent if they have the same value for all

allowable replacements .

Example: Complete the table by evaluating the expression for the given values . Then

determine whether the expressions are equivalent .3x - x 2x

x = 1 2 2x = 2 4 4x = 0 0 0

Yes, 3x โ€“ x and 2x are equivalent.Examples

1. Multiply by 1 to find an equivalent expression with a given

denominator of 3x . Answer๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

= 23โˆ™ 1 = 2

3โˆ™ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ

2. Simplify: - ๐Ÿ–๐Ÿ–๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ–

- 8๐‘ก๐‘ก12๐‘ก๐‘ก

= - ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

3. Factor: 4xyz โ€“ 2yz + 6z 4xyz โ€“ 2yz + 6z = 2z(2xy โ€“ y + 3)

4. Multiply: -3p(2q โ€“ r) -3p(2q โ€“ r) = -6pq + 3pr

5. List the terms: 3a โ€“ 2bc + d 3a, - 2bc, d

Example: Use properties of addition and multiplication to find an equivalent expression .

Answer

1. ac : ca commutative property of multiplication

2. wt + 6 : 6 + wt , 6 + tw , or tw+ 6 commutative property of addition/ multiplication

3. (a + 6) โ€“ b : a + (6 โ€“ b) associative property of addition

Example: Use properties of addition and multiplication to find three equivalent expressions .

Answer

1. (t + u) + 3 : (t + 3) + u, (3 + t) + u, t + (u + 3), โ€ฆcommutative/associative property of addition

2. (3 ยท y) โˆ™ z : (y ยท z) โˆ™ 3, (3 ยท z) โˆ™ y, 3 ยท (y โˆ™ z), โ€ฆcommutative/associative property of multiplication

Page 1- 13

1-5 SIMPLIFYING ALGEBRAIC EXPRESSIONS

Equivalent Expressions

Equivalent expressions: Two expressions are equivalent if they have the same value for all

allowable replacements .

Example: Complete the table by evaluating the expression for the given values . Then

determine whether the expressions are equivalent .3x - x 2x

x = 1 2 2x = 2 4 4x = 0 0 0

Yes, 3x โ€“ x and 2x are equivalent.Examples

1. Multiply by 1 to find an equivalent expression with a given

denominator of 3x . Answer๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

= 23โˆ™ 1 = 2

3โˆ™ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ

2. Simplify: - ๐Ÿ–๐Ÿ–๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ–

- 8๐‘ก๐‘ก12๐‘ก๐‘ก

= - ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

3. Factor: 4xyz โ€“ 2yz + 6z 4xyz โ€“ 2yz + 6z = 2z(2xy โ€“ y + 3)

4. Multiply: -3p(2q โ€“ r) -3p(2q โ€“ r) = -6pq + 3pr

5. List the terms: 3a โ€“ 2bc + d 3a, - 2bc, d

Example: Use properties of addition and multiplication to find an equivalent expression .

Answer

1. ac : ca commutative property of multiplication

2. wt + 6 : 6 + wt , 6 + tw , or tw+ 6 commutative property of addition/ multiplication

3. (a + 6) โ€“ b : a + (6 โ€“ b) associative property of addition

Example: Use properties of addition and multiplication to find three equivalent expressions .

Answer

1. (t + u) + 3 : (t + 3) + u, (3 + t) + u, t + (u + 3), โ€ฆcommutative/associative property of addition

2. (3 ยท y) โˆ™ z : (y ยท z) โˆ™ 3, (3 ยท z) โˆ™ y, 3 ยท (y โˆ™ z), โ€ฆcommutative/associative property of multiplication

Page 1- 13

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

14 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 1 โ€“ Fundamental Concepts

Combining Like Terms

โ€ข Like terms: terms that have the same variables and exponents (the numerical coefficients

can be different .)

Example Like or Unlike Terms3x and -14x like terms

-2x2, 43x2 , and -x2 like terms25๐‘Ž๐‘Ž2๐‘๐‘ and

-27๐‘Ž๐‘Ž2๐‘๐‘ like terms

-7t2w3 and 4t2w3 like terms4x and -35y unlike terms6x3 and -9x2 unlike terms

-7a2b3 and 4a3b2 unlike terms

โ€ข To combine (or collect) like terms, add or subtract their numerical coefficients and keep

the same variables and exponents .

Note: Unlike terms cannot be combined .

Example: Simplify the following expressions .

1. 7x + 2y โ€“ 3x + 11y = (7x โ€“ 3x) + (2y + 11y) Regroup like terms .

= 4x + 13y Combine like terms .

2. 2yยฒ โ€“ 0.9x + 1.4x โ€“ 5yยฒ = (2yยฒ โ€“ 5yยฒ) + (-0 .9x + 1 .4x) Regroup like terms .

= -3yยฒ + 0.5x Combine like terms .

3. 2aยฒb + abยฒ โ€“ 7aยฒb - 8ab2

= 2aยฒb + abยฒ โ€“ 7a2b โ€“ 8abยฒ Mark or underline like terms and regroup .

= -5aยฒb โ€“ 7ab2Combine like terms .

4. ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐’™๐’™ + ๐Ÿ“๐Ÿ“

๐Ÿ๐Ÿ๐’š๐’š โˆ’ ๐Ÿ‘๐Ÿ‘

๐Ÿ’๐Ÿ’๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๐’š๐’š = ๏ฟฝ1

3๐‘ฅ๐‘ฅ โˆ’ 3

4๐‘ฅ๐‘ฅ๏ฟฝ + ๏ฟฝ5

2๐‘ฆ๐‘ฆ โˆ’ 1

3๐‘ฆ๐‘ฆ๏ฟฝ Regroup like terms .

= ๏ฟฝ 412๐‘ฅ๐‘ฅ โˆ’ 9

12๐‘ฅ๐‘ฅ๏ฟฝ + ๏ฟฝ15

6๐‘ฆ๐‘ฆ โˆ’ 2

6๐‘ฆ๐‘ฆ๏ฟฝ Combine like terms .

= -๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

๐Ÿ”๐Ÿ”๐’š๐’š

Page 1- 14

Combining Like Terms

โ€ข Like terms: terms that have the same variables and exponents (the numerical coefficients

can be different .)

Example Like or Unlike Terms3x and -14x like terms

-2x2, 43x2 , and -x2 like terms25๐‘Ž๐‘Ž2๐‘๐‘ and

-27๐‘Ž๐‘Ž2๐‘๐‘ like terms

-7t2w3 and 4t2w3 like terms4x and -35y unlike terms6x3 and -9x2 unlike terms

-7a2b3 and 4a3b2 unlike terms

โ€ข To combine (or collect) like terms, add or subtract their numerical coefficients and keep

the same variables and exponents .

Note: Unlike terms cannot be combined .

Example: Simplify the following expressions .

1. 7x + 2y โ€“ 3x + 11y = (7x โ€“ 3x) + (2y + 11y) Regroup like terms .

= 4x + 13y Combine like terms .

2. 2yยฒ โ€“ 0.9x + 1.4x โ€“ 5yยฒ = (2yยฒ โ€“ 5yยฒ) + (-0 .9x + 1 .4x) Regroup like terms .

= -3yยฒ + 0.5x Combine like terms .

3. 2aยฒb + abยฒ โ€“ 7aยฒb - 8ab2

= 2aยฒb + abยฒ โ€“ 7a2b โ€“ 8abยฒ Mark or underline like terms and regroup .

= -5aยฒb โ€“ 7ab2Combine like terms .

4. ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐’™๐’™ + ๐Ÿ“๐Ÿ“

๐Ÿ๐Ÿ๐’š๐’š โˆ’ ๐Ÿ‘๐Ÿ‘

๐Ÿ’๐Ÿ’๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๐’š๐’š = ๏ฟฝ1

3๐‘ฅ๐‘ฅ โˆ’ 3

4๐‘ฅ๐‘ฅ๏ฟฝ + ๏ฟฝ5

2๐‘ฆ๐‘ฆ โˆ’ 1

3๐‘ฆ๐‘ฆ๏ฟฝ Regroup like terms .

= ๏ฟฝ 412๐‘ฅ๐‘ฅ โˆ’ 9

12๐‘ฅ๐‘ฅ๏ฟฝ + ๏ฟฝ15

6๐‘ฆ๐‘ฆ โˆ’ 2

6๐‘ฆ๐‘ฆ๏ฟฝ Combine like terms .

= -๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

๐Ÿ”๐Ÿ”๐’š๐’š

Page 1- 14

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 15

Algebra I & II Key Concepts, Practice, and Quizzes Unit 1 โ€“ Fundamental Concepts

Removing Parentheses

โ€ข If the sign preceding the parentheses is positive (+), do not change the sign of terms

inside the parentheses, just remove the parentheses . Example: (a โ€“ 2) = a โ€“ 2

โ€ข If the sign preceding the parentheses is negative (-), remove the parentheses, omit the

negative (-) sign, and change the sign of terms inside the parentheses .

Example: - (a โ€“ 2) = -a + 2

โ€ข Remove parentheses

Algebraic Expression Remove Parentheses Example(Ax + B) Ax + B (3x + 4) = 3x + 4(Ax โ€“ B) Ax โ€“ B ๏ฟฝ5

6๐‘ฅ๐‘ฅ โˆ’ 3๏ฟฝ = 5

6๐‘ฅ๐‘ฅ โˆ’ 3

- (Ax + B) -Ax โ€“ B - (2x + 7) = -2x - 7

- (Ax โ€“ B) -Ax + B - ๏ฟฝ13 ๐‘ฅ๐‘ฅ โˆ’25๏ฟฝ = -1

3 ๐‘ฅ๐‘ฅ + 25

Example: Simplify the following expressions .

1. 2xยฒ + 3 โ€“ (xยฒ โ€“ 2) = 2xยฒ + 3 โ€“ xยฒ + 2 Remove parentheses .

= xยฒ + 5 Combine like terms .

2. - (xยฒ + 3x โ€“ 0.5) + 2(2xยฒ โ€“ 7x + ๐Ÿ‘๐Ÿ‘๐Ÿ–๐Ÿ–)

= - xยฒ โ€“ 3x + 0.5 + 4xยฒ โ€“ 14x + ๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’

Remove parentheses .

= 3xยฒ โ€“ 17 x + ๐Ÿ“๐Ÿ“๐Ÿ’๐Ÿ’

Combine like terms .

3. -2(t ยฒ โ€“ 4t) + 3(t โ€“ 4) โ€“ (6 + 2t โ€“ 3t ยฒ)

= -2t ยฒ + 8t + 3t โ€“ 12 โ€“ 6 โ€“ 2t + 3t ยฒ Remove parentheses .

= t ยฒ + 9t โ€“ 18 Combine like terms .

4. ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

(a + 3) โ€“ ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ

(a + 2) = 13

a + 1 โ€“ 1 2

a โ€“ 1 Remove parentheses .

= ๏ฟฝ13 ๐‘Ž๐‘Ž โ€“ 1

2 ๐‘Ž๐‘Ž ๏ฟฝ + (1 โ€“ 1) Combine like terms .

= -๐Ÿ๐Ÿ ๐Ÿ”๐Ÿ”

a

Page 1- 15

Removing Parentheses

โ€ข If the sign preceding the parentheses is positive (+), do not change the sign of terms

inside the parentheses, just remove the parentheses . Example: (a โ€“ 2) = a โ€“ 2

โ€ข If the sign preceding the parentheses is negative (-), remove the parentheses, omit the

negative (-) sign, and change the sign of terms inside the parentheses .

Example: - (a โ€“ 2) = -a + 2

โ€ข Remove parentheses

Algebraic Expression Remove Parentheses Example(Ax + B) Ax + B (3x + 4) = 3x + 4(Ax โ€“ B) Ax โ€“ B ๏ฟฝ5

6๐‘ฅ๐‘ฅ โˆ’ 3๏ฟฝ = 5

6๐‘ฅ๐‘ฅ โˆ’ 3

- (Ax + B) -Ax โ€“ B - (2x + 7) = -2x - 7

- (Ax โ€“ B) -Ax + B - ๏ฟฝ13 ๐‘ฅ๐‘ฅ โˆ’25๏ฟฝ = -1

3 ๐‘ฅ๐‘ฅ + 25

Example: Simplify the following expressions .

1. 2xยฒ + 3 โ€“ (xยฒ โ€“ 2) = 2xยฒ + 3 โ€“ xยฒ + 2 Remove parentheses .

= xยฒ + 5 Combine like terms .

2. - (xยฒ + 3x โ€“ 0.5) + 2(2xยฒ โ€“ 7x + ๐Ÿ‘๐Ÿ‘๐Ÿ–๐Ÿ–)

= - xยฒ โ€“ 3x + 0.5 + 4xยฒ โ€“ 14x + ๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’

Remove parentheses .

= 3xยฒ โ€“ 17 x + ๐Ÿ“๐Ÿ“๐Ÿ’๐Ÿ’

Combine like terms .

3. -2(t ยฒ โ€“ 4t) + 3(t โ€“ 4) โ€“ (6 + 2t โ€“ 3t ยฒ)

= -2t ยฒ + 8t + 3t โ€“ 12 โ€“ 6 โ€“ 2t + 3t ยฒ Remove parentheses .

= t ยฒ + 9t โ€“ 18 Combine like terms .

4. ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

(a + 3) โ€“ ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ

(a + 2) = 13

a + 1 โ€“ 1 2

a โ€“ 1 Remove parentheses .

= ๏ฟฝ13 ๐‘Ž๐‘Ž โ€“ 1

2 ๐‘Ž๐‘Ž ๏ฟฝ + (1 โ€“ 1) Combine like terms .

= -๐Ÿ๐Ÿ ๐Ÿ”๐Ÿ”

a

Page 1- 15

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

16 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 1 โ€“ Fundamental Concepts

1-6 EXPONENTS & SCIENTIFIC NOTATION

Rules of Exponents

Example: Simplify the following .

1. 102 10-3 = 102 - 3 = 10-1 = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

am an = am + n , ๐‘Ž๐‘Ž-๐‘›๐‘› = 1

๐‘Ž๐‘Ž๐‘›๐‘›

2. ๐’˜๐’˜-๐Ÿ“๐Ÿ“

๐’˜๐’˜๐Ÿ๐Ÿ= ๐‘ค๐‘ค-5โˆ’2 = ๐‘ค๐‘ค-7 = ๐Ÿ๐Ÿ

๐’˜๐’˜๐Ÿ•๐Ÿ• ๐‘Ž๐‘Ž๐‘š๐‘š

๐‘Ž๐‘Ž๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘š๐‘šโˆ’๐‘›๐‘› , ๐‘Ž๐‘Ž-๐‘›๐‘› = 1

๐‘Ž๐‘Ž๐‘›๐‘›

3. (y -3) -2 = y -3(-2) = y 6 (an)m = an m

4. [(-3) โˆ™ (๐Ÿ๐Ÿ.๐Ÿ’๐Ÿ’)]2 = (-3)2 โˆ™ 0 .42 = (9) (0 .16) = 1.44 (a โˆ™b)n = an bn

5. (3x2 โˆ™ y -3 )3 = 33 โˆ™ x2โˆ™3 โˆ™ y -3โˆ™3 = 27x6 y -9 = ๐Ÿ๐Ÿ๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”

๐’š๐’š๐Ÿ—๐Ÿ—(amโˆ™bn)p = amp bnp , ๐‘Ž๐‘Ž-๐‘›๐‘› = 1

๐‘Ž๐‘Ž๐‘›๐‘›

6. ๏ฟฝ๐Ÿ๐Ÿ๐’š๐’š๏ฟฝ

-๐Ÿ‘๐Ÿ‘= ๐‘ฅ๐‘ฅ-3

๐‘ฆ๐‘ฆ-3 = ๐’š๐’š๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ ๏ฟฝ๐‘Ž๐‘Ž

๐‘๐‘๏ฟฝ๐‘›๐‘›

= ๐‘Ž๐‘Ž๐‘›๐‘›

๐‘๐‘๐‘›๐‘› , ๐‘Ž๐‘Ž-๐‘›๐‘› = 1

๐‘Ž๐‘Ž๐‘›๐‘› , 1

๐‘Ž๐‘Ž-๐‘›๐‘› = ๐‘Ž๐‘Ž๐‘›๐‘›

7. ๏ฟฝ ๐’•๐’•๐Ÿ“๐Ÿ“

๐’–๐’–-๐Ÿ๐Ÿ๏ฟฝ๐Ÿ๐Ÿ

= ๐‘ก๐‘ก5โˆ™2

๐‘ข๐‘ข๏ฟฝ-2๏ฟฝ(2) = ๐‘ก๐‘ก10

๐‘ข๐‘ข-4 = ๐’•๐’•๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’–๐’–๐Ÿ’๐Ÿ’ ๏ฟฝ๐‘Ž๐‘Ž๐‘š๐‘š

๐‘๐‘๐‘›๐‘›๏ฟฝ๐‘๐‘

= ๐‘Ž๐‘Ž๐‘š๐‘š๐‘๐‘

๐‘๐‘๐‘›๐‘›๐‘๐‘, 1

๐‘Ž๐‘Ž-๐‘›๐‘› = ๐‘Ž๐‘Ž๐‘›๐‘›

Example: Simplify the following .

1. (-๐Ÿ’๐Ÿ’๐’–๐’–๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ(๐Ÿ‘๐Ÿ‘๐’˜๐’˜๐Ÿ’๐Ÿ’)-๐Ÿ‘๐Ÿ‘(-๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ-๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“)๐Ÿ๐Ÿ

= (-4)2(๐‘ข๐‘ข3โˆ™2)(3-3๐‘ค๐‘ค4(-3))(1) (amโˆ™bn)p = amp bnp, a0 = 1

= 16(๐‘ข๐‘ข6)(3-3๐‘ค๐‘ค-12))

= 16(๐‘ข๐‘ข6)33๐‘ค๐‘ค12 = ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”๐’–๐’–๐Ÿ”๐Ÿ”

๐Ÿ๐Ÿ๐Ÿ•๐Ÿ•๐’˜๐’˜๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐‘Ž๐‘Ž-๐‘›๐‘› = 1

๐‘Ž๐‘Ž๐‘›๐‘›

2. ๏ฟฝ(๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘)(๐’ƒ๐’ƒ๐Ÿ“๐Ÿ“)๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐Ÿ’๐Ÿ’

๏ฟฝ๐Ÿ๐Ÿ

= (4๐‘Ž๐‘Ž3)๐Ÿ๐Ÿ(๐‘๐‘5)๐Ÿ๐Ÿ

(2๐‘Ž๐‘Ž2๐‘๐‘4)๐Ÿ๐Ÿ= (4๐Ÿ๐Ÿ๐‘Ž๐‘Ž3โˆ™๐Ÿ๐Ÿ)(๐‘๐‘5โˆ™๐Ÿ๐Ÿ)

2๐Ÿ๐Ÿ๐‘Ž๐‘Ž2โˆ™๐Ÿ๐Ÿ๐‘๐‘4โˆ™๐Ÿ๐Ÿ๏ฟฝ๐‘Ž๐‘Ž

๐‘š๐‘š

๐‘๐‘๐‘›๐‘›๏ฟฝ๐‘๐‘

= ๐‘Ž๐‘Ž๐‘š๐‘š๐‘š๐‘š

๐‘๐‘๐‘›๐‘›๐‘š๐‘š, (a โˆ™ b)n = an bn

= (16๐‘Ž๐‘Ž6)(๐‘๐‘10)4๐‘Ž๐‘Ž4๐‘๐‘8

= ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐‘Ž๐‘Ž๐‘š๐‘š

๐‘Ž๐‘Ž๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘š๐‘šโˆ’๐‘›๐‘›

Name Rule Exampleproduct of like bases am an = am + n (a โ‰  0) 23 22 = 23 + 2 = 25 = 32quotient of like bases (the same base)

๐‘Ž๐‘Ž๐‘š๐‘š

๐‘Ž๐‘Ž๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘š๐‘šโˆ’๐‘›๐‘› (a โ‰  0) ๐‘ฆ๐‘ฆ

3

๐‘ฆ๐‘ฆ2 = ๐‘ฆ๐‘ฆ3โˆ’2 = ๐‘ฆ๐‘ฆ1 = ๐‘ฆ๐‘ฆ

power of a power (am)n = amn (x3) 2 = x3 ยท 2 = x6

power of a product(different bases)

(a โˆ™ b)n = anbn (a, b โ‰  0) (2 โˆ™ 3)2 = 22 32 = 4 โˆ™ 9 = 36

(am โˆ™ bn)p = amp bnp (t 3 โˆ™ s 4)2 = t 3โˆ™2 s 4โˆ™2 = t6 s8

power of a quotient(different bases)

๏ฟฝ๐‘Ž๐‘Ž๐‘๐‘๏ฟฝ๐‘›๐‘›

= ๐‘Ž๐‘Ž๐‘›๐‘›

๐‘๐‘๐‘›๐‘› (b โ‰  0) ๏ฟฝ

23๏ฟฝ

2

=22

32 =49

๏ฟฝ๐‘Ž๐‘Ž๐‘š๐‘š

๐‘๐‘๐‘›๐‘›๏ฟฝ๐‘๐‘

= ๐‘Ž๐‘Ž๐‘š๐‘š๐‘š๐‘š

๐‘๐‘๐‘›๐‘›๐‘š๐‘š ๏ฟฝ

๐‘ž๐‘ž2

๐‘๐‘4๏ฟฝ3

=๐‘ž๐‘ž2โˆ™3

๐‘๐‘4โˆ™3 =๐‘ž๐‘ž6

๐‘๐‘12

Page 1- 16

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 17

Algebra I & II Key Concepts, Practice, and Quizzes Unit 1 โ€“ Fundamental Concepts

Page 1- 17

Scientific Notation

โ€ข Scientific notation is a special way of concisely expressing very large and small numbers.

Example: 300,000,000 = 3 ร— 108 m/sec the speed of light

0.00000000000000000016 = 1.6 ร— 10-19 C an electron

โ€ข Scientific notation: a product of a number between 1 and 10 and power of 10. N ร— 10ยฑn

Scientific Notation Example N ร— 10ยฑn

1 โ‰ค N < 10 n - integer

34,005.9 = 3.40059 ร— 104

standard form scientific notation

โ€ข Scientific vs. non-scientific notation

Scientific Notation Not Scientific Notation 3.5 ร— 103 35 ร— 102 35 > 10, 35 is not between 1 and 10 4.3 ร— 10-2 0.043 0.043 < 1, 0 is not between 1 and 10 5.3 ร— 1022 0.53 ร— 1023 0.53 < 1, 0 is not between 1 and 10 1.03 ร— 108 10.3 ร— 107 N should be < 10

โ€ข Writing a number in scientific notation x Step Example

- Move the decimal point after the first nonzero digit. 0.0035 43270000.

- Determine n (the power of 10) by counting the n = 3 n = 7 number of places you moved the decimal.

- If the decimal point is moved to the right: ร— 10-n 0.0035 = 3.5 ร— 10-3 3 places to the right

- If the decimal point is moved to the left: ร— 10n 43270000 = 4.327ร—107

7 places to the left Example: Write in scientific notation.

1. 135,000 =135,000. = 1.35ร— 105 5 places to the left, ร— 10n

2. 0.0000000548 = 5.48 ร— 10-8 8 places to the right,

ร— 10-n

Example: Simplify and write in scientific notation.

1. ๏ฟฝ3.4 ร— 10-4๏ฟฝ (4.79 ร— 107) = (3.4 ร— 4.79) ๏ฟฝ 10-4+7๏ฟฝ Multiply coefficients of 10ยฑn, aman=am+n

= (16.286 ร— 103) 16.286 > 10, this is not in scientific notation.

= (๐Ÿ๐Ÿ๐Ÿ๐Ÿ.๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ” ร— ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’) 1.6.286 < 10, this is in scientific notation.

2. (4ร—10-4)(1.5ร—103)5.2ร—106

= 4ร—1.55.2

ร— (10-4ร—103)106

Regroup coefficients of 10ยฑn

โ‰ˆ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ.๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ร— ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ-๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ• am an = am + n , ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘š๐‘š๐‘š๐‘š

๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘š๐‘š๐‘š๐‘šโˆ’๐‘›๐‘›๐‘›๐‘›

Page 1- 17

Scientific Notation

โ€ข Scientific notation is a special way of concisely expressing very large and small numbers.

Example: 300,000,000 = 3 ร— 108 m/sec the speed of light

0.00000000000000000016 = 1.6 ร— 10-19 C an electron

โ€ข Scientific notation: a product of a number between 1 and 10 and power of 10. N ร— 10ยฑn

Scientific Notation Example N ร— 10ยฑn

1 โ‰ค N < 10 n - integer

34,005.9 = 3.40059 ร— 104

standard form scientific notation

โ€ข Scientific vs. non-scientific notation

Scientific Notation Not Scientific Notation 3.5 ร— 103 35 ร— 102 35 > 10, 35 is not between 1 and 10 4.3 ร— 10-2 0.043 0.043 < 1, 0 is not between 1 and 10 5.3 ร— 1022 0.53 ร— 1023 0.53 < 1, 0 is not between 1 and 10 1.03 ร— 108 10.3 ร— 107 N should be < 10

โ€ข Writing a number in scientific notation x Step Example

- Move the decimal point after the first nonzero digit. 0.0035 43270000.

- Determine n (the power of 10) by counting the n = 3 n = 7 number of places you moved the decimal.

- If the decimal point is moved to the right: ร— 10-n 0.0035 = 3.5 ร— 10-3 3 places to the right

- If the decimal point is moved to the left: ร— 10n 43270000 = 4.327ร—107

7 places to the left Example: Write in scientific notation.

1. 135,000 =135,000. = 1.35ร— 105 5 places to the left, ร— 10n

2. 0.0000000548 = 5.48 ร— 10-8 8 places to the right,

ร— 10-n

Example: Simplify and write in scientific notation.

1. ๏ฟฝ3.4 ร— 10-4๏ฟฝ (4.79 ร— 107) = (3.4 ร— 4.79) ๏ฟฝ 10-4+7๏ฟฝ Multiply coefficients of 10ยฑn, aman=am+n

= (16.286 ร— 103) 16.286 > 10, this is not in scientific notation.

= (๐Ÿ๐Ÿ๐Ÿ๐Ÿ.๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ” ร— ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’) 1.6.286 < 10, this is in scientific notation.

2. (4ร—10-4)(1.5ร—103)5.2ร—106

= 4ร—1.55.2

ร— (10-4ร—103)106

Regroup coefficients of 10ยฑn

โ‰ˆ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ.๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ร— ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ-๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ• am an = am + n , ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘š๐‘š๐‘š๐‘š

๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘š๐‘š๐‘š๐‘šโˆ’๐‘›๐‘›๐‘›๐‘›

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

18 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 1 โ€“ Fundamental Concepts

Unit 1 Summary

โ€ข Roster Notation { } Roster Notation { } Example

List all the elements or numbers of the set .

The set of odd numbers between 3 and 17: { 5, 7, 9, 11, 13, 15}

โ€ข Set-builder notationSet-Builder Notation Example

{ x | x โ€ฆ }

The set of x such as condition of x

{ x | x > 3 }

The set of x such as x greater than 3

โ€ข The real number system x

Real Numbers Rational Numbers: 3

4 , -2 .13

Integers: โ€ฆ -2, -1, 0, 1, โ€ฆ Irrational Numbers Whole Numbers: 0, 1, 2, 3 โ€ฆ โˆš5 , ฯ€ , โ€ฆ

Natural Numbers: 1,2, 3 โ€ฆ

โ€ข Basic mathematic symbolsSymbol Meaning Example

= equal a = b, 2 + 1 = -1 + 4โ‰  not equal a โ‰  b, 2 + 7 โ‰  6โ‰ˆ approximately a โ‰ˆ b, 3.667 โ‰ˆ 4> is greater than a > b, 4 > -2< is less than a < b, -3 < 0โ‰ฅ is greater than or equal to a โ‰ฅ b, 4 โ‰ฅ 3โ‰ค is less than or equal to a โ‰ค b, 8 โ‰ค 9ยฑ plus or minus a ยฑ b, 3 ยฑ 2 = 5 and 1โˆ“ minus or plus a โˆ“ b, 2 โˆ“ 7 = -5 and 9

( ) or โ—‹ open (empty) circle:the point is not included

orx < 3 3 x < 3 3

[ ] or โ— closed (filled) circle: the point is included

or -5 x โ‰ฅ -5 -5 x โ‰ฅ -5

โ€ข Order of operationsOrder of Operations

1 . brackets or parentheses and absolute values(innermost first)

( ) , [ ] , { } ,

2 . exponent an

3 . multiplication or division (from left to right) ร— and รท 4 . addition or subtraction (from left to right) + and โ€“

Page 1- 18

Unit 1 Summary

โ€ข Roster Notation { } Roster Notation { } Example

List all the elements or numbers of the set .

The set of odd numbers between 3 and 17: { 5, 7, 9, 11, 13, 15}

โ€ข Set-builder notationSet-Builder Notation Example

{ x | x โ€ฆ }

The set of x such as condition of x

{ x | x > 3 }

The set of x such as x greater than 3

โ€ข The real number system x

Real Numbers Rational Numbers: 3

4 , -2 .13

Integers: โ€ฆ -2, -1, 0, 1, โ€ฆ Irrational Numbers Whole Numbers: 0, 1, 2, 3 โ€ฆ โˆš5 , ฯ€ , โ€ฆ

Natural Numbers: 1,2, 3 โ€ฆ

โ€ข Basic mathematic symbolsSymbol Meaning Example

= equal a = b, 2 + 1 = -1 + 4โ‰  not equal a โ‰  b, 2 + 7 โ‰  6โ‰ˆ approximately a โ‰ˆ b, 3.667 โ‰ˆ 4> is greater than a > b, 4 > -2< is less than a < b, -3 < 0โ‰ฅ is greater than or equal to a โ‰ฅ b, 4 โ‰ฅ 3โ‰ค is less than or equal to a โ‰ค b, 8 โ‰ค 9ยฑ plus or minus a ยฑ b, 3 ยฑ 2 = 5 and 1โˆ“ minus or plus a โˆ“ b, 2 โˆ“ 7 = -5 and 9

( ) or โ—‹ open (empty) circle:the point is not included

orx < 3 3 x < 3 3

[ ] or โ— closed (filled) circle: the point is included

or -5 x โ‰ฅ -5 -5 x โ‰ฅ -5

โ€ข Order of operationsOrder of Operations

1 . brackets or parentheses and absolute values(innermost first)

( ) , [ ] , { } ,

2 . exponent an

3 . multiplication or division (from left to right) ร— and รท 4 . addition or subtraction (from left to right) + and โ€“

Page 1- 18

Rational Numbers: 34, -2 .13Integers: โ€ฆ -2, -1, 0, 1, โ€ฆWhole Numbers: 0, 1, 2, 3 โ€ฆNatural Numbers: 1, 2, 3 โ€ฆ

)

[

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 19

Algebra I & II Key Concepts, Practice, and Quizzes Unit 1 โ€“ Fundamental Concepts

Page 1- 19

โ€ข Signed numbers summary Operation Method

adding signed numbers

- Add two numbers with the same sign: add their values, and keep their common sign.

- Add two numbers with different signs: subtract their values, and keep the sign of the larger absolute value.

subtracting signed numbers Subtract a number by adding its opposite.

multiplying signed numbers (+)(+) = (+), (โ€“)(โ€“) = (+), (โ€“)(+) = (โ€“), (+)(โ€“) = (โ€“)

dividing signed numbers ++

= + , โˆ’โˆ’

= + , +โˆ’

= โˆ’ , โˆ’+

= โˆ’

Note: 0๐ด๐ด๐ด๐ด

= 0 , ๐ด๐ด๐ด๐ด0

is undefined

โ€ข Review basic algebraic terms Algebraic Term Description Example

algebraic expression A mathematical phrase that contains numbers, variables, and arithmetic operations. 5x + 2, 3a โ€“ 4b + 6, 2๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ3 + 4

constant A number. x + 2 constant: 2 variable A letter that can be assigned different values. 3 โ€“ x variable: x

coefficient The number that is in front of a variable. -6 x coefficient: -6 xz3 coefficient: 1

term A term can be a constant, variable, or the product of a number and variable(s). Terms are separated by addition or subtraction.

3x โˆ’25 + 13y2 + 73x

Terms: 3x, - 25 , 13y2 , 73x

like terms The terms that have the same variables and exponents.

2x โ€“ y2 โˆ’25 + 5x โ€“ 7 + 13y2

Like terms: 2x and 5x -y2 and 13y2 , - 2

5 and -7

โ€ข Properties of addition Additive Properties Example

commutative property a + b = b + a 4 + 7 = 7 + 4 associative property (a + b) + c = a + (b + c) (7 + 2) + 9 = 7 + (2 + 9)

identity property a + 0 = a 12.7 + 0 = 12.7 closure property If a and b are real numbers, If 9 and 11 are real numbers,

then a + b is a real number. then 9 + 11 = 20 is a real number. inverse property -a + a = 0 -100 + 100 = 0

โ€ข Properties of multiplication Multiplicative Properties Example

commutative property a b = b a 9 โˆ™ 5 = 5 โˆ™ 9 associative property (a b) c = a (b c) (3 โˆ™ 7) 5 = 3 (7 โˆ™ 5)

identity property of 1 a โˆ™ 1 = a 100,000 โˆ™ 1 = 100,000

closure property If a and b are real numbers, If 3 and 5 are real numbers, then ab is a real number. then (3)(5) = 15 is a real number.

distributive property a (b + c) = ab + ac 2 (3 โ€“ 4) = 2 โˆ™ 3 โ€“ 2 โˆ™ 4 zero product property a โˆ™ 0 = 0 -76 โˆ™ 0 = 0

inverse property 1)97(

1)97( =โˆ’

โ‹…โˆ’

number its reciprocal

(Switch the order)

(Switch the parentheses)

(Switch the order)

(Switch the parentheses)

๐‘Ž๐‘Ž๐‘Ž๐‘Ž โˆ™

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’‚๐’‚๐’‚๐’‚

= 1

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

20 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 1 โ€“ Fundamental Concepts

โ€ข Terms of operationsOperations

addition addend + addend = sumsubtraction subtrahend โ€“ minuend = difference

multiplication multiplicand ร— multiplier (factor) (factor)

= product

division dividend รท divisor = quotient

โ€ข Remove parenthesesAlgebraic Expression Remove Parentheses Example

(Ax + B) Ax + B (3x + 4) = 3x + 4(Ax โ€“ B) Ax โ€“ B ๏ฟฝ5

6๐‘ฅ๐‘ฅ โˆ’ 3๏ฟฝ = 5

6๐‘ฅ๐‘ฅ โˆ’ 3

- (Ax + B) -Ax โ€“ B - (2x + 7) = -2x - 7- (Ax โ€“ B) -Ax + B - ๏ฟฝ1

3๐‘ฅ๐‘ฅ โˆ’ 2

5๏ฟฝ = -1

3๐‘ฅ๐‘ฅ + 2

5

โ€ข Rules of exponents

Name Property Examplezero exponent a0 a0 = 1 (a โ‰  0, 00 is undefined) 150 = 1one exponent a1 a1 = a (But 1n = 1) 71 = 7 , 113 = 1

negative exponent ๐‘Ž๐‘Žโˆ’๐‘›๐‘› ๐‘Ž๐‘Ž-๐‘›๐‘› = 1

๐‘Ž๐‘Ž๐‘›๐‘› (a โ‰  0) 4โ€“2 = 1

42= 1

16 1

๐‘Ž๐‘Ž-๐‘›๐‘› = ๐‘Ž๐‘Ž๐‘›๐‘› or ๐‘Ž๐‘Žโˆ’๐‘›๐‘› โˆ™ ๐‘Ž๐‘Ž๐‘›๐‘› = 11

4-2 = 42 = 16

product of like bases am an = am + n (a โ‰  0) 23 22 = 23 + 2 = 25 = 32quotient of like bases (the same base)

๐‘Ž๐‘Ž๐‘š๐‘š

๐‘Ž๐‘Ž๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘š๐‘šโˆ’๐‘›๐‘› (a โ‰  0) ๐‘ฆ๐‘ฆ

3

๐‘ฆ๐‘ฆ2 = ๐‘ฆ๐‘ฆ3โˆ’2 = ๐‘ฆ๐‘ฆ1 = ๐‘ฆ๐‘ฆ

power of a power (am)n = amn (x3) 2 = x3 ยท 2 = x6

power of a product(different bases)

(a โˆ™ b)n = anbn (a, b โ‰  0) (2 โˆ™ 3)2 = 22 32 = 4 โˆ™ 9 = 36

(am โˆ™ bn)p = amp bnp (t 3 โˆ™ s 4)2 = t 3โˆ™2 s 4โˆ™2 = t6 s8

power of a quotient(different bases)

๏ฟฝ๐‘Ž๐‘Ž๐‘๐‘๏ฟฝ๐‘›๐‘›

= ๐‘Ž๐‘Ž๐‘›๐‘›

๐‘๐‘๐‘›๐‘› (b โ‰  0) ๏ฟฝ

23๏ฟฝ

2

=22

32 =49

๏ฟฝ๐‘Ž๐‘Ž๐‘š๐‘š

๐‘๐‘๐‘›๐‘›๏ฟฝ๐‘๐‘

= ๐‘Ž๐‘Ž๐‘š๐‘š๐‘š๐‘š

๐‘๐‘๐‘›๐‘›๐‘š๐‘š ๏ฟฝ

๐‘ž๐‘ž2

๐‘๐‘4๏ฟฝ3

=๐‘ž๐‘ž2โˆ™3

๐‘๐‘4โˆ™3 =๐‘ž๐‘ž6

๐‘๐‘12

โ€ข Absolute value |๐’™๐’™| : the distance of a number x from zero on the number lineNo negatives for absolute value: ๏ฟฝ-๐‘๐‘๏ฟฝ = |๐‘๐‘|

โ€ข Opposite (or additive or negative inverse): the opposite of a number (two numbers whose sum is 0) .

โ€ข Equivalent expressions: two expressions are equivalent if they have the same value for all allowable replacements .

โ€ข Combine (or collect) like terms: add or subtract their numerical coefficients and keep the same variables and exponents .

โ€ข Scientific notation

Scientific Notation ExampleN ร— 10ยฑn

1 โ‰ค N < 10 n - integer

34,005 .9 = 3 .40059 ร— 104

standard form scientific notation

Page 1- 20

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 21

Algebra I & II Key Concepts, Practice, and Quizzes Unit 1 โ€“ Fundamental Concepts

PRACTICE QUIZ

Unit 1 Fundamental Concepts

1 Write in set-builder notation and roster notation: .

โ€œThe set of numbers between -5 and 2 .โ€

. Given A = {-9, 7ฯ€, โˆš5, 23

} . Specify the following sets .2

a. {x | x is a negative number}

b. {b | b is an irrational number}

. Sketch the graphs of the following inequalities .3

a . x < - 2

b. - 1 .5 โ‰ค x < 7

. Perform the indicated operations .4

a. (-1 .3) + (-2)

b . 12 โˆ’ (-7)

c . (-3)(-0 .1)(-5)

d . ๏ฟฝ- 35๏ฟฝ รท 1

5

. Evaluate the following .5

a . (- 0 .2)3

b . m โˆ™ m โˆ™ m

c . (-10855)0

๐๐. 32+ 52โˆ’2 โˆ™ 23|2โˆ’7|รท(-3)

. Evaluate 3๐‘ฆ๐‘ฆ2

๐‘ฅ๐‘ฅโˆ’2+ 7๐‘ฆ๐‘ฆ โˆ’ 4 , given x = -1 and y = 3 .6

Page 1

PRACTICE QUIZ

Unit 1 Fundamental Concepts

1 Write in set-builder notation and roster notation: .

โ€œThe set of numbers between -5 and 2 .โ€

. Given A = {-9, 7ฯ€, โˆš5, 23

} . Specify the following sets .2

a. {x | x is a negative number}

b. {b | b is an irrational number}

. Sketch the graphs of the following inequalities .3

a . x < - 2

b. - 1 .5 โ‰ค x < 7

. Perform the indicated operations .4

a. (-1 .3) + (-2)

b . 12 โˆ’ (-7)

c . (-3)(-0 .1)(-5)

d . ๏ฟฝ- 35๏ฟฝ รท 1

5

. Evaluate the following .5

a . (- 0 .2)3

b . m โˆ™ m โˆ™ m

c . (-10855)0

๐๐. 32+ 52โˆ’2 โˆ™ 23|2โˆ’7|รท(-3)

. Evaluate 3๐‘ฆ๐‘ฆ2

๐‘ฅ๐‘ฅโˆ’2+ 7๐‘ฆ๐‘ฆ โˆ’ 4 , given x = -1 and y = 3 .6

Page 1

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

22 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 1 โ€“ Fundamental Concepts

. Translate words into algebraic expression .7

a . 3 less than the product of 7 and y .

b . Twice the sum of t and 9 .

. Name the property . 8

a. (2x + 5) + [- (2x + 5)] = 0

b. (b a) 7c = b (a ยท 7c)

a . Factor: 5abc โ€“ 25bc + 35c9.b . Multiply: -3p(2q โ€“ r)

c . Combine like terms: 4xยฒ โ€“ 0 .5y + 1 .5y โ€“ 2xยฒ

d . Simplify: -3(xยฒ โ€“ 2x) + 5(x โ€“ 3) โ€“ (4 + 3x โ€“ 2xยฒ)

. Simplify the following .10

a . (-2๐‘ฅ๐‘ฅ2)3(๐‘ฆ๐‘ฆ3)-4(-2.357๐‘ง๐‘ง-178)0

b. ๏ฟฝ(2๐‘ฅ๐‘ฅ2) ๐‘ฆ๐‘ฆ4

4๐‘ฅ๐‘ฅ3๐‘ฆ๐‘ฆ2๏ฟฝ3

. Simplify and write in scientific notation .11

a . (4.3 ร— 10-5)(3.25 ร— 109)

b .(3ร—10-5)(2.3ร—104)

1.2ร—107

Page 2

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 23

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

UNIT 2 EQUATIONS AND INEQUALITIES

2-1 SOLVING EQUATIONS

Equations

โ€ข Equation: A mathematical statement that contains two expressions separated by an equal

sign (both sides of the equation have the same value) .

Example: 3 x + 2 = 5

โ€ข To solve an equation is the process of finding a particular value for the variable in the

equation that makes the equation true .

Example: For the equation 3x + 2 = 5 , only x = 1 can make it true, since 3 โˆ™ 1 + 2 = 5 .

โ€ข Solution, root, or zero of an equation: the particular value of the variable in the equation

that makes the equation true . This value is also called โ€œrootโ€ or โ€œzeroโ€ of the equation .

Example: For the equation 3x + 2 = 5, x = 1 is the solution .

More examples: Indicate whether each of the given number is a solution .? โˆš

a. 5: 2x โ€“ 3 = 7 2โˆ™5 โ€“ 3 = 7 7 = 7 Yes ? โˆš

b. -3: 10 + 412

y = 9 10 + 412

(-3) = 9 9 = 9 Yes ?

c. 1: 3t + 2(t โ€“ 4) = 5t โ€“ 6 3โˆ™1 + 2 (1 โ€“ 4) = 5โˆ™1 โ€“ 6 ?

3 โ€“ 6 = -1 -3 โ‰  -1 No

โ€ข Solution Set { }: the set of all values that makes the equation true .

Example: The solution set to x2 โ€“ 4 = 0 is {-2, 2}. โˆš โˆš

Since (-2)2 โ€“ 4 = 0 and 22 โ€“ 4 = 0

`1 Page 2-1

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

24 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

`1 Page 2-2

Linear Equations

โ€ข Linear equation (or first-degree equation) in one variable: an equation in which the

highest power (exponent) of the variable is one. (An equation whose graph is a straight line.)

โ€ข Standard form of a linear equation in one variable: Ax + B = 0 x = x1 A โ‰  0, A is a coefficient, B is a constant.

Examples of linear equations: 3x + 2 = 0

7y โ€“ 5 = 3 + 2y

9 + 5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ11

= 4 โ€“ 3x

โ€ข Second-degree equation: an equation in which the highest power of the variable is two.

Example: 5x2 + 6x + 7 = 0

In general, a first-degree equation contains an โ€œxโ€ term (or any variable), a second-degree equation contains an โ€œx2โ€ term, and a third-degree equation contains an โ€œx3โ€ term, etc.

โ€ข Equations of different degrees

Equation Standard Form Example Comments first-degree equation

(linear equation) A x + B = 0

(x = x1) 5x + 4 = 0 The highest power of x is 1.

second-degree equation (quadratic equation)

Ax2 + Bx + C = 0 2x2 + 7x โ€“ 3 = 0 The highest power of x is 2.

third-degree equation (cubic equation)

Ax3 + Bx2 + Cx + D = 0 3x3 + 4x2 โ€“ 8x + 1 = 0 The highest power of x is 3.

fourth-degree equation Ax4 + Bx3 + Cx2 +D x + E = 0 x4 โ€“ 9x3 + 3x2 + 2x โ€“ 5 = 0 The highest power of x is 4.

โ€ข Higher-degree equations are nonlinear equations.

โ€ข A linear equation in two variables: an equation with two variables in which the highest

power (exponent) of two variables is one.

Standard form: Ax + By = C A, and B are coefficients,

Example: 2x + y = 3 C is a constant.

`1 Page 2-2

Linear Equations

โ€ข Linear equation (or first-degree equation) in one variable: an equation in which the

highest power (exponent) of the variable is one. (An equation whose graph is a straight line.)

โ€ข Standard form of a linear equation in one variable: Ax + B = 0 x = x1 A โ‰  0, A is a coefficient, B is a constant.

Examples of linear equations: 3x + 2 = 0

7y โ€“ 5 = 3 + 2y

9 + 5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ11

= 4 โ€“ 3x

โ€ข Second-degree equation: an equation in which the highest power of the variable is two.

Example: 5x2 + 6x + 7 = 0

In general, a first-degree equation contains an โ€œxโ€ term (or any variable), a second-degree equation contains an โ€œx2โ€ term, and a third-degree equation contains an โ€œx3โ€ term, etc.

โ€ข Equations of different degrees

Equation Standard Form Example Comments first-degree equation

(linear equation) A x + B = 0

(x = x1) 5x + 4 = 0 The highest power of x is 1.

second-degree equation (quadratic equation)

Ax2 + Bx + C = 0 2x2 + 7x โ€“ 3 = 0 The highest power of x is 2.

third-degree equation (cubic equation)

Ax3 + Bx2 + Cx + D = 0 3x3 + 4x2 โ€“ 8x + 1 = 0 The highest power of x is 3.

fourth-degree equation Ax4 + Bx3 + Cx2 +D x + E = 0 x4 โ€“ 9x3 + 3x2 + 2x โ€“ 5 = 0 The highest power of x is 4.

โ€ข Higher-degree equations are nonlinear equations.

โ€ข A linear equation in two variables: an equation with two variables in which the highest

power (exponent) of two variables is one.

Standard form: Ax + By = C A, and B are coefficients,

Example: 2x + y = 3 C is a constant.

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 25

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

Properties of Equality

Properties for solving equations

Properties Equality Example

property of addition A = B, A + C = B + CSolve y โ€“ 7 = 2y โ€“ 7 + 7 = 2 + 7, y = 9

property of subtraction A = B, A โ€“ C = B โ€“ CSolve x + 3 = -8x + 3 โ€“ 3 = -8 โ€“ 3, x = -11

property of multiplication A = B, A โˆ™ C = B โˆ™ C (C โ‰  0)

Solve -๐‘ก๐‘ก6

= 7-๐‘ก๐‘ก6

(-๐Ÿ”๐Ÿ”) = 7(- 6), t = -42

property of division A = B, ๐ด๐ด๐‘ช๐‘ช

= ๐ต๐ต๐‘ช๐‘ช

(C โ‰  0)

Solve 4a = -16

4๐‘Ž๐‘Ž๐Ÿ’๐Ÿ’

= -16๐Ÿ’๐Ÿ’

, a = -4

Example: Solve the following equations .

Solution

1. -7 + x = 3 -7 + x + 7 = 3 + 7 Property of addition

x = 10? โˆš

Check: -7 + 10 = 3 3 = 3 Replace x with 10 .

2. y + ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

= -1 y + 13 โˆ’

๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘ = -1 โˆ’

๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘Property of subtraction

y = - ๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘

3. -๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’

x = 5 -๐Ÿ’๐Ÿ’ โˆ™ -14 ๐‘ฅ๐‘ฅ = 5(-๐Ÿ’๐Ÿ’) Property of multiplication

x = -20

4. -2x = 14 -2๐‘ฅ๐‘ฅ-๐Ÿ๐Ÿ

= 14-๐Ÿ๐Ÿ

Property of division

x = -7

5. 0.3y = -0.96 0.3๐‘ฆ๐‘ฆ๐ŸŽ๐ŸŽ.๐Ÿ‘๐Ÿ‘

= -0.96๐ŸŽ๐ŸŽ.๐Ÿ‘๐Ÿ‘

Property of division

y = -3.2

6. -2x โ€“ 3 = 5 -2x โ€“ 3 + 3 = 5 + 3 Property of addition

-2x = 8, -2๐‘ฅ๐‘ฅ-2

= 8-2

Property of division

x = -4

`1 Page 2-3

Properties of Equality

Properties for solving equations

Properties Equality Example

property of addition A = B, A + C = B + CSolve y โ€“ 7 = 2y โ€“ 7 + 7 = 2 + 7, y = 9

property of subtraction A = B, A โ€“ C = B โ€“ CSolve x + 3 = -8x + 3 โ€“ 3 = -8 โ€“ 3, x = -11

property of multiplication A = B, A โˆ™ C = B โˆ™ C (C โ‰  0)

Solve -๐‘ก๐‘ก6

= 7-๐‘ก๐‘ก6

(-๐Ÿ”๐Ÿ”) = 7(- 6), t = -42

property of division A = B, ๐ด๐ด๐‘ช๐‘ช

= ๐ต๐ต๐‘ช๐‘ช

(C โ‰  0)

Solve 4a = -16

4๐‘Ž๐‘Ž๐Ÿ’๐Ÿ’

= -16๐Ÿ’๐Ÿ’

, a = -4

Example: Solve the following equations .

Solution

1. -7 + x = 3 -7 + x + 7 = 3 + 7 Property of addition

x = 10? โˆš

Check: -7 + 10 = 3 3 = 3 Replace x with 10 .

2. y + ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

= -1 y + 13 โˆ’

๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘ = -1 โˆ’

๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘Property of subtraction

y = - ๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘

3. -๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’

x = 5 -๐Ÿ’๐Ÿ’ โˆ™ -14 ๐‘ฅ๐‘ฅ = 5(-๐Ÿ’๐Ÿ’) Property of multiplication

x = -20

4. -2x = 14 -2๐‘ฅ๐‘ฅ-๐Ÿ๐Ÿ

= 14-๐Ÿ๐Ÿ

Property of division

x = -7

5. 0.3y = -0.96 0.3๐‘ฆ๐‘ฆ๐ŸŽ๐ŸŽ.๐Ÿ‘๐Ÿ‘

= -0.96๐ŸŽ๐ŸŽ.๐Ÿ‘๐Ÿ‘

Property of division

y = -3.2

6. -2x โ€“ 3 = 5 -2x โ€“ 3 + 3 = 5 + 3 Property of addition

-2x = 8, -2๐‘ฅ๐‘ฅ-2

= 8-2

Property of division

x = -4

`1 Page 2-3

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

26 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

Procedure for Solving Equations

Equation-Solving Strategy โ€ข Clear the fractions or decimal if necessary . โ€ข Remove parentheses . โ€ข Combine like terms on each side of the equation if necessary .โ€ข Collect the variable terms on one side of the equation and the numerical terms on

the other side . โ€ข Isolate the variable . โ€ข Check the solution with the original equation .

Procedure for solving linear equations

Steps Example: Solve ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

(๐’™๐’™ + ๐Ÿ๐Ÿ) = ๐Ÿ‘๐Ÿ‘๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐’™๐’™ .

- Eliminate the denominators if the equation 2 โˆ™ 12

(๐‘ฅ๐‘ฅ + 1) = ๐Ÿ๐Ÿ(3๐‘ฅ๐‘ฅ) โˆ’ ๐Ÿ๐Ÿ(2๐‘ฅ๐‘ฅ)

has fractions . Multiply each term by 2 .

- Remove parentheses . x + 1 = 6๐‘ฅ๐‘ฅ โˆ’ 4๐‘ฅ๐‘ฅ

- Combine like terms . x + 1 = 2๐‘ฅ๐‘ฅ

- Collect variable terms on one side and the x + 1 โ€“ 2x โ€“ 1 = 2x โ€“ 2x โ€“ 1

constants on the other side . Subtract 2x and 1 from both sides .

- Isolate the variable . -x = -1 Divide both sides by -1 .

x = 1?

- Check . 12

(๐Ÿ๐Ÿ + 1) = 3 โˆ™ ๐Ÿ๐Ÿ โˆ’ 2 โˆ™ ๐Ÿ๐Ÿ โˆš

1 = 1 Correct!

Example: Solve 4(y โ€“ 3) + 3y + 2 = 2(4 โ€“ y) . Remove parentheses.

4y โ€“ 12 + 3y + 2 = 8 โ€“ 2y Combine like terms .

7y โ€“ 10 = 8 โ€“ 2y Add 2y & 10 to both sides .

7y โ€“ 10 + 2y + 10 = 8 โ€“ 2y + 2y + 10

9y = 18 Isolate the variable .

y = 2 ?

Check: 4(2 โ€“ 3) + 3โˆ™2 + 2 = 2(4 โ€“ 2) โˆš

4 = 4 Correct!

`1 Page 2-4

Procedure for Solving Equations

Equation-Solving Strategy โ€ข Clear the fractions or decimal if necessary . โ€ข Remove parentheses . โ€ข Combine like terms on each side of the equation if necessary .โ€ข Collect the variable terms on one side of the equation and the numerical terms on

the other side . โ€ข Isolate the variable . โ€ข Check the solution with the original equation .

Procedure for solving linear equations

Steps Example: Solve ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

(๐’™๐’™ + ๐Ÿ๐Ÿ) = ๐Ÿ‘๐Ÿ‘๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐’™๐’™ .

- Eliminate the denominators if the equation 2 โˆ™ 12

(๐‘ฅ๐‘ฅ + 1) = ๐Ÿ๐Ÿ(3๐‘ฅ๐‘ฅ) โˆ’ ๐Ÿ๐Ÿ(2๐‘ฅ๐‘ฅ)

has fractions . Multiply each term by 2 .

- Remove parentheses . x + 1 = 6๐‘ฅ๐‘ฅ โˆ’ 4๐‘ฅ๐‘ฅ

- Combine like terms . x + 1 = 2๐‘ฅ๐‘ฅ

- Collect variable terms on one side and the x + 1 โ€“ 2x โ€“ 1 = 2x โ€“ 2x โ€“ 1

constants on the other side . Subtract 2x and 1 from both sides .

- Isolate the variable . -x = -1 Divide both sides by -1 .

x = 1?

- Check . 12

(๐Ÿ๐Ÿ + 1) = 3 โˆ™ ๐Ÿ๐Ÿ โˆ’ 2 โˆ™ ๐Ÿ๐Ÿ โˆš

1 = 1 Correct!

Example: Solve 4(y โ€“ 3) + 3y + 2 = 2(4 โ€“ y) . Remove parentheses.

4y โ€“ 12 + 3y + 2 = 8 โ€“ 2y Combine like terms .

7y โ€“ 10 = 8 โ€“ 2y Add 2y & 10 to both sides .

7y โ€“ 10 + 2y + 10 = 8 โ€“ 2y + 2y + 10

9y = 18 Isolate the variable .

y = 2 ?

Check: 4(2 โ€“ 3) + 3โˆ™2 + 2 = 2(4 โ€“ 2) โˆš

4 = 4 Correct!

`1 Page 2-4

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 27

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

`1 Page 2-5

Equations Involving Decimals/Fractions

โ€ข Equations involving decimals x

Steps Example: Solve 0.25x โ€“ 0.20 = -3.15x.

- Multiply each term by 100 to clear the decimal. 100(0.25x) โ€“ 100(0.20) = 100(-3.15x)

- Collect the variable terms on one side of the 25x โ€“ 20 = -315x

equation and the constants on the other side. 25x + 315x = 20

340x = 20

- Isolate the variable. x โ‰ˆ 0.06

Example: Solve 0.3y + 0.06 = 0.009. Multiply each term by 1,000.

1,000(0.3y) + 1,000(0.06) = 1,000(0.009)

300y + 60 = 9 Combine like terms.

300y = -51 Divide both sides by 300.

y = -0.17

Tip: Multiply every term of both sides of the equation by a power of 10 (10, 100, 1000, etc.) to clear the decimals.

โ€ข Equations involving fractions x

Steps Example: Solve ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

+ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’

= - ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ .

- Multiply each term by the LCD 12โˆ™ 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3

+ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ™ 14

= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ- ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2๏ฟฝ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ™ 2

3

(least common denominator).

- Collect the variable terms on one side of the 8x + 3 = -6x โ€“ 8

equation and the constants on the other side. 14x = -11

- Isolate the variable. ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = -๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’

`1 Page 2-5

Equations Involving Decimals/Fractions

โ€ข Equations involving decimals x

Steps Example: Solve 0.25x โ€“ 0.20 = -3.15x.

- Multiply each term by 100 to clear the decimal. 100(0.25x) โ€“ 100(0.20) = 100(-3.15x)

- Collect the variable terms on one side of the 25x โ€“ 20 = -315x

equation and the constants on the other side. 25x + 315x = 20

340x = 20

- Isolate the variable. x โ‰ˆ 0.06

Example: Solve 0.3y + 0.06 = 0.009. Multiply each term by 1,000.

1,000(0.3y) + 1,000(0.06) = 1,000(0.009)

300y + 60 = 9 Combine like terms.

300y = -51 Divide both sides by 300.

y = -0.17

Tip: Multiply every term of both sides of the equation by a power of 10 (10, 100, 1000, etc.) to clear the decimals.

โ€ข Equations involving fractions x

Steps Example: Solve ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

+ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’

= - ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ .

- Multiply each term by the LCD 12โˆ™ 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3

+ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ™ 14

= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ- ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2๏ฟฝ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ™ 2

3

(least common denominator).

- Collect the variable terms on one side of the 8x + 3 = -6x โ€“ 8

equation and the constants on the other side. 14x = -11

- Isolate the variable. ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = -๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

28 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

2-2 LINEAR EQUATIONS AND MODELING

Geometry Formulas

โ€ข Formula: an equation that contains more than one variable and is used to solve practical problems in everyday life .

โ€ข Recall some geometry formulas

P โ€“ perimeter, C โ€“ circumference, A โ€“ area, V โ€“ volume

Name of the Figure Formula Figure

rectangleP = 2l + 2w

A = lww

l

parallelogram P = 2a + 2bA = bh

h a b

circle ๐ด๐ด = ๐œ‹๐œ‹๐œ‹๐œ‹2rdC ฯ€=ฯ€= 2

r d

triangleโˆ  X + โˆ  Y + โˆ  Z = 1800

bhA21

=

XhY b Z

trapezoid )(21 BbhA +=

b h B

cube V = s3

rectangular solid V = lwh h w

cylinder hrV 2ฯ€=r

h

sphere3

34 rV ฯ€=

r

cone hrV 2

31ฯ€= h

r

pyramid lwhV31

=

l wh

s

l

`1 Page 2-6

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 29

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

Solving Formulas

Example: Solve the formula for the given letter .Solution

1. d = r t , for t ๐‘‘๐‘‘๐’“๐’“

= ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐’“๐’“

t = ๐’…๐’…๐’“๐’“

2. I = P r t , for r ๐ผ๐ผ๐‘ท๐‘ท๐‘ท๐‘ท

= ๐‘ƒ๐‘ƒ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘ท๐‘ท๐‘ท๐‘ท

r = ๐‘ฐ๐‘ฐ๐‘ท๐‘ท๐‘ท๐‘ท

3. P = 2 l + 2 w , for w P โ€“ 2 l = 2 l + 2 w โ€“ 2 l

P โ€“ 2 l = 2๐‘ค๐‘ค, ๐‘ƒ๐‘ƒโˆ’2๐‘™๐‘™๐Ÿ๐Ÿ

= 2๐‘ค๐‘ค๐Ÿ๐Ÿ

๐’‘๐’‘โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

= ๐’˜๐’˜

4. ๐น๐น = 95๐ถ๐ถ + 32 , for C ๐น๐น โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ = 9

5๐ถ๐ถ + 32 โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ

๐น๐น โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ = 95๐ถ๐ถ

(๐น๐น โˆ’ 32) ๐Ÿ“๐Ÿ“๐Ÿ—๐Ÿ—

= 95โˆ™ ๐Ÿ“๐Ÿ“๐Ÿ—๐Ÿ—๐ถ๐ถ

๐‘ช๐‘ช = ๐Ÿ“๐Ÿ“๐Ÿ—๐Ÿ—

(๐‘ญ๐‘ญ โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ)

Tip: Solve a formula for a given letter by isolating the given letter on one side of the equation .

โ€ข More formulas

Application Formula Component

distance d = rt, r = ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ

, t = ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ

d โ€“ distancer โ€“ speedt โ€“ time

simple interest I = P r t, P = ๐ผ๐ผ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ

, t = ๐ผ๐ผ๐‘ƒ๐‘ƒ๐‘Ÿ๐‘Ÿ

I โ€“ interestP โ€“ principler โ€“ interest rate (%)t โ€“ time (years)

compoundinterest B = P (100% + r) t

B โ€“ balanceP โ€“ principler โ€“ interest rate (%)t โ€“ time (years)

percent increase ๐‘๐‘ โˆ’ ๐‘‚๐‘‚๐‘‚๐‘‚

N โ€“ new valueO โ€“ original value

percent decrease ๐‘‚๐‘‚ โˆ’ ๐‘๐‘๐‘‚๐‘‚

N โ€“ new valueO โ€“ original value

sale price S = L โ€“ r L , ๐ฟ๐ฟ = ๐‘†๐‘†1โˆ’๐‘Ÿ๐‘Ÿ

S โ€“ sale priceL โ€“ list pricer โ€“ discount rate

intelligence quotient (I.Q.) ๐ผ๐ผ =

100๐‘š๐‘š๐‘๐‘

I โ€“ I .Q .m โ€“ mental agec โ€“ chronological age

temperature ๐ถ๐ถ = 59

(๐น๐น โˆ’ 32) , ๐น๐น = 95๐ถ๐ถ + 32 C โ€“ Celsius

F โ€“ Fahrenheit

`1 Page 2-7

Solving Formulas

Example: Solve the formula for the given letter .Solution

1. d = r t , for t ๐‘‘๐‘‘๐’“๐’“

= ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐’“๐’“

t = ๐’…๐’…๐’“๐’“

2. I = P r t , for r ๐ผ๐ผ๐‘ท๐‘ท๐‘ท๐‘ท

= ๐‘ƒ๐‘ƒ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘ท๐‘ท๐‘ท๐‘ท

r = ๐‘ฐ๐‘ฐ๐‘ท๐‘ท๐‘ท๐‘ท

3. P = 2 l + 2 w , for w P โ€“ 2 l = 2 l + 2 w โ€“ 2 l

P โ€“ 2 l = 2๐‘ค๐‘ค, ๐‘ƒ๐‘ƒโˆ’2๐‘™๐‘™๐Ÿ๐Ÿ

= 2๐‘ค๐‘ค๐Ÿ๐Ÿ

๐’‘๐’‘โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

= ๐’˜๐’˜

4. ๐น๐น = 95๐ถ๐ถ + 32 , for C ๐น๐น โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ = 9

5๐ถ๐ถ + 32 โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ

๐น๐น โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ = 95๐ถ๐ถ

(๐น๐น โˆ’ 32) ๐Ÿ“๐Ÿ“๐Ÿ—๐Ÿ—

= 95โˆ™ ๐Ÿ“๐Ÿ“๐Ÿ—๐Ÿ—๐ถ๐ถ

๐‘ช๐‘ช = ๐Ÿ“๐Ÿ“๐Ÿ—๐Ÿ—

(๐‘ญ๐‘ญ โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ)

Tip: Solve a formula for a given letter by isolating the given letter on one side of the equation .

โ€ข More formulas

Application Formula Component

distance d = rt, r = ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ

, t = ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ

d โ€“ distancer โ€“ speedt โ€“ time

simple interest I = P r t, P = ๐ผ๐ผ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ

, t = ๐ผ๐ผ๐‘ƒ๐‘ƒ๐‘Ÿ๐‘Ÿ

I โ€“ interestP โ€“ principler โ€“ interest rate (%)t โ€“ time (years)

compoundinterest B = P (100% + r) t

B โ€“ balanceP โ€“ principler โ€“ interest rate (%)t โ€“ time (years)

percent increase ๐‘๐‘ โˆ’ ๐‘‚๐‘‚๐‘‚๐‘‚

N โ€“ new valueO โ€“ original value

percent decrease ๐‘‚๐‘‚ โˆ’ ๐‘๐‘๐‘‚๐‘‚

N โ€“ new valueO โ€“ original value

sale price S = L โ€“ r L , ๐ฟ๐ฟ = ๐‘†๐‘†1โˆ’๐‘Ÿ๐‘Ÿ

S โ€“ sale priceL โ€“ list pricer โ€“ discount rate

intelligence quotient (I.Q.) ๐ผ๐ผ =

100๐‘š๐‘š๐‘๐‘

I โ€“ I .Q .m โ€“ mental agec โ€“ chronological age

temperature ๐ถ๐ถ = 59

(๐น๐น โˆ’ 32) , ๐น๐น = 95๐ถ๐ถ + 32 C โ€“ Celsius

F โ€“ Fahrenheit

`1 Page 2-7

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

30 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

PROBLEM SOLVING

Steps for solving word problems

Steps for Solving Word Problemsโ€ข Organize the facts given from the problem .โ€ข Identify and label the unknown quantity (let x = unknown) .โ€ข Draw a diagram if it will make the problem clearer . โ€ข Convert words into a mathematical equation . โ€ข Solve the equation and find the solution(s) .โ€ข Check and state the answer .

Number Problems

English Phrase Algebraic Expression/Equation

3 more than the difference of a number and 9 . (x โ€“ 9) + 3

The quotient of 3 and the product of 7 and a number . 37๐‘ฅ๐‘ฅ

The product of seven and a number, decreased by five . 7x โ€“ 59 less than 4 times two numbers is 2 more than their sum. 4xy โ€“ 9 = 2 + x + yThe sum of the squares of two numbers is 4 less than their product . x2 + y2 = xy โ€“ 46 more than the quotient of 2x by 3 is 5 times that number . 6 + 2๐‘ฅ๐‘ฅ

3= 5x

(Let x = a number ; y = a number)

Example: Three more than two times a number is fifteen less than the number divided by five .

Find the number .

- Organize the facts . + 3 2x = - 15 + ๐‘ฅ๐‘ฅ5

Let x = number .

- Equation: 2x + 3 = ๐’™๐’™๐Ÿ“๐Ÿ“

โ€“ 15 Multiply each term by 5 .

5(2x) + 5โˆ™3 = 5 ๏ฟฝ๐‘ฅ๐‘ฅ5 ๏ฟฝ โ€“ 5โˆ™15 Remove parentheses .

10x + 15 = x โ€“ 75 Combine like terms .

9x = -90 Divide both sides by 9 .

- Solution: x = -10

`1 Page 2-8

PROBLEM SOLVING

Steps for solving word problems

Steps for Solving Word Problemsโ€ข Organize the facts given from the problem .โ€ข Identify and label the unknown quantity (let x = unknown) .โ€ข Draw a diagram if it will make the problem clearer . โ€ข Convert words into a mathematical equation . โ€ข Solve the equation and find the solution(s) .โ€ข Check and state the answer .

Number Problems

English Phrase Algebraic Expression/Equation

3 more than the difference of a number and 9 . (x โ€“ 9) + 3

The quotient of 3 and the product of 7 and a number . 37๐‘ฅ๐‘ฅ

The product of seven and a number, decreased by five . 7x โ€“ 59 less than 4 times two numbers is 2 more than their sum. 4xy โ€“ 9 = 2 + x + yThe sum of the squares of two numbers is 4 less than their product . x2 + y2 = xy โ€“ 46 more than the quotient of 2x by 3 is 5 times that number . 6 + 2๐‘ฅ๐‘ฅ

3= 5x

(Let x = a number ; y = a number)

Example: Three more than two times a number is fifteen less than the number divided by five .

Find the number .

- Organize the facts . + 3 2x = - 15 + ๐‘ฅ๐‘ฅ5

Let x = number .

- Equation: 2x + 3 = ๐’™๐’™๐Ÿ“๐Ÿ“

โ€“ 15 Multiply each term by 5 .

5(2x) + 5โˆ™3 = 5 ๏ฟฝ๐‘ฅ๐‘ฅ5 ๏ฟฝ โ€“ 5โˆ™15 Remove parentheses .

10x + 15 = x โ€“ 75 Combine like terms .

9x = -90 Divide both sides by 9 .

- Solution: x = -10

`1 Page 2-8

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 31

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

?

- Check: 2(-10) + 3 = -๐Ÿ๐Ÿ๐Ÿ๐Ÿ5

โ€“ 15 ?

-20 + 3 = - 2 โ€“ 15 โˆš-17 = -17 Correct!

- State the answer: the number is -10 .

Example: There are three numbers; the first is two less than four times the second, and the

third is five more than one-half of the first . The sum of these three numbers is

sixteen .

Find the second number .

- Organize the facts:

- Equation: (4x โ€“ 2) + x + ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

(๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ๐Ÿ) + ๐Ÿ“๐Ÿ“)๏ฟฝ = 16 Remove parentheses .

4x โ€“ 2 + x + 2๐‘ฅ๐‘ฅ โˆ’ 1 + 5 = 16 Combine like terms .

7x + 2 = 16

7x = 14 Divide both sides by 7 .

- Solution: x = 2

1st Number 4x โ€“ 2 = 4โˆ™2 โ€“ 2 = 62nd Number x = 23rd Number 1

2(4๐‘ฅ๐‘ฅ โˆ’ 2) + 5 = 1

2(4 โˆ™ 2 โˆ’ 2) + 5 = 8

Number Wording Algebraic Expression2nd number let 2nd number = x x1st number 2 less than 4 times the 2nd number 4x โ€“ 2

3rd number 5 more than 12 of the 1st number 12

(4๐‘ฅ๐‘ฅ โˆ’ 2) + 5

sum the sum of three numbers is 16 1st # + 2nd # + 3rd # = 16

`1 Page 2-9

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

32 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

Consecutive Integers

English Phrase Algebraic Expression Exampletwo consecutive integers x, x + 1 If x = 1, x + 1 = 2two consecutive odd integers x, x + 2 If x = 1, x + 2 = 3

two consecutive even integers x, x + 2 or 2x, 2x + 2

If x = 2, x + 2 = 4If x = 1, 2x = 2, 2x + 2 = 4

three consecutive odd integers x , x + 2, x + 4 If x = 1, x + 2 = 3, x + 4 = 5three consecutive even integers x, x + 2 , x + 4 If x = 2, x + 2 = 4, x + 4 = 6The product of two consecutive odd integers is 10 x (x + 2) = 10 Three consecutive even integers whose sum is 35 . x + (x + 2) + (x + 4) = 35

Example: The sum of four consecutive even integers is 20; find each number .- Organize the facts .

1st consecutive even number x 2nd consecutive even number x + 2 3rd consecutive even number x + 4 4th consecutive even number x + 6

- Equation: x + (x + 2) + (x + 4) + (x + 6) = 20 Combine like terms .

- Solution: 4x + 12 = 20 Solve for x.

x = 2- State the answer .

1st consecutive even number x = 2 2nd consecutive even number x + 2 = 2 + 2 = 4 3rd consecutive even number x + 4 = 2 + 4 = 6 4th consecutive even number x + 6 = 2 + 6 = 8

?- Check: 2, 4, 6, 8 = consecutive even integers Yes!

?2 + (2 + 2) + (2 + 4) + (2 + 6) = 20

โˆš20 = 20 Correct!

Example: Find three consecutive odd integers such that three times the first integer is one less than the sum of the second and third integers.

- Organize the facts .Integer Consecutive Odd Integer

1st integer x2nd integer x + 23rd integer x + 4

- Equation: 3x = (x + 2) + (x + 4) โˆ’1- Solution: 3x = x + 2 + x + 4 - 1

x = 5- State the answer:

1st consecutive odd number x = 5 2nd consecutive odd number x + 2 = 5 + 2 = 7 3rd consecutive odd number x + 4 = 5 + 4 = 9

`1 Page 2-10

Consecutive Integers

English Phrase Algebraic Expression Exampletwo consecutive integers x, x + 1 If x = 1, x + 1 = 2two consecutive odd integers x, x + 2 If x = 1, x + 2 = 3

two consecutive even integers x, x + 2 or 2x, 2x + 2

If x = 2, x + 2 = 4If x = 1, 2x = 2, 2x + 2 = 4

three consecutive odd integers x , x + 2, x + 4 If x = 1, x + 2 = 3, x + 4 = 5three consecutive even integers x, x + 2 , x + 4 If x = 2, x + 2 = 4, x + 4 = 6The product of two consecutive odd integers is 10 x (x + 2) = 10 Three consecutive even integers whose sum is 35 . x + (x + 2) + (x + 4) = 35

Example: The sum of four consecutive even integers is 20; find each number .- Organize the facts .

1st consecutive even number x 2nd consecutive even number x + 2 3rd consecutive even number x + 4 4th consecutive even number x + 6

- Equation: x + (x + 2) + (x + 4) + (x + 6) = 20 Combine like terms .

- Solution: 4x + 12 = 20 Solve for x.

x = 2- State the answer .

1st consecutive even number x = 2 2nd consecutive even number x + 2 = 2 + 2 = 4 3rd consecutive even number x + 4 = 2 + 4 = 6 4th consecutive even number x + 6 = 2 + 6 = 8

?- Check: 2, 4, 6, 8 = consecutive even integers Yes!

?2 + (2 + 2) + (2 + 4) + (2 + 6) = 20

โˆš20 = 20 Correct!

Example: Find three consecutive odd integers such that three times the first integer is one less than the sum of the second and third integers.

- Organize the facts .Integer Consecutive Odd Integer

1st integer x2nd integer x + 23rd integer x + 4

- Equation: 3x = (x + 2) + (x + 4) โˆ’1- Solution: 3x = x + 2 + x + 4 - 1

x = 5- State the answer:

1st consecutive odd number x = 5 2nd consecutive odd number x + 2 = 5 + 2 = 7 3rd consecutive odd number x + 4 = 5 + 4 = 9

`1 Page 2-10

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 33

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

Business Problems

Application Formula

Percent Increase valueOriginal valueOriginal valueNewincreasePercent โˆ’

= , O

ONโˆ’=x

Percent Decrease valueOriginal valueNew valueOriginaldecreasePercent โˆ’

= , O

NOโˆ’=x

Sales Tax sales tax = sales ร— tax rateCommission commission = sales ร— commission rate

Discount discount = original price ร— discount ratesale price = original price โ€“ discount

Markup markup = original price ร— markup rateoriginal price = selling price โ€“ markup

Simple Interest interest = principle ร— interest rate ร— time, I = P r tbalance = principle + interest

Compound Interest

balance = principle (100% + interest rate)t balance = P(100% + r)t

Example: A product increased production from 1,500 last month to 1,650 this month . Find the percent increase.

New value (N): 1,650 this month

Original value (O): 1,500 last month

Percent increase:

==โˆ’

=โˆ’

= 1 .0500,1

500,1650,1O

ONx 10% 10% increase

Example: A product was reduced from $33 to $29. What percent reduction is this?

Percent decrease:

=โ‰ˆโˆ’

=โˆ’

= 12 .033

2933O

NOx 12% 12% decrease

Example: The tax rate is 7%, find the sales tax for a $1,050 laptop .

Sales tax = Sales ร— Tax rate

= ($1,050)(7%) = ($1,050)(0 .07) = $73.50

Example: The commission rate is 5%, find commission for a $550,000 house .

Commission = Sales ร— Commission rate

= ($550,000)(5%) = ($550,000)(0 .05) = $27,500

`1 Page 2-11

Business Problems

Application Formula

Percent Increase valueOriginal valueOriginal valueNewincreasePercent โˆ’

= , O

ONโˆ’=x

Percent Decrease valueOriginal valueNew valueOriginaldecreasePercent โˆ’

= , O

NOโˆ’=x

Sales Tax sales tax = sales ร— tax rateCommission commission = sales ร— commission rate

Discount discount = original price ร— discount ratesale price = original price โ€“ discount

Markup markup = original price ร— markup rateoriginal price = selling price โ€“ markup

Simple Interest interest = principle ร— interest rate ร— time, I = P r tbalance = principle + interest

Compound Interest

balance = principle (100% + interest rate)t balance = P(100% + r)t

Example: A product increased production from 1,500 last month to 1,650 this month . Find the percent increase.

New value (N): 1,650 this month

Original value (O): 1,500 last month

Percent increase:

==โˆ’

=โˆ’

= 1 .0500,1

500,1650,1O

ONx 10% 10% increase

Example: A product was reduced from $33 to $29. What percent reduction is this?

Percent decrease:

=โ‰ˆโˆ’

=โˆ’

= 12 .033

2933O

NOx 12% 12% decrease

Example: The tax rate is 7%, find the sales tax for a $1,050 laptop .

Sales tax = Sales ร— Tax rate

= ($1,050)(7%) = ($1,050)(0 .07) = $73.50

Example: The commission rate is 5%, find commission for a $550,000 house .

Commission = Sales ร— Commission rate

= ($550,000)(5%) = ($550,000)(0 .05) = $27,500

`1 Page 2-11

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

34 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

Example: A womenโ€™s jacket originally priced at $47 is on sale at a 35% discount . Find the discount and sale price .

Discount = Original price ร— Discount rate

= ($47)(35%) = ($47)(0 .35) = $16.45

Sale price = Original price โ€“ Discount

= $47 โ€“ $16 .45 = $30.55

Example: A condo originally sold at $258,000, and the markup rate is 10%. What is the markup and the new selling price?

Markup = Original price ร— Markup rate

= ($258,000)(10%) = ($258,000)(0 .10) = $25,800

Selling price = Original price + Markup

= $258,000 + $25,800 = $283,800

Example: Tom borrowed $200,000 mortgage from a bank . Find the interest at 2.8% per year

for215 years, and the total amount that he paid the bank .

Interest = Principle ร— Interest rate ร— Time

I = ๐‘ƒ๐‘ƒ ๐‘Ÿ๐‘Ÿ ๐‘ก๐‘ก = ($200,000)(2.8%)๏ฟฝ215 ๏ฟฝ

= ($200,000)(0 .028)(5 .5) = $30,800

Balance = Principle + Interest

= $ 200,000 + $ 30,800 = $230,800

Example: Allan deposited $5,000 in an account at 3.5% interest compounded annually for 5 years . How much was in the account at the end of 5 years?

Balance = Principle (100% + Interest rate) t

= P(100% + r) t = $5,000 (100% + 3 .5%)5

= $5,000 (1+ 0 .035) 5 โ‰ˆ $ 5,938

`1 Page 2-12

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 35

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

Application Formula

Sales

Discount: Original price โ€“ Discount rate ร— Original price = New price

x โ€“ % x = New pricePurchase: Original price + Tax rate ร— Original price = New price

x + % x = New price

Commission

Commission on the 1st $100,000 + Commission on the amount > $100,000 = Total commission

% โˆ™ 100,000 + % (S โ€“ 100,000) = Total commission

selling price

Example: Bob pays $1,050 for a laptop . The price includes a 12% sales tax . What is the price of the laptop itself?

original price (the price of the laptop itself) xtax rate 12%new price (price + tax) $1,050

- Equation: x + 12% x = $1,050 x + % x = New price

- Solution: x (1+ 0 .12) = $1,050

x = 1,0501.12

= $937.50 The price of the laptop itself is $937 .50 .

Example: The following is a real estate commission on the selling price of a house:

7% for the first $100,000

5% for the amount > $100,000

A realtor receives a commission of $20,000, what was the selling price?

- Formula: % โˆ™ 100,000 + % (S โ€“ 100,000) = Total commission

- Solution: 7% โˆ™ 100,000 + 5% (S โ€“ 100,000) = $20,000

0 .07(100,000) + 0 .05 S โ€“ 0 .05(100,000) = 20,000

7000 + 0 .05 S โ€“ 5,000 = 20,000

0 .05 S = 18,000

S = $ 360,000 Selling price

`1 Page 2-13

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

36 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

Motion Problems

โ€ข FormulaDistance = Speed โˆ™ Time d = r t t = ๐‘‘๐‘‘

๐‘Ÿ๐‘Ÿr = ๐‘‘๐‘‘

๐‘ก๐‘ก

Condition Speed (r) Time (t) Distance (d)A r t d = rtB r t d = rt

Total

Example: Two cyclists are 18 km apart and are travelling towards each other . Theirspeeds differ by 2 km per hour . What is the speed of each cyclist if they meet after 3 hours?

Condition Speed (r) Time (t) Distance (d = rt)bike A r (km/h) t = 3 h 3rbike B r โ€“ 2 (km/h) t = 3 h 3(r โ€“ 2)Total 18 km

Equation: 3r + 3 (r โ€“ 2) = 18 Distance of A + distance of B = 18km .

bike A: r = 4 km/h

bike B: r โ€“ 2 = 4 โ€“ 2 = 2 km/h

Example: John boats at a speed of 30 km per hour in still water . The river flows at a speed of 10 km per hour . How long will it take John to boat 2 km downstream?2 km upstream?

Condition Speed (r) Distance (d) Time ( t = ๐’…๐’…๐’“๐’“

)

downstream r = 30 + 10 = 40 km/h d = 2 km t = ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ

= 2๐‘˜๐‘˜๐‘˜๐‘˜40๐‘˜๐‘˜๐‘˜๐‘˜/โ„Ž

upstream r = 30 โ€“ 10 = 20 km/h d = 2 km t = ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ

= 2๐‘˜๐‘˜๐‘˜๐‘˜20๐‘˜๐‘˜๐‘˜๐‘˜/โ„Ž

downstream (fast): speed of boat + speed of riverupstream (slower): speed of boat - speed of river

downstream: t = ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ

= 2๐‘˜๐‘˜๐‘˜๐‘˜40๐‘˜๐‘˜๐‘˜๐‘˜/โ„Ž

= 0.05 h

upstream: t = ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ

= 2๐‘˜๐‘˜๐‘˜๐‘˜20๐‘˜๐‘˜๐‘˜๐‘˜/โ„Ž

= 0.1 h

`1 Page 2-14

Motion Problems

โ€ข FormulaDistance = Speed โˆ™ Time d = r t t = ๐‘‘๐‘‘

๐‘Ÿ๐‘Ÿr = ๐‘‘๐‘‘

๐‘ก๐‘ก

Condition Speed (r) Time (t) Distance (d)A r t d = rtB r t d = rt

Total

Example: Two cyclists are 18 km apart and are travelling towards each other . Theirspeeds differ by 2 km per hour . What is the speed of each cyclist if they meet after 3 hours?

Condition Speed (r) Time (t) Distance (d = rt)bike A r (km/h) t = 3 h 3rbike B r โ€“ 2 (km/h) t = 3 h 3(r โ€“ 2)Total 18 km

Equation: 3r + 3 (r โ€“ 2) = 18 Distance of A + distance of B = 18km .

bike A: r = 4 km/h

bike B: r โ€“ 2 = 4 โ€“ 2 = 2 km/h

Example: John boats at a speed of 30 km per hour in still water . The river flows at a speed of 10 km per hour . How long will it take John to boat 2 km downstream?2 km upstream?

Condition Speed (r) Distance (d) Time ( t = ๐’…๐’…๐’“๐’“

)

downstream r = 30 + 10 = 40 km/h d = 2 km t = ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ

= 2๐‘˜๐‘˜๐‘˜๐‘˜40๐‘˜๐‘˜๐‘˜๐‘˜/โ„Ž

upstream r = 30 โ€“ 10 = 20 km/h d = 2 km t = ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ

= 2๐‘˜๐‘˜๐‘˜๐‘˜20๐‘˜๐‘˜๐‘˜๐‘˜/โ„Ž

downstream (fast): speed of boat + speed of riverupstream (slower): speed of boat - speed of river

downstream: t = ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ

= 2๐‘˜๐‘˜๐‘˜๐‘˜40๐‘˜๐‘˜๐‘˜๐‘˜/โ„Ž

= 0.05 h

upstream: t = ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ

= 2๐‘˜๐‘˜๐‘˜๐‘˜20๐‘˜๐‘˜๐‘˜๐‘˜/โ„Ž

= 0.1 h

`1 Page 2-14

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 37

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

Value Mixture Problems

Item Value of the Item Number of Items Total ValueA value of A # of item A (value of A)(# of item A)B value of B # of item B (value of B)(# of item B)C value of C # of item C (value of C)(# of item C)

total or mixture total value Let x = unknown .

Value of item A + Value of item B + Value of item C = Total value of the mixture

Example: Jack has $5.35 in nickels, dimes and quarters . If he has five less than two times quarters of dimes, and seven more nickels than quarters . How many of each coin does he have?

Coin Value of the Coin Number of Coins Total Value (in cents)quarter 25 ยข x 25 xdime 10 ยข 2x โ€“ 5 10(2x โ€“ 5)nickel 5 ยข x + 7 5(x + 7)Total $5 .35 = 535 ยข

- Equation: 25x + 10(2x โ€“ 5) + 5(x + 7) = 535 value of quarters + value of dimes + value of nickels = 535 ยข

- Solution: 25x + 20x โ€“ 50 + 5x + 35 = 535 Remove parentheses .

50x โ€“ 15 = 535 Combine like terms .

x = 11 Solve for x.

- State the answer: number of quarters x = 11 number of dimes 2x โ€“ 5 = 2(11) โ€“ 5 = 17 number of nickels x + 7 = 11 + 7 = 18

Example: Evan purchased 46-cent, 66-cent, and 86-cent Canadian stamps with a total value of $16 .38 . If the number of 66-cent stamps is 5 more than the number of 46-cent stamps, and the number of 86-cent stamps is 8 more than one half the number of 46-cent stamps . How many of each did Evan receive?

Stamps Value of the Stamps Number of Stamps Total Value (in cents)46-cent 46 ยข x 46 x66-cent 66 ยข 5 + x 66(5 + x)

86-cent 86 ยข 8 + 12

x 86(8 + 12

x)Total 1638 ยข

- Equation: 46x + 66 (5 + x) + 86 (๐Ÿ–๐Ÿ– + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

x) = 1638- Solution: 46x + 330 + 66x + 688 + 43x = 1638 Remove parentheses & combine like terms .

155x = 620x = 4 46-cent: 4

5 + x = 5 + 4 = 9 66-cent: 9

8 + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

x = 8 + 12 โˆ™ 4 = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ 86-cent: 10

Let x = numbers of quarters .

Let x = number of 46-cent stamps .

value of 46-cent + value of 66-cent + value of 86-cent = 1638 ยข

`1 Page 2-15

Value Mixture Problems

Item Value of the Item Number of Items Total ValueA value of A # of item A (value of A)(# of item A)B value of B # of item B (value of B)(# of item B)C value of C # of item C (value of C)(# of item C)

total or mixture total value Let x = unknown .

Value of item A + Value of item B + Value of item C = Total value of the mixture

Example: Jack has $5.35 in nickels, dimes and quarters . If he has five less than two times quarters of dimes, and seven more nickels than quarters . How many of each coin does he have?

Coin Value of the Coin Number of Coins Total Value (in cents)quarter 25 ยข x 25 xdime 10 ยข 2x โ€“ 5 10(2x โ€“ 5)nickel 5 ยข x + 7 5(x + 7)Total $5 .35 = 535 ยข

- Equation: 25x + 10(2x โ€“ 5) + 5(x + 7) = 535 value of quarters + value of dimes + value of nickels = 535 ยข

- Solution: 25x + 20x โ€“ 50 + 5x + 35 = 535 Remove parentheses .

50x โ€“ 15 = 535 Combine like terms .

x = 11 Solve for x.

- State the answer: number of quarters x = 11 number of dimes 2x โ€“ 5 = 2(11) โ€“ 5 = 17 number of nickels x + 7 = 11 + 7 = 18

Example: Evan purchased 46-cent, 66-cent, and 86-cent Canadian stamps with a total value of $16 .38 . If the number of 66-cent stamps is 5 more than the number of 46-cent stamps, and the number of 86-cent stamps is 8 more than one half the number of 46-cent stamps . How many of each did Evan receive?

Stamps Value of the Stamps Number of Stamps Total Value (in cents)46-cent 46 ยข x 46 x66-cent 66 ยข 5 + x 66(5 + x)

86-cent 86 ยข 8 + 12

x 86(8 + 12

x)Total 1638 ยข

- Equation: 46x + 66 (5 + x) + 86 (๐Ÿ–๐Ÿ– + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

x) = 1638- Solution: 46x + 330 + 66x + 688 + 43x = 1638 Remove parentheses & combine like terms .

155x = 620x = 4 46-cent: 4

5 + x = 5 + 4 = 9 66-cent: 9

8 + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

x = 8 + 12 โˆ™ 4 = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ 86-cent: 10

Let x = numbers of quarters .

Let x = number of 46-cent stamps .

value of 46-cent + value of 66-cent + value of 86-cent = 1638 ยข

`1 Page 2-15

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

38 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

Concentration/Mixture Problems

Item Concentration Volume AmountA concentration of A volume of A (concentration of A)(volume of A)B concentration of B volume of B (concentration of B)(volume of B)

Mixture concentration of mixture volume of mixture (concentration of mixture)(volume of the mixture)

Let x = unknown Amount of item A + Amount of item B = Amount of the mixture

Example: A chicken meal is 30% protein and a beef meal is 40% protein . Steve wants an 800

grams mixture that is 35% protein . How many grams of each meal should he have?

Meal Concentration Protein Volume Amountchicken meal 30% = 0 .3 x 0 .3 xbeef meal 40% = 0 .4 800 โ€“ x 0 .4 (800 โ€“ x)Mixture 35% = 0 .35 800 0 .35 (800)

Let x = Protein volume of the chicken meal

Equation: 0.3 x + 0.4 (800 โ€“ x) = (0.35)(800)Amount of chicken meal + Amount of beef meal = amount of the mixture

0 .3 x + 320 โ€“ 0 .4 x = 280

- 0 .1 x = -40

x = 400 g chicken meal

800 โ€“ x = 800 โ€“ 400 = 400 g beef meal

Example: How much 5% salt solution must be added to 20 liters of 25% solution to make a

10% solution?

Solution Concentration Volume Amount5% 0 .05 x 0 .05x

25% 0 .25 20 (0 .25)(20)10% 0 .1 20 + x 0 .1(20+ x)

Let x = Volume of 5% solution .

Equation: 0.05x + (0.25 )(20) = 0.1 (20 + x) Amount of 5% + Amount of 25% = Amount of 10%

0 .05x + 5 = 2 + 0 .1 x

0 .05 x = 3

x = 60 liters Volume of 5% solution .

`1 Page 2-16

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 39

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

2-3 SETS AND INEQUALITIES

Inequalities

โ€ข An inequality is a mathematical statement that contains < , > , โ‰ฅ , or โ‰ค symbol .

โ€ข Inequality symbols

Symbols Meaning Example> is greater than 15x + 7 > 0

< is less than 4x โ€“ 3y < 1325

โ‰ฅ is greater than or equal to x + 5y โ‰ฅ -12โ‰ค Is less than or equal to 3x โ€“ 14 y โ‰ค 67

โ€ข Compound inequality is a statement that contains more than one inequality . a < x < b

โ€ข The solution of an inequality is the particular value of the variable in the inequality that

makes the inequality true .

Example: Indicate if x = 3, -5 and 12

are solutions of the inequality 6 โ€“ 2x < 5x .

?1. For x = 3 6 โ€“ 2 โˆ™ 3 < 5 โˆ™ 3 Substitute x for 3 .

โˆš0 < 15 True x = 3 is a solution .

? 2. For x = -5 6 โ€“ 2 (-5) < 5 (-5) Substitute x for -5 .

? 6 + 10 < -25

ร— 16 < -25 False x = -5 is not a solution .

?

3. For x = 12

6 โ€“ 2 โˆ™ 12

< 5 โˆ™ 12

Substitute x for 12 .

?

6 - 1 < 52

ร—5 < 5

2False x = 1

2is not a solution .

`1 Page 2-17

2-3 SETS AND INEQUALITIES

Inequalities

โ€ข An inequality is a mathematical statement that contains < , > , โ‰ฅ , or โ‰ค symbol .

โ€ข Inequality symbols

Symbols Meaning Example> is greater than 15x + 7 > 0

< is less than 4x โ€“ 3y < 1325

โ‰ฅ is greater than or equal to x + 5y โ‰ฅ -12โ‰ค Is less than or equal to 3x โ€“ 14 y โ‰ค 67

โ€ข Compound inequality is a statement that contains more than one inequality . a < x < b

โ€ข The solution of an inequality is the particular value of the variable in the inequality that

makes the inequality true .

Example: Indicate if x = 3, -5 and 12

are solutions of the inequality 6 โ€“ 2x < 5x .

?1. For x = 3 6 โ€“ 2 โˆ™ 3 < 5 โˆ™ 3 Substitute x for 3 .

โˆš0 < 15 True x = 3 is a solution .

? 2. For x = -5 6 โ€“ 2 (-5) < 5 (-5) Substitute x for -5 .

? 6 + 10 < -25

ร— 16 < -25 False x = -5 is not a solution .

?

3. For x = 12

6 โ€“ 2 โˆ™ 12

< 5 โˆ™ 12

Substitute x for 12 .

?

6 - 1 < 52

ร—5 < 5

2False x = 1

2is not a solution .

`1 Page 2-17

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

40 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

Intervals

โ€ข Interval: a set of numbers between or possibly including two given numbers .

โ€ข Interval notation:

Open interval ( ): the end points are not included .

Closed interval [ ]: the end points are included .

Half-open interval (a, b]: a is not included, but b is included .

[a, b): a is included, but b is not included .

Non-ending open interval (a, โˆž): a is not included and infinity is always excluded .

(-โˆž, a): a is not included and infinity is always excluded .

Non-ending half-open interval (-โˆž, b]: b is included and infinity is always excluded .

[b, โˆž): b is included and infinity is always excluded .

โ€ข Double inequality (a < x < b) indicates โ€œbetweennessโ€, meaning both a < x, x < b , and

a must be less than b .

โ€ข Strict inequalities: an inequality that uses the symbols < or > .

โ€ข Weak inequalities: an inequality that uses the symbol โ‰ค or โ‰ฅ.

โ€ข Graphing real-number inequalities

The empty circle โ—‹ or open interval ( ): the endpoints are excluded .

The filled in circle โ— or closed interval [ ]: the endpoints are included .

Use a heavy line and an open or closed interval or an empty circle or filled-in circle to

graph intervals .

`1 Page 2-18

Intervals

โ€ข Interval: a set of numbers between or possibly including two given numbers .

โ€ข Interval notation:

Open interval ( ): the end points are not included .

Closed interval [ ]: the end points are included .

Half-open interval (a, b]: a is not included, but b is included .

[a, b): a is included, but b is not included .

Non-ending open interval (a, โˆž): a is not included and infinity is always excluded .

(-โˆž, a): a is not included and infinity is always excluded .

Non-ending half-open interval (-โˆž, b]: b is included and infinity is always excluded .

[b, โˆž): b is included and infinity is always excluded .

โ€ข Double inequality (a < x < b) indicates โ€œbetweennessโ€, meaning both a < x, x < b , and

a must be less than b .

โ€ข Strict inequalities: an inequality that uses the symbols < or > .

โ€ข Weak inequalities: an inequality that uses the symbol โ‰ค or โ‰ฅ.

โ€ข Graphing real-number inequalities

The empty circle โ—‹ or open interval ( ): the endpoints are excluded .

The filled in circle โ— or closed interval [ ]: the endpoints are included .

Use a heavy line and an open or closed interval or an empty circle or filled-in circle to

graph intervals .

`1 Page 2-18

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 41

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

โ€ข Interval summary

Inequality IntervalNotation

Set-Builder Notation

ExampleEmpty/filled in circle

GraphOpen/closed interval

a < x < b (a, b) { x | a < x < b } 2 < x < 5

a โ‰ค x โ‰ค b [a, b] { x | a โ‰ค x โ‰ค b } 2 โ‰ค x โ‰ค 5

a โ‰ค x < b [a, b) { x | a โ‰ค x < b } 2 โ‰ค x < 5

a < x โ‰ค b (a, b] { x | a < x โ‰ค b } 2 < x โ‰ค 5

a < x < โˆž (a, โˆž) { x | x > a } x > 2

a โ‰ค x < โˆž [a, โˆž) { x | x โ‰ฅ ๐‘Ž๐‘Ž } x โ‰ฅ 2

- โˆž < x < b (-โˆž, b) { x | x < b } x < 5

- โˆž < x โ‰ค b (-โˆž, b] { x | x โ‰ค b } x โ‰ค 5

- โˆž < x < โˆž (-โˆž, โˆž) { x | -โˆž < x < โˆž } - โˆž < x < โˆž

Example: Express the following in interval notation . Solution

1. { x | x < -3 } (-โˆž, -3)

2. { x | -5 โ‰ค x < 5 } [-5, 5)

3. ( (-2, 9] -2 9

4. ( (-1, โˆž) -1

Example: Graph the following inequalities on a number line .

1. { x | x < 2 } or ) 2 2

2. { t | - 4 โ‰ค t < 3} or [ ) -4 3 -4 3

3. { z | - 2 < z โ‰ค 7 } or ( ] -2 7 -2 7

`1 Page 2-19

2 5

2 5

2 5

2 5

2

2

5

5

]

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

42 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

`1 Page 2-20

Properties of Inequalities

โ€ข Addition property of inequality: add the same value on each side of an inequality and the inequality remains true.

If a > b, Example: x โ€“ 4 > 3 then a + c > b + c x โ€“ 4 + 4 > 3 + 4 x > 7

โ€ข Subtraction property of inequality: subtract the same value from each side of an inequality and the inequality remains true.

If a < b, Example: y + 2 < 3 then a โ€“ c < b โ€“ c y + 2 โ€“ 2 < 3 โ€“ 2 y < 1

โ€ข Multiplication property of inequality: multiply the same positive value on each side of an inequality and the inequality remains true.

If a โ‰ฅ b, Example: 23

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โ‰ฅ 5

then ac โ‰ฅ bc 23

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ™ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ โ‰ฅ 5 โˆ™ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐Ÿ๐Ÿ

x โ‰ฅ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Note: When multiplying each side of the inequality by a negative number, reverse the inequality sign.

If a > b, Example: - 23๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ > 2

then a(-c) < b(-c) - 23๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ ๏ฟฝ- ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๏ฟฝ < 2 ๏ฟฝ- ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ

x < - 3

โ€ข Division property of equality: divide the same positive value on each side of an inequality and the inequality remains true.

If a โ‰ค b, Example: 4y โ‰ค 13

then ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐’„๐’„๐’„๐’„ โ‰ค ๐‘๐‘๐‘๐‘

๐’„๐’„๐’„๐’„ (c โ‰  0) 4๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ

๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’โ‰ค 1

3 โˆ™ ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ , y โ‰ค ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Note: When dividing each side of the inequality by a negative number, reverse the inequality sign.

If a < b, Example: -4y โ‰ค 13

then ๐‘Ž๐‘Ž๐‘Ž๐‘Ž-๐’„๐’„๐’„๐’„

> ๐‘๐‘๐‘๐‘-๐’„๐’„๐’„๐’„

- 4๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ-๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’โ‰ฅ 1

3(-๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’) , y โ‰ฅ - ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

`1 Page 2-20

Properties of Inequalities

โ€ข Addition property of inequality: add the same value on each side of an inequality and the inequality remains true.

If a > b, Example: x โ€“ 4 > 3 then a + c > b + c x โ€“ 4 + 4 > 3 + 4 x > 7

โ€ข Subtraction property of inequality: subtract the same value from each side of an inequality and the inequality remains true.

If a < b, Example: y + 2 < 3 then a โ€“ c < b โ€“ c y + 2 โ€“ 2 < 3 โ€“ 2 y < 1

โ€ข Multiplication property of inequality: multiply the same positive value on each side of an inequality and the inequality remains true.

If a โ‰ฅ b, Example: 23

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โ‰ฅ 5

then ac โ‰ฅ bc 23

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ™ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ โ‰ฅ 5 โˆ™ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐Ÿ๐Ÿ

x โ‰ฅ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Note: When multiplying each side of the inequality by a negative number, reverse the inequality sign.

If a > b, Example: - 23๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ > 2

then a(-c) < b(-c) - 23๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ ๏ฟฝ- ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๏ฟฝ < 2 ๏ฟฝ- ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ

x < - 3

โ€ข Division property of equality: divide the same positive value on each side of an inequality and the inequality remains true.

If a โ‰ค b, Example: 4y โ‰ค 13

then ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐’„๐’„๐’„๐’„ โ‰ค ๐‘๐‘๐‘๐‘

๐’„๐’„๐’„๐’„ (c โ‰  0) 4๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ

๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’โ‰ค 1

3 โˆ™ ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ , y โ‰ค ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Note: When dividing each side of the inequality by a negative number, reverse the inequality sign.

If a < b, Example: -4y โ‰ค 13

then ๐‘Ž๐‘Ž๐‘Ž๐‘Ž-๐’„๐’„๐’„๐’„

> ๐‘๐‘๐‘๐‘-๐’„๐’„๐’„๐’„

- 4๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ-๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’โ‰ฅ 1

3(-๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’) , y โ‰ฅ - ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 43

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

Solving Inequalities

โ€ข Solving an inequality is the process of finding a particular value for the variable in the

inequality that makes the inequality true .

โ€ข The procedure for solving linear inequalities is similar to solving basic equations .

Example: Solve the inequality 6x + 1 โ‰ฅ -17 and graph the solution set .

6x + 1 โ€“ 1 โ‰ฅ -17 โ€“ 1 Subtract 1 from both sides .

6x โ‰ฅ -18 Divide both sides by 6 .

x โ‰ฅ -3 [-3,โˆž) or { x | x โ‰ฅ -3 } [

Check: Method I Method II

Treat the inequality as an equation & check . Choose any number greater than -3 (say 0) .

6x + 1 = -17, x = -3 6x + 1 โ‰ฅ -17, x = 0 -? ?

6(-3) + 1 = -17 Replace x with -3 . 6(0) + 1 โ‰ฅ -17 Replace x with 0 .

? โˆš -18 + 1 = -17 1 โ‰ฅ -17 Correct!

โˆš -17 = -17 Correct!

Example: Solve the following inequality and graph the solution set .

4 โ€“ 2(x โ€“ 5) โ€“ 3x โ‰ฅ 2x + 11 Remove parenthesis .

4 โ€“ 2x + 10 โ€“ 3x โ‰ฅ 2x + 11 Combine like terms .

14 โ€“ 5x โ‰ฅ 2x + 11 Isolate x.

-7x โ‰ฅ -3 Divide both sides by -7 .

-7๐‘ฅ๐‘ฅ-7

โ‰ค -3-7

, ๐‘ฅ๐‘ฅ โ‰ค 37

Reverse the symbol .

{ x | ๐’™๐’™ โ‰ค ๐Ÿ‘๐Ÿ‘๐Ÿ•๐Ÿ•

} (-โˆž , ๐Ÿ‘๐Ÿ‘๐Ÿ•๐Ÿ• ] ]

Example: Solve the inequality ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

(3 โ€“ x) โ€“ ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ > ๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’ and graph the solution set .

122

(3 โ€“ x) โ€“ 13

โˆ™ 12 > 14โˆ™ 12 Multiply each term by the LCD .

6(3 โ€“ x) โ€“ 4 > 3, 18 โ€“ 6x โ€“ 4 > 3

14 โ€“ 6x > 3, - 6x > -11

๐’™๐’™ < ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”

or { x | ๐’™๐’™ < ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”

} )116

37

-3

`1 Page 2-21

Solving Inequalities

โ€ข Solving an inequality is the process of finding a particular value for the variable in the

inequality that makes the inequality true .

โ€ข The procedure for solving linear inequalities is similar to solving basic equations .

Example: Solve the inequality 6x + 1 โ‰ฅ -17 and graph the solution set .

6x + 1 โ€“ 1 โ‰ฅ -17 โ€“ 1 Subtract 1 from both sides .

6x โ‰ฅ -18 Divide both sides by 6 .

x โ‰ฅ -3 [-3,โˆž) or { x | x โ‰ฅ -3 } [

Check: Method I Method II

Treat the inequality as an equation & check . Choose any number greater than -3 (say 0) .

6x + 1 = -17, x = -3 6x + 1 โ‰ฅ -17, x = 0 -? ?

6(-3) + 1 = -17 Replace x with -3 . 6(0) + 1 โ‰ฅ -17 Replace x with 0 .

? โˆš -18 + 1 = -17 1 โ‰ฅ -17 Correct!

โˆš -17 = -17 Correct!

Example: Solve the following inequality and graph the solution set .

4 โ€“ 2(x โ€“ 5) โ€“ 3x โ‰ฅ 2x + 11 Remove parenthesis .

4 โ€“ 2x + 10 โ€“ 3x โ‰ฅ 2x + 11 Combine like terms .

14 โ€“ 5x โ‰ฅ 2x + 11 Isolate x.

-7x โ‰ฅ -3 Divide both sides by -7 .

-7๐‘ฅ๐‘ฅ-7

โ‰ค -3-7

, ๐‘ฅ๐‘ฅ โ‰ค 37

Reverse the symbol .

{ x | ๐’™๐’™ โ‰ค ๐Ÿ‘๐Ÿ‘๐Ÿ•๐Ÿ•

} (-โˆž , ๐Ÿ‘๐Ÿ‘๐Ÿ•๐Ÿ• ] ]

Example: Solve the inequality ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

(3 โ€“ x) โ€“ ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ > ๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’ and graph the solution set .

122

(3 โ€“ x) โ€“ 13

โˆ™ 12 > 14โˆ™ 12 Multiply each term by the LCD .

6(3 โ€“ x) โ€“ 4 > 3, 18 โ€“ 6x โ€“ 4 > 3

14 โ€“ 6x > 3, - 6x > -11

๐’™๐’™ < ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”

or { x | ๐’™๐’™ < ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”

} )116

37

-3

`1 Page 2-21

?

?

โˆš

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

44 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

Writing and Solving Inequalities

Example: If seven more than twice a number is greater than five times the number plus three, how large is the number?

- Let x = the number .

- Organize the facts:

7 more than twice a number is greater than 5 times the number plus 3+ 2x > 5x + 3

- Inequality: 7 + 2x > 5x + 3 Subtract 5x from both sides .

7 โ€“ 3x > 3 Subtract 7 from both sides .

- 3x > -4 Divide both sides by -3 .

x < 43

, { x | ๐’™๐’™ < ๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘

} Reverse the symbol .

- Check: Choose any number less than 4 3

(say 0) ?

7 + 2 โˆ™ 0 > 5 โˆ™ 0 + 3 โˆš

7 > 3 Correct!

Example: Neal got an 81% on the midterm exam in Math . To get an A, the average of his midterm and final exam must be between 85% and 90% . For what range of scores on the final exam will Neal need to get an A?

- Facts and unknown:

Facts 85 % < the average of midterm and final exam < 90%Unknown Let x = the final exam score .

- Inequality: 85 < ๐’™๐’™+๐Ÿ–๐Ÿ–๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ

< 90 The average of midterm and final exam: x+812

.

2(85) < 2 ๏ฟฝ๐‘ฅ๐‘ฅ+812๏ฟฝ < 2(90) Multiply 2 by each part .

170 < x + 81 < 180 Subtract 81 from each part .

170 โ€“ 81 < x + 81 โ€“ 81 < 180 โ€“ 81

- Solution: 89 < x < 99 Nealโ€™s final exam score must be between 89% and 99% .

{ x | ๐Ÿ–๐Ÿ–๐Ÿ–๐Ÿ– < ๐’™๐’™ < ๐Ÿ–๐Ÿ–๐Ÿ–๐Ÿ– }

`1 Page 2-22

Writing and Solving Inequalities

Example: If seven more than twice a number is greater than five times the number plus three, how large is the number?

- Let x = the number .

- Organize the facts:

7 more than twice a number is greater than 5 times the number plus 3+ 2x > 5x + 3

- Inequality: 7 + 2x > 5x + 3 Subtract 5x from both sides .

7 โ€“ 3x > 3 Subtract 7 from both sides .

- 3x > -4 Divide both sides by -3 .

x < 43

, { x | ๐’™๐’™ < ๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘

} Reverse the symbol .

- Check: Choose any number less than 4 3

(say 0) ?

7 + 2 โˆ™ 0 > 5 โˆ™ 0 + 3 โˆš

7 > 3 Correct!

Example: Neal got an 81% on the midterm exam in Math . To get an A, the average of his midterm and final exam must be between 85% and 90% . For what range of scores on the final exam will Neal need to get an A?

- Facts and unknown:

Facts 85 % < the average of midterm and final exam < 90%Unknown Let x = the final exam score .

- Inequality: 85 < ๐’™๐’™+๐Ÿ–๐Ÿ–๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ

< 90 The average of midterm and final exam: x+812

.

2(85) < 2 ๏ฟฝ๐‘ฅ๐‘ฅ+812๏ฟฝ < 2(90) Multiply 2 by each part .

170 < x + 81 < 180 Subtract 81 from each part .

170 โ€“ 81 < x + 81 โ€“ 81 < 180 โ€“ 81

- Solution: 89 < x < 99 Nealโ€™s final exam score must be between 89% and 99% .

{ x | ๐Ÿ–๐Ÿ–๐Ÿ–๐Ÿ– < ๐’™๐’™ < ๐Ÿ–๐Ÿ–๐Ÿ–๐Ÿ– }

`1 Page 2-22

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 45

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

2-4 INTERSECTIONS AND UNIONS

Intersections, Unions, and Subsets

โ€ข Intersection of A and B (A โˆฉ B): the set of all elements contained in both A and B .

Example: 1. If A = {red, green, yellow, black} and B = {white, black, green},

then A โˆฉ ๐‘ฉ๐‘ฉ = {black, green} .

2. If A = {1, 2, 3, 4, 5} and B = {4, 5, 6, 7, 8},

then A โˆฉ ๐๐ = {4, 5} . A intersect B

โ€ข Union of A and B (A โˆช B): the set of all elements contained in A or B, or both .

Example: 1. If A = {red, green, yellow} and B = {white, black},

then A โˆช ๐๐ = { red, green, yellow, white, black} .

2. If A = {1, 3, 5} and B = {2, 4, 6},

then A โˆช ๐๐ = {1, 2, 3, 4, 5, 6}. A union B

โ€ข Empty set (or null set) โˆ…: a set that contains no elements (disjoint) .

Example: If A = { x | x = Feb . 30}, then A = โˆ…

B = { x | x = Christmas day on Nov . 25} = โˆ…

โ€ข Subset (B โŠ‚ A): a set B is a subset of a set A if each element of B is an element of A . A subset B is a portion of another set A .

Example: If A = {4, 5, 8, 10, 17, 23}, B = {5, 10, 17},

then (B โŠ‚ A) .

โ€ข x โˆˆ A: x is an element of the set A (or x belongs to A) .

โ€ข x โˆ‰ A: x is not an element of the set A (or x does not belong to A) .

Example: A = {1, 2, 3, 4, 5}3 โˆˆ A: 3 is an element of A . 6 โˆ‰ A: 6 is not an element of A .

โ€ข Sets Summary Unions, Intersections, and Subsets Exampleunion of A and B

(A โˆช B) OR

The set of all elements contained in A orB, or both .

If A = {2, 5} and B = {1, 3, 4}then A โˆช ๐ต๐ต = {1, 2, 3, 4, 5} .

intersection of A and B(A โˆฉ B) AND

The set of all elements contained in both A and B .

If A = {3, 6, 9} and B = {5, 6, 7, 8, 9}then A โˆฉ ๐ต๐ต = {6, 9} .

empty set (or null set) โˆ… A set that contains no elements . If A = { x | x = Feb . 30} , then A = โˆ… .subset (B โŠ‚ A) The subset B is a portion of another set A. If A = {2, 5, 7, 11}, B = {5, 11}, then (B โŠ‚ A) .

x โˆˆ A x is an element of the set A . 23

โˆˆ Rational numbersx โˆ‰ A x is not an element of the set A. โˆš5 โˆ‰ Rational numbers

B A

A B

A B

A B

`1 Page 2-23

2-4 INTERSECTIONS AND UNIONS

Intersections, Unions, and Subsets

โ€ข Intersection of A and B (A โˆฉ B): the set of all elements contained in both A and B .

Example: 1. If A = {red, green, yellow, black} and B = {white, black, green},

then A โˆฉ ๐‘ฉ๐‘ฉ = {black, green} .

2. If A = {1, 2, 3, 4, 5} and B = {4, 5, 6, 7, 8},

then A โˆฉ ๐๐ = {4, 5} . A intersect B

โ€ข Union of A and B (A โˆช B): the set of all elements contained in A or B, or both .

Example: 1. If A = {red, green, yellow} and B = {white, black},

then A โˆช ๐๐ = { red, green, yellow, white, black} .

2. If A = {1, 3, 5} and B = {2, 4, 6},

then A โˆช ๐๐ = {1, 2, 3, 4, 5, 6}. A union B

โ€ข Empty set (or null set) โˆ…: a set that contains no elements (disjoint) .

Example: If A = { x | x = Feb . 30}, then A = โˆ…

B = { x | x = Christmas day on Nov . 25} = โˆ…

โ€ข Subset (B โŠ‚ A): a set B is a subset of a set A if each element of B is an element of A . A subset B is a portion of another set A .

Example: If A = {4, 5, 8, 10, 17, 23}, B = {5, 10, 17},

then (B โŠ‚ A) .

โ€ข x โˆˆ A: x is an element of the set A (or x belongs to A) .

โ€ข x โˆ‰ A: x is not an element of the set A (or x does not belong to A) .

Example: A = {1, 2, 3, 4, 5}3 โˆˆ A: 3 is an element of A . 6 โˆ‰ A: 6 is not an element of A .

โ€ข Sets Summary Unions, Intersections, and Subsets Exampleunion of A and B

(A โˆช B) OR

The set of all elements contained in A orB, or both .

If A = {2, 5} and B = {1, 3, 4}then A โˆช ๐ต๐ต = {1, 2, 3, 4, 5} .

intersection of A and B(A โˆฉ B) AND

The set of all elements contained in both A and B .

If A = {3, 6, 9} and B = {5, 6, 7, 8, 9}then A โˆฉ ๐ต๐ต = {6, 9} .

empty set (or null set) โˆ… A set that contains no elements . If A = { x | x = Feb . 30} , then A = โˆ… .subset (B โŠ‚ A) The subset B is a portion of another set A. If A = {2, 5, 7, 11}, B = {5, 11}, then (B โŠ‚ A) .

x โˆˆ A x is an element of the set A . 23

โˆˆ Rational numbersx โˆ‰ A x is not an element of the set A. โˆš5 โˆ‰ Rational numbers

B A

A B

A B

A B

`1 Page 2-23

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

46 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

Example: Given A = { a | a is a number between 6 and 10} . 7, 8, 9

B = { b | b is a prime number between 3 and 10} . 5, 7

Review: A prime number is a whole number that only has two factors, 1 and itself .

List the elements in A โˆช B and A โˆฉ B.

A โˆช B = {5, 7, 8, 9}, A โˆฉ B = {7}

Example: Let A = {2, 4, 6, 8}, B = {0, 1, 2, 3, 4}, and C = {-2, 3} . List the elements in

the following .

Solution

1. A โˆช ๐ต๐ต {0, 1, 2, 3, 4, 6, 8}

2. A โˆฉ B { 2, 4}

3. A โˆฉ ๐ถ๐ถ โˆ…

Example: Find the following sets .

1. {x, y, z} โˆฉ { u, v, w, z, x, y} {x, y, z}

2. {a, b, c} โˆช โˆ… {a, b, c}

โ€ข Compound inequality review: a statement that contains more than one inequality . a < x < b

It means a < x and x < b.

Example: Graph and write using interval notation . Solution

1. -2 โ‰ค t and t < 3 [-2, 3) [ ) -2 3

2. 1 < b โ‰ค 5 (1, 5] ( ] 1 5

Example: Solve and sketch the graphs of the following inequalities .

1. -3 โ‰ค 4 + 3x < 5-3 - 4 โ‰ค 4 + 3x - 4 < 5 โ€“ 4 Subtract 4 from each term .

-7 โ‰ค 3x < 1 Divide each part by 3 .

-73

โ‰ค ๐‘ฅ๐‘ฅ < 13

๏ฟฝ๐’™๐’™ | -๐Ÿ•๐Ÿ•๐Ÿ‘๐Ÿ‘

โ‰ค ๐’™๐’™ < ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๏ฟฝ or ๏ฟฝโˆ’๐Ÿ•๐Ÿ•

๐Ÿ‘๐Ÿ‘, ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๏ฟฝ [ )

-2 .33 0 .33

๏ฟฝโˆ’73

, 13๏ฟฝ or [-2 .33, 0 .33)

2. -2 โ‰ค ๐Ÿ๐Ÿ๐’™๐’™+๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

< 6

-6 โ‰ค 2x + 2 < 18 Multiply 3 by each term .

-8 โ‰ค 2x < 16 Subtract 2 from each term .

-4 โ‰ค ๐‘ฅ๐‘ฅ < 8 Divide each term by 2 .

{x | -๐Ÿ’๐Ÿ’ โ‰ค ๐ฑ๐ฑ < ๐Ÿ–๐Ÿ– } or [-๐Ÿ’๐Ÿ’,๐Ÿ–๐Ÿ–) [ ) -4 8

`1 Page 2-24

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 47

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

Inequality and Unions/ Intersections

Intersections and inequalities

Example: Solve and sketch the graphs of 2x โ€“ 1 โ‰ค 3 and 4 + x < 5 .Tip: โ€œandโ€ means all x values that satisfy both inequalities (use intersection โˆฉ).

- Solve each inequality and graph . 2x โ€“ 1 โ‰ค 3 4 + x < 5

2x โ‰ค 4 x < 1 x โ‰ค 2 , (-โˆž, 2] (-โˆž, 1)

] ) 2 1

- Solution: { x | x โ‰ค 2} โˆฉ { x | x < 1} or { x | x < 1}The numbers common to both sets are those that are less than 1 .

- Graph the intersect of the two solution sets . ) (-โˆž, 2] โˆฉ (-โˆž, 1)

1

Unions and inequalities

Example: Solve and sketch the graphs of 2 โ€“ 3x > 5 or 4 + x โ‰ฅ 7 .Tip: โ€œorโ€ means x does not have to be in both solution sets to satisfy both inequalities (use union โˆช ) .

- Solve each inequality and graph .

2 - 3x > 5 4 + x โ‰ฅ 7-3x > 3 x โ‰ฅ 3x < -1, (-โˆž, -1) - [3, โˆž)

) [ -1 3

- Graph the union of the two solution sets .

) [ - 1 3

- The solution set: { x | x < -1 or x โ‰ฅ 3 } or (-โˆž, -1) โˆช [3, โˆž)

Example: Solve and sketch the graphs of 2x โ€“ 3 โ‰ฅ 1 or 4 + 3x < 16 . 2x โ‰ฅ 4 3x < 12

x โ‰ฅ 2 , [2, โˆž) x < 4 , (-โˆž, 4)

[ ) 2 4

[2, โˆž) โˆช (-โˆž, 4)

The solution set: (-โˆž, โˆž), or all real numbers .

`1 Page 2-25

Inequality and Unions/ Intersections

Intersections and inequalities

Example: Solve and sketch the graphs of 2x โ€“ 1 โ‰ค 3 and 4 + x < 5 .Tip: โ€œandโ€ means all x values that satisfy both inequalities (use intersection โˆฉ).

- Solve each inequality and graph . 2x โ€“ 1 โ‰ค 3 4 + x < 5

2x โ‰ค 4 x < 1 x โ‰ค 2 , (-โˆž, 2] (-โˆž, 1)

] ) 2 1

- Solution: { x | x โ‰ค 2} โˆฉ { x | x < 1} or { x | x < 1}The numbers common to both sets are those that are less than 1 .

- Graph the intersect of the two solution sets . ) (-โˆž, 2] โˆฉ (-โˆž, 1)

1

Unions and inequalities

Example: Solve and sketch the graphs of 2 โ€“ 3x > 5 or 4 + x โ‰ฅ 7 .Tip: โ€œorโ€ means x does not have to be in both solution sets to satisfy both inequalities (use union โˆช ) .

- Solve each inequality and graph .

2 - 3x > 5 4 + x โ‰ฅ 7-3x > 3 x โ‰ฅ 3x < -1, (-โˆž, -1) - [3, โˆž)

) [ -1 3

- Graph the union of the two solution sets .

) [ - 1 3

- The solution set: { x | x < -1 or x โ‰ฅ 3 } or (-โˆž, -1) โˆช [3, โˆž)

Example: Solve and sketch the graphs of 2x โ€“ 3 โ‰ฅ 1 or 4 + 3x < 16 . 2x โ‰ฅ 4 3x < 12

x โ‰ฅ 2 , [2, โˆž) x < 4 , (-โˆž, 4)

[ ) 2 4

[2, โˆž) โˆช (-โˆž, 4)

The solution set: (-โˆž, โˆž), or all real numbers .

`1 Page 2-25

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

48 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

2-5 ABSOLUTE-VALUE EQUATIONS & INEQUALITIES

Absolute Value

โ€ข Absolute value review: geometrically, it is the distance of a number x from zero on the

number line . It is symbolized by vertical bars, as in โ€œ|๐‘ฅ๐‘ฅ|โ€, โ€œ|๐‘ฆ๐‘ฆ|โ€ โ€ฆ

Example: |5| is 5 units away from 0 .

โ€ข No negatives for absolute value, ๏ฟฝ-๐’ƒ๐’ƒ๏ฟฝ = |๐’ƒ๐’ƒ| : Distance is always positive, and the absolute

value is a distance, so the absolute value is never negative .

Example: |2| is 2 units away from 0 . 2 units

-2 0 2

๏ฟฝ-2๏ฟฝ is also 2 units away from 0 . 2 units

-2 0 2

โ€ข Properties of absolute value

Absolute Value Example

absolute value |๐‘ฅ๐‘ฅ| = ๏ฟฝ๐‘ฅ๐‘ฅ, if ๐‘ฅ๐‘ฅ โ‰ฅ 0 -๐‘ฅ๐‘ฅ, if ๐‘ฅ๐‘ฅ < 0

If |2๐‘ฅ๐‘ฅ โ€“ 3 | = 5, then 2๐‘ฅ๐‘ฅ โ€“ 3 = 5 or 2๐‘ฅ๐‘ฅ โ€“ 3 = -5

properties |๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ| = |๐‘ฅ๐‘ฅ||๐‘ฆ๐‘ฆ| |-4๐‘Ž๐‘Ž| = |-4||๐‘Ž๐‘Ž| = 4|๐‘Ž๐‘Ž|

๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๏ฟฝ =

|๐‘ฅ๐‘ฅ||๐‘ฆ๐‘ฆ| (๐‘ฆ๐‘ฆ โ‰  0) ๏ฟฝ3๐‘ฅ๐‘ฅ

3

5๐‘ฆ๐‘ฆ๏ฟฝ = ๏ฟฝ3๐‘ฅ๐‘ฅ3๏ฟฝ

|5๐‘ฆ๐‘ฆ|= 3๏ฟฝ๐‘ฅ๐‘ฅ3๏ฟฝ

5|๐‘ฆ๐‘ฆ|

Example: Simplify the following .

1. ๏ฟฝ-๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ•๏ฟฝ = ๏ฟฝ-7๏ฟฝ|๐‘ฅ๐‘ฅ| = 7|๐Ÿ•๐Ÿ•| |๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ| = |๐‘ฅ๐‘ฅ||๐‘ฆ๐‘ฆ| , ๏ฟฝ-๐‘๐‘๏ฟฝ = |๐‘๐‘|

2. ๏ฟฝ๐Ÿ“๐Ÿ“๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ•๐Ÿ•๏ฟฝ = ๏ฟฝ๐‘ฅ๐‘ฅ

2

3๐‘ฅ๐‘ฅ๏ฟฝ = ๏ฟฝ๐‘ฅ๐‘ฅ

3๏ฟฝ = |๐‘ฅ๐‘ฅ|

|3|= |๐Ÿ•๐Ÿ•|

๐Ÿ‘๐Ÿ‘๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๏ฟฝ = |๐‘ฅ๐‘ฅ|

|๐‘ฆ๐‘ฆ|

3. ๏ฟฝ-๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

๐Ÿ๐Ÿ๏ฟฝ = ๏ฟฝ-6๐‘Ž๐‘Ž5๏ฟฝ = ๏ฟฝ-6๏ฟฝ |๐‘Ž๐‘Ž5| = ๐Ÿ”๐Ÿ”๏ฟฝ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๏ฟฝ |๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ| = |๐‘ฅ๐‘ฅ||๐‘ฆ๐‘ฆ|, ๏ฟฝ-๐‘๐‘๏ฟฝ = |๐‘๐‘|

`1 Page 2-26

2-5 ABSOLUTE-VALUE EQUATIONS & INEQUALITIES

Absolute Value

โ€ข Absolute value review: geometrically, it is the distance of a number x from zero on the

number line . It is symbolized by vertical bars, as in โ€œ|๐‘ฅ๐‘ฅ|โ€, โ€œ|๐‘ฆ๐‘ฆ|โ€ โ€ฆ

Example: |5| is 5 units away from 0 .

โ€ข No negatives for absolute value, ๏ฟฝ-๐’ƒ๐’ƒ๏ฟฝ = |๐’ƒ๐’ƒ| : Distance is always positive, and the absolute

value is a distance, so the absolute value is never negative .

Example: |2| is 2 units away from 0 . 2 units

-2 0 2

๏ฟฝ-2๏ฟฝ is also 2 units away from 0 . 2 units

-2 0 2

โ€ข Properties of absolute value

Absolute Value Example

absolute value |๐‘ฅ๐‘ฅ| = ๏ฟฝ๐‘ฅ๐‘ฅ, if ๐‘ฅ๐‘ฅ โ‰ฅ 0 -๐‘ฅ๐‘ฅ, if ๐‘ฅ๐‘ฅ < 0

If |2๐‘ฅ๐‘ฅ โ€“ 3 | = 5, then 2๐‘ฅ๐‘ฅ โ€“ 3 = 5 or 2๐‘ฅ๐‘ฅ โ€“ 3 = -5

properties |๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ| = |๐‘ฅ๐‘ฅ||๐‘ฆ๐‘ฆ| |-4๐‘Ž๐‘Ž| = |-4||๐‘Ž๐‘Ž| = 4|๐‘Ž๐‘Ž|

๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๏ฟฝ =

|๐‘ฅ๐‘ฅ||๐‘ฆ๐‘ฆ| (๐‘ฆ๐‘ฆ โ‰  0) ๏ฟฝ3๐‘ฅ๐‘ฅ

3

5๐‘ฆ๐‘ฆ๏ฟฝ = ๏ฟฝ3๐‘ฅ๐‘ฅ3๏ฟฝ

|5๐‘ฆ๐‘ฆ|= 3๏ฟฝ๐‘ฅ๐‘ฅ3๏ฟฝ

5|๐‘ฆ๐‘ฆ|

Example: Simplify the following .

1. ๏ฟฝ-๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ•๏ฟฝ = ๏ฟฝ-7๏ฟฝ|๐‘ฅ๐‘ฅ| = 7|๐Ÿ•๐Ÿ•| |๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ| = |๐‘ฅ๐‘ฅ||๐‘ฆ๐‘ฆ| , ๏ฟฝ-๐‘๐‘๏ฟฝ = |๐‘๐‘|

2. ๏ฟฝ๐Ÿ“๐Ÿ“๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ•๐Ÿ•๏ฟฝ = ๏ฟฝ๐‘ฅ๐‘ฅ

2

3๐‘ฅ๐‘ฅ๏ฟฝ = ๏ฟฝ๐‘ฅ๐‘ฅ

3๏ฟฝ = |๐‘ฅ๐‘ฅ|

|3|= |๐Ÿ•๐Ÿ•|

๐Ÿ‘๐Ÿ‘๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๏ฟฝ = |๐‘ฅ๐‘ฅ|

|๐‘ฆ๐‘ฆ|

3. ๏ฟฝ-๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

๐Ÿ๐Ÿ๏ฟฝ = ๏ฟฝ-6๐‘Ž๐‘Ž5๏ฟฝ = ๏ฟฝ-6๏ฟฝ |๐‘Ž๐‘Ž5| = ๐Ÿ”๐Ÿ”๏ฟฝ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๏ฟฝ |๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ| = |๐‘ฅ๐‘ฅ||๐‘ฆ๐‘ฆ|, ๏ฟฝ-๐‘๐‘๏ฟฝ = |๐‘๐‘|

`1 Page 2-26

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 49

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

Equations With Absolute Value

โ€ข Absolute value equation: an equation that includes absolute value(s) .

โ€ข |x| = A is equivalent to x = ยฑA: Example: |5๐‘ก๐‘ก โˆ’ 3| = 2 is equivalent to 5t โ€“ 3 = ยฑ2 5t โ€“ 3 = 2, 5t โ€“ 3 = -2

โ€ข Procedure to solve an absolute value equation

Steps Example: |๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘| โˆ’ ๐Ÿ“๐Ÿ“ = ๐ŸŽ๐ŸŽ

- Isolate the absolute value . |2๐‘ฅ๐‘ฅ โˆ’ 3| = 5 +5 to both sides .

+ โ€“ - Remove the absolute value symbol and set up 2x โ€“ 3 = 5 2x โ€“ 3 = -5

two equations (one positive and one negative) . |2x โˆ’ 3| = 5 is equivalent to 2x โ€“ 3 = ยฑ5 .

- Solve two equations . 2x = 8 2x = -2

x = 4 x = -1

? ?

- Check . |2 โˆ™ 4 โˆ’ 3| = 5 ๏ฟฝ2(-1) โˆ’ 3๏ฟฝ = 5โˆš โˆš

|5| = 5 ๏ฟฝ-5๏ฟฝ = 5 Correct!

The solution set: {-1, 4}

Example: Solve for x . 2 |๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ| โˆ’ ๐Ÿ‘๐Ÿ‘ = ๐Ÿ“๐Ÿ“

- Isolate |๐‘ฅ๐‘ฅ|. 2|๐‘ฅ๐‘ฅ + 1| = 8 Add 3 to both sides .

|๐‘ฅ๐‘ฅ + 1| = 4 Divide both sides by 2 .

- Remove the absolute value symbol and x + 1 = 4 x + 1 = -4set up two equations . |๐‘ฅ๐‘ฅ + 1| = 4 is equivalent to x + 1 = ยฑ4 .

- Solve two equations . x = 3 x = -5 ? ?

- Check . 2|3 + 1| โˆ’ 3 = 5 2๏ฟฝ-5 + 1๏ฟฝ โˆ’ 3 = 5 โˆš โˆš

5 = 5 5 = 5 Correct!

The solution set: {-5, 3}

Example: Solve for t . |๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ + ๐Ÿ๐Ÿ| = -๐Ÿ•๐Ÿ•

No solution The absolute value of an expression is never negative .

`1 Page 2-27

Equations With Absolute Value

โ€ข Absolute value equation: an equation that includes absolute value(s) .

โ€ข |x| = A is equivalent to x = ยฑA: Example: |5๐‘ก๐‘ก โˆ’ 3| = 2 is equivalent to 5t โ€“ 3 = ยฑ2 5t โ€“ 3 = 2, 5t โ€“ 3 = -2

โ€ข Procedure to solve an absolute value equation

Steps Example: |๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘| โˆ’ ๐Ÿ“๐Ÿ“ = ๐ŸŽ๐ŸŽ

- Isolate the absolute value . |2๐‘ฅ๐‘ฅ โˆ’ 3| = 5 +5 to both sides .

+ โ€“ - Remove the absolute value symbol and set up 2x โ€“ 3 = 5 2x โ€“ 3 = -5

two equations (one positive and one negative) . |2x โˆ’ 3| = 5 is equivalent to 2x โ€“ 3 = ยฑ5 .

- Solve two equations . 2x = 8 2x = -2

x = 4 x = -1

? ?

- Check . |2 โˆ™ 4 โˆ’ 3| = 5 ๏ฟฝ2(-1) โˆ’ 3๏ฟฝ = 5โˆš โˆš

|5| = 5 ๏ฟฝ-5๏ฟฝ = 5 Correct!

The solution set: {-1, 4}

Example: Solve for x . 2 |๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ| โˆ’ ๐Ÿ‘๐Ÿ‘ = ๐Ÿ“๐Ÿ“

- Isolate |๐‘ฅ๐‘ฅ|. 2|๐‘ฅ๐‘ฅ + 1| = 8 Add 3 to both sides .

|๐‘ฅ๐‘ฅ + 1| = 4 Divide both sides by 2 .

- Remove the absolute value symbol and x + 1 = 4 x + 1 = -4set up two equations . |๐‘ฅ๐‘ฅ + 1| = 4 is equivalent to x + 1 = ยฑ4 .

- Solve two equations . x = 3 x = -5 ? ?

- Check . 2|3 + 1| โˆ’ 3 = 5 2๏ฟฝ-5 + 1๏ฟฝ โˆ’ 3 = 5 โˆš โˆš

5 = 5 5 = 5 Correct!

The solution set: {-5, 3}

Example: Solve for t . |๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ + ๐Ÿ๐Ÿ| = -๐Ÿ•๐Ÿ•

No solution The absolute value of an expression is never negative .

`1 Page 2-27

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

50 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

โ€ข Equations containing two absolute-value expressions

Example: Solve for x . |๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ“๐Ÿ“| = |๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ๐Ÿ|

+ โ€“ - Remove the absolute value symbol and 4x โ€“ 5 = 3x โ€“ 2 4x โ€“ 5 = - (3x โ€“ 2)

set up two equations . 4x โ€“ 3x = - 2 + 5 4x โ€“ 5 = -3x + 2

- Solve two equations . x = 3 x = 1

? ?- Check . |4 โˆ™ 3 โˆ’ 5| = |3 โˆ™ 3 โˆ’ 2| |4 โˆ™ 1 โˆ’ 5| = |3 โˆ™ 1 โˆ’ 2|

? ? |12 โˆ’ 5| = |9 โˆ’ 2| ๏ฟฝ-1๏ฟฝ = |1|

โˆš โˆš7 = 7 1 = 1 Correct!

The solution set is {1, 3}

Example: Solve for x . ๏ฟฝ๐Ÿ”๐Ÿ”โˆ’๐Ÿ–๐Ÿ–๐Ÿ’๐Ÿ’๐Ÿ“๐Ÿ“๏ฟฝ = ๏ฟฝ๐Ÿ•๐Ÿ•+๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’

๐Ÿ๐Ÿ๏ฟฝ

๏ฟฝ6โˆ’8๐‘ฅ๐‘ฅ5๏ฟฝ โˆ™ |10| = ๏ฟฝ7+3๐‘ฅ๐‘ฅ

2๏ฟฝ โˆ™ |10| Multiply the LCD .

๏ฟฝ6โˆ’8๐‘ฅ๐‘ฅ5

โˆ™ 10๏ฟฝ = ๏ฟฝ7+3๐‘ฅ๐‘ฅ2

โˆ™ 10๏ฟฝ |๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ| = |๐‘ฅ๐‘ฅ||๐‘ฅ๐‘ฅ|

|12 โˆ’ 16๐‘ฅ๐‘ฅ| = |35 + 15๐‘ฅ๐‘ฅ| |12 โˆ’ 16๐‘ฅ๐‘ฅ| = |35 + 15๐‘ฅ๐‘ฅ| is equivalent to 12 โ€“ 16x = ยฑ(35 + 15x) .

12 โ€“ 16x = 35 + 15x 12 โ€“ 16x = -(35 + 15x)

-31x = 23 12 โ€“ 16x = -35 โ€“ 15x

- x = -47

๐Ÿ’๐Ÿ’ = -๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐Ÿ’๐Ÿ’ = 47

The solution set: ๏ฟฝ-๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

, ๐Ÿ’๐Ÿ’๐Ÿ•๐Ÿ•๏ฟฝ

`1 Page 2-28

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 51

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

Absolute Value Inequalities

โ€ข |๐’™๐’™| < ๐‘จ๐‘จ: x is any value whose distance from zero is less than A units .

It can be written as { x | -A < x < A} or (-A, A) . โˆต ยฑ x < A ๏ฟฝ๐‘ฅ๐‘ฅ < ๐ด๐ด

-๐‘ฅ๐‘ฅ < ๐ด๐ด, ๐‘ฅ๐‘ฅ > -๐ด๐ด

Example: |๐‘ฅ๐‘ฅ| < 3, x is less than 3 units away from zero, i .e .

{ x | -3 < x < 3} or (-3, 3) -3 0 3

โ€ข |๐’™๐’™| โ‰ค ๐‘จ๐‘จ: x is any value whose distance from zero is less than or equal to A units .

It can be written as {x | -A โ‰ค x โ‰ค A } or [-A, A] . โˆต ยฑ x โ‰ค A ๏ฟฝ ๐‘ฅ๐‘ฅ โ‰ค ๐ด๐ด -๐‘ฅ๐‘ฅ โ‰ค ๐ด๐ด, ๐‘ฅ๐‘ฅ โ‰ฅ -๐ด๐ด

Example: |๐‘ฅ๐‘ฅ| โ‰ค 3, x is less than or equal to 3 units away from zero, i .e .{ x | -3 โ‰ค x โ‰ค 3} or [-3, 3] โˆ™ โˆ™

-3 0 3

โ€ข |๐’™๐’™| > ๐‘จ๐‘จ: x is any value whose distance from zero is greater than A units .

It can be written as {x | x < -A or x > A } or (-โˆž, -A) โˆช (A, โˆž) .

โˆต ยฑ x > A ๏ฟฝ ๐‘ฅ๐‘ฅ > ๐ด๐ด -๐‘ฅ๐‘ฅ > ๐ด๐ด, ๐‘ฅ๐‘ฅ < -๐ด๐ด

Example: |๐‘ฅ๐‘ฅ| > 4, x is any value whose distance from zero is greater than 4 units, i .e .

{x | x < -4 or x > 4} or (-โˆž, -4) โˆช (4, โˆž) ) ( -4 0 4

โ€ข |๐’™๐’™| โ‰ฅ ๐‘จ๐‘จ: x is any value whose distance from zero is at least A units . โˆต ยฑ x โ‰ฅ A ๏ฟฝ ๐‘ฅ๐‘ฅ โ‰ฅ ๐ด๐ด -๐‘ฅ๐‘ฅ โ‰ฅ ๐ด๐ด, ๐‘ฅ๐‘ฅ โ‰ค -๐ด๐ด

It can be written as {x | x โ‰ค -A or x โ‰ฅ A } or (-โˆž, -A] โˆช [A, โˆž) .

Example: |๐‘ฅ๐‘ฅ| โ‰ฅ 4, x is at least 4 units away from zero, i .e .{x | x โ‰ค -4 or x โ‰ฅ 4} or (-โˆž, -4] โˆช [4, โˆž) ] [

-4 0 4

Absolute value inequalities summaryAbsolute Value Inequality Example

|๐’™๐’™| < ๐‘จ๐‘จ -A < x < A or (-A, A) |๐‘ฅ๐‘ฅ| < 2: { x | -2 < x < 2} or (-2, 2)|๐’™๐’™| โ‰ค ๐‘จ๐‘จ -A โ‰ค x โ‰ค A or [-A, A] |๐‘ฅ๐‘ฅ| โ‰ค 2: {x | -2 โ‰ค x โ‰ค 2 } or [-2, 2]|๐’™๐’™| > ๐‘จ๐‘จ x < -A or x > A or (-โˆž, -A) โˆช (A, โˆž) |๐‘ฅ๐‘ฅ| > 2 : {x | x < -2 or x > 2} or (-โˆž, -2) โˆช (2, โˆž)|๐’™๐’™| โ‰ฅ ๐‘จ๐‘จ x โ‰ค -A or x โ‰ฅ A or (-โˆž, -A] โˆช [A, โˆž) |๐‘ฅ๐‘ฅ| โ‰ฅ 2: {x | x โ‰ค -2 or x โ‰ฅ 2} or (-โˆž, -2] โˆช [2, โˆž)

`1 Page 2-29

Absolute Value Inequalities

โ€ข |๐’™๐’™| < ๐‘จ๐‘จ: x is any value whose distance from zero is less than A units .

It can be written as { x | -A < x < A} or (-A, A) . โˆต ยฑ x < A ๏ฟฝ๐‘ฅ๐‘ฅ < ๐ด๐ด

-๐‘ฅ๐‘ฅ < ๐ด๐ด, ๐‘ฅ๐‘ฅ > -๐ด๐ด

Example: |๐‘ฅ๐‘ฅ| < 3, x is less than 3 units away from zero, i .e .

{ x | -3 < x < 3} or (-3, 3) -3 0 3

โ€ข |๐’™๐’™| โ‰ค ๐‘จ๐‘จ: x is any value whose distance from zero is less than or equal to A units .

It can be written as {x | -A โ‰ค x โ‰ค A } or [-A, A] . โˆต ยฑ x โ‰ค A ๏ฟฝ ๐‘ฅ๐‘ฅ โ‰ค ๐ด๐ด -๐‘ฅ๐‘ฅ โ‰ค ๐ด๐ด, ๐‘ฅ๐‘ฅ โ‰ฅ -๐ด๐ด

Example: |๐‘ฅ๐‘ฅ| โ‰ค 3, x is less than or equal to 3 units away from zero, i .e .{ x | -3 โ‰ค x โ‰ค 3} or [-3, 3] โˆ™ โˆ™

-3 0 3

โ€ข |๐’™๐’™| > ๐‘จ๐‘จ: x is any value whose distance from zero is greater than A units .

It can be written as {x | x < -A or x > A } or (-โˆž, -A) โˆช (A, โˆž) .

โˆต ยฑ x > A ๏ฟฝ ๐‘ฅ๐‘ฅ > ๐ด๐ด -๐‘ฅ๐‘ฅ > ๐ด๐ด, ๐‘ฅ๐‘ฅ < -๐ด๐ด

Example: |๐‘ฅ๐‘ฅ| > 4, x is any value whose distance from zero is greater than 4 units, i .e .

{x | x < -4 or x > 4} or (-โˆž, -4) โˆช (4, โˆž) ) ( -4 0 4

โ€ข |๐’™๐’™| โ‰ฅ ๐‘จ๐‘จ: x is any value whose distance from zero is at least A units . โˆต ยฑ x โ‰ฅ A ๏ฟฝ ๐‘ฅ๐‘ฅ โ‰ฅ ๐ด๐ด -๐‘ฅ๐‘ฅ โ‰ฅ ๐ด๐ด, ๐‘ฅ๐‘ฅ โ‰ค -๐ด๐ด

It can be written as {x | x โ‰ค -A or x โ‰ฅ A } or (-โˆž, -A] โˆช [A, โˆž) .

Example: |๐‘ฅ๐‘ฅ| โ‰ฅ 4, x is at least 4 units away from zero, i .e .{x | x โ‰ค -4 or x โ‰ฅ 4} or (-โˆž, -4] โˆช [4, โˆž) ] [

-4 0 4

Absolute value inequalities summaryAbsolute Value Inequality Example

|๐’™๐’™| < ๐‘จ๐‘จ -A < x < A or (-A, A) |๐‘ฅ๐‘ฅ| < 2: { x | -2 < x < 2} or (-2, 2)|๐’™๐’™| โ‰ค ๐‘จ๐‘จ -A โ‰ค x โ‰ค A or [-A, A] |๐‘ฅ๐‘ฅ| โ‰ค 2: {x | -2 โ‰ค x โ‰ค 2 } or [-2, 2]|๐’™๐’™| > ๐‘จ๐‘จ x < -A or x > A or (-โˆž, -A) โˆช (A, โˆž) |๐‘ฅ๐‘ฅ| > 2 : {x | x < -2 or x > 2} or (-โˆž, -2) โˆช (2, โˆž)|๐’™๐’™| โ‰ฅ ๐‘จ๐‘จ x โ‰ค -A or x โ‰ฅ A or (-โˆž, -A] โˆช [A, โˆž) |๐‘ฅ๐‘ฅ| โ‰ฅ 2: {x | x โ‰ค -2 or x โ‰ฅ 2} or (-โˆž, -2] โˆช [2, โˆž)

`1 Page 2-29

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

52 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

`1 Page 2-30

Example 1. Solve for x: |๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘| โ‰ค ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ |๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ| โ‰ค ๐ด๐ด๐ด๐ด : -A โ‰ค x โ‰ค A

-5 โ‰ค 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ 3 โ‰ค 5 Remove the absolute value symbol.

-2 โ‰ค 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โ‰ค 8 Isolate x term (add 3 to each term).

{ x | -๐Ÿ๐Ÿ๐Ÿ๐Ÿ โ‰ค ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โ‰ค ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ } or [-1, 4] Divide each term by 2.

2. Solve for x: |๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ•| > ๐Ÿ๐Ÿ๐Ÿ๐Ÿ |๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ| > ๐ด๐ด๐ด๐ด: x < -A or x > A

3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ 7 < -2 3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ 7 > 2 Add 7 to both sides.

3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ < 5 3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ > 9 Divide 3 by both sides.

{x | ๐Ÿ๐Ÿ๐Ÿ๐Ÿ < ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ or x > 3 } or (-โˆž, ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“

๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๏ฟฝ โˆช (3, โˆž)

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 53

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

Unit 2 Summary

โ€ข Equation: a mathematical statement that contains two expressions separated by an equal

sign .

โ€ข Solution, root or zero of an equation: a solution is the particular value of the variable in the

equation that makes the equation true .

โ€ข Solution Set { }: the set of all values that makes the equation true .

โ€ข Linear equation (or first-degree equation) in one variable: an equation in which the

highest power of the variable is one . (An equation whose graph is a straight line .)

โ€ข Equations of different degrees

Equation Standard Form Example Commentsfirst-degree equation

(linear equation)A x + B = 0

(x = x1) 5x + 4 = 0 The highest power of x is 1 .

second-degree equation(quadratic equation)

Ax2 + Bx + C = 0 2x2 + 7x - 3 = 0 The highest power of x is 2 .

third-degree equation(cubic equation)

Ax3 + Bx2 + Cx + D = 0 3x3 + 4x2 - 8x + 1 = 0 The highest power of x is 3 .

fourth-degree equation Ax4 + Bx3 + Cx2 +D x + E = 0 x4 โ€“ 9x3 + 3x2 + 2x โ€“ 5 = 0 The highest power of x is 4 .

โ€ข Higher-degree equations are nonlinear equations.

โ€ข A linear equation in two variables: an equation that contains two variables in which the

highest power (exponent) of two variables is one .

โ€ข Formula: an equation that contains more than one variable and is used to solve practical

problems in everyday life .

โ€ข An inequality: a mathematical statement that contains < , > , โ‰ฅ , or โ‰ค symbol .

โ€ข Solution of an inequality: the particular value(s) of the variable in the inequality that makes

the inequality true .

โ€ข Compound inequality: a statement that contains more than one inequality . a < x < b

โ€ข Absolute value equation: an equation that includes absolute value(s) .

โ€ข |x| = A is equivalent to x = ยฑA. Example: |5๐‘ก๐‘ก โˆ’ 3| = 2 is equivalent to 5t โ€“ 3 = ยฑ2 .

`1 Page 2-31

Unit 2 Summary

โ€ข Equation: a mathematical statement that contains two expressions separated by an equal

sign .

โ€ข Solution, root or zero of an equation: a solution is the particular value of the variable in the

equation that makes the equation true .

โ€ข Solution Set { }: the set of all values that makes the equation true .

โ€ข Linear equation (or first-degree equation) in one variable: an equation in which the

highest power of the variable is one . (An equation whose graph is a straight line .)

โ€ข Equations of different degrees

Equation Standard Form Example Commentsfirst-degree equation

(linear equation)A x + B = 0

(x = x1) 5x + 4 = 0 The highest power of x is 1 .

second-degree equation(quadratic equation)

Ax2 + Bx + C = 0 2x2 + 7x - 3 = 0 The highest power of x is 2 .

third-degree equation(cubic equation)

Ax3 + Bx2 + Cx + D = 0 3x3 + 4x2 - 8x + 1 = 0 The highest power of x is 3 .

fourth-degree equation Ax4 + Bx3 + Cx2 +D x + E = 0 x4 โ€“ 9x3 + 3x2 + 2x โ€“ 5 = 0 The highest power of x is 4 .

โ€ข Higher-degree equations are nonlinear equations.

โ€ข A linear equation in two variables: an equation that contains two variables in which the

highest power (exponent) of two variables is one .

โ€ข Formula: an equation that contains more than one variable and is used to solve practical

problems in everyday life .

โ€ข An inequality: a mathematical statement that contains < , > , โ‰ฅ , or โ‰ค symbol .

โ€ข Solution of an inequality: the particular value(s) of the variable in the inequality that makes

the inequality true .

โ€ข Compound inequality: a statement that contains more than one inequality . a < x < b

โ€ข Absolute value equation: an equation that includes absolute value(s) .

โ€ข |x| = A is equivalent to x = ยฑA. Example: |5๐‘ก๐‘ก โˆ’ 3| = 2 is equivalent to 5t โ€“ 3 = ยฑ2 .

`1 Page 2-31

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

54 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

โ€ข Equations involving decimals

- Multiply each term by a power of 10 (10, 100, 1,000, etc .) to clear the decimals .

- Collect the variable terms on one side of the equation and the constants on the other side .

- Isolate the variable .

โ€ข Equations involving fractions

- Multiply each term by the LCD .

- Collect the variable terms on one side of the equation and the constants on the other side .

- Isolate the variable .

โ€ข Properties for solving equations

Properties Equality Example

property of addition A = B, A + C = B + CSolve y โ€“ 7 = 2y โ€“ 7 + 7 = 2 + 7, y = 9

property of subtraction A = B, A โ€“ C = B โ€“ CSolve x + 3 = -8x + 3 โ€“ 3 = -8 โ€“ 3, x = -11

property of multiplication A = B, A โˆ™ C = B โˆ™ C (C โ‰  0)

Solve -๐‘ก๐‘ก6

= 7-๐‘ก๐‘ก6

(-๐Ÿ”๐Ÿ”) = 7(-6), t = -42

property of division A = B, ๐ด๐ด๐‘ช๐‘ช

= ๐ต๐ต๐‘ช๐‘ช

(C โ‰  0)

Solve 4a = -16

4๐‘Ž๐‘Ž๐Ÿ’๐Ÿ’

= โˆ’16๐Ÿ’๐Ÿ’

, a = -4

โ€ข Equation-solving strategy

Equation-Solving Strategy โ€ข Clear the fractions or decimals if necessary . โ€ข Remove parentheses . โ€ข Combine like terms on each side of the equation if necessary .โ€ข Collect the variable terms on one side of the equation and the numerical

terms on the other side . โ€ข Isolate the variable . โ€ข Check the solution with the original equation .

โ€ข Steps for solving word problems

Steps for Solving Word Problemsโ€ข Organize the facts given from the problem .โ€ข Identify and label the unknown quantity (let x = unknown) .โ€ข Draw a diagram if it will make the problem clearer . โ€ข Convert words into a mathematical equation . โ€ข Solve the equation and find the solution(s) .โ€ข Check and state the answer .

`1 Page 2-32

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 55

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

โ€ข Sets Summary Unions, Intersections, and Subsets Exampleunion of A and B

(A โˆช B) OR

The set of all elements contained in A orB, or both .

If A = {2, 5} and B = {1, 3, 4}then A โˆช ๐ต๐ต = {1, 2, 3, 4, 5} .

intersection of A and B(A โˆฉ B) AND

The set of all elements contained in both A and B .

If A = {3, 6, 9} and B = {5, 6, 7, 8, 9}then A โˆฉ ๐ต๐ต = {6, 9} .

empty set (or null set) โˆ… A set that contains no elements . If A = { x | x = Feb . 30} , then A = โˆ… .subset (B โŠ‚ A) The subset B is a portion of another set A. If A = {2, 5, 7, 11}, B = {5, 11}, then (B โŠ‚ A) .

x โˆˆ A x is an element of the set A . 23

โˆˆ Rational numbersx โˆ‰ A x is not an element of the set A. โˆš5 โˆ‰ Rational numbers

โ€ข Properties of absolute valueAbsolute Value Example

absolute value |๐‘ฅ๐‘ฅ| = ๏ฟฝ๐‘ฅ๐‘ฅ, if ๐‘ฅ๐‘ฅ โ‰ฅ 0 -๐‘ฅ๐‘ฅ, if ๐‘ฅ๐‘ฅ < 0

If |2๐‘ฅ๐‘ฅ โ€“ 3 | = 5 Then 2๐‘ฅ๐‘ฅ โ€“ 3 = 5 or 2๐‘ฅ๐‘ฅ โ€“ 3 = -5

properties |๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ| = |๐‘ฅ๐‘ฅ||๐‘ฅ๐‘ฅ| |-4๐‘Ž๐‘Ž| = |-4||๐‘Ž๐‘Ž| = 4|๐‘Ž๐‘Ž|

๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๏ฟฝ =

|๐‘ฅ๐‘ฅ||๐‘ฅ๐‘ฅ| (๐‘ฅ๐‘ฅ โ‰  0) ๏ฟฝ3๐‘ฅ๐‘ฅ

3

5๐‘ฆ๐‘ฆ๏ฟฝ = ๏ฟฝ3๐‘ฅ๐‘ฅ3๏ฟฝ

|5๐‘ฆ๐‘ฆ|= 3๏ฟฝ๐‘ฅ๐‘ฅ3๏ฟฝ

5|๐‘ฆ๐‘ฆ|

โ€ข Procedure to solve an absolute value equation:

- Isolate the absolute value .- Remove the absolute value symbol and set up two equations (one positive and one

negative .) - Solve two equations .- Check .

โ€ข Absolute value inequalities summaryAbsolute Value Inequality Example

|๐’™๐’™| < ๐‘จ๐‘จ -A < x < A or (-A, A) |๐‘ฅ๐‘ฅ| < 2: { x | -2 < x < 2} or (-2, 2)|๐’™๐’™| โ‰ค ๐‘จ๐‘จ -A โ‰ค x โ‰ค A or [-A, A] |๐‘ฅ๐‘ฅ| โ‰ค 2: {x | -2 โ‰ค x โ‰ค 2 } or [-2, 2]|๐’™๐’™| > ๐‘จ๐‘จ x < -A or x > A or (-โˆž, -A) โˆช (A, โˆž) |๐‘ฅ๐‘ฅ| > 2 : {x | x < -2 or x > 2} or (-โˆž, -2) โˆช (2, โˆž) |๐’™๐’™| โ‰ฅ ๐‘จ๐‘จ x โ‰ค -A or x โ‰ฅ A or (-โˆž, -A] โˆช [A, โˆž) |๐‘ฅ๐‘ฅ| โ‰ฅ 2: {x | x โ‰ค -2 or x โ‰ฅ 2} or (-โˆž, -2] โˆช [2, โˆž)

โ€ข Business formulasApplication Formula

Percent Increase valueOriginal valueOriginal valueNewincreasePercent โˆ’

= , O

ONโˆ’=x

Percent Decrease valueOriginal valueNew valueOriginaldecreasePercent โˆ’

= , O

NOโˆ’=x

Sales Tax sales tax = sales ร— tax rateCommission commission = sales ร— commission rate

Discount discount = original price ร— discount ratesale price = original price โ€“ discount

Markup markup = original price ร— markup rateoriginal price = selling price โ€“ markup

Simple Interest interest = principle ร— interest rate ร— time, I = P r tbalance = principle + interest

Compound Interest

balance = principle (100% + interest rate)t balance = P(100% + r)t

`1 Page 2-33

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

56 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

โ€ข Recall some geometry formulas

โ€ข More formulasApplication Formula Component

distance d = rt, r = ๐‘‘๐‘‘๐‘ก๐‘ก

, t = ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ

d โ€“ distancer โ€“ speedt โ€“ time

simple interest I = P r t, P = ๐ผ๐ผ๐‘Ÿ๐‘Ÿ๐‘ก๐‘ก

, t = ๐ผ๐ผ๐‘ƒ๐‘ƒ๐‘Ÿ๐‘Ÿ

I โ€“ interestP โ€“ principler โ€“ interest rate (%)t โ€“ time (years)

compoundinterest B = P (100% + r) t

B โ€“ balanceP โ€“ principler โ€“ interest rate (%)t โ€“ time (years)

percent increase ๐‘๐‘ โˆ’ ๐‘‚๐‘‚๐‘‚๐‘‚

N โ€“ new valueO โ€“ original value

percent decrease ๐‘‚๐‘‚ โˆ’ ๐‘๐‘๐‘‚๐‘‚

N โ€“ new valueO โ€“ original value

sale price S = L โ€“ r L , ๐ฟ๐ฟ = ๐‘†๐‘†1โˆ’๐‘Ÿ๐‘Ÿ

S โ€“ sale priceL โ€“ list pricer โ€“ discount rate

intelligence quotient (I.Q.) ๐ผ๐ผ =

100๐‘š๐‘š๐‘๐‘

I โ€“ I .Q .m โ€“ mental agec โ€“ chronological age

temperature ๐ถ๐ถ = 59

(๐น๐น โˆ’ 32) , ๐น๐น = 95๐ถ๐ถ + 32 C โ€“ Celsius

F โ€“ Fahrenheit

Name of the Figure Formula Figure

rectangleP = 2l + 2w

A = lww

l

parallelogram P = 2a + 2bA = bh

h a b

circle ๐ด๐ด = ๐œ‹๐œ‹๐œ‹๐œ‹2rdC ฯ€=ฯ€= 2

r d

triangleโˆ  X + โˆ  Y + โˆ  Z = 1800

bhA21

=

XhY b Z

trapezoid )(21 BbhA +=

b h B

cube V = s3

rectangular solid V = lwh h w

cylinder hrV 2ฯ€=r

h

sphere3

34 rV ฯ€=

r

cone hrV 2

31ฯ€= h

r

pyramid lwhV31

=

l wh

s

l

`1 Page 2-34

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 57

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

PRACTICE QUIZ

Unit 2 Equations and Inequalities

1. Solve the following equations .

a. 3(x โ€“ 2) + 4x โ€“7 = 3(5 โ€“ x)

b. 0 .3y โ€“ 0 .27 = -4 .36y

c. 3๐‘ฅ๐‘ฅ4โˆ’ 2

3= ๐‘ฅ๐‘ฅ

2+ 1

4

2 . Five less than four times a number is nine more than the number divided by two . Find the number .

3 . Find three consecutive even integers such that four times the first integer is two less than the sum of the second and third integers.

4. Two vehicles are 340 km apart and are traveling towards each other . Their

speeds differ by 10 km per hour . What is the speed of each vehicle if they meet after 2 hours?

5. Alice boats at a speed of 26 km per hour in still water . The river flows at a speed of 12 km per hour . How long will it take Alice to boat 4 km downstream? 3 km upstream?

6 . Tom purchased 46-cent, 66-cent, and 86-cent Canadian stamps with a total value of $6 .80 . If the number of 66-cent stamps is 3 more than the number of 46-cent stamps, and the number of 86-cent stamps is 2 more than one half the number of 46-cent stamps . How many stamps of each did Tom receive?

7. Solve the following inequalities and graph the solution sets .

a . -7x โ€“ 3 โ‰ฅ 11 -

b. 3 โ€“ 2(4x โ€“ 5) + 7x > 2x + 10

c. 34

(5 โ€“ y) โ€“ 52 โ‰ค 1

3

Page 3

PRACTICE QUIZ

Unit 2 Equations and Inequalities

1. Solve the following equations .

a. 3(x โ€“ 2) + 4x โ€“7 = 3(5 โ€“ x)

b. 0 .3y โ€“ 0 .27 = -4 .36y

c. 3๐‘ฅ๐‘ฅ4โˆ’ 2

3= ๐‘ฅ๐‘ฅ

2+ 1

4

2 . Five less than four times a number is nine more than the number divided by two . Find the number .

3 . Find three consecutive even integers such that four times the first integer is two less than the sum of the second and third integers.

4. Two vehicles are 340 km apart and are traveling towards each other . Their

speeds differ by 10 km per hour . What is the speed of each vehicle if they meet after 2 hours?

5. Alice boats at a speed of 26 km per hour in still water . The river flows at a speed of 12 km per hour . How long will it take Alice to boat 4 km downstream? 3 km upstream?

6 . Tom purchased 46-cent, 66-cent, and 86-cent Canadian stamps with a total value of $6 .80 . If the number of 66-cent stamps is 3 more than the number of 46-cent stamps, and the number of 86-cent stamps is 2 more than one half the number of 46-cent stamps . How many stamps of each did Tom receive?

7. Solve the following inequalities and graph the solution sets .

a . -7x โ€“ 3 โ‰ฅ 11 -

b. 3 โ€“ 2(4x โ€“ 5) + 7x > 2x + 10

c. 34

(5 โ€“ y) โ€“ 52 โ‰ค 1

3

Page 3

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

58 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 2 โ€“ Equations and Inequalities

8 . Amanda got a 78% on the midterm exam in English . To get a B+, the average of her midterm and final exam must be between 76% and 80% . For what range of scores on the final exam will Amanda need to get a B+?

9 . Indicate whether each of the following is true or false .

a . - 516

โˆˆ rational numbers

b . โˆš13 โˆˆ rational numbers

10. a . Given A = { a | a is a prime number between 10 and 18}

B = { b | b is a number between 12 and 16}

List the numbers in A โˆช B and A โˆฉ B

b. Given A = {3, 5, 7}, B = {1, 2, 3, 4, 5} and C = {-3, -2} . List the

elements in the following:

A โˆช ๐ต๐ตA โˆฉ BA โˆฉ ๐ถ๐ถ

11 . Solve the following and graph the solution set .

-3 < 1+2๐‘ฅ๐‘ฅ3

โ‰ค 1

12. Solve the following equations .

a. 2|๐‘ฅ๐‘ฅ + 3| โˆ’ 4 = 6

b. |3๐‘ฅ๐‘ฅ โˆ’ 4| = |5๐‘ฅ๐‘ฅ โˆ’ 2|

13 . Solve the following inequalities .

a. |3๐‘ฅ๐‘ฅ โˆ’ 4| โ‰ค 7

b . |5๐‘ฅ๐‘ฅ โˆ’ 3| > 4

Page 4

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 59

Algebra I & II Key Concepts, Practice, and Quizzes Unit 3 โ€“ Functions and Graphs

UNIT 3 FUNCTIONS AND GRAPHS

3-1 GRAPHING EQUATIONS

The Coordinate Plane

โ€ข The coordinate plane (or Cartesian / rectangular coordinate system): a powerful tool to

mark a point and the solution of a linear equation on a graph .

Coordinate axes:

x axis โ€“ the horizontal line .

y axis โ€“ the vertical line .

The origin: the intersection of the x and y axes where both lines are 0 .

โ€ข Ordered pair: (x, y): Each point on the plane corresponds to an ordered pair .

(x , y) Example: (2, 1) 1st coordinate (abscissa) 2nd coordinate (ordinate)

Example: (soda, $0 .90) , (juice, $1 .25)

โ€ข Coordinate: the numbers in an ordered pair .

โ€ข Four quadrants

Quadrant (x, y) ExampleThe 1st quadrant I (+x, +y) (+2, +3)The 2nd quadrant II (-x, +y) (-2, +3) The 3rd quadrant III (-x, -y) (-2, -3) The 4th quadrant IV (+x, -y) (+2, -3)

Example: Plot the points and name the quadrant .

(1, 3) (-3, 2) (-2, -2) (2, -1)

(1, 3): I , (-3, 2): II , (-2, -2): III , (2, -1): IV

โ€ข x-intercept: the point at which the graph crosses the x-axis .

Example: (x, y) = (3, 0) (0, 2)

โ€ข y-intercept: the point at which the graph crosses the y-axis .

Example: (x, y) = (0, 2)

Points are on axes

II

III IV

I y

x

x(3, 0)

y

โˆ™ (-3, 2)

โˆ™ (2, -1)

y

x

โˆ™ (1, 3)

โˆ™ (-2,- 2)

โˆ™ (0, 0) โˆ™ (2, 1)

y

x

y

x โˆ™ (0, 0)

โˆ™

โˆ™

Page 1

UNIT 3 FUNCTIONS AND GRAPHS

3-1 GRAPHING EQUATIONS

The Coordinate Plane

โ€ข The coordinate plane (or Cartesian / rectangular coordinate system): a powerful tool to

mark a point and the solution of a linear equation on a graph .

Coordinate axes:

x axis โ€“ the horizontal line .

y axis โ€“ the vertical line .

The origin: the intersection of the x and y axes where both lines are 0 .

โ€ข Ordered pair: (x, y): Each point on the plane corresponds to an ordered pair .

(x , y) Example: (2, 1) 1st coordinate (abscissa) 2nd coordinate (ordinate)

Example: (soda, $0 .90) , (juice, $1 .25)

โ€ข Coordinate: the numbers in an ordered pair .

โ€ข Four quadrants

Quadrant (x, y) ExampleThe 1st quadrant I (+x, +y) (+2, +3)The 2nd quadrant II (-x, +y) (-2, +3) The 3rd quadrant III (-x, -y) (-2, -3) The 4th quadrant IV (+x, -y) (+2, -3)

Example: Plot the points and name the quadrant .

(1, 3) (-3, 2) (-2, -2) (2, -1)

(1, 3): I , (-3, 2): II , (-2, -2): III , (2, -1): IV

โ€ข x-intercept: the point at which the graph crosses the x-axis .

Example: (x, y) = (3, 0) (0, 2)

โ€ข y-intercept: the point at which the graph crosses the y-axis .

Example: (x, y) = (0, 2)

Points are on axes

II

III IV

I y

x

x(3, 0)

y

โˆ™ (-3, 2)

โˆ™ (2, -1)

y

x

โˆ™ (1, 3)

โˆ™ (-2,- 2)

โˆ™ (0, 0) โˆ™ (2, 1)

y

x

y

x โˆ™ (0, 0)

โˆ™

โˆ™

Page 1

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

60 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 3 โ€“ Functions and Graphs

Page 2

Graphs of Linear Equations

โ€ข A linear (first-degree) equation: an equation whose graph is a straight line.

โ€ข A linear (first-degree) equation in two variables: a linear equation that contains two

variables, such as 2x + y = 3.

โ€ข The standard form of linear equation in two variables: Ax + By = C

Standard Form Example Ax + By = C 5x โ€“ 7y = 4

โ€ข Solutions of equations: Solutions for a linear equation in two variables are an ordered pair.

They are the particular values of the variables in the equation that makes the equation true.

Example: Determine whether the given point is a solution.

? โˆš 1. (2, -1): 2x โ€“ 3y = 7 2 โˆ™ 2 โ€“ 3(-1) = 7 7 = 7 Yes

? 2. (0, 3): 10p + 3q = -4 10 โˆ™ 0 + 3 โˆ™ 3 = -4 9 โ‰  -4 No

โ€ข The graph of an equation is the diagram obtained by plotting the set of points where the

equation is true (or satisfies the equation).

โ€ข Procedure to graph a linear equation

Steps Example: Graph 2x โ€“ y = 3

- Choose two values of x, calculate the x y = 2x โ€“ 3 (x, y) corresponding y, and make a table. 0 2โˆ™0 โ€“ 3 = -3 (0, -3) y-intercept

- Plot these two points on the coordinate plane. 1 2โˆ™1 โ€“ 3 = -1 (1, -1) Select x Calculate y Ordered pair

- Connect the points with a straight line. (Any two points determine a straight line.)

- Check with the third point.

Is third point (2, 1) on the line? Yes. Correct! x y = 2x โ€“ 3 (x, y) 2 2โˆ™2 โ€“ 3 = 1 (2, 1)

Example: Graph y = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ and determine another point.

x y (x, y) 0 - 3 (0, -3) 2 - 2 (2, -2)

y

x โˆ™ (2, 1)

โˆ™ (1, -1)

โˆ™ (0, -3)

โˆ™ (8, 1)

(0, -3) โˆ™ โˆ™ (2, -2)

y

x

Another solution

Solutions

3rd point

Page 2

Graphs of Linear Equations

โ€ข A linear (first-degree) equation: an equation whose graph is a straight line.

โ€ข A linear (first-degree) equation in two variables: a linear equation that contains two

variables, such as 2x + y = 3.

โ€ข The standard form of linear equation in two variables: Ax + By = C

Standard Form Example Ax + By = C 5x โ€“ 7y = 4

โ€ข Solutions of equations: Solutions for a linear equation in two variables are an ordered pair.

They are the particular values of the variables in the equation that makes the equation true.

Example: Determine whether the given point is a solution.

? โˆš 1. (2, -1): 2x โ€“ 3y = 7 2 โˆ™ 2 โ€“ 3(-1) = 7 7 = 7 Yes

? 2. (0, 3): 10p + 3q = -4 10 โˆ™ 0 + 3 โˆ™ 3 = -4 9 โ‰  -4 No

โ€ข The graph of an equation is the diagram obtained by plotting the set of points where the

equation is true (or satisfies the equation).

โ€ข Procedure to graph a linear equation

Steps Example: Graph 2x โ€“ y = 3

- Choose two values of x, calculate the x y = 2x โ€“ 3 (x, y) corresponding y, and make a table. 0 2โˆ™0 โ€“ 3 = -3 (0, -3) y-intercept

- Plot these two points on the coordinate plane. 1 2โˆ™1 โ€“ 3 = -1 (1, -1) Select x Calculate y Ordered pair

- Connect the points with a straight line. (Any two points determine a straight line.)

- Check with the third point.

Is third point (2, 1) on the line? Yes. Correct! x y = 2x โ€“ 3 (x, y) 2 2โˆ™2 โ€“ 3 = 1 (2, 1)

Example: Graph y = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ and determine another point.

x y (x, y) 0 - 3 (0, -3) 2 - 2 (2, -2)

y

x โˆ™ (2, 1)

โˆ™ (1, -1)

โˆ™ (0, -3)

โˆ™ (8, 1)

(0, -3) โˆ™ โˆ™ (2, -2)

y

x

Another solution

Solutions

3rd point

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 61

Algebra I & II Key Concepts, Practice, and Quizzes Unit 3 โ€“ Functions and Graphs

Graphing Nonlinear Equation With Two Variables

โ€ข Nonlinear equation: an equation whose graph is not a straight line .

Example: 2x2 โ€“ 5y = 3 , 3y3 + 7x2 โ€“ 3xy + 8 = 0Recall: Higher-degree equations are nonlinear equations .

โ€ข Procedure to graph a nonlinear equation with two variables

- Choose a few values of x, calculate the corresponding y, and make a table .

- Plot these points on the coordinate plane (plot more points to get a cleaner shape of

the graph) .

- Connect the points with a smooth curve .

Example: Graph the equation y = 5 + x2 .x y = 5 + x2 Ordered Pair0 5 + 02 = 5 (0, 5)1 5 + 12 = 6 (1, 6)

-1 5 + (-1)2 = 6 (-1, 6)2 5 + 22 = 9 (2, 9)

-2 5 + (-2)2 = 9 (-2, 9)

Example: Graph the equation y = ๐Ÿ’๐Ÿ’๐’™๐’™

.

x y = ๐Ÿ’๐Ÿ’๐’™๐’™ Ordered Pair

1 41

= 4 (1, 4)

-14-1

= -4 (-1, -4)

2 42

= 2 (2, 2)

-24-2

= -2 (-2, -2)

4 44

= 1 (4, 1)

-44-4

= -1 (-4, -1)

Example: Graph the equation y = |๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ| .x y = |๐‘ฅ๐‘ฅ โˆ’ 1| Ordered Pair0 |0 โˆ’ 1|= 1 (0, 1) 1 |1 โˆ’ 1|= 0 (1, 0)

-1 ๏ฟฝ-1 โˆ’ 1๏ฟฝ= 2 (-1, 2) 2 |2 โˆ’ 1|= 1 (2, 1) 3 |3 โˆ’ 1|= 2 (3, 2)

โˆ™ (2, 9) (-2, 9) โˆ™

y y

โˆ™ โˆ™

y

โˆ™ (1, 4)y

y

โˆ™ (0, 1)

x

โˆ™ (2, 1)(-1, 2) โˆ™ โˆ™ (3, 2)

โˆ™ (2, 2) โˆ™ (4, 1)

โˆ™ (-1,- 4)

โˆ™ (-2, -2) โˆ™ (-4, -1)

โˆ™ (1, 6)(-1, 6) โˆ™

x

โˆ™โˆ™โˆ™

(0, 5) โˆ™

x

x โˆ™ (1, 0)

Page 3

Graphing Nonlinear Equation With Two Variables

โ€ข Nonlinear equation: an equation whose graph is not a straight line .

Example: 2x2 โ€“ 5y = 3 , 3y3 + 7x2 โ€“ 3xy + 8 = 0Recall: Higher-degree equations are nonlinear equations .

โ€ข Procedure to graph a nonlinear equation with two variables

- Choose a few values of x, calculate the corresponding y, and make a table .

- Plot these points on the coordinate plane (plot more points to get a cleaner shape of

the graph) .

- Connect the points with a smooth curve .

Example: Graph the equation y = 5 + x2 .x y = 5 + x2 Ordered Pair0 5 + 02 = 5 (0, 5)1 5 + 12 = 6 (1, 6)

-1 5 + (-1)2 = 6 (-1, 6)2 5 + 22 = 9 (2, 9)

-2 5 + (-2)2 = 9 (-2, 9)

Example: Graph the equation y = ๐Ÿ’๐Ÿ’๐’™๐’™

.

x y = ๐Ÿ’๐Ÿ’๐’™๐’™ Ordered Pair

1 41

= 4 (1, 4)

-14-1

= -4 (-1, -4)

2 42

= 2 (2, 2)

-24-2

= -2 (-2, -2)

4 44

= 1 (4, 1)

-44-4

= -1 (-4, -1)

Example: Graph the equation y = |๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ| .x y = |๐‘ฅ๐‘ฅ โˆ’ 1| Ordered Pair0 |0 โˆ’ 1|= 1 (0, 1) 1 |1 โˆ’ 1|= 0 (1, 0)

-1 ๏ฟฝ-1 โˆ’ 1๏ฟฝ= 2 (-1, 2) 2 |2 โˆ’ 1|= 1 (2, 1) 3 |3 โˆ’ 1|= 2 (3, 2)

โˆ™ (2, 9) (-2, 9) โˆ™

y y

โˆ™ โˆ™

y

โˆ™ (1, 4)y

y

โˆ™ (0, 1)

x

โˆ™ (2, 1)(-1, 2) โˆ™ โˆ™ (3, 2)

โˆ™ (2, 2) โˆ™ (4, 1)

โˆ™ (-1,- 4)

โˆ™ (-2, -2) โˆ™ (-4, -1)

โˆ™ (1, 6)(-1, 6) โˆ™

x

โˆ™โˆ™โˆ™

(0, 5) โˆ™

x

x โˆ™ (1, 0)

Page 3

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

62 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 3 โ€“ Functions and Graphs

3-2 FUNCTIONS

Function

โ€ข Function: a special type of relation (or correspondence) which matches each element of

the domain (x-value or first set) with exactly one element of the range (y-value or second

set) .

โ€ข All functions are relations (correspondence), but not all relations are functions.

Example: 1. Name (x) Social Security Number (y)Tom 618-31-4123Steve 312-15-7432

This is a function (Since each person is assigned only one SSN number .)

2. Name (x) Address (y)

Adam 123 First Ave .Shawn 234 Second Ave . (Home)

456 Univ . Way (Student residency)

This is a relation but not a function. (Shawn has two addresses .)

Example: Determine if the following relation (correspondence) is a function .

Domain (x) Range (y) Function Comments abc

123

Yes Each value of x is assigned onlyone value of y .

3-2

4-3 No -2 is assigned more than one

value of the range (4 and -3) . -540

2

3Yes -5 and 4 are assigned only one

value of the range (2) .

Example: Determine if the following relation (correspondence) is a function .

Domain (x) Range (y) Correspondence Function Comments

famous writers a set of book titles

a book that the writer has published No Some writers have publised

more than one book .

a set of numbers

a set of positive numbers

square each number and then divide by 3 Yes

๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ2

3The result will be a unique positive number .

Page 3-4

3-2 FUNCTIONS

Function

โ€ข Function: a special type of relation (or correspondence) which matches each element of

the domain (x-value or first set) with exactly one element of the range (y-value or second

set) .

โ€ข All functions are relations (correspondence), but not all relations are functions.

Example: 1. Name (x) Social Security Number (y)Tom 618-31-4123Steve 312-15-7432

This is a function (Since each person is assigned only one SSN number .)

2. Name (x) Address (y)

Adam 123 First Ave .Shawn 234 Second Ave . (Home)

456 Univ . Way (Student residency)

This is a relation but not a function. (Shawn has two addresses .)

Example: Determine if the following relation (correspondence) is a function .

Domain (x) Range (y) Function Comments abc

123

Yes Each value of x is assigned onlyone value of y .

3-2

4-3 No -2 is assigned more than one

value of the range (4 and -3) . -540

2

3Yes -5 and 4 are assigned only one

value of the range (2) .

Example: Determine if the following relation (correspondence) is a function .

Domain (x) Range (y) Correspondence Function Comments

famous writers a set of book titles

a book that the writer has published No Some writers have publised

more than one book .

a set of numbers

a set of positive numbers

square each number and then divide by 3 Yes

๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ2

3The result will be a unique positive number .

Page 3-4

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 63

Algebra I & II Key Concepts, Practice, and Quizzes Unit 3 โ€“ Functions and Graphs

Finding Function Values

โ€ข Function notation: The notation for a function is f (x), P(x), g(x), h(x) , โ€ฆ Read f (x) as โ€œ f of xโ€ . f (x) does not mean f times x .

โ€ข Function values: The value of a function at โ€œx = aโ€ is denoted as โ€œf (a)โ€ . f (a) is the value

of f (x) when a is replaced by x in f (x) .

f (x) | x = a = f (a), ๏ฟฝ๐‘Ž๐‘Ž is a constant replace ๐‘ฅ๐‘ฅ by ๐‘Ž๐‘Ž

Example: f (x) = 3x + 1 If x = 2 If x = -4

f ( ) = 3( ) + 1 f ( ) = 3( ) + 1

f (2) = 3(2) + 1 = 7 f (-4) = 3(-4) + 1 = -11(Substitute x for 2 .) (Substitute x for -4 .)

Example: Evaluate the functions and simplify at the indicated values .

Solution

1. f (-2) for f (x) = 3 โ€“ 5x f (-2) = 3 โ€“ 5(-2) = 3 + 10 = 13

2. p(3) for p(t) = 2t2 โ€“ 7 p(3) = 2(3)2 โ€“ 7 = 2 โˆ™ 9 โ€“ 7 = 11

3. f (a โ€“ 2) for f (x) = 8 + 3x3 f (a โ€“ 2) = 8 + 3(a โ€“ 2)3 Replace (a โ€“ 2) by x in f (x) .

4. g (0) for g (r) = r2 โ€“ 3r + 2 g(0) = 02 โ€“ 3โˆ™0 + 2 = 2

Example: Evaluate the functions and simplify at the indicated values .

f (x) = 3x + 1 Solution

1. f (-2) f (-2) = 3(-2) + 1 = -6 + 1 = -5

2. f (b + 2) f (b + 2) = 3(b + 2) + 1 = 3b + 6 + 1 = 3b + 7

3. f (a) + f (3) f (a) + f (3) = (3a + 1) + (3โˆ™3 + 1) = 3a + 1 + 10 = 3a + 11

4. f ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”๏ฟฝ f ๏ฟฝ๐Ÿ๐Ÿ

๐Ÿ”๐Ÿ”๏ฟฝ = 3๏ฟฝ๐Ÿ๐Ÿ

๐Ÿ”๐Ÿ”๏ฟฝ + 1 = 1

2+ 1 = 3

2= ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ

h(r) = 3r2 โ€“ 2

1. h (0) h (0) = 3โˆ™02 โ€“ 2 = -2

2. ๐’‰๐’‰๏ฟฝ- ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๏ฟฝ โ„Ž ๏ฟฝ- ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๏ฟฝ = 3 ๏ฟฝ- ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๏ฟฝ2โˆ’ 2 = 3 ๏ฟฝ4

9๏ฟฝ โˆ’ 2 = 4

3โˆ’ 2 = 4

3โˆ’ 6

3= - ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘

g(x) = |๐’™๐’™ + ๐Ÿ‘๐Ÿ‘| + ๐Ÿ๐Ÿ๐’™๐’™

1. g (-4) g (-4) = ๏ฟฝ-๐Ÿ’๐Ÿ’ + 3๏ฟฝ + 2๏ฟฝ-๐Ÿ’๐Ÿ’๏ฟฝ = ๏ฟฝ-1๏ฟฝ โˆ’ 8 = 1 โˆ’ 8 = -๐Ÿ•๐Ÿ•

2. g (a - b) g (a โˆ’ b) = |๐’‚๐’‚ โˆ’ ๐›๐› + ๐Ÿ‘๐Ÿ‘| + ๐Ÿ๐Ÿ(๐’‚๐’‚ โˆ’ ๐’ƒ๐’ƒ)

Page 3-5

Finding Function Values

โ€ข Function notation: The notation for a function is f (x), P(x), g(x), h(x) , โ€ฆ Read f (x) as โ€œ f of xโ€ . f (x) does not mean f times x .

โ€ข Function values: The value of a function at โ€œx = aโ€ is denoted as โ€œf (a)โ€ . f (a) is the value

of f (x) when a is replaced by x in f (x) .

f (x) | x = a = f (a), ๏ฟฝ๐‘Ž๐‘Ž is a constant replace ๐‘ฅ๐‘ฅ by ๐‘Ž๐‘Ž

Example: f (x) = 3x + 1 If x = 2 If x = -4

f ( ) = 3( ) + 1 f ( ) = 3( ) + 1

f (2) = 3(2) + 1 = 7 f (-4) = 3(-4) + 1 = -11(Substitute x for 2 .) (Substitute x for -4 .)

Example: Evaluate the functions and simplify at the indicated values .

Solution

1. f (-2) for f (x) = 3 โ€“ 5x f (-2) = 3 โ€“ 5(-2) = 3 + 10 = 13

2. p(3) for p(t) = 2t2 โ€“ 7 p(3) = 2(3)2 โ€“ 7 = 2 โˆ™ 9 โ€“ 7 = 11

3. f (a โ€“ 2) for f (x) = 8 + 3x3 f (a โ€“ 2) = 8 + 3(a โ€“ 2)3 Replace (a โ€“ 2) by x in f (x) .

4. g (0) for g (r) = r2 โ€“ 3r + 2 g(0) = 02 โ€“ 3โˆ™0 + 2 = 2

Example: Evaluate the functions and simplify at the indicated values .

f (x) = 3x + 1 Solution

1. f (-2) f (-2) = 3(-2) + 1 = -6 + 1 = -5

2. f (b + 2) f (b + 2) = 3(b + 2) + 1 = 3b + 6 + 1 = 3b + 7

3. f (a) + f (3) f (a) + f (3) = (3a + 1) + (3โˆ™3 + 1) = 3a + 1 + 10 = 3a + 11

4. f ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”๏ฟฝ f ๏ฟฝ๐Ÿ๐Ÿ

๐Ÿ”๐Ÿ”๏ฟฝ = 3๏ฟฝ๐Ÿ๐Ÿ

๐Ÿ”๐Ÿ”๏ฟฝ + 1 = 1

2+ 1 = 3

2= ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ

h(r) = 3r2 โ€“ 2

1. h (0) h (0) = 3โˆ™02 โ€“ 2 = -2

2. ๐’‰๐’‰๏ฟฝ- ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๏ฟฝ โ„Ž ๏ฟฝ- ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๏ฟฝ = 3 ๏ฟฝ- ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๏ฟฝ2โˆ’ 2 = 3 ๏ฟฝ4

9๏ฟฝ โˆ’ 2 = 4

3โˆ’ 2 = 4

3โˆ’ 6

3= - ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘

g(x) = |๐’™๐’™ + ๐Ÿ‘๐Ÿ‘| + ๐Ÿ๐Ÿ๐’™๐’™

1. g (-4) g (-4) = ๏ฟฝ-๐Ÿ’๐Ÿ’ + 3๏ฟฝ + 2๏ฟฝ-๐Ÿ’๐Ÿ’๏ฟฝ = ๏ฟฝ-1๏ฟฝ โˆ’ 8 = 1 โˆ’ 8 = -๐Ÿ•๐Ÿ•

2. g (a - b) g (a โˆ’ b) = |๐’‚๐’‚ โˆ’ ๐›๐› + ๐Ÿ‘๐Ÿ‘| + ๐Ÿ๐Ÿ(๐’‚๐’‚ โˆ’ ๐’ƒ๐’ƒ)

Page 3-5

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

64 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 3 โ€“ Functions and Graphs

Graphing a Function

โ€ข The graph of a function: the diagram obtained by plotting the set of all points where the

function y = f (x) is true .

โ€ข Procedure to graph a function: (similar to graph an equation)

- Choose a few values of x, calculate the corresponding values of functions y = f (x) and

make a table .

- Plot these points on the coordinate plane .

- Connect the points with a smooth curve .

Example: Graph the function f (x) = 2x2 + x โ€“ 1 .

x y = f (x) = 2x2 + x โ€“ 1 (x, y) 0 2โˆ™02 + 0 โ€“ 1 = -1 (0, -1)1 2โˆ™12 + 1 โ€“ 1 = 2 (1, 2)

-1 2โˆ™(-1)2 + (-1) โ€“ 1 = 0 (-1, 0)2 2โˆ™22 + 2 โ€“ 1 = 9 (2, 9)

-2 2โˆ™(-2)2 + (-2) โ€“ 1 = 5 (-2, 5)

โ€ข Identify the f (x) in a graph

- Locate the x-value(s) on the x-axis, and plot vertical line(s) to the curve and draw a

solid point . f(x)

- Plot horizontal line(s) from the point to the y-axis to determine y = f (x) value(s) . f (x) is the y-value that is corresponded with x .

Example: The following graph shows the number of car rentals as a function of time in a

vehicle rental store . How many cars were rented in 2011?

(-1, 0) โˆ™

(-2, 5) โˆ™

โˆ™ (2, 9)y

x

โˆ™ (1, 2)

โˆ™ (0, -1)

x

โˆ™

x (year)

f(x)# of car rentals100 โˆ™

50 โˆ™

โˆ™ 2000

โˆ™ 2011

โˆ™ 2005

f (2011) = 100

(There were 100 cars rented in 2011 .)

โˆ™

Page 3-6

Graphing a Function

โ€ข The graph of a function: the diagram obtained by plotting the set of all points where the

function y = f (x) is true .

โ€ข Procedure to graph a function: (similar to graph an equation)

- Choose a few values of x, calculate the corresponding values of functions y = f (x) and

make a table .

- Plot these points on the coordinate plane .

- Connect the points with a smooth curve .

Example: Graph the function f (x) = 2x2 + x โ€“ 1 .

x y = f (x) = 2x2 + x โ€“ 1 (x, y) 0 2โˆ™02 + 0 โ€“ 1 = -1 (0, -1)1 2โˆ™12 + 1 โ€“ 1 = 2 (1, 2)

-1 2โˆ™(-1)2 + (-1) โ€“ 1 = 0 (-1, 0)2 2โˆ™22 + 2 โ€“ 1 = 9 (2, 9)

-2 2โˆ™(-2)2 + (-2) โ€“ 1 = 5 (-2, 5)

โ€ข Identify the f (x) in a graph

- Locate the x-value(s) on the x-axis, and plot vertical line(s) to the curve and draw a

solid point . f(x)

- Plot horizontal line(s) from the point to the y-axis to determine y = f (x) value(s) . f (x) is the y-value that is corresponded with x .

Example: The following graph shows the number of car rentals as a function of time in a

vehicle rental store . How many cars were rented in 2011?

(-1, 0) โˆ™

(-2, 5) โˆ™

โˆ™ (2, 9)y

x

โˆ™ (1, 2)

โˆ™ (0, -1)

x

โˆ™

x (year)

f(x)# of car rentals100 โˆ™

50 โˆ™

โˆ™ 2000

โˆ™ 2011

โˆ™ 2005

f (2011) = 100

(There were 100 cars rented in 2011 .)

โˆ™

Page 3-6

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 65

Algebra I & II Key Concepts, Practice, and Quizzes Unit 3 โ€“ Functions and Graphs

The Vertical Line Test

โ€ข The vertical line test can determine whether a relation is a function .

โ€ข The vertical line test: If a vertical line cuts the relationโ€™s graph more than once, then the

relation is not a function .

โ€ข Recall: A function is a special type of relation which matches each element of the

domain (x-value) with exactly one element of the range (y-value) .

Example: Determine if the following graphs are functions .

Yes, cuts once . No, cuts twice .

Yes, cuts once . No, cuts twice .

Yes, cuts once .

โˆ™

โˆ™

โˆ™

โˆ™

โˆ™

โˆ™

โˆ™

Page 3-7

The Vertical Line Test

โ€ข The vertical line test can determine whether a relation is a function .

โ€ข The vertical line test: If a vertical line cuts the relationโ€™s graph more than once, then the

relation is not a function .

โ€ข Recall: A function is a special type of relation which matches each element of the

domain (x-value) with exactly one element of the range (y-value) .

Example: Determine if the following graphs are functions .

Yes, cuts once . No, cuts twice .

Yes, cuts once . No, cuts twice .

Yes, cuts once .

โˆ™

โˆ™

โˆ™

โˆ™

โˆ™

โˆ™

โˆ™

Page 3-7

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

66 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 3 โ€“ Functions and Graphs

3-3 DOMAIN, RANGE, AND RELATION

Relation

โ€ข Relation: a set of ordered pairs (x, y) .

โ€ข Domain: the set of the values of the independent variable (x-value) Example

for which a function is defined . (3, 2)

โ€ข Range: the set of the values of the dependent variable (y-value) domain range

for which a function is defined .

Example Domain Range Ordered Pair

2 - can of Coke $1 .50 (2-Coke, $1 .50)1 - can of juice $1 .25 (1-juice, $1 .25)3 - can of soup $3 .00 (3-soup, $3 .00)

domain range (The range depends on the domain .)

โ€ข Correspondence diagram: an arrow points from each domain to the range .

Example: Name (x) Age (y)

Diane 25Susan 23Ann 18TomDomain Range

Example: Express the relation R = {(2, 4) (-1, 3) (5, -2) (-4, -3)} as a table, correspondence diagram, and domain/range set .

x y2 4-1 35 -2-4 -3

x y 2 4

-1 35 -2-4 -3

Domain Range

- Domain: {2, -1, 5, -4}Range: {4, 3, -2, -3}

- Table:

- Correspondence diagram:

Page 3-8

3-3 DOMAIN, RANGE, AND RELATION

Relation

โ€ข Relation: a set of ordered pairs (x, y) .

โ€ข Domain: the set of the values of the independent variable (x-value) Example

for which a function is defined . (3, 2)

โ€ข Range: the set of the values of the dependent variable (y-value) domain range

for which a function is defined .

Example Domain Range Ordered Pair

2 - can of Coke $1 .50 (2-Coke, $1 .50)1 - can of juice $1 .25 (1-juice, $1 .25)3 - can of soup $3 .00 (3-soup, $3 .00)

domain range (The range depends on the domain .)

โ€ข Correspondence diagram: an arrow points from each domain to the range .

Example: Name (x) Age (y)

Diane 25Susan 23Ann 18TomDomain Range

Example: Express the relation R = {(2, 4) (-1, 3) (5, -2) (-4, -3)} as a table, correspondence diagram, and domain/range set .

x y2 4-1 35 -2-4 -3

x y 2 4

-1 35 -2-4 -3

Domain Range

- Domain: {2, -1, 5, -4}Range: {4, 3, -2, -3}

- Table:

- Correspondence diagram:

Page 3-8

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 67

Algebra I & II Key Concepts, Practice, and Quizzes Unit 3 โ€“ Functions and Graphs

Finding Domain and Range

Example: Answer the following questions regarding each graph (a function) below .

a. f (-2), b. the domain, c. all x-values such that f (x) = 1, and d. the range .

1.

f (-2) Domain (x-values) All x-values such that f (x) = 1 Range (y-values)1 {-2, -1, 1} When y = 1 , x = -2 and 1 {1, 3}

2.

f (-2) Domain (x-values) All x-values such that f (x) = 1 Range (y-values)-1 {-2, 3} When y = 1 , x = 0 {-1, 2}

Example: Identify the domain of the following functions .

f (x) Domain (x-values) Comments

5 โ€“ 3x all real numbers

Since any real number can be used to calculate y . x y0 51 2

โ€ฆ โ€ฆ5

3 โˆ’ ๐‘ฅ๐‘ฅ

{x | x is a real number and x โ‰  3}or (-โˆž, 3) โˆช (3, โˆž)

Find out what values of x โ€œdo not workโ€If x = 3, 5

3โˆ’3= 5

0 is undefined .

3|3๐‘ฅ๐‘ฅ โˆ’ 2|

{x | x is a real number and x โ‰  23}

or (-โˆž, 23 ) โˆช ( 2

3 , โˆž)

If x = 23 , 3

๏ฟฝ3๏ฟฝ23๏ฟฝโˆ’2๏ฟฝ= 3

0 is undefined .

Note: The domain x is the set of real numbers that will yield a real number for the range y .(The set of the x-values for which a function is defined .)

(3, 2)(-1, 3) โˆ™

f (x) = y

x โˆ™ (1, 1) โˆ™ (-2, 1)

(-2, -1) โˆ™

y

x

โˆ™ (3, 2)

Open dot โ—‹ : the point is not included .

Page 3-9

Finding Domain and Range

Example: Answer the following questions regarding each graph (a function) below .

a. f (-2), b. the domain, c. all x-values such that f (x) = 1, and d. the range .

1.

f (-2) Domain (x-values) All x-values such that f (x) = 1 Range (y-values)1 {-2, -1, 1} When y = 1 , x = -2 and 1 {1, 3}

2.

f (-2) Domain (x-values) All x-values such that f (x) = 1 Range (y-values)-1 {-2, 3} When y = 1 , x = 0 {-1, 2}

Example: Identify the domain of the following functions .

f (x) Domain (x-values) Comments

5 โ€“ 3x all real numbers

Since any real number can be used to calculate y . x y0 51 2

โ€ฆ โ€ฆ5

3 โˆ’ ๐‘ฅ๐‘ฅ

{x | x is a real number and x โ‰  3}or (-โˆž, 3) โˆช (3, โˆž)

Find out what values of x โ€œdo not workโ€If x = 3, 5

3โˆ’3= 5

0 is undefined .

3|3๐‘ฅ๐‘ฅ โˆ’ 2|

{x | x is a real number and x โ‰  23}

or (-โˆž, 23 ) โˆช ( 2

3 , โˆž)

If x = 23 , 3

๏ฟฝ3๏ฟฝ23๏ฟฝโˆ’2๏ฟฝ= 3

0 is undefined .

Note: The domain x is the set of real numbers that will yield a real number for the range y .(The set of the x-values for which a function is defined .)

(3, 2)(-1, 3) โˆ™

f (x) = y

x โˆ™ (1, 1) โˆ™ (-2, 1)

(-2, -1) โˆ™

y

x

โˆ™ (3, 2)

Open dot โ—‹ : the point is not included .

Page 3-9

1

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

68 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 3 โ€“ Functions and Graphs

3-4 LINEAR FUNCTIONS

Slope-Intercept Function of a Line

โ€ข Slope-intercept form of a linear function Slope-Intercept Function of a Line

f (x) = m x + b ๐‘š๐‘š: the slope of the line ๐‘๐‘: y-intercept

b

โ€ข The y intercept: the point at which the line crosses the y axis . b = (0, y)

Example: Identify the slope and y-intercept of the following equations .

1. f (x) = -0.3x โ€“ 5 f (x) = m x + b

The slope: m = -0.3

y-intercept: b = -5 or (0, -5)

2. 2x + 3y = 4 โ€“ x โ€“ 4y Combine like terms .

7y = -3x + 4 Divide both sides by 7 .

๐‘ฆ๐‘ฆ = - 37๐‘ฅ๐‘ฅ + 4

7f (x) = m x + b

The slope: ๐’Ž๐’Ž = -๐Ÿ‘๐Ÿ‘๐Ÿ•๐Ÿ•

y-intercept: b = ๐Ÿ’๐Ÿ’๐Ÿ•๐Ÿ•

or (0, ๐Ÿ’๐Ÿ’๐Ÿ•๐Ÿ•๏ฟฝ

3. ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š = ๐Ÿ–๐Ÿ–

3๐‘ฅ๐‘ฅ โˆ™ 2 + 12

y โˆ™ 2 = 8 โˆ™ 2 Multiply 2 for each term .

6x + y = 16

y = -6x + 16 f (x) = m x + b

The slope: m = -6

y-intercept: b = 16 or (0, 16)

โˆ™

y = f (x)

x

Page 3-10

3-4 LINEAR FUNCTIONS

Slope-Intercept Function of a Line

โ€ข Slope-intercept form of a linear function Slope-Intercept Function of a Line

f (x) = m x + b ๐‘š๐‘š: the slope of the line ๐‘๐‘: y-intercept

b

โ€ข The y intercept: the point at which the line crosses the y axis . b = (0, y)

Example: Identify the slope and y-intercept of the following equations .

1. f (x) = -0.3x โ€“ 5 f (x) = m x + b

The slope: m = -0.3

y-intercept: b = -5 or (0, -5)

2. 2x + 3y = 4 โ€“ x โ€“ 4y Combine like terms .

7y = -3x + 4 Divide both sides by 7 .

๐‘ฆ๐‘ฆ = - 37๐‘ฅ๐‘ฅ + 4

7f (x) = m x + b

The slope: ๐’Ž๐’Ž = -๐Ÿ‘๐Ÿ‘๐Ÿ•๐Ÿ•

y-intercept: b = ๐Ÿ’๐Ÿ’๐Ÿ•๐Ÿ•

or (0, ๐Ÿ’๐Ÿ’๐Ÿ•๐Ÿ•๏ฟฝ

3. ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š = ๐Ÿ–๐Ÿ–

3๐‘ฅ๐‘ฅ โˆ™ 2 + 12

y โˆ™ 2 = 8 โˆ™ 2 Multiply 2 for each term .

6x + y = 16

y = -6x + 16 f (x) = m x + b

The slope: m = -6

y-intercept: b = 16 or (0, 16)

โˆ™

y = f (x)

x

Page 3-10

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 69

Algebra I & II Key Concepts, Practice, and Quizzes Unit 3 โ€“ Functions and Graphs

Slope

โ€ข Recall: The graph of a linear equation is a straight line .

โ€ข Slope (m): The slope of a straight line is the rate of change . It is a measure of the

โ€œsteepnessโ€ or incline of the line and indicates whether the line rises or falls .

โ€ข A line with a positive slope rises from left to right and a line with a negative slope falls.

โ€ข The slope formula

The Slope Formula

slope =the change in ๐‘ฆ๐‘ฆthe change in ๐‘ฅ๐‘ฅ

=riserun

The slope of the straight line that passes through two points (x1, y1) and (x2, y2):

m = ๐‘ฆ๐‘ฆ2โˆ’ ๐‘ฆ๐‘ฆ1๐‘ฅ๐‘ฅ2โˆ’ ๐‘ฅ๐‘ฅ1

or m = ๐‘ฆ๐‘ฆ1โˆ’ ๐‘ฆ๐‘ฆ2๐‘ฅ๐‘ฅ1โˆ’ ๐‘ฅ๐‘ฅ2

x1 โ‰  x2

Example: Determine the slope containing points (2, -1) and (1, 3) .

m = ๐‘ฆ๐‘ฆ2โˆ’๐‘ฆ๐‘ฆ1๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ1

= 3 โˆ’ (-1)1โˆ’2

= 4- 1

= - 4

or m = ๐‘ฆ๐‘ฆ1โˆ’๐‘ฆ๐‘ฆ2๐‘ฅ๐‘ฅ1โˆ’๐‘ฅ๐‘ฅ2

= -1โˆ’32โˆ’1

= - 41

= - 4

Example: Determine the slope of 5x โ€“ y โ€“ 7 = 0 .

x y = 5x โ€“ 7 (x, y) 0 -7 (x1, y1) = (0, -7) 1 -2 (x2, y2) = (1, -2)

Choose Calculate

m = ๐‘ฆ๐‘ฆ2โˆ’ ๐‘ฆ๐‘ฆ1๐‘ฅ๐‘ฅ2โˆ’ ๐‘ฅ๐‘ฅ1

= -2 โˆ’ (-7)1โˆ’ 0

= 51

= 5 or m = ๐‘ฆ๐‘ฆ1โˆ’ ๐‘ฆ๐‘ฆ2๐‘ฅ๐‘ฅ1โˆ’ ๐‘ฅ๐‘ฅ2

= -7โˆ’ (-2)0โˆ’1

= - 5- 1

= 5

Other points on the line will obtain the same slope m .

x y = 5x โ€“ 7 (x, y)2 3 (2, 3)3 8 (3, 8)

Choose Calculate

m = 8โˆ’33โˆ’2

= 51

= 5

x

y

Change in x

Change in yrun

rise โˆ™

โˆ™(x2, y2)

(x1, y1)

Page 3-11

Slope

โ€ข Recall: The graph of a linear equation is a straight line .

โ€ข Slope (m): The slope of a straight line is the rate of change . It is a measure of the

โ€œsteepnessโ€ or incline of the line and indicates whether the line rises or falls .

โ€ข A line with a positive slope rises from left to right and a line with a negative slope falls.

โ€ข The slope formula

The Slope Formula

slope =the change in ๐‘ฆ๐‘ฆthe change in ๐‘ฅ๐‘ฅ

=riserun

The slope of the straight line that passes through two points (x1, y1) and (x2, y2):

m = ๐‘ฆ๐‘ฆ2โˆ’ ๐‘ฆ๐‘ฆ1๐‘ฅ๐‘ฅ2โˆ’ ๐‘ฅ๐‘ฅ1

or m = ๐‘ฆ๐‘ฆ1โˆ’ ๐‘ฆ๐‘ฆ2๐‘ฅ๐‘ฅ1โˆ’ ๐‘ฅ๐‘ฅ2

x1 โ‰  x2

Example: Determine the slope containing points (2, -1) and (1, 3) .

m = ๐‘ฆ๐‘ฆ2โˆ’๐‘ฆ๐‘ฆ1๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ1

= 3 โˆ’ (-1)1โˆ’2

= 4- 1

= - 4

or m = ๐‘ฆ๐‘ฆ1โˆ’๐‘ฆ๐‘ฆ2๐‘ฅ๐‘ฅ1โˆ’๐‘ฅ๐‘ฅ2

= -1โˆ’32โˆ’1

= - 41

= - 4

Example: Determine the slope of 5x โ€“ y โ€“ 7 = 0 .

x y = 5x โ€“ 7 (x, y) 0 -7 (x1, y1) = (0, -7) 1 -2 (x2, y2) = (1, -2)

Choose Calculate

m = ๐‘ฆ๐‘ฆ2โˆ’ ๐‘ฆ๐‘ฆ1๐‘ฅ๐‘ฅ2โˆ’ ๐‘ฅ๐‘ฅ1

= -2 โˆ’ (-7)1โˆ’ 0

= 51

= 5 or m = ๐‘ฆ๐‘ฆ1โˆ’ ๐‘ฆ๐‘ฆ2๐‘ฅ๐‘ฅ1โˆ’ ๐‘ฅ๐‘ฅ2

= -7โˆ’ (-2)0โˆ’1

= - 5- 1

= 5

Other points on the line will obtain the same slope m .

x y = 5x โ€“ 7 (x, y)2 3 (2, 3)3 8 (3, 8)

Choose Calculate

m = 8โˆ’33โˆ’2

= 51

= 5

x

y

Change in x

Change in yrun

rise โˆ™

โˆ™(x2, y2)

(x1, y1)

Page 3-11

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

70 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 3 โ€“ Functions and Graphs

Example: Identify the slope (or rate of change) .

m = ๐‘ฆ๐‘ฆ2โˆ’ ๐‘ฆ๐‘ฆ1๐‘ฅ๐‘ฅ2โˆ’ ๐‘ฅ๐‘ฅ1

= 2 โˆ’ ๏ฟฝ-1๏ฟฝ3 โˆ’ 0

= 33

= 1

Example: Identify the slope .

m = ๐‘ฆ๐‘ฆ2โˆ’๐‘ฆ๐‘ฆ1๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ1

= 34

= ๐ŸŽ๐ŸŽ.๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ•

Example: Tom purchased a car for $23,000 in 2007 . The car was worth $19,000 in 2011 .

Find the average annual rate of change .

Year x y (x, y) Assuming2007 7 $23,000 (7, 23,000) 2000 = 0 , 2001 = 1, โ€ฆ 2007 = 72011 11 $19,000 (11, 19,000) 2011 = 11

m = ๐‘ฆ๐‘ฆ2โˆ’ ๐‘ฆ๐‘ฆ1๐‘ฅ๐‘ฅ2โˆ’ ๐‘ฅ๐‘ฅ1

= 19,000โˆ’23,00011โˆ’7

= - 4,0004

= - 1,000

The result means that the value of Tomโ€™s car decreased by $1,000 per year .

x (year)

y (amount $1,000)

โˆ™โˆ™

(11, 19,000)19

(7, 23,000)

7 11

23

x

y

โˆ™ (3, 2)

โˆ™ (0, -1)

3m

4m

Page 3-12

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 71

Algebra I & II Key Concepts, Practice, and Quizzes Unit 3 โ€“ Functions and Graphs

3-5 GRAPHING LINEAR EQUATIONS

Graphing Linear Equations Using the Intercept Method

โ€ข Recall: The x-intercept is the point at which the line crosses the x-axis . (x, 0)

The y-intercept is the point at which the line crosses the y-axis . (0, y)

โ€ข Procedures to graph a linear equation using the intercept method

Steps Example: 2x โ€“ y = 3

- Choose x = 0 and calculate the corresponding y . x y = 2x โ€“ 3 (x, y) Intercept j 0 -3 (0, -3) y-intercept

- Choose y = 0 and calculate the corresponding x. 1 .5 0 (1 .5, 0) x-intercept

- Plot these two points on the coordinate plane .

- Connect the points with a straight line .

- Check with the third point .

Is third point (-1, -5) on the line? Yes . Correct!

x y = 2x โ€“ 3 (x, y) j -1 -5 (-1, -5)

Example: Graph the equation x = 3y .

- Choose x = 0 and calculate the x y = ๐ฑ๐ฑ๐Ÿ‘๐Ÿ‘ (x, y) j

corresponding y . 0 03

= 0 (0, 0)

- Choose x = 3 and calculate the 3 33

= 1 (3, 1)corresponding y .

- Plot (0, 0) and (3, 1) .

- Connect two points with a straight line .

- Check (use the third point) . x y = ๐ฑ๐ฑ๐Ÿ‘๐Ÿ‘ (x, y) j

Is third point (6, 2) on the line? Yes . Correct! 6 2 (6, 2)

โˆ™ (0, -3)

โˆ™ (1 .5, 0)

โˆ™ (-1, -5)

โˆ™ (6, 2) โˆ™ (3, 1)

x

y

โˆ™ (0, 0)

Page 3-13

3-5 GRAPHING LINEAR EQUATIONS

Graphing Linear Equations Using the Intercept Method

โ€ข Recall: The x-intercept is the point at which the line crosses the x-axis . (x, 0)

The y-intercept is the point at which the line crosses the y-axis . (0, y)

โ€ข Procedures to graph a linear equation using the intercept method

Steps Example: 2x โ€“ y = 3

- Choose x = 0 and calculate the corresponding y . x y = 2x โ€“ 3 (x, y) Intercept j 0 -3 (0, -3) y-intercept

- Choose y = 0 and calculate the corresponding x. 1 .5 0 (1 .5, 0) x-intercept

- Plot these two points on the coordinate plane .

- Connect the points with a straight line .

- Check with the third point .

Is third point (-1, -5) on the line? Yes . Correct!

x y = 2x โ€“ 3 (x, y) j -1 -5 (-1, -5)

Example: Graph the equation x = 3y .

- Choose x = 0 and calculate the x y = ๐ฑ๐ฑ๐Ÿ‘๐Ÿ‘ (x, y) j

corresponding y . 0 03

= 0 (0, 0)

- Choose x = 3 and calculate the 3 33

= 1 (3, 1)corresponding y .

- Plot (0, 0) and (3, 1) .

- Connect two points with a straight line .

- Check (use the third point) . x y = ๐ฑ๐ฑ๐Ÿ‘๐Ÿ‘ (x, y) j

Is third point (6, 2) on the line? Yes . Correct! 6 2 (6, 2)

โˆ™ (0, -3)

โˆ™ (1 .5, 0)

โˆ™ (-1, -5)

โˆ™ (6, 2) โˆ™ (3, 1)

x

y

โˆ™ (0, 0)

Page 3-13

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

72 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 3 โ€“ Functions and Graphs

Graphing Using the Slope and the y - Intercept

โ€ข Recall: Slope-intercept function: f (x) = ๐‘š๐‘šx + b

๏ฟฝ ๐‘š๐‘š = slope

b = ๐‘ฆ๐‘ฆ-intercept

โ€ข The slope and a point can determine a straight line .

Example: Graph the function using the slope and the y-intercept . f (x) = - ๐Ÿ‘๐Ÿ‘๐Ÿ“๐Ÿ“

x + 4

- Plot the y-intercept (0, 4) . The change in y: the rise (move 3 units down, โˆต y is negative) .

- Determine the rise and run: m = - 35

The change in x: the run (move 5 units to the right, โˆต x is positive) .

- Plot another point by moving 3 units down and 5 units to the right .

- Connect the two points with a line . Starting point: y-intercept

Example: Graph the function using the slope and the y-intercept . -6x + 2 โˆ™ f (x) = -10

- Convert to the slope-intercept form . 2 โˆ™ f (x) = 6x โ€“ 10 Add 6x to both sides .

f (x) = 3x โ€“ 5 Divide both sides by 2 .

- y-intercept: (0, -5) f (x) = ๐‘š๐‘šx + b

- Slope: ๐‘š๐‘š = 3 = 31

Move 3 units up and 1 unit to the right (both x & y are positive) .

โ€ข Tip: m = riserun

= change in ๐‘ฆ๐‘ฆchange in ๐‘ฅ๐‘ฅ

โŽฉโŽชโŽจ

โŽชโŽง+๐‘ฆ๐‘ฆ: move up

- ๐‘ฆ๐‘ฆ: move down +๐‘ฅ๐‘ฅ: move to the right- ๐‘ฅ๐‘ฅ: move to the left

x

f (x)

โˆ™ (5, 1)

โˆ™ (0, 4) Starting point

Ending point

4

โˆ™

โˆ™ - 5

x

f (x)

0

1

5

+x

+y

-x

- y

0

Starting point

Ending point

Page 3-14

Graphing Using the Slope and the y - Intercept

โ€ข Recall: Slope-intercept function: f (x) = ๐‘š๐‘šx + b

๏ฟฝ ๐‘š๐‘š = slope

b = ๐‘ฆ๐‘ฆ-intercept

โ€ข The slope and a point can determine a straight line .

Example: Graph the function using the slope and the y-intercept . f (x) = - ๐Ÿ‘๐Ÿ‘๐Ÿ“๐Ÿ“

x + 4

- Plot the y-intercept (0, 4) . The change in y: the rise (move 3 units down, โˆต y is negative) .

- Determine the rise and run: m = - 35

The change in x: the run (move 5 units to the right, โˆต x is positive) .

- Plot another point by moving 3 units down and 5 units to the right .

- Connect the two points with a line . Starting point: y-intercept

Example: Graph the function using the slope and the y-intercept . -6x + 2 โˆ™ f (x) = -10

- Convert to the slope-intercept form . 2 โˆ™ f (x) = 6x โ€“ 10 Add 6x to both sides .

f (x) = 3x โ€“ 5 Divide both sides by 2 .

- y-intercept: (0, -5) f (x) = ๐‘š๐‘šx + b

- Slope: ๐‘š๐‘š = 3 = 31

Move 3 units up and 1 unit to the right (both x & y are positive) .

โ€ข Tip: m = riserun

= change in ๐‘ฆ๐‘ฆchange in ๐‘ฅ๐‘ฅ

โŽฉโŽชโŽจ

โŽชโŽง+๐‘ฆ๐‘ฆ: move up

- ๐‘ฆ๐‘ฆ: move down +๐‘ฅ๐‘ฅ: move to the right- ๐‘ฅ๐‘ฅ: move to the left

x

f (x)

โˆ™ (5, 1)

โˆ™ (0, 4) Starting point

Ending point

4

โˆ™

โˆ™ - 5

x

f (x)

0

1

5

+x

+y

-x

- y

0

Starting point

Ending point

Page 3-14

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 73

Algebra I & II Key Concepts, Practice, and Quizzes Unit 3 โ€“ Functions and Graphs

Vertical and Horizontal Lines

โ€ข Horizontal line: a line that is parallel to the x-axis . It has a slope of 0 and a

y-intercept (0, b), or y = b .

Example: y = -3x y (x, y)1 -3 (1, -3)4 -3 (4, -3)

m = ๐‘ฆ๐‘ฆ2โˆ’๐‘ฆ๐‘ฆ1๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ1

= -3 โˆ’ (- 3)4โˆ’1

= 03

= 0

โ€ข Vertical line: a line that is parallel to the y-axis . It has an infinite slope with an

x-intercept (a, 0), or x = a .

Example: x = -1

x y (x, y)-1 3 (-1, 3)-1 -1 (-1, -1)

m = ๐‘ฆ๐‘ฆ2โˆ’๐‘ฆ๐‘ฆ1๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ1

= -1โˆ’3-1โˆ’ (-1)

= - 40

= โˆž Undefined

โ€ข Horizontal and vertical lineLine Equation m Example Graph

horizontal line y = b 0 y = 3

vertical line x = a โˆž x = -2

Example: Graph the function 2 + 5 f (x) = 12 and determine the slope .

5 f (x) = 10 Isolate f (x) .

f (x) = 2 or y = 2

Slope: m = 0 Horizontal line

x

y

โˆ™ (4, -3)

y = -3

y

x = -1

โˆ™(-1, 3)

โˆ™(1,- 3)

3

-2

x

f(x)

y = 2

0

0

0

0

x โˆ™(-1, -1) 0

Page 3-15

Vertical and Horizontal Lines

โ€ข Horizontal line: a line that is parallel to the x-axis . It has a slope of 0 and a

y-intercept (0, b), or y = b .

Example: y = -3x y (x, y)1 -3 (1, -3)4 -3 (4, -3)

m = ๐‘ฆ๐‘ฆ2โˆ’๐‘ฆ๐‘ฆ1๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ1

= -3 โˆ’ (- 3)4โˆ’1

= 03

= 0

โ€ข Vertical line: a line that is parallel to the y-axis . It has an infinite slope with an

x-intercept (a, 0), or x = a .

Example: x = -1

x y (x, y)-1 3 (-1, 3)-1 -1 (-1, -1)

m = ๐‘ฆ๐‘ฆ2โˆ’๐‘ฆ๐‘ฆ1๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ1

= -1โˆ’3-1โˆ’ (-1)

= - 40

= โˆž Undefined

โ€ข Horizontal and vertical lineLine Equation m Example Graph

horizontal line y = b 0 y = 3

vertical line x = a โˆž x = -2

Example: Graph the function 2 + 5 f (x) = 12 and determine the slope .

5 f (x) = 10 Isolate f (x) .

f (x) = 2 or y = 2

Slope: m = 0 Horizontal line

x

y

โˆ™ (4, -3)

y = -3

y

x = -1

โˆ™(-1, 3)

โˆ™(1,- 3)

3

-2

x

f(x)

y = 2

0

0

0

0

x โˆ™(-1, -1) 0

Page 3-15

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

74 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 3 โ€“ Functions and Graphs

Page 3-16

Perpendicular and Parallel Lines

โ€ข Parallel lines are always the same distance from each other and they will never intersect.

Two parallel lines have the same slope m1 = m2 .

L1 โˆฅ L2 L1 L2

โ€ข Perpendicular lines intersect to form a 90-degree angle, and they have negative reciprocal

slopes.

m1 = - 1๐‘š๐‘š๐‘š๐‘š2

L1 โŠฅ L2 900

โ€ข Parallel and perpendicular lines

Line Slope Two parallel lines ( โˆฅ ) m1 = m2

Two perpendicular lines (โŠฅ) m1 = - 1๐‘š๐‘š๐‘š๐‘š2

Example: Determine if the graphs of two straight line equations are parallel or

perpendicular.

1. 5y + 2x = 1 and 3 โ€“ 4x = 10y

5y = -2x + 1 10y = -4x + 3 Convert to f (x) = mx + b.

y = - ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ x + 1

5 y = - ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ x + 3

10

m1 = - 25 m2 = - 2

5

m1 = m2 =-25

, L1 โˆฅ L2

2. 3x = 8 + y and 3y + x + 4 = 0

y = 3x โ€“ 8 3y = - x โ€“ 4 Convert to f (x) = mx + b.

y = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ โˆ™ x โ€“ 8 y = - ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ x โ€“ 4

3

m1 = 3 m2 = - 13

m1 = - 1๐‘š๐‘š๐‘š๐‘š2

, L1 โŠฅ L2

Perpendicular symbol

Parallel symbol

โˆŸ

Page 3-16

Perpendicular and Parallel Lines

โ€ข Parallel lines are always the same distance from each other and they will never intersect.

Two parallel lines have the same slope m1 = m2 .

L1 โˆฅ L2 L1 L2

โ€ข Perpendicular lines intersect to form a 90-degree angle, and they have negative reciprocal

slopes.

m1 = - 1๐‘š๐‘š๐‘š๐‘š2

L1 โŠฅ L2 900

โ€ข Parallel and perpendicular lines

Line Slope Two parallel lines ( โˆฅ ) m1 = m2

Two perpendicular lines (โŠฅ) m1 = - 1๐‘š๐‘š๐‘š๐‘š2

Example: Determine if the graphs of two straight line equations are parallel or

perpendicular.

1. 5y + 2x = 1 and 3 โ€“ 4x = 10y

5y = -2x + 1 10y = -4x + 3 Convert to f (x) = mx + b.

y = - ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ x + 1

5 y = - ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ x + 3

10

m1 = - 25 m2 = - 2

5

m1 = m2 =-25

, L1 โˆฅ L2

2. 3x = 8 + y and 3y + x + 4 = 0

y = 3x โ€“ 8 3y = - x โ€“ 4 Convert to f (x) = mx + b.

y = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ โˆ™ x โ€“ 8 y = - ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ x โ€“ 4

3

m1 = 3 m2 = - 13

m1 = - 1๐‘š๐‘š๐‘š๐‘š2

, L1 โŠฅ L2

Perpendicular symbol

Parallel symbol

โˆŸ

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 75

Algebra I & II Key Concepts, Practice, and Quizzes Unit 3 โ€“ Functions and Graphs

3-6 STRAIGHT LINE EQUATIONS

Point-Slope Equation of a Line

โ€ข Point-slope equation of a straight line

Point-Slope Equationy โ€“ y1 = m (x โ€“ x1) ๐‘š๐‘šโˆ’ the slope of the line

(๐‘ฅ๐‘ฅ1, ๐‘ฆ๐‘ฆ1) โˆ’ the given point on the line (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) โˆ’ any other point on the line

(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ)

(๐‘ฅ๐‘ฅ1,๐‘ฆ๐‘ฆ1)

โ€ข Derive: from the slope formula m = ๐‘ฆ๐‘ฆ2โˆ’๐‘ฆ๐‘ฆ1๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ1

, let x2 = x and y2 = y .

then m = ๐‘ฆ๐‘ฆโˆ’๐‘ฆ๐‘ฆ1๐‘ฅ๐‘ฅโˆ’๐‘ฅ๐‘ฅ1

Replace (x2 , y2) by (x, y) .

m (x โ€“ x1) = ๐‘ฆ๐‘ฆโˆ’๐‘ฆ๐‘ฆ1๐‘ฅ๐‘ฅโˆ’๐‘ฅ๐‘ฅ1

(๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ1) Multiply both sides by x โ€“ x1 .

point-slope equation: y โ€“ y1 = m (x โ€“ x1)

Example: Graph the line with slope 13

that passes through the point (2, 3) . Write an

equation in point-slope form .

- Slope and point: ๐‘š๐‘š = 13

, (x1, y1) = (2, 3)

- Equation: y โ€“ 3 = 13

(x โ€“ 2) Point-slope equation: y โ€“ y1 = m (x โ€“ x1) .

Substitute y1 = 3, x1 = 2 and m = 13 .

- Graph: ๐‘š๐‘š = 13

The change in y (move 1 unit up) .

The change in x (move 3 units to the right) .

โˆ™

โˆ™

x

y

(5, 4)(2, 3)

โˆ™ โˆ™

x

y

4

2 5

3

y โ€“ 3 = 13

(x โ€“ 2)

Page 3-17

3-6 STRAIGHT LINE EQUATIONS

Point-Slope Equation of a Line

โ€ข Point-slope equation of a straight line

Point-Slope Equationy โ€“ y1 = m (x โ€“ x1) ๐‘š๐‘šโˆ’ the slope of the line

(๐‘ฅ๐‘ฅ1, ๐‘ฆ๐‘ฆ1) โˆ’ the given point on the line (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) โˆ’ any other point on the line

(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ)

(๐‘ฅ๐‘ฅ1,๐‘ฆ๐‘ฆ1)

โ€ข Derive: from the slope formula m = ๐‘ฆ๐‘ฆ2โˆ’๐‘ฆ๐‘ฆ1๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ1

, let x2 = x and y2 = y .

then m = ๐‘ฆ๐‘ฆโˆ’๐‘ฆ๐‘ฆ1๐‘ฅ๐‘ฅโˆ’๐‘ฅ๐‘ฅ1

Replace (x2 , y2) by (x, y) .

m (x โ€“ x1) = ๐‘ฆ๐‘ฆโˆ’๐‘ฆ๐‘ฆ1๐‘ฅ๐‘ฅโˆ’๐‘ฅ๐‘ฅ1

(๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ1) Multiply both sides by x โ€“ x1 .

point-slope equation: y โ€“ y1 = m (x โ€“ x1)

Example: Graph the line with slope 13

that passes through the point (2, 3) . Write an

equation in point-slope form .

- Slope and point: ๐‘š๐‘š = 13

, (x1, y1) = (2, 3)

- Equation: y โ€“ 3 = 13

(x โ€“ 2) Point-slope equation: y โ€“ y1 = m (x โ€“ x1) .

Substitute y1 = 3, x1 = 2 and m = 13 .

- Graph: ๐‘š๐‘š = 13

The change in y (move 1 unit up) .

The change in x (move 3 units to the right) .

โˆ™

โˆ™

x

y

(5, 4)(2, 3)

โˆ™ โˆ™

x

y

4

2 5

3

y โ€“ 3 = 13

(x โ€“ 2)

Page 3-17

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

76 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 3 โ€“ Functions and Graphs

Finding an Equation of a Line

Straight-Line Equation Equation Examplegeneral form Ax + By = C 2x + y = 3 A = 2, B = 1, C = 3point-slope form y โ€“ y1 = m (x โ€“ x1) y โ€“ 1 = -2 (x + 5) m = -2 y1 = 1, x1 = -5

slope-intercept form y = mx + b y = 8x โ€“ 27

m = 8 , b = - 27

โ€ข Finding an equation of a line when the slope and the y-intercept are given

Example: Graph the line with slope -3 and y-intercept 5 and write the slope intercept

equation .

y = m x + b m = -3, b = 5

y = -3x + 5 ๐‘š๐‘š = -3 = - 31

Move 3 units down and 1 unit to the right .

โ€ข Finding an equation of a line when the slope and a point are given

Example: Write an equation of the line passing the point (3, 2) with slope m = -2 .

Start with: y = mx + b Slope-intercept equation

Solve for b: 2 = -2 โˆ™ 3 + b Replace (x , y) by (3, 2) & m by -2 .

b = 8 Equation of the line: y = -2x + 8 m = -2 , b = 8

โ€ข Finding an equation of a line when two points are given

Example: Write an equation of the line that passes through the points (1, 1) and (5, -7) .

The slope: m = ๐‘ฆ๐‘ฆ2โˆ’๐‘ฆ๐‘ฆ1๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ1

= -7โˆ’15โˆ’1

= - 84

= -2 Substitute (x1 , y1) = (1, 1)

(x2 , y2) = (5, -7) .

Start with: y = mx + b Slope-intercept equation

Solve for b: 1 = -2 โˆ™ 1 + b Replace (x , y) by (1, 1) & m by โ€“ 2 .

b = 3 Use (x , y) = (5, -7) will get the same result .

Equation of the line: y = -2x + 3 m = -2 , b = 3

2

โˆ™

โˆ™

5y

Page 3-18

Finding an Equation of a Line

Straight-Line Equation Equation Examplegeneral form Ax + By = C 2x + y = 3 A = 2, B = 1, C = 3point-slope form y โ€“ y1 = m (x โ€“ x1) y โ€“ 1 = -2 (x + 5) m = -2 y1 = 1, x1 = -5

slope-intercept form y = mx + b y = 8x โ€“ 27

m = 8 , b = - 27

โ€ข Finding an equation of a line when the slope and the y-intercept are given

Example: Graph the line with slope -3 and y-intercept 5 and write the slope intercept

equation .

y = m x + b m = -3, b = 5

y = -3x + 5 ๐‘š๐‘š = -3 = - 31

Move 3 units down and 1 unit to the right .

โ€ข Finding an equation of a line when the slope and a point are given

Example: Write an equation of the line passing the point (3, 2) with slope m = -2 .

Start with: y = mx + b Slope-intercept equation

Solve for b: 2 = -2 โˆ™ 3 + b Replace (x , y) by (3, 2) & m by -2 .

b = 8 Equation of the line: y = -2x + 8 m = -2 , b = 8

โ€ข Finding an equation of a line when two points are given

Example: Write an equation of the line that passes through the points (1, 1) and (5, -7) .

The slope: m = ๐‘ฆ๐‘ฆ2โˆ’๐‘ฆ๐‘ฆ1๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ1

= -7โˆ’15โˆ’1

= - 84

= -2 Substitute (x1 , y1) = (1, 1)

(x2 , y2) = (5, -7) .

Start with: y = mx + b Slope-intercept equation

Solve for b: 1 = -2 โˆ™ 1 + b Replace (x , y) by (1, 1) & m by โ€“ 2 .

b = 3 Use (x , y) = (5, -7) will get the same result .

Equation of the line: y = -2x + 3 m = -2 , b = 3

2

โˆ™

โˆ™

5y

Page 3-18

0

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 77

Algebra I & II Key Concepts, Practice, and Quizzes Unit 3 โ€“ Functions and Graphs

Example: Write an equation of the line passing through the points .

1. (-5, 3) (4, 3) and 2. (2, -1) (2, 3) . Solution:

1. m = ๐‘ฆ๐‘ฆ2โˆ’๐‘ฆ๐‘ฆ1๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ1

= 3โˆ’34โˆ’(-5)

= 09

= 0 Let (x1, y1) = (-5, 3) , (x2 , y2) = (4, 3) .

y = m๐‘ฅ๐‘ฅ + b y = 0 ยท ๐‘ฅ๐‘ฅ + b y = b y = 3 (horizontal line)

2. m = ๐‘ฆ๐‘ฆ2โˆ’๐‘ฆ๐‘ฆ1๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ1

= 3โˆ’(-1)2โˆ’2

= 40

= โˆž undefined Let (x1, y1) = (2, -1) , (x2 , y2) = (2, 3) .

x = 2 (Vertical line)

(2, -1) (2, 3)

โ€ข Find an equation of the line passing through a point and is parallel or perpendicular to a given line

Example: Write an equation of the line passing through the point (1, -4) and is:

1. parallel to and 2. perpendicular to the line 2x + 4y โ€“ 8 = 0 .

Solution: 2x + 4y = 8 Add 8 on both sides .

- Convert to slope-intercept form . 4y = -2x + 8 Subtract 2x from both sides .

y = - 1 2

x + 2 Divide 4 on both sides .

- Determine the slope for the line 1 . m1 = - 1 2

y = mx + b

1. A line L2 is parallel to the line L1 (2x + 4y โ€“ 8 = 0) and has a slope of m2 = - 1 2

.Parallel๏ผšm1 = m2

- Start with: y = mx + b

- Solve for b: -4 = - 1 2โˆ™ 1 + b Replace (x , y) by (1, -4) & m by - 1

2 .

-8 = - 1 + 2b Multiply 2 for each term .

b = - 7 2

- Equation of the line: y = - ๐Ÿ๐Ÿ๐Ÿ๐Ÿx โ€“ ๐Ÿ•๐Ÿ•

๐Ÿ๐ŸL2 โˆฅ L1

y = 3x

y

y

x

x = 2

0

0

Page 3-19

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

78 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 3 โ€“ Functions and Graphs

Page 3-20

2. A line L2 is perpendicular to the line L1 (2x + 4y โ€“ 8 = 0) and has a slope of m2 = - 1๐‘š๐‘š๐‘š๐‘š1

,

or m2 = -1๐‘š๐‘š๐‘š๐‘š1

= ๏ฟฝ-1๏ฟฝ -12

= 2 ๐‘š๐‘š๐‘š๐‘š1 = โˆ’12

- Start with: y = mx + b Replace (x , y) by (1, -4) & m by 2.

- Solve for b: -4 = 2 โˆ™ 1 + b , b = -6

- Equation of the line: y = 2x โ€“ ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ” m = 2 , b = -6 , L2 โŠฅ L1

โ€ข Applications

Example: Tom bought a laptop for $1,000. The value of the laptop decreases at a rate of

$100 per year. Write an equation for the value f (t) of the laptop after t years.

Graph the equation and determine the value of the laptop after 4 years.

- Equation: f (t) = 1,000 โ€“ 100t y = mx + b , f (t) = -100t + 1,000

- Solve algebraically: f (4) = 1,000 โ€“ 100t t = 4 years

= 1,000 โ€“ 100 (4) = $ 600

- Solve graphically: t f (t) =1,000 โ€“ 100t 0 $ 1,000 2 $ 800

The laptop will be worth $600 after 4 years.

t (year)

f (t) cost $

2

1,000

0

โˆ™ 800

4

โˆ™

500 600

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 79

Algebra I & II Key Concepts, Practice, and Quizzes Unit 3 โ€“ Functions and Graphs

Unit 3 Summary

โ€ข Ordered pair (x, y): each point on the plane corresponds to an ordered pair .(x , y)

1st coordinate (abscissa) 2nd coordinate (ordinate)

โ€ข Four quadrantsQuadrant (x, y) Example

The 1st quadrant I (+x, +y) (+2, +3)The 2nd quadrant II (-x, +y) (-2, +3) The 3rd quadrant III (-x, -y) (-2, -3) The 4th quadrant IV (+x, -y) (+2, -3)

โ€ข x-intercept (x, 0): the point at which the graph crosses the x-axis . โˆ™ (0, y)

โ€ข y-intercept (0, y): the point at which the graph crosses the y-axis .

โ€ข A linear (first-degree) equation in two variables: a linear equation that contains two variables . (A linear equation whose graph is a straight line .)

Standard Form ExampleAx + By = C 5x โ€“ 7y = 4

โ€ข Nonlinear equation: an equation whose graph is not a straight line .

โ€ข Procedure to graph a nonlinear equation (or function) with two variables:

- Choose a few values of x, calculate the corresponding y, and make a table . - Plot these points on the coordinate plane (plot more points to get the cleaner shape of

the graph) .- Connect the points with a smooth curve .

โ€ข Function: a special type of relation (or correspondence) which matches each element of

the domain with exactly one element of the range .

โ€ข Relation: a set of ordered pairs (x, y) .

โ€ข Domain: the set of the values of the independent variable (x-value) for which a function is

defined .

โ€ข Range: the set of the values of the dependent variable (y-value) for which a function is defined .

โ€ข All functions are relations (correspondence), but not all relations are functions.

โ€ข Function notation: the notation for a function is f (x), P(x), g(x), h(x) , โ€ฆ

โ€ข Function values:

f (x) | x = a = f (a) , ๏ฟฝ๐‘Ž๐‘Ž is a constant replace ๐‘ฅ๐‘ฅ by ๐‘Ž๐‘Ž

II

III IV

I x

xโˆ™ (x, 0)

y

y

Page 3-21

Unit 3 Summary

โ€ข Ordered pair (x, y): each point on the plane corresponds to an ordered pair .(x , y)

1st coordinate (abscissa) 2nd coordinate (ordinate)

โ€ข Four quadrantsQuadrant (x, y) Example

The 1st quadrant I (+x, +y) (+2, +3)The 2nd quadrant II (-x, +y) (-2, +3) The 3rd quadrant III (-x, -y) (-2, -3) The 4th quadrant IV (+x, -y) (+2, -3)

โ€ข x-intercept (x, 0): the point at which the graph crosses the x-axis . โˆ™ (0, y)

โ€ข y-intercept (0, y): the point at which the graph crosses the y-axis .

โ€ข A linear (first-degree) equation in two variables: a linear equation that contains two variables . (A linear equation whose graph is a straight line .)

Standard Form ExampleAx + By = C 5x โ€“ 7y = 4

โ€ข Nonlinear equation: an equation whose graph is not a straight line .

โ€ข Procedure to graph a nonlinear equation (or function) with two variables:

- Choose a few values of x, calculate the corresponding y, and make a table . - Plot these points on the coordinate plane (plot more points to get the cleaner shape of

the graph) .- Connect the points with a smooth curve .

โ€ข Function: a special type of relation (or correspondence) which matches each element of

the domain with exactly one element of the range .

โ€ข Relation: a set of ordered pairs (x, y) .

โ€ข Domain: the set of the values of the independent variable (x-value) for which a function is

defined .

โ€ข Range: the set of the values of the dependent variable (y-value) for which a function is defined .

โ€ข All functions are relations (correspondence), but not all relations are functions.

โ€ข Function notation: the notation for a function is f (x), P(x), g(x), h(x) , โ€ฆ

โ€ข Function values:

f (x) | x = a = f (a) , ๏ฟฝ๐‘Ž๐‘Ž is a constant replace ๐‘ฅ๐‘ฅ by ๐‘Ž๐‘Ž

II

III IV

I x

xโˆ™ (x, 0)

y

y

Page 3-21

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

80 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 3 โ€“ Functions and Graphs

โ€ข The vertical line test: If a vertical line cuts the relationโ€™s graph more than once, then the

relation is not a function .

โ€ข Slope-intercept form of a linear function Slope-Intercept Function of a Line

f (x) = m x + b ๐‘š๐‘š: ๐‘ก๐‘กhe slope of the line ๐‘๐‘: y-intercept

โ€ข Slope (m): the slope of a straight line is the rate of change . It is a measure of the

โ€œsteepnessโ€ or incline of the line and indicates whether the line rises or falls .

โ€ข The slope formula

The Slope Formula

slope =the change in ๐‘ฆ๐‘ฆthe change in ๐‘ฅ๐‘ฅ

=riserun

The slope of the straight line that passes through two points (x1, y1) and (x2, y2):

m = ๐‘ฆ๐‘ฆ2โˆ’๐‘ฆ๐‘ฆ1๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ1

or m = ๐‘ฆ๐‘ฆ1โˆ’๐‘ฆ๐‘ฆ2๐‘ฅ๐‘ฅ1โˆ’๐‘ฅ๐‘ฅ2

x1 โ‰  x2

โ€ข Horizontal and vertical linesLine Equation m Example Graph

horizontal line y = b 0 y = 3

vertical line x = a โˆž x = -2

โ€ข Parallel and perpendicular lines

Line Slopetwo lines are parallel (โˆฅ) m1 = m2

two lines are perpendicular ( โŠฅ ) m1 = - 1๐‘š๐‘š2

โ€ข Equations of the straight lines

Straight-Line Equation Equation Examplegeneral form Ax + By = C 2x + y = 3 A = 2, B = 1, C = 3point-slope form y โ€“ y1 = m (x โ€“ x1) y โ€“ 1 = -2 (x + 5) m = -2 y1 = 1, x1 = -5

slope-intercept form y = mx + b y = 8x โ€“ 27

m = 8 , b = - 27

3

-2

0

0

Page 3-22

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 81

Algebra I & II Key Concepts, Practice, and Quizzes Unit 3 โ€“ Functions and Graphs

PRACTICE QUIZ

Unit 3 Functions and Graphs

1. Graph the following equations .

a. 3x โ€“ y = 2

b. y = |๐‘ฅ๐‘ฅ + 2|

2. Evaluate the functions at the indicated values .

a. f (-3) for f (x) = 7 + 5x2

b. q (0) for q (r) = 5r2 + 2r โ€“ 1

3 . Evaluate the functions and simplify at the indicated values .

a. f (x) = 5x โ€“ 3 , f (a โ€“ 2) = ?

b. h (x) = |๐‘ฅ๐‘ฅ โˆ’ 2| + 3๐‘ฅ๐‘ฅ, h (5) = ?

4. The following graph shows the number of bicycle rentals as a function of

time in a rental store . How many bicycle rentals were there in 2012?

5. Given the relation: (3, 4), (-1, 6), (6, 3), (-4, 3)

a. Identify the domain .

b . Identify the range .

6. For the following functions, identify their domains .

a. ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = 13

5โˆ’๐‘ฅ๐‘ฅ

b. ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = 6

|7๐‘ฅ๐‘ฅโˆ’5|

100 โˆ™

โˆ™ 2000

โˆ™ 2010

50 โˆ™x (year)

# of bicycles rentals f(x)

Page 5

PRACTICE QUIZ

Unit 3 Functions and Graphs

1. Graph the following equations .

a. 3x โ€“ y = 2

b. y = |๐‘ฅ๐‘ฅ + 2|

2. Evaluate the functions at the indicated values .

a. f (-3) for f (x) = 7 + 5x2

b. q (0) for q (r) = 5r2 + 2r โ€“ 1

3 . Evaluate the functions and simplify at the indicated values .

a. f (x) = 5x โ€“ 3 , f (a โ€“ 2) = ?

b. h (x) = |๐‘ฅ๐‘ฅ โˆ’ 2| + 3๐‘ฅ๐‘ฅ, h (5) = ?

4. The following graph shows the number of bicycle rentals as a function of

time in a rental store . How many bicycle rentals were there in 2012?

5. Given the relation: (3, 4), (-1, 6), (6, 3), (-4, 3)

a. Identify the domain .

b . Identify the range .

6. For the following functions, identify their domains .

a. ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = 13

5โˆ’๐‘ฅ๐‘ฅ

b. ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = 6

|7๐‘ฅ๐‘ฅโˆ’5|

100 โˆ™

โˆ™ 2000

โˆ™ 2010

50 โˆ™x (year)

# of bicycles rentals f(x)

Page 5

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

82 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 3 โ€“ Functions and Graphs

7. a . Identify the slope and y-intercept of 2๐‘ฅ๐‘ฅ โˆ’ 13๐‘ฆ๐‘ฆ = 5 .

b. Identify the slope of the line .

8. Mary purchased a laptop for $1,000 in 2008 . The laptop was worth $500 in

2012 . Find the average annual rate of change .

9. Graph using the slope and the y-intercept . -4x + 2 f (x) = -14

10 . Determine if the graphs of two straight line equations are parallel or

perpendicular .

2๐‘ฆ๐‘ฆ + 7x = 1 and 3 โ€“ 14x = 4y

11 . Write an equation of the line that passes through the points (2, 3) and (3, -4) .

12. Write an equation of the line passing through the point (2, -3) and

a. parallel to and b. perpendicular to the line 9y = -3x + 1 .

13. Sam bought a car for $20,000 . The value of the car decreases at a rate of

$1,000 per year . Write an equation for the value f (t) of the car after t years .

Graph the equation and determine the value of the car after 5 years .

y

โˆ™ (4, 1) x

โˆ™ (0, -1)

Page 6

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 83

Algebra I & II Key Concepts, Practice, and Quizzes Unit 4 โ€“ Systems of Equations and Inequalities

UNIT 4 SYSTEMS OF EQUATIONS & INEQUALITIES

4-1 SYSTEMS OF EQUATIONS

A System of Equations

โ€ข A system of equations is a group of two or more equations with the same variables

(unknowns) .

Example: ๏ฟฝ 2๐‘ฅ๐‘ฅ2 + 3๐‘ฆ๐‘ฆ = 24๐‘ฅ๐‘ฅ2 โ€“ 5๐‘ฆ๐‘ฆ = 7

โ€ข A system of linear equations is a group of two or more first-degree equations .

(First-degree equation: The highest power of the variable is one .)

โ€ข A system of two linear equations in two variables: two linear equations in two unknowns .

Example: ๏ฟฝ ๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ = 2 2๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ = 13

โ€ข A system of linear equations

Standard Form Example 2ร—2 system

2 equations 2 unknowns๏ฟฝ๐ด๐ด1๐‘ฅ๐‘ฅ + ๐ต๐ต1๐‘ฆ๐‘ฆ = ๐ถ๐ถ1๐ด๐ด2๐‘ฅ๐‘ฅ + ๐ต๐ต2๐‘ฆ๐‘ฆ = ๐ถ๐ถ1

๏ฟฝ3๐‘ฅ๐‘ฅ โˆ’ 4๐‘ฆ๐‘ฆ = 5 5๐‘ฅ๐‘ฅ + 7๐‘ฆ๐‘ฆ = -2

3ร—3 system3 equations 3 unknowns

๏ฟฝ๐ด๐ด1๐‘ฅ๐‘ฅ + ๐ต๐ต1๐‘ฆ๐‘ฆ + ๐ถ๐ถ1๐‘ง๐‘ง = ๐ท๐ท1๐ด๐ด2๐‘ฅ๐‘ฅ + ๐ต๐ต2๐‘ฆ๐‘ฆ + ๐ถ๐ถ2๐‘ง๐‘ง = ๐ท๐ท2๐ด๐ด3๐‘ฅ๐‘ฅ + ๐ต๐ต3๐‘ฆ๐‘ฆ + ๐ถ๐ถ3๐‘ง๐‘ง = ๐ท๐ท3

๏ฟฝ2๐‘ฅ๐‘ฅ โˆ’ 3๐‘ฆ๐‘ฆ + 4๐‘ง๐‘ง = 7 4๐‘ฅ๐‘ฅ โˆ’ 2๐‘ฆ๐‘ฆ โˆ’ ๐‘ง๐‘ง = 3 5๐‘ฅ๐‘ฅ โˆ’ 6๐‘ฆ๐‘ฆ + 2๐‘ง๐‘ง = 2

โ€ข The solutions for a system of equations: the values for variables that make all equations in

the system true .

Example: Verify that the ordered pair (5, 3) is a solution of the system .

๏ฟฝ ๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ = 2 2๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ = 13

x โˆ’ y = 2 2x + y = 13? ?

5 โˆ’ 3 = 2 2(5) + 3 = 13 Replace (x, y) by (5, 3) in both equations . โˆš โˆš

2 = 2 Yes! 13 = 13

(5, 3) makes both equations true, it is the solution of the system .

Page 4-1

UNIT 4 SYSTEMS OF EQUATIONS & INEQUALITIES

4-1 SYSTEMS OF EQUATIONS

A System of Equations

โ€ข A system of equations is a group of two or more equations with the same variables

(unknowns) .

Example: ๏ฟฝ 2๐‘ฅ๐‘ฅ2 + 3๐‘ฆ๐‘ฆ = 24๐‘ฅ๐‘ฅ2 โ€“ 5๐‘ฆ๐‘ฆ = 7

โ€ข A system of linear equations is a group of two or more first-degree equations .

(First-degree equation: The highest power of the variable is one .)

โ€ข A system of two linear equations in two variables: two linear equations in two unknowns .

Example: ๏ฟฝ ๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ = 2 2๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ = 13

โ€ข A system of linear equations

Standard Form Example 2ร—2 system

2 equations 2 unknowns๏ฟฝ๐ด๐ด1๐‘ฅ๐‘ฅ + ๐ต๐ต1๐‘ฆ๐‘ฆ = ๐ถ๐ถ1๐ด๐ด2๐‘ฅ๐‘ฅ + ๐ต๐ต2๐‘ฆ๐‘ฆ = ๐ถ๐ถ1

๏ฟฝ3๐‘ฅ๐‘ฅ โˆ’ 4๐‘ฆ๐‘ฆ = 5 5๐‘ฅ๐‘ฅ + 7๐‘ฆ๐‘ฆ = -2

3ร—3 system3 equations 3 unknowns

๏ฟฝ๐ด๐ด1๐‘ฅ๐‘ฅ + ๐ต๐ต1๐‘ฆ๐‘ฆ + ๐ถ๐ถ1๐‘ง๐‘ง = ๐ท๐ท1๐ด๐ด2๐‘ฅ๐‘ฅ + ๐ต๐ต2๐‘ฆ๐‘ฆ + ๐ถ๐ถ2๐‘ง๐‘ง = ๐ท๐ท2๐ด๐ด3๐‘ฅ๐‘ฅ + ๐ต๐ต3๐‘ฆ๐‘ฆ + ๐ถ๐ถ3๐‘ง๐‘ง = ๐ท๐ท3

๏ฟฝ2๐‘ฅ๐‘ฅ โˆ’ 3๐‘ฆ๐‘ฆ + 4๐‘ง๐‘ง = 7 4๐‘ฅ๐‘ฅ โˆ’ 2๐‘ฆ๐‘ฆ โˆ’ ๐‘ง๐‘ง = 3 5๐‘ฅ๐‘ฅ โˆ’ 6๐‘ฆ๐‘ฆ + 2๐‘ง๐‘ง = 2

โ€ข The solutions for a system of equations: the values for variables that make all equations in

the system true .

Example: Verify that the ordered pair (5, 3) is a solution of the system .

๏ฟฝ ๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ = 2 2๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ = 13

x โˆ’ y = 2 2x + y = 13? ?

5 โˆ’ 3 = 2 2(5) + 3 = 13 Replace (x, y) by (5, 3) in both equations . โˆš โˆš

2 = 2 Yes! 13 = 13

(5, 3) makes both equations true, it is the solution of the system .

Page 4-1

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

84 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 4 โ€“ Systems of Equations and Inequalities

Solving Linear Systems by Graphing

โ€ข Solving systems of equations โ€“ graphing method: Graph both equations in the system on

the coordinate plane . The point(s) at which the lines intersect will be the solution(s) to the

system .

โ€ข Procedure for graphing

Example: Solve the following system graphically .

๏ฟฝ๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ = 2 (1)๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ = 4 (2)

- Graph x โ€“ y = 2 (1)

x y = x โ€“ 2 (x, y)0 -2 (0, -2)2 0 (2, 0)

- Graph x + y = 4 (2)

x y = 4 โ€“ x (x, y)0 4 (0, 4)4 0 (4, 0)

- Find the intersection of two lines (x, y) . (x, y) = (3, 1) Solution

- Check . x โˆ’ y = 2 x + y = 4

? ?3 โˆ’ 1 = 2 3 + 1 = 4 โˆš โˆš 2 = 2 4 = 4 Correct!

โˆ™ (0, 4)

y

x โ€“ y = 2

โˆ™(4, 0)

โˆ™ (2, 0)

x

โˆ™ (0, -2) x + y = 4

โˆ™ (3, 1)

Page 4-2

Solving Linear Systems by Graphing

โ€ข Solving systems of equations โ€“ graphing method: Graph both equations in the system on

the coordinate plane . The point(s) at which the lines intersect will be the solution(s) to the

system .

โ€ข Procedure for graphing

Example: Solve the following system graphically .

๏ฟฝ๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ = 2 (1)๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ = 4 (2)

- Graph x โ€“ y = 2 (1)

x y = x โ€“ 2 (x, y)0 -2 (0, -2)2 0 (2, 0)

- Graph x + y = 4 (2)

x y = 4 โ€“ x (x, y)0 4 (0, 4)4 0 (4, 0)

- Find the intersection of two lines (x, y) . (x, y) = (3, 1) Solution

- Check . x โˆ’ y = 2 x + y = 4

? ?3 โˆ’ 1 = 2 3 + 1 = 4 โˆš โˆš 2 = 2 4 = 4 Correct!

โˆ™ (0, 4)

y

x โ€“ y = 2

โˆ™(4, 0)

โˆ™ (2, 0)

x

โˆ™ (0, -2) x + y = 4

โˆ™ (3, 1)

Page 4-2

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 85

Algebra I & II Key Concepts, Practice, and Quizzes Unit 4 โ€“ Systems of Equations and Inequalities

Properties of a Linear System

โ€ข Consistent and independent: The system has one solution (the lines of equations intersect

at one point) . The equations in the system are independent .

Example: (last example)

๏ฟฝ ๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ = 2 ๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ = 4 Solution: (x, y) = (3, 1)

โ€ข Consistent and dependent: The system has infinite number of solutions (the lines of the

equations coincide) .

Example: ๏ฟฝ๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ = 2 (1)2๐‘ฅ๐‘ฅ โˆ’ 2๐‘ฆ๐‘ฆ = 4 (2)

๐’™๐’™ โˆ’ ๐’š๐’š = ๐Ÿ๐Ÿ (๐Ÿ๐Ÿ) ๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐’š๐’š = ๐Ÿ’๐Ÿ’ (๐Ÿ๐Ÿ)x y = x โˆ’ 2 x y = x โˆ’ 20 -2 0 -2 2 0 2 0

โ€ข Inconsistent system: the system has no solution, and the lines of the equations are parallel .

(The solution set to the system is an empty set โˆ… .)

Example: ๏ฟฝ2๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ = 6 (1)2๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ = - 8 (2)

๐Ÿ๐Ÿ๐’™๐’™ + ๐’š๐’š = ๐Ÿ”๐Ÿ” (๐Ÿ๐Ÿ) ๐Ÿ๐Ÿ๐’™๐’™ + ๐’š๐’š = โˆ’๐Ÿ–๐Ÿ– (๐Ÿ๐Ÿ)x y = 6 โˆ’ 2x x y = -8 โˆ’ 2x0 6 0 -83 0 -4 0

โ€ข Properties of linear equations

Property Numbers of Solution Lines Graphconsistent& independent one solution lines intersect

consistent& dependent infinitely number of solutions lines coincide

(the same line)

inconsistent no solution โˆ… lines are parallel

โˆ™ Solution

y

x

โˆ™ (0, 6)

y

2x + y = -8

โˆ™ (0, -8) 2x + y = 6

โˆ™(-4, 0)

โˆ™ (3, 0)

โˆ™ (0, -2)

x

y

โˆ™ (2, 0)

x

Page 4-3

Properties of a Linear System

โ€ข Consistent and independent: The system has one solution (the lines of equations intersect

at one point) . The equations in the system are independent .

Example: (last example)

๏ฟฝ ๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ = 2 ๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ = 4 Solution: (x, y) = (3, 1)

โ€ข Consistent and dependent: The system has infinite number of solutions (the lines of the

equations coincide) .

Example: ๏ฟฝ๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ = 2 (1)2๐‘ฅ๐‘ฅ โˆ’ 2๐‘ฆ๐‘ฆ = 4 (2)

๐’™๐’™ โˆ’ ๐’š๐’š = ๐Ÿ๐Ÿ (๐Ÿ๐Ÿ) ๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐’š๐’š = ๐Ÿ’๐Ÿ’ (๐Ÿ๐Ÿ)x y = x โˆ’ 2 x y = x โˆ’ 20 -2 0 -2 2 0 2 0

โ€ข Inconsistent system: the system has no solution, and the lines of the equations are parallel .

(The solution set to the system is an empty set โˆ… .)

Example: ๏ฟฝ2๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ = 6 (1)2๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ = - 8 (2)

๐Ÿ๐Ÿ๐’™๐’™ + ๐’š๐’š = ๐Ÿ”๐Ÿ” (๐Ÿ๐Ÿ) ๐Ÿ๐Ÿ๐’™๐’™ + ๐’š๐’š = โˆ’๐Ÿ–๐Ÿ– (๐Ÿ๐Ÿ)x y = 6 โˆ’ 2x x y = -8 โˆ’ 2x0 6 0 -83 0 -4 0

โ€ข Properties of linear equations

Property Numbers of Solution Lines Graphconsistent& independent one solution lines intersect

consistent& dependent infinitely number of solutions lines coincide

(the same line)

inconsistent no solution โˆ… lines are parallel

โˆ™ Solution

y

x

โˆ™ (0, 6)

y

2x + y = -8

โˆ™ (0, -8) 2x + y = 6

โˆ™(-4, 0)

โˆ™ (3, 0)

โˆ™ (0, -2)

x

y

โˆ™ (2, 0)

x

Page 4-3

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

86 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 4 โ€“ Systems of Equations and Inequalities

4-2 SOLVING SYSTEMS BY SUBSTITUTION OR ELIMINATION

Solving Systems by Substitution

โ€ข Substitution method: Solve one variable in one equation and substitute the result into the

other equation to solve another variable . (Objective is to eliminate one of the unknown

variables) .

โ€ข Using the substitution method to solve systems:

Steps Example: ๏ฟฝ ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐’š๐’š = ๐Ÿ’๐Ÿ’ ๐Ÿ๐Ÿ๐’™๐’™ + ๐’š๐’š = ๐Ÿ‘๐Ÿ‘

- Label the equation as (1) & (2) . ๏ฟฝ ๐‘ฅ๐‘ฅ โˆ’ 2๐‘ฆ๐‘ฆ = 4 (1) 2๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ = 3 (2)

- Choose one equation and isolate one Choose (1) and isolate x .

variable (x or y), and name the equation (3) . x = 2y + 4 (3)

- Substitute the isolated variable into the Substitute x into (2)

other equation . 2(2y + 4) + y = 3 Replace x by 2y + 4 .

- Solve for the other variable . 4y + 8 + y = 3 Solve for y.

5y = -5 y = -1

- Substitute the solved value into x = 2 (-1) + 4 y = -1 (3)

equation (3) and solve for y or x . x = 2

The solution is (2, -1)

- Check . x โ€“ 2y = 4 2x + y = 3? ?

2 โ€“ 2(-1) = 4 2(2) + (-1) = 3 โˆš โˆš2 + 2 = 4 4 โ€“ 1 = 3

x โ€“ 2y = 4 2x + y = 3

Consistent

x y = ๐’™๐’™

๐Ÿ๐Ÿโˆ’ ๐Ÿ๐Ÿ x y = 3 - 2x

0 -2 0 34 0 1 1

x

โˆ™ (0, 3)

y

โˆ™ (2, -1) โˆ™ (0, -2)

โˆ™ (4, 0) โˆ™ (1, 1)

solution

Page 4-4

4-2 SOLVING SYSTEMS BY SUBSTITUTION OR ELIMINATION

Solving Systems by Substitution

โ€ข Substitution method: Solve one variable in one equation and substitute the result into the

other equation to solve another variable . (Objective is to eliminate one of the unknown

variables) .

โ€ข Using the substitution method to solve systems:

Steps Example: ๏ฟฝ ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐’š๐’š = ๐Ÿ’๐Ÿ’ ๐Ÿ๐Ÿ๐’™๐’™ + ๐’š๐’š = ๐Ÿ‘๐Ÿ‘

- Label the equation as (1) & (2) . ๏ฟฝ ๐‘ฅ๐‘ฅ โˆ’ 2๐‘ฆ๐‘ฆ = 4 (1) 2๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ = 3 (2)

- Choose one equation and isolate one Choose (1) and isolate x .

variable (x or y), and name the equation (3) . x = 2y + 4 (3)

- Substitute the isolated variable into the Substitute x into (2)

other equation . 2(2y + 4) + y = 3 Replace x by 2y + 4 .

- Solve for the other variable . 4y + 8 + y = 3 Solve for y.

5y = -5 y = -1

- Substitute the solved value into x = 2 (-1) + 4 y = -1 (3)

equation (3) and solve for y or x . x = 2

The solution is (2, -1)

- Check . x โ€“ 2y = 4 2x + y = 3? ?

2 โ€“ 2(-1) = 4 2(2) + (-1) = 3 โˆš โˆš2 + 2 = 4 4 โ€“ 1 = 3

x โ€“ 2y = 4 2x + y = 3

Consistent

x y = ๐’™๐’™

๐Ÿ๐Ÿโˆ’ ๐Ÿ๐Ÿ x y = 3 - 2x

0 -2 0 34 0 1 1

x

โˆ™ (0, 3)

y

โˆ™ (2, -1) โˆ™ (0, -2)

โˆ™ (4, 0) โˆ™ (1, 1)

solution

Page 4-4

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 87

Algebra I & II Key Concepts, Practice, and Quizzes Unit 4 โ€“ Systems of Equations and Inequalities

Solving Systems by Elimination

โ€ข Elimination method: Add or subtract the equations to eliminate one of the variables(unknowns), and then solve the resulting equation in one variable .Objective: eliminate one of the variables .

โ€ข Using the elimination method to solve systems:

Steps Example: Solve ๏ฟฝ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ = - ๐’š๐’š ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ = ๐’š๐’š + ๐Ÿ’๐Ÿ’

. - Write the system of equations in standard

form and label them as (1) and (2) . ๏ฟฝ2๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ = 1 (1) 3๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ = 4 (2)

Standard form: ๏ฟฝ๐ด๐ด1๐‘ฅ๐‘ฅ + ๐ต๐ต1๐‘ฆ๐‘ฆ = ๐ถ๐ถ1๐ด๐ด2๐‘ฅ๐‘ฅ + ๐ต๐ต2๐‘ฆ๐‘ฆ = ๐ถ๐ถ2

- Add equations (1) and (2) . 2x + y = 1 + 3x โ€“ y = 4

5x = 5 Solve for x. x = 1- Substitute the isolated variable into (1) or (2) .

2(1) + y = 1 x = 1 (1)

- Solve for the other variable . y = -1 Solve for y.

Solution: (1, -1)

- Check . 2x โ€“ 1 = - y 3x = y + 4? ?

2(1) โ€“ 1 = - (-1) 3(1) = -1 + 4 โˆš โˆš2 โ€“ 1 = 1 3 = 3 Correct!

Example: Solve ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ“๐Ÿ“ = -๐’š๐’š - ๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐’š๐’š = ๐Ÿ๐Ÿ

.

Steps Solution

- Rewrite in standard form and label them as (1) and (2) . ๏ฟฝ2๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ = 5 (1)-๐‘ฅ๐‘ฅ + 3๐‘ฆ๐‘ฆ = 1 (2)

- Multiply one or both equations by the appropriate numbers to eliminate one variable (x or y) . -2x + 6y = 2 (3) Multiply (2) by 2.

Note: if add equations (1) and (2), nothing cancels out: 2x + y = 5 + -x + 3y = 1

x + 4y = 6

- Add equations (1) and (3) and solve for y . 2x + y = 5 (1)+ -2x + 6y = 2 (3)

7y = 7 Solve for y.

y = 1- Substitute y = 1 into equation (1) & solve for x . 2x + 1 = 5 Replace y by 1 .

x = 2 Solve for x. Solution: (2, 1)

Page 4-5

Solving Systems by Elimination

โ€ข Elimination method: Add or subtract the equations to eliminate one of the variables(unknowns), and then solve the resulting equation in one variable .Objective: eliminate one of the variables .

โ€ข Using the elimination method to solve systems:

Steps Example: Solve ๏ฟฝ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ = - ๐’š๐’š ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ = ๐’š๐’š + ๐Ÿ’๐Ÿ’

. - Write the system of equations in standard

form and label them as (1) and (2) . ๏ฟฝ2๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ = 1 (1) 3๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ = 4 (2)

Standard form: ๏ฟฝ๐ด๐ด1๐‘ฅ๐‘ฅ + ๐ต๐ต1๐‘ฆ๐‘ฆ = ๐ถ๐ถ1๐ด๐ด2๐‘ฅ๐‘ฅ + ๐ต๐ต2๐‘ฆ๐‘ฆ = ๐ถ๐ถ2

- Add equations (1) and (2) . 2x + y = 1 + 3x โ€“ y = 4

5x = 5 Solve for x. x = 1- Substitute the isolated variable into (1) or (2) .

2(1) + y = 1 x = 1 (1)

- Solve for the other variable . y = -1 Solve for y.

Solution: (1, -1)

- Check . 2x โ€“ 1 = - y 3x = y + 4? ?

2(1) โ€“ 1 = - (-1) 3(1) = -1 + 4 โˆš โˆš2 โ€“ 1 = 1 3 = 3 Correct!

Example: Solve ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ“๐Ÿ“ = -๐’š๐’š - ๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐’š๐’š = ๐Ÿ๐Ÿ

.

Steps Solution

- Rewrite in standard form and label them as (1) and (2) . ๏ฟฝ2๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ = 5 (1)-๐‘ฅ๐‘ฅ + 3๐‘ฆ๐‘ฆ = 1 (2)

- Multiply one or both equations by the appropriate numbers to eliminate one variable (x or y) . -2x + 6y = 2 (3) Multiply (2) by 2.

Note: if add equations (1) and (2), nothing cancels out: 2x + y = 5 + -x + 3y = 1

x + 4y = 6

- Add equations (1) and (3) and solve for y . 2x + y = 5 (1)+ -2x + 6y = 2 (3)

7y = 7 Solve for y.

y = 1- Substitute y = 1 into equation (1) & solve for x . 2x + 1 = 5 Replace y by 1 .

x = 2 Solve for x. Solution: (2, 1)

Page 4-5

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

88 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 4 โ€“ Systems of Equations and Inequalities

Page 4-6

Systems Involving Decimals or Fractions

โ€ข System involving decimals:

Example: Solve the system of equations by elimination. ๏ฟฝ๐’™๐’™๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š๐’š๐’š = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ.๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐’™๐’™๐’™๐’™ + ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ.๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š๐’š๐’š = ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ.๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Steps Example

- Label the equations as (1) & (2). ๏ฟฝ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ 2๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = 3 (1) 0.4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 0. 2๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = 0.2 (2)

- Clear the decimals. 4x + 2y = 2 (3) Multiply equation (2) by 10.

- Add equations (1) and (3) to eliminate y. x โ€“ 2y = 3 + 4x + 2y = 2 5x = 5 x = 1

- Substitute x into (1). 1 โˆ’ 2๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = 3 Replace x by 1.

- Solve for y. y = -1 Solution: (1, -1)

โ€ข System involving fractions

Example: Solve the system of equations by elimination. ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐’™๐’™๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’š๐’š๐’š๐’š โ€“ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ

- ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐’š๐’š๐’š๐’š โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’™๐’™๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ

Steps Solution

- Write in standard form and label as (1) and (2). ๏ฟฝ 23

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 12

๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = 1 (๐Ÿ๐Ÿ๐Ÿ๐Ÿ)โˆ’12

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ 23

๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = -1 (๐Ÿ๐Ÿ๐Ÿ๐Ÿ)

- Clear the fractions. 6 ๏ฟฝ23๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๏ฟฝ + 6 ๏ฟฝ1

2๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ๏ฟฝ = 1โˆ™ 6 Multiply (1) by the LCD.

4x + 3y = 6 (3) 6 ๏ฟฝ- 1

2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๏ฟฝ โ€“ 6 ๏ฟฝ2

3๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ๏ฟฝ = -1โˆ™ 6 Multiply (2) by the LCD.

-3x โ€“ 4y = -6 (4)

- Multiply equation (3) by 3 and (4) by 4, 12x + 9y = 18 Multiply (3) by 3. and add them. + -12x โ€“ 16y = -24 Multiply (4) by 4.

-7y = -6 y = ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”

๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ•

- Substitute 67 for y in equation (1), and solve for x.

23 x + 1

2๏ฟฝ6

7๏ฟฝ = 1, 2

3 x + 3

7 = 1 Multiply by the LCD: 21

14 x + 9 = 21 , x = ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ•

Solution: ๏ฟฝ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ•

, ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ• ๏ฟฝ

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 89

Algebra I & II Key Concepts, Practice, and Quizzes Unit 4 โ€“ Systems of Equations and Inequalities

Applications

Example: Todd bought 5 apples and 4 oranges for $3 . Susan bought 7 apples and 4 oranges for

$4 . How much does one apple and orange cost?

- List the facts .Apple Orange Price

Todd 5 4 $ 3 .00Susan 7 4 $ 4 .00

- Label x and y . Let x = the cost of one apple, y = the cost of one orange .

- Write system of equations . ๏ฟฝ๐Ÿ“๐Ÿ“๐’™๐’™ + ๐Ÿ’๐Ÿ’๐’š๐’š = ๐Ÿ‘๐Ÿ‘ (1)๐Ÿ•๐Ÿ•๐’™๐’™ + ๐Ÿ’๐Ÿ’๐’š๐’š = ๐Ÿ’๐Ÿ’ (2)

- Solve equations . 5x + 4y = 3 (1) โ€“ (2)โ€“ 7x + 4y = 4

-2x = -1x = 1

2= $๐ŸŽ๐ŸŽ.๐Ÿ“๐Ÿ“๐ŸŽ๐ŸŽ

- Substitute x = 12

into equation (1) 5 ๏ฟฝ12๏ฟฝ + 4y = 3 Multiply 2 for each term .

and solve for y. 5 + 8y = 6y = 1

8โ‰ˆ $๐ŸŽ๐ŸŽ.๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

- Answer: One apple costs $0 .50 and one orange costs $0 .13 . (x, y) = ($0.50, $0.13)

Example: The perimeter of a rectangular field is 400m . The length is 40m less than twice the

width . Determine the dimension of the rectangular field .

- Facts: width wlength 2w โ€“ 40 = lperimeter P = 400m (P = 2l + 2w)

- Equations: ๏ฟฝ๐Ÿ๐Ÿ๐’๐’ + ๐Ÿ๐Ÿ๐’˜๐’˜ = ๐Ÿ’๐Ÿ’๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ ๐’๐’ = ๐Ÿ๐Ÿ๐’˜๐’˜ โ€“ ๐Ÿ’๐Ÿ’๐ŸŽ๐ŸŽ

- Standard form: ๏ฟฝ2๐‘™๐‘™ + 2๐‘ค๐‘ค = 400 (1) ๐‘™๐‘™ โˆ’ 2๐‘ค๐‘ค = -40 (2)

- (1) + (2) : 2l + 2w = 400 + l โ€“ 2w = - 40

3l = 360l = 360

3= 120 l = 120m

- Substitute l = 120 into (1) 2 (120) + 2w = 400and solve for w . 2w = 400 โ€“ 240

w = 80 m- Answer: Length = 120 m, Width = 80 m

w

l

Page 4-7

Applications

Example: Todd bought 5 apples and 4 oranges for $3 . Susan bought 7 apples and 4 oranges for

$4 . How much does one apple and orange cost?

- List the facts .Apple Orange Price

Todd 5 4 $ 3 .00Susan 7 4 $ 4 .00

- Label x and y . Let x = the cost of one apple, y = the cost of one orange .

- Write system of equations . ๏ฟฝ๐Ÿ“๐Ÿ“๐’™๐’™ + ๐Ÿ’๐Ÿ’๐’š๐’š = ๐Ÿ‘๐Ÿ‘ (1)๐Ÿ•๐Ÿ•๐’™๐’™ + ๐Ÿ’๐Ÿ’๐’š๐’š = ๐Ÿ’๐Ÿ’ (2)

- Solve equations . 5x + 4y = 3 (1) โ€“ (2)โ€“ 7x + 4y = 4

-2x = -1x = 1

2= $๐ŸŽ๐ŸŽ.๐Ÿ“๐Ÿ“๐ŸŽ๐ŸŽ

- Substitute x = 12

into equation (1) 5 ๏ฟฝ12๏ฟฝ + 4y = 3 Multiply 2 for each term .

and solve for y. 5 + 8y = 6y = 1

8โ‰ˆ $๐ŸŽ๐ŸŽ.๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

- Answer: One apple costs $0 .50 and one orange costs $0 .13 . (x, y) = ($0.50, $0.13)

Example: The perimeter of a rectangular field is 400m . The length is 40m less than twice the

width . Determine the dimension of the rectangular field .

- Facts: width wlength 2w โ€“ 40 = lperimeter P = 400m (P = 2l + 2w)

- Equations: ๏ฟฝ๐Ÿ๐Ÿ๐’๐’ + ๐Ÿ๐Ÿ๐’˜๐’˜ = ๐Ÿ’๐Ÿ’๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ ๐’๐’ = ๐Ÿ๐Ÿ๐’˜๐’˜ โ€“ ๐Ÿ’๐Ÿ’๐ŸŽ๐ŸŽ

- Standard form: ๏ฟฝ2๐‘™๐‘™ + 2๐‘ค๐‘ค = 400 (1) ๐‘™๐‘™ โˆ’ 2๐‘ค๐‘ค = -40 (2)

- (1) + (2) : 2l + 2w = 400 + l โ€“ 2w = - 40

3l = 360l = 360

3= 120 l = 120m

- Substitute l = 120 into (1) 2 (120) + 2w = 400and solve for w . 2w = 400 โ€“ 240

w = 80 m- Answer: Length = 120 m, Width = 80 m

w

l

Page 4-7

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

90 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 4 โ€“ Systems of Equations and Inequalities

4-3 SYSTEMS OF LINEAR INEQUALITIES IN TWO VARIABLES

Linear Inequalities in Two Variables

โ€ข A linear inequality: a mathematical statement with an inequality symbol in which the

highest power of the variable is one .

โ€ข Inequality symbols review

Symbol Indication> greater than< less thanโ‰ฅ greater than or equal toโ‰ค less than or equal to

โ€ข A linear inequality in two variables: a linear inequality contains two variables .

โ€ข Standard linear inequality in two variables

Standard Inequality ExampleAx + By > C 2x + 3y > 6Ax + By < C 3x โ€“ 5y < 17Ax + By โ‰ฅ C 4x + 5y โ‰ฅ 10Ax + By โ‰ค C 6x โ€“ 11y โ‰ค 21

โ€ข Solutions of linear inequalities in two variables: an ordered pair (x, y) that makes the

inequality true .

Example: Determine if (1, 2) satisfies the inequality 3x + 5y < 17 .

?

3(1) + 5(2) < 17 Replace (x, y) by (1, 2) .

?

3 + 10 < 17 โˆš

13 < 17 Correct!

Yes, (1, 2) is a solution A true statement .

Page 4-8

4-3 SYSTEMS OF LINEAR INEQUALITIES IN TWO VARIABLES

Linear Inequalities in Two Variables

โ€ข A linear inequality: a mathematical statement with an inequality symbol in which the

highest power of the variable is one .

โ€ข Inequality symbols review

Symbol Indication> greater than< less thanโ‰ฅ greater than or equal toโ‰ค less than or equal to

โ€ข A linear inequality in two variables: a linear inequality contains two variables .

โ€ข Standard linear inequality in two variables

Standard Inequality ExampleAx + By > C 2x + 3y > 6Ax + By < C 3x โ€“ 5y < 17Ax + By โ‰ฅ C 4x + 5y โ‰ฅ 10Ax + By โ‰ค C 6x โ€“ 11y โ‰ค 21

โ€ข Solutions of linear inequalities in two variables: an ordered pair (x, y) that makes the

inequality true .

Example: Determine if (1, 2) satisfies the inequality 3x + 5y < 17 .

?

3(1) + 5(2) < 17 Replace (x, y) by (1, 2) .

?

3 + 10 < 17 โˆš

13 < 17 Correct!

Yes, (1, 2) is a solution A true statement .

Page 4-8

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 91

Algebra I & II Key Concepts, Practice, and Quizzes Unit 4 โ€“ Systems of Equations and Inequalities

Graphing Linear Inequality in Two Variables

Procedure for graphing a linear inequality in two variables

Steps Example: Graph x โ€“ y โ‰ฅ 3.

- Change the inequality symbol to an equal sign . x โ€“ y = 3

- Graph the boundary line of the corresponding equation .(Using x and y intercepts)

x y = x โ€“ 3 (x, y)0 -3 (0, -3)3 0 (3, 0)

- Draw a solid line if the inequality symbol is โ‰ค or โ‰ฅ .

- Draw a dashed line if the inequality symbol is < or > .

- Choose a test point such as (0, 0) . Choose (0, 0)

- If the test point satisfies the inequality, shade x โ€“ y โ‰ฅ 3 ?

the side of the line that contains the test point . 0 โ€“ 0 โ‰ฅ 3 False

- If the test point does not satisfy the inequality, shade the

side of the line that does not contain the test point .

Shade the region that does not contain (0, 0) .

Example: Graph the inequality 2x โ€“ y < 8 .

- โ€œ < โ€ changes to โ€œ=โ€ 2x โ€“ y = 8

- Draw a dashed boundary line (โˆต the inequality symbol is < )

x y = 2x โ€“ 8 (x, y)0 -8 (0, -8)4 0 (4, 0)

- Test point: choose (0, 0) . 2x โ€“ y < 8?

2(0) โ€“ 0 < 8 โˆš

0 < 8 True . Shade the region that contains (0, 0) .

โˆ™(3, 0)

y

x

โˆ™ (0, -8)

y

โˆ™(0, 0)

โˆ™ (0, -3)

โ‰ฅ : Solid line

โˆ™(4, 0)

โˆ™(0, 0)

x

x

y

Page 4-9

Graphing Linear Inequality in Two Variables

Procedure for graphing a linear inequality in two variables

Steps Example: Graph x โ€“ y โ‰ฅ 3.

- Change the inequality symbol to an equal sign . x โ€“ y = 3

- Graph the boundary line of the corresponding equation .(Using x and y intercepts)

x y = x โ€“ 3 (x, y)0 -3 (0, -3)3 0 (3, 0)

- Draw a solid line if the inequality symbol is โ‰ค or โ‰ฅ .

- Draw a dashed line if the inequality symbol is < or > .

- Choose a test point such as (0, 0) . Choose (0, 0)

- If the test point satisfies the inequality, shade x โ€“ y โ‰ฅ 3 ?

the side of the line that contains the test point . 0 โ€“ 0 โ‰ฅ 3 False

- If the test point does not satisfy the inequality, shade the

side of the line that does not contain the test point .

Shade the region that does not contain (0, 0) .

Example: Graph the inequality 2x โ€“ y < 8 .

- โ€œ < โ€ changes to โ€œ=โ€ 2x โ€“ y = 8

- Draw a dashed boundary line (โˆต the inequality symbol is < )

x y = 2x โ€“ 8 (x, y)0 -8 (0, -8)4 0 (4, 0)

- Test point: choose (0, 0) . 2x โ€“ y < 8?

2(0) โ€“ 0 < 8 โˆš

0 < 8 True . Shade the region that contains (0, 0) .

โˆ™(3, 0)

y

x

โˆ™ (0, -8)

y

โˆ™(0, 0)

โˆ™ (0, -3)

โ‰ฅ : Solid line

โˆ™(4, 0)

โˆ™(0, 0)

x

x

y

Page 4-9

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

92 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 4 โ€“ Systems of Equations and Inequalities

Page 4-10

Do not choose the point to test if it is on the solution line.

Example: Graph the inequality y โ‰ฅ 5x.

- โ€œ โ‰ฅ โ€ changes to โ€œ=โ€

- Draw a solid boundary line. (โˆต the inequality symbol is โ‰ฅ )

x y = 5x (x, y) 0 0 (0, 0) 1 5 (1, 5)

- Test point: choose (1, 1) y โ‰ฅ 5x

(0, 0) is on the solution line. ?

1 โ‰ฅ 5 โˆ™ 1 ?

1 > 5 False Shade the region that not contains (1, 1).

Example: Write the linear inequalities whose graph is the shaded region.

1.

y < -2 A dashed line: <

2.

x โ‰ฅ 2 A solid line: โ‰ฅ.

โˆ™ -2

x

y

โˆ™ 0

โˆ™ 0

x

y

โˆ™ 2

โˆ™ (1, 5)

y

It is on the solution line.

y = 5x

x โˆ™ (0, 0)

โˆ™ (1, 1)

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 93

Algebra I & II Key Concepts, Practice, and Quizzes Unit 4 โ€“ Systems of Equations and Inequalities

Page 4-11

Systems of Linear Inequalities

โ€ข A system of linear inequalities in two variables: a group of two or more inequalities with

the same two variables.

Standard Form Example

๏ฟฝ๐ด๐ด๐ด๐ด1๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + ๐ต๐ต๐ต๐ต1๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ > ๐ถ๐ถ๐ถ๐ถ1 ๐ด๐ด๐ด๐ด2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + ๐ต๐ต๐ต๐ต2๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ โ‰ฅ ๐ถ๐ถ๐ถ๐ถ2

2x + 3y < 4 3x โ€“ 5y โ‰ฅ 8

< , > , โ‰ค , โ‰ฅ

โ€ข Solutions of a system of linear inequalities: an ordered pair that satisfies both inequalities.

โ€ข Graphing a system of linear inequalities in two variables

Steps Example: Graph ๏ฟฝ๐’™๐’™๐’™๐’™ โ€“๐’š๐’š๐’š๐’š โ‰ฅ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™ + ๐’š๐’š๐’š๐’š < ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’

- Change the inequality symbols to equal signs ๏ฟฝ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โ€“ ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = 2 (1) 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = 4 (2)

and label with (1) and (2).

- Graph the boundary lines of the corresponding equations.

Draw a dashed line if the symbol is < or > . Draw a solid line if the symbol is โ‰ค or โ‰ฅ .

- Choose a test point (0, 0). Test point (0, 0) x โ€“ y โ‰ฅ 2 2x + y < 4

? ?

0 โˆ’ 0 โ‰ฅ 2 2โˆ™0 + 0 < 4 ร— โˆš

0 โ‰ฅ 2 False 0 < 4 True Shade the region that does not contain Shade the region that contains (0, 0), i.e. below x โ€“ y = 2. (0, 0), i.e below 2x + y = 4.

- The solution set is the region where the shading overlaps. The vertex is (2, 0). The vertex is formed by an intersection of two boundary lines.

Example: Graph the system of inequalities ๏ฟฝ๐’™๐’™๐’™๐’™ โ‰ค ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐Ÿ๐Ÿ โ‰ค ๐ฒ๐ฒ๐ฒ๐ฒ โ‰ค ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐’™๐’™๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š๐’š๐’š > ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

. Find the coordinates of any

vertices formed. ๐’™๐’™๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š๐’š๐’š = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

(1) (2) x y = x โ€“ 2 x y = 4 โ€“2x

0 -2 0 4 2 0 2 0

x y = 1 โ€“ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™

0 1 2 0

x

y

x โ€“ y = 2 ( โ‰ฅ )

โˆ™ (0, 0)

2x + y = 4 (< )

โˆ™ (0, -2)

โˆ™ (0, 4)

y

x

x = 3

y = 4

y = 2

0

x + 2y = 2

โˆ™ (-2, 2)

โˆ™ (-5, 4) โˆ™ (3, 4)

โˆ™ (3, 2)

โˆ™

โˆ™

Vertices (-5, 4) (-2, 2) (3, 4) (3, 2)

โˆ™ (2, 0)

Page 4-11

Systems of Linear Inequalities

โ€ข A system of linear inequalities in two variables: a group of two or more inequalities with

the same two variables.

Standard Form Example

๏ฟฝ๐ด๐ด๐ด๐ด1๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + ๐ต๐ต๐ต๐ต1๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ > ๐ถ๐ถ๐ถ๐ถ1 ๐ด๐ด๐ด๐ด2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + ๐ต๐ต๐ต๐ต2๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ โ‰ฅ ๐ถ๐ถ๐ถ๐ถ2

2x + 3y < 4 3x โ€“ 5y โ‰ฅ 8

< , > , โ‰ค , โ‰ฅ

โ€ข Solutions of a system of linear inequalities: an ordered pair that satisfies both inequalities.

โ€ข Graphing a system of linear inequalities in two variables

Steps Example: Graph ๏ฟฝ๐’™๐’™๐’™๐’™ โ€“๐’š๐’š๐’š๐’š โ‰ฅ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™ + ๐’š๐’š๐’š๐’š < ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’

- Change the inequality symbols to equal signs ๏ฟฝ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โ€“ ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = 2 (1) 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = 4 (2)

and label with (1) and (2).

- Graph the boundary lines of the corresponding equations.

Draw a dashed line if the symbol is < or > . Draw a solid line if the symbol is โ‰ค or โ‰ฅ .

- Choose a test point (0, 0). Test point (0, 0) x โ€“ y โ‰ฅ 2 2x + y < 4

? ?

0 โˆ’ 0 โ‰ฅ 2 2โˆ™0 + 0 < 4 ร— โˆš

0 โ‰ฅ 2 False 0 < 4 True Shade the region that does not contain Shade the region that contains (0, 0), i.e. below x โ€“ y = 2. (0, 0), i.e below 2x + y = 4.

- The solution set is the region where the shading overlaps. The vertex is (2, 0). The vertex is formed by an intersection of two boundary lines.

Example: Graph the system of inequalities ๏ฟฝ๐’™๐’™๐’™๐’™ โ‰ค ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐Ÿ๐Ÿ โ‰ค ๐ฒ๐ฒ๐ฒ๐ฒ โ‰ค ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐’™๐’™๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š๐’š๐’š > ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

. Find the coordinates of any

vertices formed. ๐’™๐’™๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š๐’š๐’š = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

(1) (2) x y = x โ€“ 2 x y = 4 โ€“2x

0 -2 0 4 2 0 2 0

x y = 1 โ€“ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™

0 1 2 0

x

y

x โ€“ y = 2 ( โ‰ฅ )

โˆ™ (0, 0)

2x + y = 4 (< )

โˆ™ (0, -2)

โˆ™ (0, 4)

y

x

x = 3

y = 4

y = 2

0

x + 2y = 2

โˆ™ (-2, 2)

โˆ™ (-5, 4) โˆ™ (3, 4)

โˆ™ (3, 2)

โˆ™

โˆ™

Vertices (-5, 4) (-2, 2) (3, 4) (3, 2)

โˆ™ (2, 0)

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

94 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 4 โ€“ Systems of Equations and Inequalities

Unit 4 Summary

โ€ข A system of linear equationsProperty Numbers of Solution Graph

2ร—2 system2 equations 2 unknowns

๏ฟฝ๐ด๐ด1๐‘ฅ๐‘ฅ + ๐ต๐ต1๐‘ฆ๐‘ฆ = ๐ถ๐ถ1๐ด๐ด2๐‘ฅ๐‘ฅ + ๐ต๐ต2๐‘ฆ๐‘ฆ = ๐ถ๐ถ2

๏ฟฝ3๐‘ฅ๐‘ฅ โˆ’ 4๐‘ฆ๐‘ฆ = 5 5๐‘ฅ๐‘ฅ + 7๐‘ฆ๐‘ฆ = -2

3ร—3 system3 equations 3 unknowns

๏ฟฝ๐ด๐ด1๐‘ฅ๐‘ฅ + ๐ต๐ต1๐‘ฆ๐‘ฆ + ๐ถ๐ถ1๐‘ง๐‘ง = ๐ท๐ท1๐ด๐ด2๐‘ฅ๐‘ฅ + ๐ต๐ต2๐‘ฆ๐‘ฆ + ๐ถ๐ถ2๐‘ง๐‘ง = ๐ท๐ท2๐ด๐ด3๐‘ฅ๐‘ฅ + ๐ต๐ต3๐‘ฆ๐‘ฆ + ๐ถ๐ถ3๐‘ง๐‘ง = ๐ท๐ท3

๏ฟฝ2๐‘ฅ๐‘ฅ โˆ’ 3๐‘ฆ๐‘ฆ + 4๐‘ง๐‘ง = 7

4๐‘ฅ๐‘ฅ โ€“ 2๐‘ฆ๐‘ฆ โˆ’ ๐‘ง๐‘ง = 3 5๐‘ฅ๐‘ฅ โˆ’ 6๐‘ฆ๐‘ฆ + 2๐‘ง๐‘ง = 2

โ€ข The solutions for a system of equations: the values for variables that make all equations in

the system true .

โ€ข Solving systems of equations โ€“ graphing method: Graph both equations in the system on

the coordinate plane . The point(s) at which the lines intersect will be the solution(s) to the

system .

โ€ข Properties of linear equationsProperty Numbers of Solution Lines Graph

consistent& independent one solution lines intersect

consistent& dependent infinite number of solutions lines coincide

(the same line)

inconsistent no solution โˆ… lines are parallel

โ€ข Substitution method: Solve for one variable in one equation and substitute the result into

the other equation to solve another variable . (Objective is to eliminate one of the unknown

variables) .

โ€ข Elimination method: Add or subtract the equations to eliminate one of the variables

(unknowns), then solve the resulting equation in one variable .

โ€ข A linear inequality: a mathematical statement with an inequality symbol in which the

highest power of the variable is one .

โ€ข Standard linear inequalities in two variables

Standard Inequality ExampleAx + By > C 2x + 3y > 6Ax + By < C 3x โˆ’ 5y < 17Ax + By โ‰ฅ C 4x + 5y โ‰ฅ 10Ax + By โ‰ค C 6x โˆ’ 11y โ‰ค 21

Page 4-12

Unit 4 Summary

โ€ข A system of linear equationsProperty Numbers of Solution Graph

2ร—2 system2 equations 2 unknowns

๏ฟฝ๐ด๐ด1๐‘ฅ๐‘ฅ + ๐ต๐ต1๐‘ฆ๐‘ฆ = ๐ถ๐ถ1๐ด๐ด2๐‘ฅ๐‘ฅ + ๐ต๐ต2๐‘ฆ๐‘ฆ = ๐ถ๐ถ2

๏ฟฝ3๐‘ฅ๐‘ฅ โˆ’ 4๐‘ฆ๐‘ฆ = 5 5๐‘ฅ๐‘ฅ + 7๐‘ฆ๐‘ฆ = -2

3ร—3 system3 equations 3 unknowns

๏ฟฝ๐ด๐ด1๐‘ฅ๐‘ฅ + ๐ต๐ต1๐‘ฆ๐‘ฆ + ๐ถ๐ถ1๐‘ง๐‘ง = ๐ท๐ท1๐ด๐ด2๐‘ฅ๐‘ฅ + ๐ต๐ต2๐‘ฆ๐‘ฆ + ๐ถ๐ถ2๐‘ง๐‘ง = ๐ท๐ท2๐ด๐ด3๐‘ฅ๐‘ฅ + ๐ต๐ต3๐‘ฆ๐‘ฆ + ๐ถ๐ถ3๐‘ง๐‘ง = ๐ท๐ท3

๏ฟฝ2๐‘ฅ๐‘ฅ โˆ’ 3๐‘ฆ๐‘ฆ + 4๐‘ง๐‘ง = 7

4๐‘ฅ๐‘ฅ โ€“ 2๐‘ฆ๐‘ฆ โˆ’ ๐‘ง๐‘ง = 3 5๐‘ฅ๐‘ฅ โˆ’ 6๐‘ฆ๐‘ฆ + 2๐‘ง๐‘ง = 2

โ€ข The solutions for a system of equations: the values for variables that make all equations in

the system true .

โ€ข Solving systems of equations โ€“ graphing method: Graph both equations in the system on

the coordinate plane . The point(s) at which the lines intersect will be the solution(s) to the

system .

โ€ข Properties of linear equationsProperty Numbers of Solution Lines Graph

consistent& independent one solution lines intersect

consistent& dependent infinite number of solutions lines coincide

(the same line)

inconsistent no solution โˆ… lines are parallel

โ€ข Substitution method: Solve for one variable in one equation and substitute the result into

the other equation to solve another variable . (Objective is to eliminate one of the unknown

variables) .

โ€ข Elimination method: Add or subtract the equations to eliminate one of the variables

(unknowns), then solve the resulting equation in one variable .

โ€ข A linear inequality: a mathematical statement with an inequality symbol in which the

highest power of the variable is one .

โ€ข Standard linear inequalities in two variables

Standard Inequality ExampleAx + By > C 2x + 3y > 6Ax + By < C 3x โˆ’ 5y < 17Ax + By โ‰ฅ C 4x + 5y โ‰ฅ 10Ax + By โ‰ค C 6x โˆ’ 11y โ‰ค 21

Page 4-12

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 95

Algebra I & II Key Concepts, Practice, and Quizzes Unit 4 โ€“ Systems of Equations and Inequalities

Page 4-13

โ€ข Solutions of linear inequalities in two variables: an ordered pair (x, y) that makes the

inequality true.

โ€ข Procedure for graphing a linear inequality in two variables

Change the inequality symbol to an equal sign.

Graph the boundary line of the corresponding equation.

o Draw a solid line if the inequality symbol is โ‰ค or โ‰ฅ . o Draw a dashed line if the inequality symbol is < or >.

Choose a test point such as (0, 0). o If the test point satisfies the inequality, shade the side of the line that contains the test point. o If the test point does not satisfy the inequality, shade the side of the line that does not contain

the test point.

โ€ข Do not choose the point to test if it is on the solution line.

โ€ข A system of linear inequalities in two variables

Standard Form Example

๏ฟฝ ๐ด๐ด๐ด๐ด1๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + ๐ต๐ต๐ต๐ต1๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ > ๐ถ๐ถ๐ถ๐ถ1 ๐ด๐ด๐ด๐ด2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + ๐ต๐ต๐ต๐ต2๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ โ‰ฅ ๐ถ๐ถ๐ถ๐ถ2

2x + 3y < 4 3x โˆ’ 5y โ‰ฅ 8

< , > , โ‰ค , โ‰ฅ

โ€ข Graphing a system of linear inequalities in two variables

Change the inequality symbols to equal signs and label with (1) and (2).

Graph the boundary lines of the corresponding equations.

o Draw a solid line if the inequality symbol is โ‰ค or โ‰ฅ . o Draw a dashed line if the inequality symbol is < or >.

Choose a test point (0, 0).

o If the test point satisfies the inequality, shade the side of the line that contains the test point. o If the test point does not satisfy the inequality, shade the side of the line that does not contain

the test point.

The solution set is the region where the shading overlaps.

A vertex is formed by an intersection of two boundary lines.

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

96 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 4 โ€“ Systems of Equations and Inequalities

PRACTICE QUIZ

Unit 4 Systems of Equations & Inequalities

1. Solve the following system graphically .

๏ฟฝ2๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ = 1 3๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ = 4

2. a. Solve the following system by substitution .

๏ฟฝ2๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ = 3 3๐‘ฅ๐‘ฅ โˆ’ 2๐‘ฆ๐‘ฆ = 1

b. Solve the following system by elimination .

๏ฟฝ 1

3๐‘ฅ๐‘ฅ + 1

2๐‘ฆ๐‘ฆ โˆ’ 3 = 0

3

4๐‘ฅ๐‘ฅ + 1

3๐‘ฆ๐‘ฆ โˆ’ 2 = 0

3. The perimeter of a rectangle field is 140m . The length is 10m more than

4 times the width . Determine the dimension of the rectangle field .

4 . Graph the inequality .

a . 3x + y > 4

b . y โ‰ค 3x

5. Graph the system of inequalities ๏ฟฝ 2๐‘ฅ๐‘ฅ โ€“ ๐‘ฆ๐‘ฆ โ‰ค -2 4๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ > 2

.

Page 7

PRACTICE QUIZ

Unit 4 Systems of Equations & Inequalities

1. Solve the following system graphically .

๏ฟฝ2๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ = 1 3๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ = 4

2. a. Solve the following system by substitution .

๏ฟฝ2๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ = 3 3๐‘ฅ๐‘ฅ โˆ’ 2๐‘ฆ๐‘ฆ = 1

b. Solve the following system by elimination .

๏ฟฝ 1

3๐‘ฅ๐‘ฅ + 1

2๐‘ฆ๐‘ฆ โˆ’ 3 = 0

3

4๐‘ฅ๐‘ฅ + 1

3๐‘ฆ๐‘ฆ โˆ’ 2 = 0

3. The perimeter of a rectangle field is 140m . The length is 10m more than

4 times the width . Determine the dimension of the rectangle field .

4 . Graph the inequality .

a . 3x + y > 4

b . y โ‰ค 3x

5. Graph the system of inequalities ๏ฟฝ 2๐‘ฅ๐‘ฅ โ€“ ๐‘ฆ๐‘ฆ โ‰ค -2 4๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ > 2

.

Page 7

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 97

Algebra I & II Key Concepts, Practice, and Quizzes Unit 5 โ€“ Polynomial Functions

UNIT 5 POLYNOMIAL FUNCTIONS

5-1 ADDITION & SUBTRACTION OF POLYNOMIALS

Polynomials

โ€ข Review basic algebraic terms

Algebraic Term Description Examplealgebraic expression A mathematical phrase that contains numbers,

variables, and arithmetic operations . 9x2 โ€“ x + 3

coefficient The number in front of a variable . 9, -1

termA term can be a constant, variable, or the product of a number and variable .(Terms are separated by a plus or minus sign .)

9x2 , - x, 3

โ€ข Monomial: an algebraic expression consisting of just one term . (The prefix โ€œmonoโ€ means one .)

Example: 3x, 7y2

โ€ข Binomial: an algebraic expression consisting of two terms . (The prefix โ€œbi-โ€ means two .)

Example: ax + b , 9t2 โ€“ 2t

โ€ข Trinomial: an algebraic expression consisting of three terms . (The prefix โ€œtri-โ€ means three .)

Example: ax2 + bx + c , - 4qp2 + 3q + 5

โ€ข Polynomial: an algebraic expression consisting of two or more terms . (The prefix โ€œpoly-โ€

means many .)

Example: 5x2 โ€“ 2x + 6y + 1 , -2a2 โ€“ 2b + 6ab + a โ€“ 5

โ€ข Summary

Name Example Coefficientmonomial (one term) 7a 7binomial (two terms) 3x โ€“ 5 3trinomial (three terms) -4x2 + xy + 7 -4, 1polynomial (two or more terms) 2pq + 4p3 + 11 + p 2, 4, 1

Note: A polynomial uses only the operations of addition, subtraction, multiplication (no division), and non-negative integer exponents .

Example: 2๐‘ฅ๐‘ฅ+7๐‘ฆ๐‘ฆโˆ’2

, 3๐‘Ž๐‘Ž๐‘Ž๐‘Ž4๐‘Ž๐‘Ž2๐‘Ž๐‘Ž+5+๐‘Ž๐‘Ž3

, and 3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2 โˆ’ 1๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ-2 are algebraic expressions but not polynomials .

division negative exponent: 1๐‘ฅ๐‘ฅ

= ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅโˆ’1

-x = (-1)(x)

Page 5-1

UNIT 5 POLYNOMIAL FUNCTIONS

5-1 ADDITION & SUBTRACTION OF POLYNOMIALS

Polynomials

โ€ข Review basic algebraic terms

Algebraic Term Description Examplealgebraic expression A mathematical phrase that contains numbers,

variables, and arithmetic operations . 9x2 โ€“ x + 3

coefficient The number in front of a variable . 9, -1

termA term can be a constant, variable, or the product of a number and variable .(Terms are separated by a plus or minus sign .)

9x2 , - x, 3

โ€ข Monomial: an algebraic expression consisting of just one term . (The prefix โ€œmonoโ€ means one .)

Example: 3x, 7y2

โ€ข Binomial: an algebraic expression consisting of two terms . (The prefix โ€œbi-โ€ means two .)

Example: ax + b , 9t2 โ€“ 2t

โ€ข Trinomial: an algebraic expression consisting of three terms . (The prefix โ€œtri-โ€ means three .)

Example: ax2 + bx + c , - 4qp2 + 3q + 5

โ€ข Polynomial: an algebraic expression consisting of two or more terms . (The prefix โ€œpoly-โ€

means many .)

Example: 5x2 โ€“ 2x + 6y + 1 , -2a2 โ€“ 2b + 6ab + a โ€“ 5

โ€ข Summary

Name Example Coefficientmonomial (one term) 7a 7binomial (two terms) 3x โ€“ 5 3trinomial (three terms) -4x2 + xy + 7 -4, 1polynomial (two or more terms) 2pq + 4p3 + 11 + p 2, 4, 1

Note: A polynomial uses only the operations of addition, subtraction, multiplication (no division), and non-negative integer exponents .

Example: 2๐‘ฅ๐‘ฅ+7๐‘ฆ๐‘ฆโˆ’2

, 3๐‘Ž๐‘Ž๐‘Ž๐‘Ž4๐‘Ž๐‘Ž2๐‘Ž๐‘Ž+5+๐‘Ž๐‘Ž3

, and 3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2 โˆ’ 1๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ-2 are algebraic expressions but not polynomials .

division negative exponent: 1๐‘ฅ๐‘ฅ

= ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅโˆ’1

-x = (-1)(x)

Page 5-1

UNIT 5 POLYNOMIAL FUNCTIONS

5-1 ADDITION & SUBTRACTION OF POLYNOMIALS

Polynomials

โ€ข Review basic algebraic terms

Algebraic Term Description Examplealgebraic expression A mathematical phrase that contains numbers,

variables, and arithmetic operations . 9x2 โ€“ x + 3

coefficient The number in front of a variable . 9, -1

termA term can be a constant, variable, or the product of a number and variable .(Terms are separated by a plus or minus sign .)

9x2 , - x, 3

โ€ข Monomial: an algebraic expression consisting of just one term . (The prefix โ€œmonoโ€ means one .)

Example: 3x, 7y2

โ€ข Binomial: an algebraic expression consisting of two terms . (The prefix โ€œbi-โ€ means two .)

Example: ax + b , 9t2 โ€“ 2t

โ€ข Trinomial: an algebraic expression consisting of three terms . (The prefix โ€œtri-โ€ means three .)

Example: ax2 + bx + c , - 4qp2 + 3q + 5

โ€ข Polynomial: an algebraic expression consisting of two or more terms . (The prefix โ€œpoly-โ€

means many .)

Example: 5x2 โ€“ 2x + 6y + 1 , -2a2 โ€“ 2b + 6ab + a โ€“ 5

โ€ข Summary

Name Example Coefficientmonomial (one term) 7a 7binomial (two terms) 3x โ€“ 5 3trinomial (three terms) -4x2 + xy + 7 -4, 1polynomial (two or more terms) 2pq + 4p3 + 11 + p 2, 4, 1

Note: A polynomial uses only the operations of addition, subtraction, multiplication (no division), and non-negative integer exponents .

Example: 2๐‘ฅ๐‘ฅ+7๐‘ฆ๐‘ฆโˆ’2

, 3๐‘Ž๐‘Ž๐‘Ž๐‘Ž4๐‘Ž๐‘Ž2๐‘Ž๐‘Ž+5+๐‘Ž๐‘Ž3

, and 3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2 โˆ’ 1๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ-2 are algebraic expressions but not polynomials .

division negative exponent: 1๐‘ฅ๐‘ฅ

= ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅโˆ’1

-x = (-1)(x)

Page 5-1

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

98 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 5 โ€“ Polynomial Functions

Degree of Polynomial

โ€ข The degree of a term with one variable: the exponent (power) of its variable .

Example: 5x2 degree: 2-3t7 degree: 7

โ€ข The degree of a term with more variables: the sum of the exponents of its variables .

Example: -3x3 y5 z2 degree: 3 + 5 + 2 = 10

โ€ข The degree of a polynomial with more variables: the highest degree of any individual term .Example: 4ab3 + 3a2b2c3 โ€“ 5a + 1 degree: 7

โ€ข The leading term of a polynomial: the term with the highest degree in the polynomial .

Example: 4ab3 + 3ab2c3 โ€“ 5a + 1 leading term: 3ab2c3

โ€ข The leading coefficient: the coefficient of the leading term .

Example: 4ab3 + 3ab2c3 โ€“ 5a + 1 leading coefficient: 3

โ€ข Examples of polynomial

โ€ข Descending order: the power of a variable decreases for each succeeding term.

Example: 2๐’™๐’™๐Ÿ‘๐Ÿ‘ + 5๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐’™๐’™ + 2

-13๐‘Ž๐‘Ž๐’ƒ๐’ƒ๐Ÿ’๐Ÿ’ + 21๐’ƒ๐’ƒ๐Ÿ‘๐Ÿ‘ โˆ’ ๐‘Ž๐‘Ž๐’ƒ๐’ƒ๐Ÿ๐Ÿ + ๐’ƒ๐’ƒ โˆ’ 34 The descending order of power b.

โ€ข Ascending order: the power of a variable increases for each succeeding term .

Example: -9 + 7๐’š๐’š + 4๐’š๐’š๐Ÿ๐Ÿ โˆ’ 3๐’š๐’š๐Ÿ‘๐Ÿ‘

1 + 23๐’•๐’•๐‘ข๐‘ข + 2๐’•๐’•๐Ÿ๐Ÿ๐‘ข๐‘ข3 โˆ’ 5๐’•๐’•๐Ÿ‘๐Ÿ‘ + ๐’•๐’•๐Ÿ’๐Ÿ’ The ascending order of power t.

Polynomial 3t2 + t3 โ€“ 5 2p2q3 + 5r โ€“ 7p3q2rterm 3t2 , t3, - 5 2p2q3 , 5r , - 7p3q2r

degree of the term 2 , 3, 0 5 , 1 , 6

degree of the polynomial 3 6

leading term t3 - 7p3q2r

leading coefficient 1 -7

2 + 2 + 3 = 7

1 + 2 + 3 = 6

a = a1

Page 5-2

Degree of Polynomial

โ€ข The degree of a term with one variable: the exponent (power) of its variable .

Example: 5x2 degree: 2-3t7 degree: 7

โ€ข The degree of a term with more variables: the sum of the exponents of its variables .

Example: -3x3 y5 z2 degree: 3 + 5 + 2 = 10

โ€ข The degree of a polynomial with more variables: the highest degree of any individual term .Example: 4ab3 + 3a2b2c3 โ€“ 5a + 1 degree: 7

โ€ข The leading term of a polynomial: the term with the highest degree in the polynomial .

Example: 4ab3 + 3ab2c3 โ€“ 5a + 1 leading term: 3ab2c3

โ€ข The leading coefficient: the coefficient of the leading term .

Example: 4ab3 + 3ab2c3 โ€“ 5a + 1 leading coefficient: 3

โ€ข Examples of polynomial

โ€ข Descending order: the power of a variable decreases for each succeeding term.

Example: 2๐’™๐’™๐Ÿ‘๐Ÿ‘ + 5๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐’™๐’™ + 2

-13๐‘Ž๐‘Ž๐’ƒ๐’ƒ๐Ÿ’๐Ÿ’ + 21๐’ƒ๐’ƒ๐Ÿ‘๐Ÿ‘ โˆ’ ๐‘Ž๐‘Ž๐’ƒ๐’ƒ๐Ÿ๐Ÿ + ๐’ƒ๐’ƒ โˆ’ 34 The descending order of power b.

โ€ข Ascending order: the power of a variable increases for each succeeding term .

Example: -9 + 7๐’š๐’š + 4๐’š๐’š๐Ÿ๐Ÿ โˆ’ 3๐’š๐’š๐Ÿ‘๐Ÿ‘

1 + 23๐’•๐’•๐‘ข๐‘ข + 2๐’•๐’•๐Ÿ๐Ÿ๐‘ข๐‘ข3 โˆ’ 5๐’•๐’•๐Ÿ‘๐Ÿ‘ + ๐’•๐’•๐Ÿ’๐Ÿ’ The ascending order of power t.

Polynomial 3t2 + t3 โ€“ 5 2p2q3 + 5r โ€“ 7p3q2rterm 3t2 , t3, - 5 2p2q3 , 5r , - 7p3q2r

degree of the term 2 , 3, 0 5 , 1 , 6

degree of the polynomial 3 6

leading term t3 - 7p3q2r

leading coefficient 1 -7

2 + 2 + 3 = 7

1 + 2 + 3 = 6

a = a1

Page 5-2

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 99

Algebra I & II Key Concepts, Practice, and Quizzes Unit 5 โ€“ Polynomial Functions

Evaluating Polynomial Functions

โ€ข Polynomial function: The expression used to describe the function is a polynomial .

Example: f (x) = 2x3 โ€“3x 2 + 7x +8

g(x) = -3x4+ 5x2 โ€“ 2

โ€ข Evaluating polynomial functions

Example: 1. If f (x) = 2x3 + 1, find f (2) and f (-1) .

f (2) = 2(2)3 + 1 = 16 + 1 = 17 Replace x with 2 .

f (-1) = 2(-1)3 + 1 = -2 + 1 = -1 Replace x with -1 .

2. If R (x) = -8x3 + x2 + 2, find R (0) and R ๏ฟฝ12๏ฟฝ .

R (0) = - 8(0)3 + (0)2 + 2 = 2 Replace x with 0 .

R ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ = - 8๏ฟฝ1

2๏ฟฝ3+ ๏ฟฝ1

2๏ฟฝ2

+ 2 Replace x with 12

.

= - 1 + 14

+ 2 = ๐Ÿ“๐Ÿ“๐Ÿ’๐Ÿ’

Example: The polynomial function C (x) = 3,000 + 0 .5x2 can be used to determine the

total cost (in dollars) of producing x laptops in an electronics firm .

1. What is the total cost of producing 10 laptops?

2. Use the following graph to estimate C (40) .

Solution: 1. C (10) = 3,000 + 0 .5(10)2 C (x) = 3,000 + 0 .5x2 , replace x with 10 .

= $3,050

2. C (40): locate x = 40 on the x axis, move vertically to the graph, and then

move horizontally to the C(x) axis . Thus C(40) โ‰ˆ $3,800 .

x

โˆ™ (40, 3,800)

1,000 โˆ™

4,000 โˆ™

โˆ™10

โˆ™20

โˆ™30

โˆ™40

2,000 โˆ™

3,000 โˆ™

C (x)

Polynomials ๐‘“๐‘“๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) & g(x) are functions .

x = number of laptops

Page 5-3

Evaluating Polynomial Functions

โ€ข Polynomial function: The expression used to describe the function is a polynomial .

Example: f (x) = 2x3 โ€“3x 2 + 7x +8

g(x) = -3x4+ 5x2 โ€“ 2

โ€ข Evaluating polynomial functions

Example: 1. If f (x) = 2x3 + 1, find f (2) and f (-1) .

f (2) = 2(2)3 + 1 = 16 + 1 = 17 Replace x with 2 .

f (-1) = 2(-1)3 + 1 = -2 + 1 = -1 Replace x with -1 .

2. If R (x) = -8x3 + x2 + 2, find R (0) and R ๏ฟฝ12๏ฟฝ .

R (0) = - 8(0)3 + (0)2 + 2 = 2 Replace x with 0 .

R ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ = - 8๏ฟฝ1

2๏ฟฝ3+ ๏ฟฝ1

2๏ฟฝ2

+ 2 Replace x with 12

.

= - 1 + 14

+ 2 = ๐Ÿ“๐Ÿ“๐Ÿ’๐Ÿ’

Example: The polynomial function C (x) = 3,000 + 0 .5x2 can be used to determine the

total cost (in dollars) of producing x laptops in an electronics firm .

1. What is the total cost of producing 10 laptops?

2. Use the following graph to estimate C (40) .

Solution: 1. C (10) = 3,000 + 0 .5(10)2 C (x) = 3,000 + 0 .5x2 , replace x with 10 .

= $3,050

2. C (40): locate x = 40 on the x axis, move vertically to the graph, and then

move horizontally to the C(x) axis . Thus C(40) โ‰ˆ $3,800 .

x

โˆ™ (40, 3,800)

1,000 โˆ™

4,000 โˆ™

โˆ™10

โˆ™20

โˆ™30

โˆ™40

2,000 โˆ™

3,000 โˆ™

C (x)

Polynomials ๐‘“๐‘“๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) & g(x) are functions .

x = number of laptops

Page 5-3

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

100 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 5 โ€“ Polynomial Functions

Adding and Subtracting Polynomials

โ€ข Adding or subtracting polynomials

Example: Find the sum of 2x3 โ€“ 3x2 + x โ€“ 4 and x3 + 4x2 + 2x + 1 .

Steps Solution

(2x3 โ€“ 3x2 + x โ€“ 4) + (x3 + 4x2 + 2x + 1)

- Regroup like terms . = (2x3 + x3) + (-3x2 + 4x2) + (x + 2x) + (-4 + 1)

- Combine like terms . = 3x3 + x2 + 3x โ€“ 3

Example: Find the difference of 5x2 + 4x โ€“ 2 and 2x2 โ€“ 3x + 13 .

Steps Solution

(5x2 + 4x โ€“ 2) โ€“ (2x2 โ€“ 3x + 13)

- Remove parentheses . = 5x2 + 4x โ€“ 2 โ€“ 2x2 + 3x โ€“ 13(Reverse each sign in second parentheses .)

- Regroup like terms . = (5x2 โ€“ 2x2) + (4x + 3x) + (-2 โ€“ 13)

- Combine like terms . = 3x2 + 7x โ€“ 15

โ€ข Column method

Example: Find the sum of 3x3 โ€“ 5x2 + 7x โ€“ 3 and 2x3 + 3x + 5 .

Steps Solution

- Line up like terms in columns . 3x3 โ€“ 5x2 + 7x โ€“ 3- Add . + 2x3 + 3x + 5 Leave space for the missing term .

5x3 โ€“ 5x2 +10x + 2

Example: Find the difference of (5x2 โ€“ 2x + 3) โ€“ (2x2 โ€“ 5) .

Steps Solution

- Line up like terms in columns: 5x2 โ€“ 2x + 3 Subtrahend

- Change signs in minuend and add: + - 2x2 + 5 Minuend

(Leave space for the missing term .) 3x2 โ€“ 2x + 8 Difference

โ€ข The opposite of the polynomial: - p: the opposite of the polynomialp: polynomial p + (-p) = 0

Example: Write two expressions for the opposite of the polynomial .7a4b2 โ€“ 3a3b โ€“ 4a2

Solution: opposite expression: - (7a4b2 โ€“ 3a3b โ€“ 4a2)or -7a4b2 + 3a3b + 4a2

Replace each term with its opposite .

Page 5-4

Adding and Subtracting Polynomials

โ€ข Adding or subtracting polynomials

Example: Find the sum of 2x3 โ€“ 3x2 + x โ€“ 4 and x3 + 4x2 + 2x + 1 .

Steps Solution

(2x3 โ€“ 3x2 + x โ€“ 4) + (x3 + 4x2 + 2x + 1)

- Regroup like terms . = (2x3 + x3) + (-3x2 + 4x2) + (x + 2x) + (-4 + 1)

- Combine like terms . = 3x3 + x2 + 3x โ€“ 3

Example: Find the difference of 5x2 + 4x โ€“ 2 and 2x2 โ€“ 3x + 13 .

Steps Solution

(5x2 + 4x โ€“ 2) โ€“ (2x2 โ€“ 3x + 13)

- Remove parentheses . = 5x2 + 4x โ€“ 2 โ€“ 2x2 + 3x โ€“ 13(Reverse each sign in second parentheses .)

- Regroup like terms . = (5x2 โ€“ 2x2) + (4x + 3x) + (-2 โ€“ 13)

- Combine like terms . = 3x2 + 7x โ€“ 15

โ€ข Column method

Example: Find the sum of 3x3 โ€“ 5x2 + 7x โ€“ 3 and 2x3 + 3x + 5 .

Steps Solution

- Line up like terms in columns . 3x3 โ€“ 5x2 + 7x โ€“ 3- Add . + 2x3 + 3x + 5 Leave space for the missing term .

5x3 โ€“ 5x2 +10x + 2

Example: Find the difference of (5x2 โ€“ 2x + 3) โ€“ (2x2 โ€“ 5) .

Steps Solution

- Line up like terms in columns: 5x2 โ€“ 2x + 3 Subtrahend

- Change signs in minuend and add: + - 2x2 + 5 Minuend

(Leave space for the missing term .) 3x2 โ€“ 2x + 8 Difference

โ€ข The opposite of the polynomial: - p: the opposite of the polynomialp: polynomial p + (-p) = 0

Example: Write two expressions for the opposite of the polynomial .7a4b2 โ€“ 3a3b โ€“ 4a2

Solution: opposite expression: - (7a4b2 โ€“ 3a3b โ€“ 4a2)or -7a4b2 + 3a3b + 4a2

Replace each term with its opposite .

Page 5-4

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 101

Algebra I & II Key Concepts, Practice, and Quizzes Unit 5 โ€“ Polynomial Functions

Page 5-5

5-2 MULTIPLYING POLYNOMIALS

Multiplication of Polynomials

โ€ข Multiplying monomials

Example: (-2x3 y2)(3x2

y4) = (-2 โˆ™ 3)(x3โˆ™ x2)(y2 โˆ™ y4) Multiply the coefficients and add exponents.

= -6x5 y6 am โˆ™ an = am+n

โ€ข Multiplying monomial and binomial

Example: 3x3 (5x2 โ€“ 2x) = (3x3)(5x2) โ€“ (3x3)(2x) Distributive property: a (b + c) = ab + ac

= (3โˆ™5)(x3+2) โ€“ (3โˆ™2)(x3+1) Multiply the coefficients and add exponents.

= 15x5 โ€“ 6x4 am โˆ™ an = am+n

Note: The distributive property can be used to multiply a polynomial by a monomial.

Example: 5ab2 (2a2b + ab2 โ€“ a) Distribute

= (5ab2)(2a2b) + (5ab2)(ab2) + (5ab2)(-a) Multiply the coefficients and add exponents.

= 10a3b3 + 5a2b4 โ€“ 5a2b2 am โˆ™ an = am+n

โ€ข Multiplying binomial and polynomial

Example: (3a2 + 5) (2a2 + a โ€“ 3)

= (3a2) (2a2) + (3a2) a + (3a2)(-3) + 5(2a2) + 5a + 5(-3) Distribute

= 6a4 + 3a3 โ€“ 9a2 + 10a2 + 5a โ€“ 15 Combine like terms.

= 6a4 + 3a3 + a2 + 5a โ€“ 15 Tip: The distributive property is handy to get rid of parentheses.

โ€ข Column method Example: Find the product: 2a2 + a โ€“ 3 and 3a2 + 5.

Steps Solution

- Line up like terms in columns. 2a2 + a โ€“ 3 (Leave space for the missing term.) ร— 3a2 + 5

10a2 + 5a โ€“15 5 times (2a2 + a โ€“ 3) - Multiply. + 6a4 + 3a3 โ€“ 9a2

3a2 times (2a2 + a โ€“ 3)

6a4 + 3a3 + a2 + 5a โ€“ 15

Tip: the same as 213 ร— 102

426 + 213 21726

Page 5-5

5-2 MULTIPLYING POLYNOMIALS

Multiplication of Polynomials

โ€ข Multiplying monomials

Example: (-2x3 y2)(3x2

y4) = (-2 โˆ™ 3)(x3โˆ™ x2)(y2 โˆ™ y4) Multiply the coefficients and add exponents.

= -6x5 y6 am โˆ™ an = am+n

โ€ข Multiplying monomial and binomial

Example: 3x3 (5x2 โ€“ 2x) = (3x3)(5x2) โ€“ (3x3)(2x) Distributive property: a (b + c) = ab + ac

= (3โˆ™5)(x3+2) โ€“ (3โˆ™2)(x3+1) Multiply the coefficients and add exponents.

= 15x5 โ€“ 6x4 am โˆ™ an = am+n

Note: The distributive property can be used to multiply a polynomial by a monomial.

Example: 5ab2 (2a2b + ab2 โ€“ a) Distribute

= (5ab2)(2a2b) + (5ab2)(ab2) + (5ab2)(-a) Multiply the coefficients and add exponents.

= 10a3b3 + 5a2b4 โ€“ 5a2b2 am โˆ™ an = am+n

โ€ข Multiplying binomial and polynomial

Example: (3a2 + 5) (2a2 + a โ€“ 3)

= (3a2) (2a2) + (3a2) a + (3a2)(-3) + 5(2a2) + 5a + 5(-3) Distribute

= 6a4 + 3a3 โ€“ 9a2 + 10a2 + 5a โ€“ 15 Combine like terms.

= 6a4 + 3a3 + a2 + 5a โ€“ 15 Tip: The distributive property is handy to get rid of parentheses.

โ€ข Column method Example: Find the product: 2a2 + a โ€“ 3 and 3a2 + 5.

Steps Solution

- Line up like terms in columns. 2a2 + a โ€“ 3 (Leave space for the missing term.) ร— 3a2 + 5

10a2 + 5a โ€“15 5 times (2a2 + a โ€“ 3) - Multiply. + 6a4 + 3a3 โ€“ 9a2

3a2 times (2a2 + a โ€“ 3)

6a4 + 3a3 + a2 + 5a โ€“ 15

Tip: the same as 213 ร— 102

426 + 213 21726

Page 5-5

5-2 MULTIPLYING POLYNOMIALS

Multiplication of Polynomials

โ€ข Multiplying monomials

Example: (-2x3 y2)(3x2

y4) = (-2 โˆ™ 3)(x3โˆ™ x2)(y2 โˆ™ y4) Multiply the coefficients and add exponents.

= -6x5 y6 am โˆ™ an = am+n

โ€ข Multiplying monomial and binomial

Example: 3x3 (5x2 โ€“ 2x) = (3x3)(5x2) โ€“ (3x3)(2x) Distributive property: a (b + c) = ab + ac

= (3โˆ™5)(x3+2) โ€“ (3โˆ™2)(x3+1) Multiply the coefficients and add exponents.

= 15x5 โ€“ 6x4 am โˆ™ an = am+n

Note: The distributive property can be used to multiply a polynomial by a monomial.

Example: 5ab2 (2a2b + ab2 โ€“ a) Distribute

= (5ab2)(2a2b) + (5ab2)(ab2) + (5ab2)(-a) Multiply the coefficients and add exponents.

= 10a3b3 + 5a2b4 โ€“ 5a2b2 am โˆ™ an = am+n

โ€ข Multiplying binomial and polynomial

Example: (3a2 + 5) (2a2 + a โ€“ 3)

= (3a2) (2a2) + (3a2) a + (3a2)(-3) + 5(2a2) + 5a + 5(-3) Distribute

= 6a4 + 3a3 โ€“ 9a2 + 10a2 + 5a โ€“ 15 Combine like terms.

= 6a4 + 3a3 + a2 + 5a โ€“ 15 Tip: The distributive property is handy to get rid of parentheses.

โ€ข Column method Example: Find the product: 2a2 + a โ€“ 3 and 3a2 + 5.

Steps Solution

- Line up like terms in columns. 2a2 + a โ€“ 3 (Leave space for the missing term.) ร— 3a2 + 5

10a2 + 5a โ€“15 5 times (2a2 + a โ€“ 3) - Multiply. + 6a4 + 3a3 โ€“ 9a2

3a2 times (2a2 + a โ€“ 3)

6a4 + 3a3 + a2 + 5a โ€“ 15

Tip: the same as 213 ร— 102

426 + 213 21726

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

102 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 5 โ€“ Polynomial Functions

FOIL Method to Multiply Binomials

โ€ข The FOIL method: an easy way to find the product of two binomials .

(a + b) (c + d) = ac + ad + bc + bd F O I L Example

F - First terms first term ร— first term (a + b) (c + d) (x + 2) (x + 3)O - Outer terms outside term ร— outside term (a + b) (c + d) (x + 2) (x + 3)I - Inner terms inside term ร— inside term (a + b) (c + d) (x + 2) (x + 3)L - Last terms last term ร— last term (a + b) (c + d) (x + 2) (x + 3)

FOIL Method Example(a + b) (c + d) = ac + ad + bc + bd F O I L

(x + 2) (x + 3) = xยทx + xยท3 + 2ยทx + 2โˆ™3 = x2 + 5x + 6 F O I L

Tip: - Multiplication of binomials also uses distributive property .

- Each term of one binomial multiplied by each term of the other by repeatedly using the distributive property . (x + 2)(x + 3) = x(x + 3) + 2(x + 3) = xยทx + xโˆ™3 + 2โˆ™x + 2โˆ™3

โ€ข Multiplying binomials (2 terms ร— 2 terms)

Example: Find the following products .

1. (2x โ€“ 3) (3x โ€“ 4) = 2x โˆ™ 3x + 2x (- 4) โ€“ 3 โˆ™ 3x โ€“ 3 (-4) FOIL

= 6x2 โ€“ 8x โ€“ 9x + 12 anam = a n+ m

= 6x2 โ€“ 17x + 12 Combine like terms .

2. (3r โ€“ t) (5r + t2) = 3r โˆ™ 5r + 3r โˆ™ t2 โ€“ t โˆ™ 5r โ€“ t โˆ™ t2 FOIL

= 15r2 + 3r t2 โ€“ 5r t โ€“ t3anam = a n+ m

3. (xy2 + y) (2x2y + x) = xy2 โˆ™ 2x2 y + xy2 โˆ™ x + y โˆ™ 2x2 y + y โˆ™ x FOIL

= 2x3 y3 + x2y2 + 2x2 y2 + x y anam = a n+ m

= 2x3 y3 + 3x2y2 + x y Combine like terms .

4. (a + 2) (a + 1) (a โ€“ 1) = (a2 + 3a + 2) (a โ€“ 1) FOIL: (a + 2) (a + 1)

= a3โ€“ a2 + 3a2 โ€“ 3a + 2a โ€“ 2 Distribute

= a3 + 2a2 โ€“ a โ€“ 2 Combine like terms .

F O I L

Page 5-6

FOIL Method to Multiply Binomials

โ€ข The FOIL method: an easy way to find the product of two binomials .

(a + b) (c + d) = ac + ad + bc + bd F O I L Example

F - First terms first term ร— first term (a + b) (c + d) (x + 2) (x + 3)O - Outer terms outside term ร— outside term (a + b) (c + d) (x + 2) (x + 3)I - Inner terms inside term ร— inside term (a + b) (c + d) (x + 2) (x + 3)L - Last terms last term ร— last term (a + b) (c + d) (x + 2) (x + 3)

FOIL Method Example(a + b) (c + d) = ac + ad + bc + bd F O I L

(x + 2) (x + 3) = xยทx + xยท3 + 2ยทx + 2โˆ™3 = x2 + 5x + 6 F O I L

Tip: - Multiplication of binomials also uses distributive property .

- Each term of one binomial multiplied by each term of the other by repeatedly using the distributive property . (x + 2)(x + 3) = x(x + 3) + 2(x + 3) = xยทx + xโˆ™3 + 2โˆ™x + 2โˆ™3

โ€ข Multiplying binomials (2 terms ร— 2 terms)

Example: Find the following products .

1. (2x โ€“ 3) (3x โ€“ 4) = 2x โˆ™ 3x + 2x (- 4) โ€“ 3 โˆ™ 3x โ€“ 3 (-4) FOIL

= 6x2 โ€“ 8x โ€“ 9x + 12 anam = a n+ m

= 6x2 โ€“ 17x + 12 Combine like terms .

2. (3r โ€“ t) (5r + t2) = 3r โˆ™ 5r + 3r โˆ™ t2 โ€“ t โˆ™ 5r โ€“ t โˆ™ t2 FOIL

= 15r2 + 3r t2 โ€“ 5r t โ€“ t3anam = a n+ m

3. (xy2 + y) (2x2y + x) = xy2 โˆ™ 2x2 y + xy2 โˆ™ x + y โˆ™ 2x2 y + y โˆ™ x FOIL

= 2x3 y3 + x2y2 + 2x2 y2 + x y anam = a n+ m

= 2x3 y3 + 3x2y2 + x y Combine like terms .

4. (a + 2) (a + 1) (a โ€“ 1) = (a2 + 3a + 2) (a โ€“ 1) FOIL: (a + 2) (a + 1)

= a3โ€“ a2 + 3a2 โ€“ 3a + 2a โ€“ 2 Distribute

= a3 + 2a2 โ€“ a โ€“ 2 Combine like terms .

F O I L

Page 5-6

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 103

Algebra I & II Key Concepts, Practice, and Quizzes Unit 5 โ€“ Polynomial Functions

Page 5-7

Special Binomial Products

โ€ข Special binomial products โ€“ squaring binominals Special Products Formula Initial Expansion Example

difference of squares

(a + b)(a โ€“ b) = a2 โ€“ b2

It does not matter if (a โ€“ b) comes first (a + b)(a โ€“ b) = a2 โ€“ ab + ba โ€“ b2

= a2 โ€“ b2 (x + 2)(x โ€“ 2) = x2 โ€“22 = x2 โ€“ 4 or (x โ€“ 2)(x + 2) = x2 โ€“22 = x2 โ€“ 4

square of sum (a + b)2 = a2 + 2ab + b2

A perfect square trinomial (a + b)2 = (a + b)(a + b)

= a2 + ab + ba + b2 = a2 + 2ab + b2

(x + 3)2 = x2 + 2โˆ™ xโˆ™ 3 + 32

= x2 + 6x + 9

square of difference

(a โ€“ b)2 = a2 โ€“ 2ab + b2

A perfect square trinomial (a โ€“ b)2 = (a โ€“ b)(a โ€“ b)

= a2 โ€“ab โ€“ ba + b2 = a2 โ€“ 2ab + b2

(x โ€“ 4)2 = x2 โ€“ 2โˆ™ xโˆ™ 4 + 42

= x2 โ€“ 8x + 16

โ€ข Special binomial products: special forms of binomial products that are worth memorizing.

โ€ข Memory aid: (a ยฑ b)2 = (a2 ยฑ 2ab + b2)

Example: Find the following products.

1. (3y + 4)(3y โ€“ 4) = (3y)2 โ€“ 42 (a + b) (a โ€“ b) = a2 โ€“ b2 = 9y2 โ€“ 16 a = 3y , b = 4

2. ๏ฟฝ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“๐’•๐’•๐’•๐’• + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ2

= (5t)2 + 2(5t)๏ฟฝ12๏ฟฝ + ๏ฟฝ1

2๏ฟฝ2

(a + b)2 = a2 + 2ab + b2 = 25t2 + 5t + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ a = 5t , b = 1

2

3. (3q โ€“ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐’‘๐’‘๐’‘๐’‘) 2 = (3q)2 โ€“ 2(3q)๏ฟฝ 1

6๐‘๐‘๐‘๐‘๏ฟฝ + ๏ฟฝ 1

6๐‘๐‘๐‘๐‘๏ฟฝ

2

(a โ€“ b)2 = a2 โ€“ 2ab + b2

= 9q2 โ€“ q p + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐’‘๐’‘๐’‘๐’‘2 a = 3q , b = 1

6๐‘๐‘๐‘๐‘

4. (t + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ)3 = (t + 1)2 (t + 1) anam = a n+ m

= (t2 + 2t + 1) (t + 1) (a + b)2 = a2 + 2ab + b2

= t3 + t2 + 2t2 + 2t + t + 1 Distribute

= t3 + 3t2 + 3t + 1 Combine like terms.

5. (2A โ€“ 3 + 4B)(2A โ€“ 3 โ€“ 4B) = (2A โ€“ 3)2 โ€“ (4B)2 (a + b) (a โ€“ b) = a2 - b2 : a = 2A โ€“ 3, b = 4B

= (2A)2 โ€“ 2(2A)โˆ™3 + 32 โ€“ 16B2 (a โ€“ b)2 = a2 โ€“ 2ab + b2 : a = 2A, b = 3

= 4A2 โ€“ 12A + 9 โ€“ 16B2 Simplify

โ€ข Using function notation:

Example: Given f (x) = -3x + x2 , find and simplify 1. f (u โ€“ 1) , and 2. f (a + h) โ€“ f (a) .

1. f (u โ€“ 1) = -3(u โ€“ 1) + (u โ€“ 1)2 Replace x with (u โ€“ 1)

= -3u + 3 + u2 โ€“ 2u + 1 (a โ€“ b)2 = a2 โ€“2ab + b2 = u2- 5u + 4 Combine like terms.

2. f (a + h) โ€“ f (a) = [-3(a + h) + (a + h)2] โ€“ (-3a + a2) Replace x with (a + h) and a.

= -3a โ€“ 3h + a2 + 2ah + h2 + 3a โ€“ a2 Remove parentheses.

= h2 + 2ah โ€“ 3h Combine like terms.

a

a b a b

b

( a = x , b = 2 )

Page 5-7

Special Binomial Products

โ€ข Special binomial products โ€“ squaring binominals Special Products Formula Initial Expansion Example

difference of squares

(a + b)(a โ€“ b) = a2 โ€“ b2

It does not matter if (a โ€“ b) comes first (a + b)(a โ€“ b) = a2 โ€“ ab + ba โ€“ b2

= a2 โ€“ b2 (x + 2)(x โ€“ 2) = x2 โ€“22 = x2 โ€“ 4 or (x โ€“ 2)(x + 2) = x2 โ€“22 = x2 โ€“ 4

square of sum (a + b)2 = a2 + 2ab + b2

A perfect square trinomial (a + b)2 = (a + b)(a + b)

= a2 + ab + ba + b2 = a2 + 2ab + b2

(x + 3)2 = x2 + 2โˆ™ xโˆ™ 3 + 32

= x2 + 6x + 9

square of difference

(a โ€“ b)2 = a2 โ€“ 2ab + b2

A perfect square trinomial (a โ€“ b)2 = (a โ€“ b)(a โ€“ b)

= a2 โ€“ab โ€“ ba + b2 = a2 โ€“ 2ab + b2

(x โ€“ 4)2 = x2 โ€“ 2โˆ™ xโˆ™ 4 + 42

= x2 โ€“ 8x + 16

โ€ข Special binomial products: special forms of binomial products that are worth memorizing.

โ€ข Memory aid: (a ยฑ b)2 = (a2 ยฑ 2ab + b2)

Example: Find the following products.

1. (3y + 4)(3y โ€“ 4) = (3y)2 โ€“ 42 (a + b) (a โ€“ b) = a2 โ€“ b2 = 9y2 โ€“ 16 a = 3y , b = 4

2. ๏ฟฝ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“๐’•๐’•๐’•๐’• + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ2

= (5t)2 + 2(5t)๏ฟฝ12๏ฟฝ + ๏ฟฝ1

2๏ฟฝ2

(a + b)2 = a2 + 2ab + b2 = 25t2 + 5t + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ a = 5t , b = 1

2

3. (3q โ€“ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐’‘๐’‘๐’‘๐’‘) 2 = (3q)2 โ€“ 2(3q)๏ฟฝ 1

6๐‘๐‘๐‘๐‘๏ฟฝ + ๏ฟฝ 1

6๐‘๐‘๐‘๐‘๏ฟฝ

2

(a โ€“ b)2 = a2 โ€“ 2ab + b2

= 9q2 โ€“ q p + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐’‘๐’‘๐’‘๐’‘2 a = 3q , b = 1

6๐‘๐‘๐‘๐‘

4. (t + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ)3 = (t + 1)2 (t + 1) anam = a n+ m

= (t2 + 2t + 1) (t + 1) (a + b)2 = a2 + 2ab + b2

= t3 + t2 + 2t2 + 2t + t + 1 Distribute

= t3 + 3t2 + 3t + 1 Combine like terms.

5. (2A โ€“ 3 + 4B)(2A โ€“ 3 โ€“ 4B) = (2A โ€“ 3)2 โ€“ (4B)2 (a + b) (a โ€“ b) = a2 - b2 : a = 2A โ€“ 3, b = 4B

= (2A)2 โ€“ 2(2A)โˆ™3 + 32 โ€“ 16B2 (a โ€“ b)2 = a2 โ€“ 2ab + b2 : a = 2A, b = 3

= 4A2 โ€“ 12A + 9 โ€“ 16B2 Simplify

โ€ข Using function notation:

Example: Given f (x) = -3x + x2 , find and simplify 1. f (u โ€“ 1) , and 2. f (a + h) โ€“ f (a) .

1. f (u โ€“ 1) = -3(u โ€“ 1) + (u โ€“ 1)2 Replace x with (u โ€“ 1)

= -3u + 3 + u2 โ€“ 2u + 1 (a โ€“ b)2 = a2 โ€“2ab + b2 = u2- 5u + 4 Combine like terms.

2. f (a + h) โ€“ f (a) = [-3(a + h) + (a + h)2] โ€“ (-3a + a2) Replace x with (a + h) and a.

= -3a โ€“ 3h + a2 + 2ah + h2 + 3a โ€“ a2 Remove parentheses.

= h2 + 2ah โ€“ 3h Combine like terms.

a

a b a b

b

( a = x , b = 2 )

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

104 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 5 โ€“ Polynomial Functions

5-3 FACTORING

Highest / Greatest Common Factor

โ€ข Greatest / highest common factor (GCF or HCF): the largest factor of two or more terms .

Example Factors GCF or HCF369

3 3 โˆ™ 23 โˆ™ 3

3

2x2y8x2y3

2 โˆ™ x2 โˆ™ y 2 โˆ™ 4 โˆ™ x2 โˆ™ y โˆ™ y2 2 x2 y

โ€ข Factoring a polynomial: express a polynomial as a product of other polynomials . It is the

reverse of multiplying . Multiplying (or expanding)

a (b + c + d) = ab + ac + ad Factoring

ExampleMultiplying Factoring GCF

2ab (4a โ€“3ab + 1) 8a2b โ€“ 6a2b2 + 2ab

= 8a2b โ€“ 6a2b2 + 2ab = 2ab (4a) โ€“ 2ab (3ab) + 2ab โˆ™ 1 2ab

= 2ab (4a โ€“ 3ab + 1)

Examples

Expression Factoring GCF-8x2 โ€“ 4x -4x ยท 2x โ€“ 4x ยท 1 = -4x (2x + 1) -4x3y5 โ€“ 9y3 + 6y 3yยท y 4 โ€“ 3ยท 3yยท y 2 + 3y ยท 2 = 3y ( y 4 โ€“ 3y 2 + 2) 3y5a3b + 10a2b โ€“ 15ab 5ab ยท a 2 + 5abยท2a โ€“ 5ab ยท 3 = 5ab(a 2 + 2a โ€“ 3) 5ab7x2 ( x + 5) โ€“ (3x + 15) 7x2 ( x + 5) โ€“ 3 ( x + 5) = (x + 5)(7x2 โ€“ 3) ( x + 5)2x2 + 3y + 4 Not factorable No

Tip: Factor each term and pull out the GCF .

โ€ข Negative of the greatest common factor

Factoring GCF Factor Out a Negative GCF Negative GCF2x โ€“ 4x2 = 2x (1 โ€“ 2x) 2x 2x โ€“ 4x2 = -2x (-1 + 2x) - 2x

3ab โ€“ 9ab2 + 6a2b = 3ab (1โ€“ 3b + 2a) 3ab 3ab โ€“ 9ab2 + 6a2b = -3ab (-1+ 3b โ€“ 2a) -3ab

Page 5-8

5-3 FACTORING

Highest / Greatest Common Factor

โ€ข Greatest / highest common factor (GCF or HCF): the largest factor of two or more terms .

Example Factors GCF or HCF369

3 3 โˆ™ 23 โˆ™ 3

3

2x2y8x2y3

2 โˆ™ x2 โˆ™ y 2 โˆ™ 4 โˆ™ x2 โˆ™ y โˆ™ y2 2 x2 y

โ€ข Factoring a polynomial: express a polynomial as a product of other polynomials . It is the

reverse of multiplying . Multiplying (or expanding)

a (b + c + d) = ab + ac + ad Factoring

ExampleMultiplying Factoring GCF

2ab (4a โ€“3ab + 1) 8a2b โ€“ 6a2b2 + 2ab

= 8a2b โ€“ 6a2b2 + 2ab = 2ab (4a) โ€“ 2ab (3ab) + 2ab โˆ™ 1 2ab

= 2ab (4a โ€“ 3ab + 1)

Examples

Expression Factoring GCF-8x2 โ€“ 4x -4x ยท 2x โ€“ 4x ยท 1 = -4x (2x + 1) -4x3y5 โ€“ 9y3 + 6y 3yยท y 4 โ€“ 3ยท 3yยท y 2 + 3y ยท 2 = 3y ( y 4 โ€“ 3y 2 + 2) 3y5a3b + 10a2b โ€“ 15ab 5ab ยท a 2 + 5abยท2a โ€“ 5ab ยท 3 = 5ab(a 2 + 2a โ€“ 3) 5ab7x2 ( x + 5) โ€“ (3x + 15) 7x2 ( x + 5) โ€“ 3 ( x + 5) = (x + 5)(7x2 โ€“ 3) ( x + 5)2x2 + 3y + 4 Not factorable No

Tip: Factor each term and pull out the GCF .

โ€ข Negative of the greatest common factor

Factoring GCF Factor Out a Negative GCF Negative GCF2x โ€“ 4x2 = 2x (1 โ€“ 2x) 2x 2x โ€“ 4x2 = -2x (-1 + 2x) - 2x

3ab โ€“ 9ab2 + 6a2b = 3ab (1โ€“ 3b + 2a) 3ab 3ab โ€“ 9ab2 + 6a2b = -3ab (-1+ 3b โ€“ 2a) -3ab

Page 5-8

5-3 FACTORING

Highest / Greatest Common Factor

โ€ข Greatest / highest common factor (GCF or HCF): the largest factor of two or more terms .

Example Factors GCF or HCF369

3 3 โˆ™ 23 โˆ™ 3

3

2x2y8x2y3

2 โˆ™ x2 โˆ™ y 2 โˆ™ 4 โˆ™ x2 โˆ™ y โˆ™ y2 2 x2 y

โ€ข Factoring a polynomial: express a polynomial as a product of other polynomials . It is the

reverse of multiplying . Multiplying (or expanding)

a (b + c + d) = ab + ac + ad Factoring

ExampleMultiplying Factoring GCF

2ab (4a โ€“3ab + 1) 8a2b โ€“ 6a2b2 + 2ab

= 8a2b โ€“ 6a2b2 + 2ab = 2ab (4a) โ€“ 2ab (3ab) + 2ab โˆ™ 1 2ab

= 2ab (4a โ€“ 3ab + 1)

Examples

Expression Factoring GCF-8x2 โ€“ 4x -4x ยท 2x โ€“ 4x ยท 1 = -4x (2x + 1) -4x3y5 โ€“ 9y3 + 6y 3yยท y 4 โ€“ 3ยท 3yยท y 2 + 3y ยท 2 = 3y ( y 4 โ€“ 3y 2 + 2) 3y5a3b + 10a2b โ€“ 15ab 5ab ยท a 2 + 5abยท2a โ€“ 5ab ยท 3 = 5ab(a 2 + 2a โ€“ 3) 5ab7x2 ( x + 5) โ€“ (3x + 15) 7x2 ( x + 5) โ€“ 3 ( x + 5) = (x + 5)(7x2 โ€“ 3) ( x + 5)2x2 + 3y + 4 Not factorable No

Tip: Factor each term and pull out the GCF .

โ€ข Negative of the greatest common factor

Factoring GCF Factor Out a Negative GCF Negative GCF2x โ€“ 4x2 = 2x (1 โ€“ 2x) 2x 2x โ€“ 4x2 = -2x (-1 + 2x) - 2x

3ab โ€“ 9ab2 + 6a2b = 3ab (1โ€“ 3b + 2a) 3ab 3ab โ€“ 9ab2 + 6a2b = -3ab (-1+ 3b โ€“ 2a) -3ab

Page 5-8

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 105

Algebra I & II Key Concepts, Practice, and Quizzes Unit 5 โ€“ Polynomial Functions

Factoring Polynomials by Grouping

Steps for factoring by grouping:

Steps Example: 8y2 โ€“ 2 y + 12y โ€“ 3

- Group terms with the GCF . 8y2 โ€“ 2 y + 12y โ€“ 3 = (8y2 โ€“ 2 y) + (12y โ€“ 3)

- Factor out the GCF from each group . = 2y (4y โ€“1) + 3(4y โ€“1)

- Factor out the GCF again from the last step . = (4y โ€“ 1)(2y + 3)

Factoring completely: Continue factoring until no further factors can be found .

Example: Factor the following completely .

1. 6ab2 โ€“ 3a2b + 2b โ€“ a = (6ab2 โ€“ 3a2b ) + (2b โ€“ a) Group terms with the GCF .

= 3ab (2b โ€“ a) + (2b โ€“ a) โˆ™ 1 Factor out the GCF ; (2b โ€“ a) = (2b โ€“ a) โˆ™ 1

= (2b โ€“ a) (3ab + 1) Factor out the GCF again .

2. 2ab + bc โ€“ 2bc + 4ab = (2ab + 4ab) + (bc โ€“ 2bc)

= 6ab โ€“ bc Combine like terms .

= b(6a โ€“ c) Factor out the GCF .

3. x3 โ€“ xy2 โ€“ x2y + y3 = (x3 โ€“ x2y) โ€“ (xy2 โ€“ y3) Group

= x2 (x โ€“ y) โ€“ y2 (x โ€“ y) Factor out the GCF .

= (x โ€“ y) (x2 โ€“ y2) a2 โ€“ b2 = (a + b)(a โ€“ b)

= (x โ€“ y) (x + y)(x โ€“ y) Keep factoring until cannot factor any further .

= (x โ€“ y)2 (x + y)

Tip: Recognize factoring patterns, such as 2b โ€“ a, x โ€“ y, โ€ฆ

4. 32x3y โ€“ 2xy3 = 2xy (16x2 โ€“ y2) Factor out the GCF .

= 2xy [(4x)2 โ€“ y2)] a2 โ€“ b2 = (a + b)(a โ€“ b)

= 2xy (4x + y) (4x โ€“ y)

Rearrange and group terms with the same pattern .

(4x + y) and (4x โ€“ y) cannot be factored further .

Page 5-9

Factoring Polynomials by Grouping

Steps for factoring by grouping:

Steps Example: 8y2 โ€“ 2 y + 12y โ€“ 3

- Group terms with the GCF . 8y2 โ€“ 2 y + 12y โ€“ 3 = (8y2 โ€“ 2 y) + (12y โ€“ 3)

- Factor out the GCF from each group . = 2y (4y โ€“1) + 3(4y โ€“1)

- Factor out the GCF again from the last step . = (4y โ€“ 1)(2y + 3)

Factoring completely: Continue factoring until no further factors can be found .

Example: Factor the following completely .

1. 6ab2 โ€“ 3a2b + 2b โ€“ a = (6ab2 โ€“ 3a2b ) + (2b โ€“ a) Group terms with the GCF .

= 3ab (2b โ€“ a) + (2b โ€“ a) โˆ™ 1 Factor out the GCF ; (2b โ€“ a) = (2b โ€“ a) โˆ™ 1

= (2b โ€“ a) (3ab + 1) Factor out the GCF again .

2. 2ab + bc โ€“ 2bc + 4ab = (2ab + 4ab) + (bc โ€“ 2bc)

= 6ab โ€“ bc Combine like terms .

= b(6a โ€“ c) Factor out the GCF .

3. x3 โ€“ xy2 โ€“ x2y + y3 = (x3 โ€“ x2y) โ€“ (xy2 โ€“ y3) Group

= x2 (x โ€“ y) โ€“ y2 (x โ€“ y) Factor out the GCF .

= (x โ€“ y) (x2 โ€“ y2) a2 โ€“ b2 = (a + b)(a โ€“ b)

= (x โ€“ y) (x + y)(x โ€“ y) Keep factoring until cannot factor any further .

= (x โ€“ y)2 (x + y)

Tip: Recognize factoring patterns, such as 2b โ€“ a, x โ€“ y, โ€ฆ

4. 32x3y โ€“ 2xy3 = 2xy (16x2 โ€“ y2) Factor out the GCF .

= 2xy [(4x)2 โ€“ y2)] a2 โ€“ b2 = (a + b)(a โ€“ b)

= 2xy (4x + y) (4x โ€“ y)

Rearrange and group terms with the same pattern .

(4x + y) and (4x โ€“ y) cannot be factored further .

Page 5-9

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

106 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 5 โ€“ Polynomial Functions

Factoring x2 + bx + c

Factoring x2 + bx + c : Cross-multiplication methodSteps Standard form Example

x2 + bx + c x2 + 3x + 2- Setting up two sets of parentheses . = ( ) ( ) = ( ) ( )

x2 + bx + c x2 + 3x + 2- Factor the first term x2: x2 = x ยท x x c1 x 1- Factor the last term c (by trial and error): c = c1ยท c2 x c2 x 2

x ยท x = x2 c1 ยท c2 = c x ยท x = x2 1โˆ™ 2 = 2

- Cross multiply and then add up to the middle term . (c1)(x) + (c2)(x) = bx 1โˆ™ x + 2 โˆ™ x = 3x - Complete the parenthesis with x + c1 and x + c2. x2 + bx + c x2 + 3x + 2

= (x + c1)(x + c2) = (x + 1)(x + 2)F O I L

- Check using FOIL . (x + 1)(x + 2) = x2 + 2x + x + 2(x + 1)(x + 2) = x2 + 3x + 2 โˆš

Factoring x2 + bx + c Using the Cross-Multiplication MethodIn general

x2 + bx + c = ( ) ( )x c1 x c2

x ยท x = x2 c1 ยท c2 = c

(c1)(x) + (c2)(x) = bx

x2 + bx + c= (x + c1 )(x + c2)

Examplex2 โ€“ 5 x + 6 = ( ) ( )x -2x -3

x ยท x = x2 (-2)(-3) = 6

-2โˆ™x + (-3)x = -5x yes!x2 โ€“ 5x + 6 = (x โ€“ 2) (x โ€“ 3)

Summary: Factoring x2 + bx + c Example: x2 โ€“ 5x + 6x2 + (c1 + c2) x + c1c2 = (x + c1)(x + c2)x c1x c2Check: c1x+ c2 x = bx

x2 + [-2 + (-3)] x + 6 = (x โ€“ 2)(x โ€“ 3) x -2 x -3

Check: -2x + (-3x) = -5x yes!

Tip: Cross multiply and then add up to the middle term .

Example: Factor the following: Trial and Error Process1. x2 โ€“ 6x + 8 = ( ) ( ) x2 โ€“ 6x + 8 x2 โ€“ 6x + 8

x -2 x 2 x 1 x -4 x 4 x 8

x ยท x = x2 (-2)(-4) = 8

-2โˆ™x + (-4)x = -6x yes! 2x + 4x = -6x no 1โˆ™ x + 8x = -6x no

Answer: x2 โ€“ 6x + 8 = (x โ€“ 2)( x โ€“ 4) Check: -2 + (-4) = -6 โˆš

2. a2 + 5a โ€“ 6 = ( ) ( ) a2 + 5a โ€“ 6 a2 + 5a โ€“ 6 a - 1 a 2 a 1

a 6 a -3 a - 6 a ยท a = a2 (-1)(6) = -6

(-1) a + 6a = 5a yes! 2a + (-3)a = 5a no 1โˆ™ a + (-6 )a = 5a noAnswer: a2 + 5a โ€“ 6 = (a โ€“ 1)(a + 6) Check: -1 + 6 = 5 โˆš

? ?

? ? ?

?

? ?

? ?

Page 5-10

Factoring x2 + bx + c

Factoring x2 + bx + c : Cross-multiplication methodSteps Standard form Example

x2 + bx + c x2 + 3x + 2- Setting up two sets of parentheses . = ( ) ( ) = ( ) ( )

x2 + bx + c x2 + 3x + 2- Factor the first term x2: x2 = x ยท x x c1 x 1- Factor the last term c (by trial and error): c = c1ยท c2 x c2 x 2

x ยท x = x2 c1 ยท c2 = c x ยท x = x2 1โˆ™ 2 = 2

- Cross multiply and then add up to the middle term . (c1)(x) + (c2)(x) = bx 1โˆ™ x + 2 โˆ™ x = 3x - Complete the parenthesis with x + c1 and x + c2. x2 + bx + c x2 + 3x + 2

= (x + c1)(x + c2) = (x + 1)(x + 2)F O I L

- Check using FOIL . (x + 1)(x + 2) = x2 + 2x + x + 2(x + 1)(x + 2) = x2 + 3x + 2 โˆš

Factoring x2 + bx + c Using the Cross-Multiplication MethodIn general

x2 + bx + c = ( ) ( )x c1 x c2

x ยท x = x2 c1 ยท c2 = c

(c1)(x) + (c2)(x) = bx

x2 + bx + c= (x + c1 )(x + c2)

Examplex2 โ€“ 5 x + 6 = ( ) ( )x -2x -3

x ยท x = x2 (-2)(-3) = 6

-2โˆ™x + (-3)x = -5x yes!x2 โ€“ 5x + 6 = (x โ€“ 2) (x โ€“ 3)

Summary: Factoring x2 + bx + c Example: x2 โ€“ 5x + 6x2 + (c1 + c2) x + c1c2 = (x + c1)(x + c2)x c1x c2Check: c1x+ c2 x = bx

x2 + [-2 + (-3)] x + 6 = (x โ€“ 2)(x โ€“ 3) x -2 x -3

Check: -2x + (-3x) = -5x yes!

Tip: Cross multiply and then add up to the middle term .

Example: Factor the following: Trial and Error Process1. x2 โ€“ 6x + 8 = ( ) ( ) x2 โ€“ 6x + 8 x2 โ€“ 6x + 8

x -2 x 2 x 1 x -4 x 4 x 8

x ยท x = x2 (-2)(-4) = 8

-2โˆ™x + (-4)x = -6x yes! 2x + 4x = -6x no 1โˆ™ x + 8x = -6x no

Answer: x2 โ€“ 6x + 8 = (x โ€“ 2)( x โ€“ 4) Check: -2 + (-4) = -6 โˆš

2. a2 + 5a โ€“ 6 = ( ) ( ) a2 + 5a โ€“ 6 a2 + 5a โ€“ 6 a - 1 a 2 a 1

a 6 a -3 a - 6 a ยท a = a2 (-1)(6) = -6

(-1) a + 6a = 5a yes! 2a + (-3)a = 5a no 1โˆ™ a + (-6 )a = 5a noAnswer: a2 + 5a โ€“ 6 = (a โ€“ 1)(a + 6) Check: -1 + 6 = 5 โˆš

? ?

? ? ?

?

? ?

? ?

Page 5-10

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 107

Algebra I & II Key Concepts, Practice, and Quizzes Unit 5 โ€“ Polynomial Functions

Page 5-11

5-4 FACTORING ax 2 + bx + c

Factoring Trinomials: ax2 + bx + c

Procedure for factoring ax2 + bx + c using the cross-multiplication method

Steps In general Example

ax2 + bx + c 2x2 + x โ€“ 3 - Setting up two sets of parenthesis. = ( ) ( ) = ( )( )

ax2 + bx + c 2x2 + x โ€“ 3 - Factor the first term ax2: ax2 = a1x โˆ™ a2x a1x c1 x -1

- Factor the last term c (by trial and error): a2x c2 2x 3 c = c1 โˆ™ c2 a1x โˆ™ a2x = ax2 c1 โˆ™ c2 = c x โˆ™ 2x = 2x2 -1โˆ™ 3 = -3

- Cross-multiply, then add up to the middle term. (a1x) (c2) + (a2x)(c1) = bx 3 โˆ™ x + (-1)(2x) = x - Complete the parenthesis with (a1x + c1) and (a2x + c2). ax2 + bx + c 2x2 + x โ€“ 3

= (a1x + c1)(a2x + c2) = (x โ€“ 1)(2x + 3) F O I L

- Check using FOIL. (x โ€“ 1)(2x + 3) = 2x2 + 3x โ€“ 2x โ€“ 3 โˆš

(x โ€“ 1)(2x + 3) = 2x2 + x โ€“ 3

Factoring ax2 + bx + c Using the Cross-Multiplication Method In general

ax2 + bx + c = ( ) ( ) a1x c1 a2x c2

a1x โˆ™ a2x = ax2 c = c1โˆ™ c2

(a1x) (c2) + (a2x)(c1) = bx ax2 + bx + c = (a1x + c1)(a2x + c2)

Example 3x2 + 10 x + 8 = ( ) ( ) 3x 4 x 2

3x โˆ™ x = 3x2 4 โˆ™ 2 = 8

3x โˆ™ 2 + 4 โˆ™ x = 10x yes! 3x2 + 10x + 8 = (3x + 4) (x + 2)

Summary: Factoring ax2 + bx + c a1 a2x2 + (a1c2 + c1a2)x + c1 c2 = (a1x + c1)(a2x + c2) a1x c1

a2x c2 Tip: Cross-multiply and then add up to the middle term.

(Original expression)

? ?

Page 5-11

5-4 FACTORING ax 2 + bx + c

Factoring Trinomials: ax2 + bx + c

Procedure for factoring ax2 + bx + c using the cross-multiplication method

Steps In general Example

ax2 + bx + c 2x2 + x โ€“ 3 - Setting up two sets of parenthesis. = ( ) ( ) = ( )( )

ax2 + bx + c 2x2 + x โ€“ 3 - Factor the first term ax2: ax2 = a1x โˆ™ a2x a1x c1 x -1

- Factor the last term c (by trial and error): a2x c2 2x 3 c = c1 โˆ™ c2 a1x โˆ™ a2x = ax2 c1 โˆ™ c2 = c x โˆ™ 2x = 2x2 -1โˆ™ 3 = -3

- Cross-multiply, then add up to the middle term. (a1x) (c2) + (a2x)(c1) = bx 3 โˆ™ x + (-1)(2x) = x - Complete the parenthesis with (a1x + c1) and (a2x + c2). ax2 + bx + c 2x2 + x โ€“ 3

= (a1x + c1)(a2x + c2) = (x โ€“ 1)(2x + 3) F O I L

- Check using FOIL. (x โ€“ 1)(2x + 3) = 2x2 + 3x โ€“ 2x โ€“ 3 โˆš

(x โ€“ 1)(2x + 3) = 2x2 + x โ€“ 3

Factoring ax2 + bx + c Using the Cross-Multiplication Method In general

ax2 + bx + c = ( ) ( ) a1x c1 a2x c2

a1x โˆ™ a2x = ax2 c = c1โˆ™ c2

(a1x) (c2) + (a2x)(c1) = bx ax2 + bx + c = (a1x + c1)(a2x + c2)

Example 3x2 + 10 x + 8 = ( ) ( ) 3x 4 x 2

3x โˆ™ x = 3x2 4 โˆ™ 2 = 8

3x โˆ™ 2 + 4 โˆ™ x = 10x yes! 3x2 + 10x + 8 = (3x + 4) (x + 2)

Summary: Factoring ax2 + bx + c a1 a2x2 + (a1c2 + c1a2)x + c1 c2 = (a1x + c1)(a2x + c2) a1x c1

a2x c2 Tip: Cross-multiply and then add up to the middle term.

(Original expression)

? ?

5-4 FACTORING ax2 + bx + c

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

108 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 5 โ€“ Polynomial Functions

More Examples for Factoring ax2 + bx + c

Example: Factor the following . Trial and Error Process

8x2 + 10x โ€“ 25 = ( ) ( ) 1 . 8x2 + 10x โ€“ 252x 5 x -54x -5 8x 5

2x โˆ™ 4x = 8x 2 5(-5) = -25 x โˆ™ 5 + (-5)(8x) = 10x no

? 2 . 8x2 + 10x โ€“ 25 (2x)(-5) + 5(4x) = 10x yes! 4x 5

2x -5

8x2 + 10x โ€“ 25 = (2x + 5) (4x โ€“ 5) (4x)(-5) + 5(2x) = 10x no

3 . 8x2 + 10x โ€“ 258x -25

x 1

8x โˆ™1 + (-25)x = 10x no

Tip: Write the factors with their appropriate signs (+ or โ€“) to get the right middle term .

Check: (2x + 5)(4x โ€“ 5) = 8x2 โ€“ 10x + 20x โ€“ 25F O I L

(2x + 5)(4x โ€“ 5) = 8x2 + 10x โ€“ 25 Correct!

Example: Factor the following completely .

1. 3y2 (y + 4) + (y + 4) (y โ€“ 2) = (y + 4)[3y2 + (y โ€“ 2)] Factor out the GCF (y + 4) .

= (y + 4)(3y2 + y โ€“ 2) y 1

3y -2 -2y + 3y = y โˆš = (y + 4)(y + 1)(3y โ€“ 2)

2. m2 โ€“ m = - ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’

m2 โ€“ m + 14

= ( ) ( ) Write in standard form

m - 12

m - 12 - 1

2๐‘š๐‘š โˆ’ 1

2๐‘š๐‘š = โˆ’ ๐‘š๐‘š

m2 โ€“ m + 14

= ๏ฟฝ๐‘š๐‘š โ€“ 12๏ฟฝ ๏ฟฝ๐‘š๐‘š โ€“ 1

2๏ฟฝ

= ๏ฟฝ๐’Ž๐’Ž โ€“ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ๐Ÿ๐Ÿ

3. 3s2 โ€“ 2st โ€“ 5t2 = ( ) ( )s t -5st + 3st = -2st โˆš

3s -5t 3s2 โ€“ 2st โ€“ 5t2 = (s + t) (3s โ€“ 5t)

4. 2q4 + 14q2 + 20 = 2(q4 + 7q2 + 10) = 2 ( ) ( ) Factor out the GCF (2) .q2 2 q2 5

2q4 + 14q2 + 20 = 2(q2 + 2) (q2 + 5) 5q2 + 2q2 = 7q2 โˆš

?

?

?

โˆš

(ax2 + bx + c) .

Page 5-12

More Examples for Factoring ax2 + bx + c

Example: Factor the following . Trial and Error Process

8x2 + 10x โ€“ 25 = ( ) ( ) 1 . 8x2 + 10x โ€“ 252x 5 x -54x -5 8x 5

2x โˆ™ 4x = 8x 2 5(-5) = -25 x โˆ™ 5 + (-5)(8x) = 10x no

? 2 . 8x2 + 10x โ€“ 25 (2x)(-5) + 5(4x) = 10x yes! 4x 5

2x -5

8x2 + 10x โ€“ 25 = (2x + 5) (4x โ€“ 5) (4x)(-5) + 5(2x) = 10x no

3 . 8x2 + 10x โ€“ 258x -25

x 1

8x โˆ™1 + (-25)x = 10x no

Tip: Write the factors with their appropriate signs (+ or โ€“) to get the right middle term .

Check: (2x + 5)(4x โ€“ 5) = 8x2 โ€“ 10x + 20x โ€“ 25F O I L

(2x + 5)(4x โ€“ 5) = 8x2 + 10x โ€“ 25 Correct!

Example: Factor the following completely .

1. 3y2 (y + 4) + (y + 4) (y โ€“ 2) = (y + 4)[3y2 + (y โ€“ 2)] Factor out the GCF (y + 4) .

= (y + 4)(3y2 + y โ€“ 2) y 1

3y -2 -2y + 3y = y โˆš = (y + 4)(y + 1)(3y โ€“ 2)

2. m2 โ€“ m = - ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’

m2 โ€“ m + 14

= ( ) ( ) Write in standard form

m - 12

m - 12 - 1

2๐‘š๐‘š โˆ’ 1

2๐‘š๐‘š = โˆ’ ๐‘š๐‘š

m2 โ€“ m + 14

= ๏ฟฝ๐‘š๐‘š โ€“ 12๏ฟฝ ๏ฟฝ๐‘š๐‘š โ€“ 1

2๏ฟฝ

= ๏ฟฝ๐’Ž๐’Ž โ€“ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ๐Ÿ๐Ÿ

3. 3s2 โ€“ 2st โ€“ 5t2 = ( ) ( )s t -5st + 3st = -2st โˆš

3s -5t 3s2 โ€“ 2st โ€“ 5t2 = (s + t) (3s โ€“ 5t)

4. 2q4 + 14q2 + 20 = 2(q4 + 7q2 + 10) = 2 ( ) ( ) Factor out the GCF (2) .q2 2 q2 5

2q4 + 14q2 + 20 = 2(q2 + 2) (q2 + 5) 5q2 + 2q2 = 7q2 โˆš

?

?

?

โˆš

(ax2 + bx + c) .

Page 5-12

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 109

Algebra I & II Key Concepts, Practice, and Quizzes Unit 5 โ€“ Polynomial Functions

Factoring Trinomials: AC Method

AC method for factoring trinomials: ax2 + bx + c

Factoring ax2 + bx + c = 0 by Grouping Example

Steps Solve 14x โ€“ 6 = -12x2

โ€ข Convert to standard form if necessary . 12x2 + 14x โ€“ 6 = 0โ€ข Factor out the greatest common factor (GCF) . 2(6x2 + 7x โ€“ 3) = 0โ€ข Multiply a and c in ax2 + bx + c . ac = 6 (-3) = -18โ€ข Factor the product ac that sum to the middle coefficient b . 9 (-2) = -18, 9 + (-2) = 7โ€ข Rewrite the middle term as the sum using the 2(6x2 + 7x โ€“ 3) = 0

factors found in last step . 2 (6x2 + 9x โ€“ 2x โ€“ 3) = 0โ€ข Factor by grouping . 2[3x(2x + 3) โ€“ (2x + 3)] = 0

2 (2x + 3)(3x โ€“ 1) = 0 Factor out (2x + 3) .

Example: Factor 6x2 โ€“ 8 = 2x using ac method .

Steps Solution

6x2 โ€“ 8 = 2x

- Write in standard form: 6x2 โ€“ 2x โ€“ 8 = 0

- Factor out the greatest common factor: 2(3x2 โ€“ 1x โ€“ 4) = 0

- Multiply a and c in ax2 + bx + c : ac = 3 โˆ™ (-4) = -12- Factor the product ac that sum to the middle coefficient b .

(There are different pairs to get the product of ac of -12 . Try to find twonumbers that multiply to ac and added to obtain b = -1 .)

Some Factors of ac (-12) Sum of Factors ( b = -1)-2 & 6 -2 + 6 = 4

-1 & 12 -1 + 12 = 11-3 & 4 -3 + 4 = 13 & -4 3 + (- 4) = -1 Correct!

The right choices are 3 and -4, since they both add up to b = -1 . 3 (-4) = -12, 3 + (-4) = -1

- Rewrite the middle term as 3x โ€“ 4x . 2(3x2 โ€“ 1x โ€“ 4) = 0

2(3x2 + 3x โ€“ 4x โ€“ 4) = 0

- Factor by grouping . Factor out (x + 1) 2 [3x (x + 1) โ€“ 4(x + 1) = 0

2(x + 1)(3x โ€“ 4) = 0

Page 5-13

Factoring Trinomials: AC Method

AC method for factoring trinomials: ax2 + bx + c

Factoring ax2 + bx + c = 0 by Grouping Example

Steps Solve 14x โ€“ 6 = -12x2

โ€ข Convert to standard form if necessary . 12x2 + 14x โ€“ 6 = 0โ€ข Factor out the greatest common factor (GCF) . 2(6x2 + 7x โ€“ 3) = 0โ€ข Multiply a and c in ax2 + bx + c . ac = 6 (-3) = -18โ€ข Factor the product ac that sum to the middle coefficient b . 9 (-2) = -18, 9 + (-2) = 7โ€ข Rewrite the middle term as the sum using the 2(6x2 + 7x โ€“ 3) = 0

factors found in last step . 2 (6x2 + 9x โ€“ 2x โ€“ 3) = 0โ€ข Factor by grouping . 2[3x(2x + 3) โ€“ (2x + 3)] = 0

2 (2x + 3)(3x โ€“ 1) = 0 Factor out (2x + 3) .

Example: Factor 6x2 โ€“ 8 = 2x using ac method .

Steps Solution

6x2 โ€“ 8 = 2x

- Write in standard form: 6x2 โ€“ 2x โ€“ 8 = 0

- Factor out the greatest common factor: 2(3x2 โ€“ 1x โ€“ 4) = 0

- Multiply a and c in ax2 + bx + c : ac = 3 โˆ™ (-4) = -12- Factor the product ac that sum to the middle coefficient b .

(There are different pairs to get the product of ac of -12 . Try to find twonumbers that multiply to ac and added to obtain b = -1 .)

Some Factors of ac (-12) Sum of Factors ( b = -1)-2 & 6 -2 + 6 = 4

-1 & 12 -1 + 12 = 11-3 & 4 -3 + 4 = 13 & -4 3 + (- 4) = -1 Correct!

The right choices are 3 and -4, since they both add up to b = -1 . 3 (-4) = -12, 3 + (-4) = -1

- Rewrite the middle term as 3x โ€“ 4x . 2(3x2 โ€“ 1x โ€“ 4) = 0

2(3x2 + 3x โ€“ 4x โ€“ 4) = 0

- Factor by grouping . Factor out (x + 1) 2 [3x (x + 1) โ€“ 4(x + 1) = 0

2(x + 1)(3x โ€“ 4) = 0

Page 5-13

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

110 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 5 โ€“ Polynomial Functions

5-5 FACTORING SPECIAL PRODUCTS

Special Factoring

โ€ข Special factoring formulas

Name Formula Exampledifference of squares a2 โ€“ b2 = (a + b)(a โ€“ b) n2 โ€“25 = n2 โ€“ 52 = (n + 5)(n โ€“ 5)

square of sum(perfect square trinomial)

a2 + 2ab + b2 = (a + b)2

x2 + 6x + 9 = (x + 3)2 a = x, b = 3x 3x 3Check: (x + 3)2 = x2 + 2 โˆ™ x โˆ™ 3 + 32 = x2 + 6x + 9 โˆš

square of difference(perfect square trinomial) a2 โ€“ 2ab + b2 = (a โ€“ b)2

25t2 โ€“ 20t + 4 = (5t โ€“ 2)2 a = 5t, b = 25t -25t -2

Check: (5t โ€“ 2)2 = (5t)2 โ€“ 2(5t)(2) + 22 = 25t2 โ€“ 20t + 4 โˆš

Note: The quickest way to factor an expression is to recognize it as a special product .

โ€ข Memory aid: (a2 ยฑ ab + b2) = (a ยฑ b)2 Notice the plus or minus sign in the second term .

โ€ข To use perfect square trinomial formulas: Use cross-multiplication method to factor a

perfect square . Then use the square formula to check .

Example: Factor the following completely .

1. 9x2 โ€“ 16y2 = 32x2 โ€“ 42y2 = (3x)2 โ€“ (4y)2 anbn = (a b)n

= (3x + 4y)(3x โ€“ 4y) a2 โ€“ b2 = (a + b)(a โ€“ b) : a = 3x , b = 4y

2. 12x + 9 + 4x2 = 4x2 + 12x + 9 Rewrite in standard form: ax2 + bx + c2x 3 2x 3

= (2x + 3)23(2x) + 3(2x) = 12x

Check: (2x + 3)2 = (2x)2 + 2โˆ™2x โˆ™ 3 + 32 = 4x2 + 12x + 9 โˆš a2 + 2ab + b2 = (a + b)2

3. 25A2 โ€“ 20AB + 4B2 = (5A โ€“ 2B)2

5A -2B (5A) (-2B) + (5A) (-2B) = -20AB

5A -2B

Check: (5A โ€“ 2B)2 = (5A)2 โ€“ 2(5A)(2B) + (2B)2 = 25A2 โ€“ 20AB + 4B2 โˆš a2 โ€“ 2ab + b2 = (a โ€“ b)2 : a = 5A , b = 2B

4. ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

x2 โ€“ ๐Ÿ๐Ÿ๐Ÿ—๐Ÿ—

y2 = 2 ๏ฟฝ 142๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2 โ€“ 1

32 ๐‘ฆ๐‘ฆ2๏ฟฝ Factor out the GCF (2) . ๐‘Ž๐‘Ž

๐‘›๐‘›

๐‘๐‘๐‘›๐‘›= ๏ฟฝ๐‘Ž๐‘Ž

๐‘๐‘๏ฟฝ๐‘›๐‘›

= 2 ๏ฟฝ๏ฟฝ๐’™๐’™๐Ÿ’๐Ÿ’๏ฟฝ2

โ€“ ๏ฟฝ๐’š๐’š๐Ÿ‘๐Ÿ‘๏ฟฝ2๏ฟฝ a2 โ€“ b2 = (a + b)(a โ€“ b) : a = ๐‘ฅ๐‘ฅ

4, b = ๐‘ฆ๐‘ฆ

3

= 2 ๏ฟฝ๏ฟฝ๐’™๐’™๐Ÿ’๐Ÿ’

+ ๐’š๐’š๐Ÿ‘๐Ÿ‘๏ฟฝ ๏ฟฝ๐’™๐’™

๐Ÿ’๐Ÿ’โˆ’ ๐’š๐’š

๐Ÿ‘๐Ÿ‘๏ฟฝ๏ฟฝ

5. -12x2 + 36xy โ€“ 27y2 = -3(4x2 โ€“ 12xy + 9y2) Factor out the GCF (-3) . 2x - 3y

2x - 3y (2x) (-3y) + (2x) (-3y) = -12xy = -3(2x โ€“ 3y)2

Check: (2x โ€“ 3y)2 = (2x)2 โ€“ 2(2x)(3y) + (3y)2 = 4x2 โ€“ 12xy + 9y2 โˆš a2 โ€“ 2ab + b2 = (a โ€“ b)2 : a = 2x , b = 3y

a b

Factoring (L R)

a2 โ€“ b2 = (a + b)(a โ€“ b)

Multiplying (L R)

Page 5-14

5-5 FACTORING SPECIAL PRODUCTS

Special Factoring

โ€ข Special factoring formulas

Name Formula Exampledifference of squares a2 โ€“ b2 = (a + b)(a โ€“ b) n2 โ€“25 = n2 โ€“ 52 = (n + 5)(n โ€“ 5)

square of sum(perfect square trinomial)

a2 + 2ab + b2 = (a + b)2

x2 + 6x + 9 = (x + 3)2 a = x, b = 3x 3x 3Check: (x + 3)2 = x2 + 2 โˆ™ x โˆ™ 3 + 32 = x2 + 6x + 9 โˆš

square of difference(perfect square trinomial) a2 โ€“ 2ab + b2 = (a โ€“ b)2

25t2 โ€“ 20t + 4 = (5t โ€“ 2)2 a = 5t, b = 25t -25t -2

Check: (5t โ€“ 2)2 = (5t)2 โ€“ 2(5t)(2) + 22 = 25t2 โ€“ 20t + 4 โˆš

Note: The quickest way to factor an expression is to recognize it as a special product .

โ€ข Memory aid: (a2 ยฑ ab + b2) = (a ยฑ b)2 Notice the plus or minus sign in the second term .

โ€ข To use perfect square trinomial formulas: Use cross-multiplication method to factor a

perfect square . Then use the square formula to check .

Example: Factor the following completely .

1. 9x2 โ€“ 16y2 = 32x2 โ€“ 42y2 = (3x)2 โ€“ (4y)2 anbn = (a b)n

= (3x + 4y)(3x โ€“ 4y) a2 โ€“ b2 = (a + b)(a โ€“ b) : a = 3x , b = 4y

2. 12x + 9 + 4x2 = 4x2 + 12x + 9 Rewrite in standard form: ax2 + bx + c2x 3 2x 3

= (2x + 3)23(2x) + 3(2x) = 12x

Check: (2x + 3)2 = (2x)2 + 2โˆ™2x โˆ™ 3 + 32 = 4x2 + 12x + 9 โˆš a2 + 2ab + b2 = (a + b)2

3. 25A2 โ€“ 20AB + 4B2 = (5A โ€“ 2B)2

5A -2B (5A) (-2B) + (5A) (-2B) = -20AB

5A -2B

Check: (5A โ€“ 2B)2 = (5A)2 โ€“ 2(5A)(2B) + (2B)2 = 25A2 โ€“ 20AB + 4B2 โˆš a2 โ€“ 2ab + b2 = (a โ€“ b)2 : a = 5A , b = 2B

4. ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

x2 โ€“ ๐Ÿ๐Ÿ๐Ÿ—๐Ÿ—

y2 = 2 ๏ฟฝ 142๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2 โ€“ 1

32 ๐‘ฆ๐‘ฆ2๏ฟฝ Factor out the GCF (2) . ๐‘Ž๐‘Ž

๐‘›๐‘›

๐‘๐‘๐‘›๐‘›= ๏ฟฝ๐‘Ž๐‘Ž

๐‘๐‘๏ฟฝ๐‘›๐‘›

= 2 ๏ฟฝ๏ฟฝ๐’™๐’™๐Ÿ’๐Ÿ’๏ฟฝ2

โ€“ ๏ฟฝ๐’š๐’š๐Ÿ‘๐Ÿ‘๏ฟฝ2๏ฟฝ a2 โ€“ b2 = (a + b)(a โ€“ b) : a = ๐‘ฅ๐‘ฅ

4, b = ๐‘ฆ๐‘ฆ

3

= 2 ๏ฟฝ๏ฟฝ๐’™๐’™๐Ÿ’๐Ÿ’

+ ๐’š๐’š๐Ÿ‘๐Ÿ‘๏ฟฝ ๏ฟฝ๐’™๐’™

๐Ÿ’๐Ÿ’โˆ’ ๐’š๐’š

๐Ÿ‘๐Ÿ‘๏ฟฝ๏ฟฝ

5. -12x2 + 36xy โ€“ 27y2 = -3(4x2 โ€“ 12xy + 9y2) Factor out the GCF (-3) . 2x - 3y

2x - 3y (2x) (-3y) + (2x) (-3y) = -12xy = -3(2x โ€“ 3y)2

Check: (2x โ€“ 3y)2 = (2x)2 โ€“ 2(2x)(3y) + (3y)2 = 4x2 โ€“ 12xy + 9y2 โˆš a2 โ€“ 2ab + b2 = (a โ€“ b)2 : a = 2x , b = 3y

a b

Factoring (L R)

a2 โ€“ b2 = (a + b)(a โ€“ b)

Multiplying (L R)

Page 5-14

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 111

Algebra I & II Key Concepts, Practice, and Quizzes Unit 5 โ€“ Polynomial Functions

More Examples for Special Factoring

โ€ข Factoring by grouping

Example:

1. p3 โ€“ p2q โ€“ pq2 + q3 = (p3 โ€“ p2q) โ€“ (pq2 โ€“ q3) Group .

= p2 (p โ€“ q) โ€“ q2 (p โ€“ q) Factor out the GCF (p2 and q2) .

= (p โ€“ q) (p2 โ€“ q2 ) a2 โ€“ b2 = (a + b)(a โ€“ b): a = p , b = q

= (p โ€“ q) (p + q)(p โ€“ q)

= (p โ€“ q)2 (p + q)

2. 3s2 โ€“ 18st + 27t2 โ€“ 75u2 = 3(s2 โ€“ 6st + 9t2 โ€“ 25u2) Factor out the GCF (3) .

= 3[(s2 โ€“ 6st + 9t2) โ€“ 52u2] s - 3t -3st + (-3st) = -6st s - 3t amn = (am)n

= 3[(s โ€“ 3t)2 โ€“ (5u)2] a2 โ€“ b2 = (a + b)(a โ€“ b)

= 3[(s โ€“ 3t) + 5u] [(s โ€“ 3t) โ€“ 5u] a = s โ€“ 3t , b = 5u

โ€ข Special factoring of higher degree

Example: Factor the following completely .

1. p10 + 22p5+ 121 = p10 + 22p5 + 121p5 11 p5 11 11p5 + 11p5 = 22 p5

= (p5 + 11)2

Check: (p5 + 11)2 = (p5)2 + 2(p5)(11) + 112 = p10 + 22p5 + 121 โˆš a2 + 2ab + b2 = (a + b)2 : a = p5 , b = 11

2. u4 โ€“ 81 = u2โˆ™ 2 โ€“ 92 = (u2)2 โ€“ 92amn = (am)n

= (u2 + 9)(u2 โ€“ 9) a2 โ€“ b2 = (a + b)( a โ€“ b): a = u2 , b = 9

= (u2 + 9)(u2 โ€“ 32) a2โ€“ b2 = (a + b)( a โ€“ b) : a = u , b = 3

= (u2 + 9)(u + 3) )(u โ€“ 3)

3. 16y8 โ€“ x8 = 42y4 โˆ™ 2 โ€“ x4 โˆ™ 2 = (4y4)2 โ€“ (x4)2anbn = (ab)n , amn = (am)n

= (4y4 + x4)(4y4 โ€“ x4) a2โ€“ b2 = (a + b)( a โ€“ b) : a = 4y4 , b = x4

= (4y4 + x4)[(2y2)2 โ€“ (x2)2] 4y4 = 22y2 โˆ™ 2 = (2y2)2

= (4y4 + x4)(2y2 + x2)(2y2 โ€“ x2) a2 โ€“ b2 = (a + b)( a โ€“ b): a = 2y2 , b = x2

a b

a b

a b

a b

Keep factoring until no further factors can be found .

Page 5-15

More Examples for Special Factoring

โ€ข Factoring by grouping

Example:

1. p3 โ€“ p2q โ€“ pq2 + q3 = (p3 โ€“ p2q) โ€“ (pq2 โ€“ q3) Group .

= p2 (p โ€“ q) โ€“ q2 (p โ€“ q) Factor out the GCF (p2 and q2) .

= (p โ€“ q) (p2 โ€“ q2 ) a2 โ€“ b2 = (a + b)(a โ€“ b): a = p , b = q

= (p โ€“ q) (p + q)(p โ€“ q)

= (p โ€“ q)2 (p + q)

2. 3s2 โ€“ 18st + 27t2 โ€“ 75u2 = 3(s2 โ€“ 6st + 9t2 โ€“ 25u2) Factor out the GCF (3) .

= 3[(s2 โ€“ 6st + 9t2) โ€“ 52u2] s - 3t -3st + (-3st) = -6st s - 3t amn = (am)n

= 3[(s โ€“ 3t)2 โ€“ (5u)2] a2 โ€“ b2 = (a + b)(a โ€“ b)

= 3[(s โ€“ 3t) + 5u] [(s โ€“ 3t) โ€“ 5u] a = s โ€“ 3t , b = 5u

โ€ข Special factoring of higher degree

Example: Factor the following completely .

1. p10 + 22p5+ 121 = p10 + 22p5 + 121p5 11 p5 11 11p5 + 11p5 = 22 p5

= (p5 + 11)2

Check: (p5 + 11)2 = (p5)2 + 2(p5)(11) + 112 = p10 + 22p5 + 121 โˆš a2 + 2ab + b2 = (a + b)2 : a = p5 , b = 11

2. u4 โ€“ 81 = u2โˆ™ 2 โ€“ 92 = (u2)2 โ€“ 92amn = (am)n

= (u2 + 9)(u2 โ€“ 9) a2 โ€“ b2 = (a + b)( a โ€“ b): a = u2 , b = 9

= (u2 + 9)(u2 โ€“ 32) a2โ€“ b2 = (a + b)( a โ€“ b) : a = u , b = 3

= (u2 + 9)(u + 3) )(u โ€“ 3)

3. 16y8 โ€“ x8 = 42y4 โˆ™ 2 โ€“ x4 โˆ™ 2 = (4y4)2 โ€“ (x4)2anbn = (ab)n , amn = (am)n

= (4y4 + x4)(4y4 โ€“ x4) a2โ€“ b2 = (a + b)( a โ€“ b) : a = 4y4 , b = x4

= (4y4 + x4)[(2y2)2 โ€“ (x2)2] 4y4 = 22y2 โˆ™ 2 = (2y2)2

= (4y4 + x4)(2y2 + x2)(2y2 โ€“ x2) a2 โ€“ b2 = (a + b)( a โ€“ b): a = 2y2 , b = x2

a b

a b

a b

a b

Keep factoring until no further factors can be found .

Page 5-15

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

112 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 5 โ€“ Polynomial Functions

Factoring the Sum & Difference of Cubes

โ€ข Factoring a sum or difference of two cubes

Name Formula Example

sum of cubes a3 + b3 = (a + b)(a2 โ€“ ab + b2)27 + x3 = 33 + x3 = (3 + x) (32 โ€“ 3 x + x2)

difference of cubes a3 โ€“ b3 = (a โ€“ b)(a2 + ab + b2) 27 โ€“ y3 = 33 โ€“ y3 = (3 โ€“ y)(32 + 3y + y2)

Note: a3 โ€“ b3 โ‰  (a โ€“ b)3

โ€ข Memory aid: a3 ยฑ b3 = (a ยฑ b)(a2 โˆ“ ab + b2 )

Example: Factor the following completely .

1. x3 + 125 = x3 + 53 = (x + 5) (x2 โ€“ 5x + 52) a3 + b3 = (a + b)(a2 โ€“ ab + b2): a = x, b = 5

= (x + 5) (x2 โ€“ 5x + 25)

2. -2t3 + 54 = -2(t3 โ€“ 27) = -2(t3 โ€“ 33) Factor out -2 . (-2)(-27) = 54

= -2(t โ€“ 3) (t2 + 3t + 9) a3 โ€“ b3 = (a โ€“ b)(a2 + ab + b2): a = t, b = 3

3. -wu4 โ€“ 0.001wu = -wu (u3 + 0 .001) Factor out -wu.

= -wu (u3 + 0.13) 0 .13 = 0 .001

= - wu (u + 0.1) (u2 โ€“ 0.1u + 0.01) a3 + b3 = (a + b)(a2 โ€“ ab + b2) : a = u, b = 0 .1

4. p6 โ€“ 27q6 = p2 โˆ™ 3 โ€“ 33(q2)3 = (p2)3 โ€“ (3q2)3 amn = (am)n

= (p2 โ€“ 3q2) [(p2)2 + 3p2q2 + (3q2)2] a3 โ€“ b3 = (a โ€“ b)(a2 + ab + b2): a = p2, b = 3q2

= (p2 โ€“ 3q2) (p4 + 3p2q2 + 9q4) (am)n = amn

5. 7y5 โ€“ 7y2 = 7y2 (y3 โ€“ 1) = 7y2 (y3 โ€“ 13) Factor out 7y2 .

= 7y2 (y โ€“ 1)(y2 + y + 1) a3 โ€“ b3 = (a โ€“ b)(a2 + ab + b2 ): a = y , b = 1

6. ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”

+ z3 = 13

๐Ÿ”๐Ÿ”๐Ÿ‘๐Ÿ‘+ z3

= ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”๏ฟฝ3

+ z3 ๐‘Ž๐‘Ž๐‘›๐‘›

๐‘๐‘๐‘›๐‘›= ๏ฟฝ๐‘Ž๐‘Ž

๐‘๐‘๏ฟฝ๐‘›๐‘›

= ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”

+ ๐’›๐’›๏ฟฝ ๏ฟฝ ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”๐Ÿ๐Ÿโˆ’ ๐Ÿ๐Ÿ

๐Ÿ”๐Ÿ”๐’›๐’› + ๐’›๐’›๐Ÿ๐Ÿ๏ฟฝ a3 + b3 = (a + b)(a2 - ab + b2 ): a = 1

4 , b = z

Not factorable

a b 0 .1 2

= 0 .01

a b

a b

a b a b a2 a b b2

Notice the reversed plus or minus sign in thesecond term .

Page 5-16

Factoring the Sum & Difference of Cubes

โ€ข Factoring a sum or difference of two cubes

Name Formula Example

sum of cubes a3 + b3 = (a + b)(a2 โ€“ ab + b2)27 + x3 = 33 + x3 = (3 + x) (32 โ€“ 3 x + x2)

difference of cubes a3 โ€“ b3 = (a โ€“ b)(a2 + ab + b2) 27 โ€“ y3 = 33 โ€“ y3 = (3 โ€“ y)(32 + 3y + y2)

Note: a3 โ€“ b3 โ‰  (a โ€“ b)3

โ€ข Memory aid: a3 ยฑ b3 = (a ยฑ b)(a2 โˆ“ ab + b2 )

Example: Factor the following completely .

1. x3 + 125 = x3 + 53 = (x + 5) (x2 โ€“ 5x + 52) a3 + b3 = (a + b)(a2 โ€“ ab + b2): a = x, b = 5

= (x + 5) (x2 โ€“ 5x + 25)

2. -2t3 + 54 = -2(t3 โ€“ 27) = -2(t3 โ€“ 33) Factor out -2 . (-2)(-27) = 54

= -2(t โ€“ 3) (t2 + 3t + 9) a3 โ€“ b3 = (a โ€“ b)(a2 + ab + b2): a = t, b = 3

3. -wu4 โ€“ 0.001wu = -wu (u3 + 0 .001) Factor out -wu.

= -wu (u3 + 0.13) 0 .13 = 0 .001

= - wu (u + 0.1) (u2 โ€“ 0.1u + 0.01) a3 + b3 = (a + b)(a2 โ€“ ab + b2) : a = u, b = 0 .1

4. p6 โ€“ 27q6 = p2 โˆ™ 3 โ€“ 33(q2)3 = (p2)3 โ€“ (3q2)3 amn = (am)n

= (p2 โ€“ 3q2) [(p2)2 + 3p2q2 + (3q2)2] a3 โ€“ b3 = (a โ€“ b)(a2 + ab + b2): a = p2, b = 3q2

= (p2 โ€“ 3q2) (p4 + 3p2q2 + 9q4) (am)n = amn

5. 7y5 โ€“ 7y2 = 7y2 (y3 โ€“ 1) = 7y2 (y3 โ€“ 13) Factor out 7y2 .

= 7y2 (y โ€“ 1)(y2 + y + 1) a3 โ€“ b3 = (a โ€“ b)(a2 + ab + b2 ): a = y , b = 1

6. ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”

+ z3 = 13

๐Ÿ”๐Ÿ”๐Ÿ‘๐Ÿ‘+ z3

= ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”๏ฟฝ3

+ z3 ๐‘Ž๐‘Ž๐‘›๐‘›

๐‘๐‘๐‘›๐‘›= ๏ฟฝ๐‘Ž๐‘Ž

๐‘๐‘๏ฟฝ๐‘›๐‘›

= ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”

+ ๐’›๐’›๏ฟฝ ๏ฟฝ ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”๐Ÿ๐Ÿโˆ’ ๐Ÿ๐Ÿ

๐Ÿ”๐Ÿ”๐’›๐’› + ๐’›๐’›๐Ÿ๐Ÿ๏ฟฝ a3 + b3 = (a + b)(a2 - ab + b2 ): a = 1

4 , b = z

Not factorable

a b 0 .1 2

= 0 .01

a b

a b

a b a b a2 a b b2

Notice the reversed plus or minus sign in thesecond term .

Page 5-16

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 113

Algebra I & II Key Concepts, Practice, and Quizzes Unit 5 โ€“ Polynomial Functions

Unit 5 Summary

โ€ข Review basic algebraic terms

Algebraic Term Description Examplealgebraic expression A mathematical phrase that contains numbers,

variables, and arithmetic operations . 9x2 โ€“ x + 3

coefficient The number in front of a variable . 9, -1

termA term can be a constant, variable, or the product of a number and variable .(Terms are separated by a plus or minus sign .)

9x2 , - x, 3

โ€ข Polynomial

Name Example Coefficientmonomial (one term) 7a 7binomial (two terms) 3x โ€“ 5 3trinomial (three terms) -4x2 + xy + 7 -4, 1polynomial (two or more terms) 2pq + 4p3 + 11 + p 2, 4, 1

โ€ข The degree of a term with one variable: the exponent (power) of its variable .

Example: 5x2 degree: 2-3t7 degree: 7

โ€ข The degree of a term with more variables: the sum of the exponents of its variables .

Example: -3x3 y5 z2 degree: 3 + 5 + 2 = 10

โ€ข The degree of a polynomial with more variables: the highest degree of any individual term .Example: 4ab3 + 3a2b2c3 โ€“ 5a + 1 degree: 7

โ€ข The leading term of a polynomial: the term with the highest degree in the polynomial .

Example: 4ab3 + 3ab2c3 โ€“ 5a + 1 leading term: 3ab2c3

โ€ข The leading coefficient: the coefficient of the leading term .

Example: 4ab3 + 3ab2c3 โ€“ 5a + 1 leading coefficient: 3

โ€ข Descending order: the power of a variable decreases for each succeeding term.

โ€ข Ascending order: the power of a variable increases for each succeeding term .

โ€ข The opposite of the polynomial: - p: the opposite of the polynomial

p: polynomial p + (-p) = 0

-x = (-1)(x)

Page 5-17

Unit 5 Summary

โ€ข Review basic algebraic terms

Algebraic Term Description Examplealgebraic expression A mathematical phrase that contains numbers,

variables, and arithmetic operations . 9x2 โ€“ x + 3

coefficient The number in front of a variable . 9, -1

termA term can be a constant, variable, or the product of a number and variable .(Terms are separated by a plus or minus sign .)

9x2 , - x, 3

โ€ข Polynomial

Name Example Coefficientmonomial (one term) 7a 7binomial (two terms) 3x โ€“ 5 3trinomial (three terms) -4x2 + xy + 7 -4, 1polynomial (two or more terms) 2pq + 4p3 + 11 + p 2, 4, 1

โ€ข The degree of a term with one variable: the exponent (power) of its variable .

Example: 5x2 degree: 2-3t7 degree: 7

โ€ข The degree of a term with more variables: the sum of the exponents of its variables .

Example: -3x3 y5 z2 degree: 3 + 5 + 2 = 10

โ€ข The degree of a polynomial with more variables: the highest degree of any individual term .Example: 4ab3 + 3a2b2c3 โ€“ 5a + 1 degree: 7

โ€ข The leading term of a polynomial: the term with the highest degree in the polynomial .

Example: 4ab3 + 3ab2c3 โ€“ 5a + 1 leading term: 3ab2c3

โ€ข The leading coefficient: the coefficient of the leading term .

Example: 4ab3 + 3ab2c3 โ€“ 5a + 1 leading coefficient: 3

โ€ข Descending order: the power of a variable decreases for each succeeding term.

โ€ข Ascending order: the power of a variable increases for each succeeding term .

โ€ข The opposite of the polynomial: - p: the opposite of the polynomial

p: polynomial p + (-p) = 0

-x = (-1)(x)

Page 5-17

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

114 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 5 โ€“ Polynomial Functions

โ€ข The FOIL method: an easy way to find the product of two binomials .

Example

(a + b) (c + d) = ac + ad + bc + bd (x + 2) (x + 3) = xยทx + xยท3 + 2x + 2โˆ™3F O I L F O I L

= x2 + 5x + 6

โ€ข Greatest / highest common factor (GCF or HCF): the largest factor of two or more terms .

โ€ข Negative of the greatest common factor

Factoring GCF Factor Out a Negative GCF Negative GCF2x โ€“ 4x2 = 2x (1 โ€“ 2x) 2x 2x โ€“ 4x2 = -2x (-1 + 2x) - 2x

3ab โ€“ 9ab2 + 6a2b = 3ab (1โ€“ 3b + 2a) 3ab 3ab โ€“ 9ab2 + 6a2b = -3ab (-1+ 3b โ€“ 2a) -3ab

โ€ข Factoring x2 + bx + c

Factoring x2 + bx + c Example: x2 โ€“ 5x + 6x2 + (c1 + c2) x + c1c2 = (x + c1)(x + c2)x c1x c2Check: c1x+ c2 x = bx

x2 + [-2 + (-3)] x + 6 = (x โ€“ 2)(x โ€“ 3) x -2 x -3

Check: -2x + (-3x) = -5x yes! .

โ€ข Factoring ax2 + bx + c

Summary: Factoring ax2 + bx + ca1a2x2 + (a1c2 + c1a2)x + c1c2 = (a1x + c1)(a2x + c2)

a1x c1 a2x c2

โ€ข AC method for factoring trinomials: ax2 + bx + c

Factoring ax2 + bx + c = 0 by Grouping Example

Steps Solve 14x โ€“ 6 = -12x2

โ€ข Convert to standard form if necessary . 12x2 + 14x โ€“ 6 = 0โ€ข Factor out the greatest common factor (GCF) . 2(6x2 + 7x โ€“ 3) = 0โ€ข Multiply a and c in ax2 + bx + c . ac = 6 (-3) = -18โ€ข Factor the product ac that sum to the middle coefficient b . 9 (-2) = -18, 9 + (-2) = 7โ€ข Rewrite the middle term as the sum using the 2(6x2 + 7x โ€“ 3) = 0

factors found in last step . 2 (6x2 + 9x โ€“ 2x โ€“ 3) = 0โ€ข Factor by grouping . 2[3x(2x + 3) โ€“ (2x + 3)] = 0

2 (2x + 3)(3x โ€“ 1) = 0 Factor out (2x + 3) .

? ?

Page 5-18

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 115

Algebra I & II Key Concepts, Practice, and Quizzes Unit 5 โ€“ Polynomial Functions

โ€ข Special factoring formulas

Name Formula Exampledifference of squares a2 โ€“ b2 = (a + b)(a โ€“ b) n2 โ€“25 = n2 โ€“ 52 = (n + 5)(n โ€“ 5)

square of sum(perfect square trinomial)

a2 + 2ab + b2 = (a + b)2

x2 + 6x + 9 = (x + 3)2 a = x, b = 3x 3x 3Check: (x + 3)2 = x2 + 2 โˆ™ x โˆ™ 3 + 32 = x2 + 6x + 9 โˆš

square of difference(perfect square trinomial)

a2 โ€“ 2ab + b2 = (a โ€“ b)2

25t2 โ€“ 20t + 4 = (5t โ€“ 2)2 a = 5t, b = 25t -25t -2

Check: (5t โ€“ 2)2 = (5t)2 โ€“ 2(5t)(2) + 22 = 25t2 โ€“ 20t + 4 โˆš

โ€ข Factoring a sum or difference of two cubes

Name Formula Example

sum of cubes a3 + b3 = (a + b)(a2 โ€“ ab + b2)27 + x3 = 33 + x3 = (3 + x) (32 โ€“ 3 x + x2)

difference of cubes a3 โ€“ b3 = (a โ€“ b)(a2 + ab + b2) 27 โ€“ y3 = 33 โ€“ y3 = (3 โ€“ y)(32 + 3y + y2)

Factoring (L R)

a2 โ€“ b2 = (a + b)(a โ€“ b)

Multiplying (L R)

a b a b a2 a b b2

Page 5-19

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

116 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 5 โ€“ Polynomial Functions

PRACTICE QUIZ

Unit 5 Polynomial Functions

1. The function f (x) = 2,000 + 0 .6x2 can be used to determine

the cost of producing x machines in a factory . a. What is the total cost of producing 40 machines?b. Use the following graph to estimate f (30) .

2 . a . Find the sum of 5๐‘ฅ๐‘ฅ3 + 2๐‘ฅ๐‘ฅ2 โˆ’ 4๐‘ฅ๐‘ฅ + 1 = 0and 2๐‘ฅ๐‘ฅ3 โˆ’ 4๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ + 5 = 0

b. Find the difference of 7๐‘ฅ๐‘ฅ3 + 5๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ โˆ’ 5 = 0and 3๐‘ฅ๐‘ฅ3 โˆ’ 2๐‘ฅ๐‘ฅ2 + 2๐‘ฅ๐‘ฅ โˆ’ 3 = 0

3. Find the following products .

a . ๏ฟฝ2๐‘ก๐‘ก + 13๏ฟฝ(6t โˆ’ 9)

b. (u + 2)3

4 . Given f (x) = 2x โ€“ x2 , find f (b + 2) .

5. Factor the following completely .

a. 4c2d โ€“ 2cd 2 + 2c โ€“ d

b . 27x3y โ€“ 3xy3

c . x2 โ€“ 2x โ€“ 3

d . 3x2 โ€“17x + 24 = 0e . t2 + 2

3๐‘ก๐‘ก = - 1

9

6. Factor the following completely .a . 4x2 โ€“ 9y2

b . 29 u2 โ€“ 2

25 ๐‘ฃ๐‘ฃ2

c . t4 โ€“ 16d . x6 โ€“ 8y6

f (x)

x

Page 8

PRACTICE QUIZ

Unit 5 Polynomial Functions

1. The function f (x) = 2,000 + 0 .6x2 can be used to determine

the cost of producing x machines in a factory . a. What is the total cost of producing 40 machines?b. Use the following graph to estimate f (30) .

2 . a . Find the sum of 5๐‘ฅ๐‘ฅ3 + 2๐‘ฅ๐‘ฅ2 โˆ’ 4๐‘ฅ๐‘ฅ + 1 = 0and 2๐‘ฅ๐‘ฅ3 โˆ’ 4๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ + 5 = 0

b. Find the difference of 7๐‘ฅ๐‘ฅ3 + 5๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ โˆ’ 5 = 0and 3๐‘ฅ๐‘ฅ3 โˆ’ 2๐‘ฅ๐‘ฅ2 + 2๐‘ฅ๐‘ฅ โˆ’ 3 = 0

3. Find the following products .

a . ๏ฟฝ2๐‘ก๐‘ก + 13๏ฟฝ(6t โˆ’ 9)

b. (u + 2)3

4 . Given f (x) = 2x โ€“ x2 , find f (b + 2) .

5. Factor the following completely .

a. 4c2d โ€“ 2cd 2 + 2c โ€“ d

b . 27x3y โ€“ 3xy3

c . x2 โ€“ 2x โ€“ 3

d . 3x2 โ€“17x + 24 = 0e . t2 + 2

3๐‘ก๐‘ก = - 1

9

6. Factor the following completely .a . 4x2 โ€“ 9y2

b . 29 u2 โ€“ 2

25 ๐‘ฃ๐‘ฃ2

c . t4 โ€“ 16d . x6 โ€“ 8y6

f (x)

x

Page 8

10 20 30 40

3,000

2,000

1,000

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 117

Algebra I & II Key Concepts, Practice, and Quizzes Unit 6 โ€“ Rational Expressions

UNIT 6 RATIONAL EXPRESSIONS6-1 RATIONAL EXPRESSIONS & MULTIPLICATION

Rational Functions

Example

โ€ข Rational number ๏ฟฝ๐’‚๐’‚๐’ƒ๐’ƒ๏ฟฝ: the ratio or quotient of two numbers (a fraction) . 2

3 , -1

5

โ€ข Rational expression: an expression that is a ratio or quotient of two polynomials . 2๐‘ฅ๐‘ฅโˆ’37๐‘ฅ๐‘ฅ+5

โ€ข Rational function: a function that is a ratio or quotient of two polynomials .

Rational Function Example

๐‘“๐‘“(๐‘ฅ๐‘ฅ) = ๐‘Ž๐‘Ž(๐‘ฅ๐‘ฅ)๐‘๐‘(๐‘ฅ๐‘ฅ)

b(x) โ‰  0 ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = 4๐‘ฅ๐‘ฅ+35๐‘ฅ๐‘ฅโˆ’7

, ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = 3๐‘ฆ๐‘ฆ2โˆ’2๐‘ฆ๐‘ฆ+45๐‘ฆ๐‘ฆโˆ’6

Example: For the following functions, identify their domains .

Rational Function Restriction DomanSet-Builder Notation Interval Notation

๐’‡๐’‡(๐’™๐’™) = ๐Ÿ‘๐Ÿ‘๐’™๐’™ + ๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ“๐Ÿ“

x โ‰  5 ๏ฟฝ3๐‘ฅ๐‘ฅ+15โˆ’5

= 3๐‘ฅ๐‘ฅ+10

is undefined๏ฟฝ { x | x โ‰  5 } (-โˆž, 5) โˆช (5, โˆž)

๐’‡๐’‡(๐’™๐’™) =๐Ÿ“๐Ÿ“๐’š๐’š๐’š๐’š๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐’š๐’š โˆ’ ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’št โ‰  0 ๏ฟฝ5๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2+2๐‘ฆ๐‘ฆโˆ’1

0 is undefined๏ฟฝ { t | t โ‰  0 } (-โˆž, 0) โˆช (0, โˆž)

๐’‡๐’‡(๐’™๐’™) = ๐Ÿ•๐Ÿ•๐’š๐’š+๐Ÿ’๐Ÿ’๐Ÿ“๐Ÿ“๐’š๐’šโˆ’๐Ÿ‘๐Ÿ‘ y โ‰  3

5 (5 โˆ™

3

5โˆ’ 3 = 0) ๏ฟฝ ๐‘ฆ๐‘ฆ | ๐‘ฆ๐‘ฆ โ‰ 

3 5

๏ฟฝ ๏ฟฝ-โˆž, 3 5๏ฟฝ โˆช ๏ฟฝ 3

5,โˆž๏ฟฝ

โ€ข Reducing rational expressions to lowest forms Example

A rational expression reduced to lowest terms means that no common

factors other than 1 occur in its top and bottom polynomials . ๐Ÿ๐Ÿ ๐’’๐’’๐Ÿ๐Ÿ

๐Ÿ”๐Ÿ” ๐’’๐’’๐Ÿ’๐Ÿ’= 2 ๐‘ž๐‘ž2

6 ๐‘ž๐‘ž2๐‘ž๐‘ž2= 1

3 ๐‘ž๐‘ž2

Example: Reduce to lowest terms (simplify) . Lowest terms

1. ๐Ÿ‘๐Ÿ‘๐’ƒ๐’ƒ+๐Ÿ—๐Ÿ—๐Ÿ‘๐Ÿ‘

= 3๐‘๐‘3

+ 93 = b + 3

2. ๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ๐Ÿ+ ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ‘๐Ÿ‘โˆ’๐Ÿ•๐Ÿ•๐’™๐’™๐Ÿ๐Ÿ

= ๐‘ฅ๐‘ฅ(3๐‘ฅ๐‘ฅ+2)๐‘ฅ๐‘ฅ2(5๐‘ฅ๐‘ฅโˆ’7)

= ๐Ÿ‘๐Ÿ‘๐’™๐’™+๐Ÿ๐Ÿ๐’™๐’™(๐Ÿ“๐Ÿ“๐’™๐’™โˆ’๐Ÿ•๐Ÿ•)

Factor, and then reduce .

3. ๐Ÿ—๐Ÿ—๐’š๐’š๐Ÿ๐Ÿโˆ’๐Ÿ‘๐Ÿ‘๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š

= 3๐‘ฆ๐‘ฆ(3๐‘ฆ๐‘ฆโˆ’1)18๐‘ฆ๐‘ฆ

= 3๐‘ฆ๐‘ฆโˆ’16

= 3๐‘ฆ๐‘ฆ6โˆ’ 1

6= ๐’š๐’š

๐Ÿ๐Ÿโˆ’ ๐Ÿ๐Ÿ

๐Ÿ”๐Ÿ”

4. ๐Ÿ‘๐Ÿ‘๐’š๐’š๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ(๐’š๐’šโˆ’๐Ÿ๐Ÿ)๐Ÿ๐Ÿ

= 3(๐‘ฆ๐‘ฆ2โˆ’4)(๐‘ฆ๐‘ฆโˆ’2)2

= 3(๐‘ฆ๐‘ฆ2โˆ’22)(๐‘ฆ๐‘ฆโˆ’2)2

= 3(๐‘ฆ๐‘ฆ+2)(๐‘ฆ๐‘ฆโˆ’2)(๐‘ฆ๐‘ฆโˆ’2)2

= ๐Ÿ‘๐Ÿ‘(๐’š๐’š+๐Ÿ๐Ÿ)๐’š๐’šโˆ’๐Ÿ๐Ÿ

a2 โ€“ b2 = (a + b) (a โ€“ b)

5. ๐’‚๐’‚(๐Ÿ๐Ÿ๐’‚๐’‚โˆ’๐Ÿ๐Ÿ)(๐Ÿ๐Ÿ๐’‚๐’‚+๐Ÿ“๐Ÿ“)๐Ÿ’๐Ÿ’๐’‚๐’‚๐Ÿ๐Ÿ+ ๐Ÿ๐Ÿ๐’‚๐’‚โˆ’๐Ÿ“๐Ÿ“

= ๐‘Ž๐‘Ž(2๐‘Ž๐‘Žโˆ’1)(2๐‘Ž๐‘Ž+5)(2๐‘Ž๐‘Žโˆ’1)(2๐‘Ž๐‘Ž+5)

= a 4a2 + 8a โ€“5 = (2a โ€“ 1) (2a + 5)

6. ๐Ÿ’๐Ÿ’(๐’™๐’™๐Ÿ‘๐Ÿ‘โˆ’๐’š๐’š๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ๐Ÿ๐Ÿ(๐’™๐’™โˆ’๐’š๐’š)

= 4(๐‘ฅ๐‘ฅโˆ’๐‘ฆ๐‘ฆ)(๐‘ฅ๐‘ฅ2+๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ+๐‘ฆ๐‘ฆ2)12(๐‘ฅ๐‘ฅโˆ’๐‘ฆ๐‘ฆ)

= ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

(๐’™๐’™๐Ÿ๐Ÿ + ๐’™๐’™๐’š๐’š + ๐’š๐’š๐Ÿ๐Ÿ) a3 โ€“ b3 = (a โ€“ b)(a2 + ab + b2 )

6

3

2

12a -12a 5

3

1

1 1

polynomials

35

Page 6-1

UNIT 6 RATIONAL EXPRESSIONS6-1 RATIONAL EXPRESSIONS & MULTIPLICATION

Rational Functions

Example

โ€ข Rational number ๏ฟฝ๐’‚๐’‚๐’ƒ๐’ƒ๏ฟฝ: the ratio or quotient of two numbers (a fraction) . 2

3 , -1

5

โ€ข Rational expression: an expression that is a ratio or quotient of two polynomials . 2๐‘ฅ๐‘ฅโˆ’37๐‘ฅ๐‘ฅ+5

โ€ข Rational function: a function that is a ratio or quotient of two polynomials .

Rational Function Example

๐‘“๐‘“(๐‘ฅ๐‘ฅ) = ๐‘Ž๐‘Ž(๐‘ฅ๐‘ฅ)๐‘๐‘(๐‘ฅ๐‘ฅ)

b(x) โ‰  0 ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = 4๐‘ฅ๐‘ฅ+35๐‘ฅ๐‘ฅโˆ’7

, ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = 3๐‘ฆ๐‘ฆ2โˆ’2๐‘ฆ๐‘ฆ+45๐‘ฆ๐‘ฆโˆ’6

Example: For the following functions, identify their domains .

Rational Function Restriction DomanSet-Builder Notation Interval Notation

๐’‡๐’‡(๐’™๐’™) = ๐Ÿ‘๐Ÿ‘๐’™๐’™ + ๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ“๐Ÿ“

x โ‰  5 ๏ฟฝ3๐‘ฅ๐‘ฅ+15โˆ’5

= 3๐‘ฅ๐‘ฅ+10

is undefined๏ฟฝ { x | x โ‰  5 } (-โˆž, 5) โˆช (5, โˆž)

๐’‡๐’‡(๐’™๐’™) =๐Ÿ“๐Ÿ“๐’š๐’š๐’š๐’š๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐’š๐’š โˆ’ ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’št โ‰  0 ๏ฟฝ5๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2+2๐‘ฆ๐‘ฆโˆ’1

0 is undefined๏ฟฝ { t | t โ‰  0 } (-โˆž, 0) โˆช (0, โˆž)

๐’‡๐’‡(๐’™๐’™) = ๐Ÿ•๐Ÿ•๐’š๐’š+๐Ÿ’๐Ÿ’๐Ÿ“๐Ÿ“๐’š๐’šโˆ’๐Ÿ‘๐Ÿ‘ y โ‰  3

5 (5 โˆ™

3

5โˆ’ 3 = 0) ๏ฟฝ ๐‘ฆ๐‘ฆ | ๐‘ฆ๐‘ฆ โ‰ 

3 5

๏ฟฝ ๏ฟฝ-โˆž, 3 5๏ฟฝ โˆช ๏ฟฝ 3

5,โˆž๏ฟฝ

โ€ข Reducing rational expressions to lowest forms Example

A rational expression reduced to lowest terms means that no common

factors other than 1 occur in its top and bottom polynomials . ๐Ÿ๐Ÿ ๐’’๐’’๐Ÿ๐Ÿ

๐Ÿ”๐Ÿ” ๐’’๐’’๐Ÿ’๐Ÿ’= 2 ๐‘ž๐‘ž2

6 ๐‘ž๐‘ž2๐‘ž๐‘ž2= 1

3 ๐‘ž๐‘ž2

Example: Reduce to lowest terms (simplify) . Lowest terms

1. ๐Ÿ‘๐Ÿ‘๐’ƒ๐’ƒ+๐Ÿ—๐Ÿ—๐Ÿ‘๐Ÿ‘

= 3๐‘๐‘3

+ 93 = b + 3

2. ๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ๐Ÿ+ ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ‘๐Ÿ‘โˆ’๐Ÿ•๐Ÿ•๐’™๐’™๐Ÿ๐Ÿ

= ๐‘ฅ๐‘ฅ(3๐‘ฅ๐‘ฅ+2)๐‘ฅ๐‘ฅ2(5๐‘ฅ๐‘ฅโˆ’7)

= ๐Ÿ‘๐Ÿ‘๐’™๐’™+๐Ÿ๐Ÿ๐’™๐’™(๐Ÿ“๐Ÿ“๐’™๐’™โˆ’๐Ÿ•๐Ÿ•)

Factor, and then reduce .

3. ๐Ÿ—๐Ÿ—๐’š๐’š๐Ÿ๐Ÿโˆ’๐Ÿ‘๐Ÿ‘๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š

= 3๐‘ฆ๐‘ฆ(3๐‘ฆ๐‘ฆโˆ’1)18๐‘ฆ๐‘ฆ

= 3๐‘ฆ๐‘ฆโˆ’16

= 3๐‘ฆ๐‘ฆ6โˆ’ 1

6= ๐’š๐’š

๐Ÿ๐Ÿโˆ’ ๐Ÿ๐Ÿ

๐Ÿ”๐Ÿ”

4. ๐Ÿ‘๐Ÿ‘๐’š๐’š๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ(๐’š๐’šโˆ’๐Ÿ๐Ÿ)๐Ÿ๐Ÿ

= 3(๐‘ฆ๐‘ฆ2โˆ’4)(๐‘ฆ๐‘ฆโˆ’2)2

= 3(๐‘ฆ๐‘ฆ2โˆ’22)(๐‘ฆ๐‘ฆโˆ’2)2

= 3(๐‘ฆ๐‘ฆ+2)(๐‘ฆ๐‘ฆโˆ’2)(๐‘ฆ๐‘ฆโˆ’2)2

= ๐Ÿ‘๐Ÿ‘(๐’š๐’š+๐Ÿ๐Ÿ)๐’š๐’šโˆ’๐Ÿ๐Ÿ

a2 โ€“ b2 = (a + b) (a โ€“ b)

5. ๐’‚๐’‚(๐Ÿ๐Ÿ๐’‚๐’‚โˆ’๐Ÿ๐Ÿ)(๐Ÿ๐Ÿ๐’‚๐’‚+๐Ÿ“๐Ÿ“)๐Ÿ’๐Ÿ’๐’‚๐’‚๐Ÿ๐Ÿ+ ๐Ÿ๐Ÿ๐’‚๐’‚โˆ’๐Ÿ“๐Ÿ“

= ๐‘Ž๐‘Ž(2๐‘Ž๐‘Žโˆ’1)(2๐‘Ž๐‘Ž+5)(2๐‘Ž๐‘Žโˆ’1)(2๐‘Ž๐‘Ž+5)

= a 4a2 + 8a โ€“5 = (2a โ€“ 1) (2a + 5)

6. ๐Ÿ’๐Ÿ’(๐’™๐’™๐Ÿ‘๐Ÿ‘โˆ’๐’š๐’š๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ๐Ÿ๐Ÿ(๐’™๐’™โˆ’๐’š๐’š)

= 4(๐‘ฅ๐‘ฅโˆ’๐‘ฆ๐‘ฆ)(๐‘ฅ๐‘ฅ2+๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ+๐‘ฆ๐‘ฆ2)12(๐‘ฅ๐‘ฅโˆ’๐‘ฆ๐‘ฆ)

= ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

(๐’™๐’™๐Ÿ๐Ÿ + ๐’™๐’™๐’š๐’š + ๐’š๐’š๐Ÿ๐Ÿ) a3 โ€“ b3 = (a โ€“ b)(a2 + ab + b2 )

6

3

2

12a -12a 5

3

1

1 1

polynomials

35

Page 6-1

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

118 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 6 โ€“ Rational Expressions

Multiplying Rational Expressions

โ€ข Multiplying fractions: ๏ฟฝ23๏ฟฝ ๏ฟฝ4

5๏ฟฝ = 2 โˆ™ 4

3 โˆ™ 5= 8

15

โ€ข Multiplying rational expressions: ๐‘๐‘1๐ท๐ท1

โˆ™ ๐‘๐‘2๐ท๐ท2

= ๐‘๐‘1๐‘๐‘2๐ท๐ท1๐ท๐ท2

๐‘๐‘1๐ท๐ท1

๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘๐‘2๐ท๐ท2

are rational expressions . (D1D2 โ‰  0)

Steps- Multiply the numerators .

- Multiply the denominators .

- Simplify (cancel or reduce common factors) if possible .

Example: 2๐‘ฅ๐‘ฅ2

3๐‘ฆ๐‘ฆ3โˆ™ 3๐‘ฅ๐‘ฅ4๐‘ฆ๐‘ฆ

= (2๐‘ฅ๐‘ฅ2)(3๐‘ฅ๐‘ฅ)(3๐‘ฆ๐‘ฆ3)(4๐‘ฆ๐‘ฆ)

= 6๐‘ฅ๐‘ฅ3

12๐‘ฆ๐‘ฆ4= ๐’™๐’™๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’a n a m = a n + m

โ€ข Note: It is more efficient to reduce or cancel common factors before multiplying . 1 1

Example:38

โˆ™ 49

= 1 โˆ™ 12 โˆ™ 3

= ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”

2 3

๐‘ฅ๐‘ฅ2

๐‘ฆ๐‘ฆโˆ™ ๐‘ฆ๐‘ฆ

4

4๐‘ฅ๐‘ฅ= ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

๐Ÿ’๐Ÿ’

Example: Perform the indicated operations and simplify .1

1. ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐’ƒ๐’ƒ๐Ÿ๐Ÿ

โˆ™ ๐’ƒ๐’ƒ๐Ÿ‘๐Ÿ‘

๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’ƒ๐’ƒ= 1 โˆ™ ๐‘๐‘

2 = ๐’ƒ๐’ƒ๐Ÿ๐Ÿ

2

2. ๐’™๐’™๐Ÿ๐Ÿโˆ’๐’™๐’™๐Ÿ๐Ÿ+๐Ÿ๐Ÿ๐Ÿ๐Ÿ

(๐’™๐’™โˆ’๐Ÿ๐Ÿ)๐Ÿ๐Ÿโˆ™ ๐’™๐’™

๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’™๐’™๐Ÿ‘๐Ÿ‘+๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘= (๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ+๐‘ฆ๐‘ฆ2)

(๐‘ฅ๐‘ฅโˆ’๐‘ฆ๐‘ฆ)2โˆ™ (๐‘ฅ๐‘ฅ+๐‘ฆ๐‘ฆ)(๐‘ฅ๐‘ฅโˆ’๐‘ฆ๐‘ฆ)

๐‘ฅ๐‘ฅ3+๐‘ฆ๐‘ฆ3a2 โ€“ b2 = (a + b) (a โ€“ b)

= (๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ+๐‘ฆ๐‘ฆ2)(๐‘ฅ๐‘ฅโˆ’๐‘ฆ๐‘ฆ)

โˆ™ (๐‘ฅ๐‘ฅ+๐‘ฆ๐‘ฆ)๐‘ฅ๐‘ฅ3+๐‘ฆ๐‘ฆ3

(a + b)(a2 โ€“ ab + b2 ) = a3 + b3

= ๐Ÿ๐Ÿ๐’™๐’™โˆ’๐Ÿ๐Ÿ

3. ๐’ƒ๐’ƒ๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐’ƒ๐’ƒโˆ’ ๐Ÿ–๐Ÿ–๐’ƒ๐’ƒโˆ’๐Ÿ๐Ÿ

โˆ™ ๐’ƒ๐’ƒ๐Ÿ๐Ÿโˆ’๐Ÿ’๐Ÿ’๐’ƒ๐’ƒ+๐Ÿ๐Ÿ

= (๐‘๐‘+2)(๐‘๐‘โˆ’4)๐‘๐‘โˆ’2

โˆ™ (๐‘๐‘+2)(๐‘๐‘โˆ’2)๐‘๐‘+2

a2 โ€“ b2 = (a + b) (a โ€“ b)

= (b - 4)(b + 2)

4. ๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ‘๐Ÿ‘+๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

๐Ÿ’๐Ÿ’๏ฟฝ๐’™๐’™๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝโˆ™ (๐’™๐’™+๐Ÿ๐Ÿ)๐Ÿ‘๐Ÿ‘๏ฟฝ๐’™๐’™๐Ÿ๐Ÿโˆ’๐’™๐’™๐Ÿ๐Ÿ+๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ

= 3๏ฟฝ๐‘ฅ๐‘ฅ3+ ๐‘ฆ๐‘ฆ3๏ฟฝ4(๐‘ฅ๐‘ฅ+๐‘ฆ๐‘ฆ)(๐‘ฅ๐‘ฅโˆ’๐‘ฆ๐‘ฆ)

โˆ™ (๐‘ฅ๐‘ฅ+๐‘ฆ๐‘ฆ)3(๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ+๐‘ฆ๐‘ฆ2)

a2 โ€“ b2 = (a + b) (a โ€“ b)

= ๏ฟฝ๐‘ฅ๐‘ฅ3+ ๐‘ฆ๐‘ฆ3๏ฟฝ4(๐‘ฅ๐‘ฅโˆ’๐‘ฆ๐‘ฆ)

โˆ™ 1(๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ+๐‘ฆ๐‘ฆ2)

= (๐‘ฅ๐‘ฅ+๐‘ฆ๐‘ฆ)๏ฟฝ๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ+๐‘ฆ๐‘ฆ2๏ฟฝ4(๐‘ฅ๐‘ฅโˆ’๐‘ฆ๐‘ฆ)

โˆ™ 1๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ+๐‘ฆ๐‘ฆ2

a3 + b3 = (a + b)(a2 โ€“ ab + b2 )

= ๐’™๐’™+๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’(๐’™๐’™โˆ’๐Ÿ๐Ÿ)

1

2

b 2

b -4

Denominator

Numerator

Page 6-2

Multiplying Rational Expressions

โ€ข Multiplying fractions: ๏ฟฝ23๏ฟฝ ๏ฟฝ4

5๏ฟฝ = 2 โˆ™ 4

3 โˆ™ 5= 8

15

โ€ข Multiplying rational expressions: ๐‘๐‘1๐ท๐ท1

โˆ™ ๐‘๐‘2๐ท๐ท2

= ๐‘๐‘1๐‘๐‘2๐ท๐ท1๐ท๐ท2

๐‘๐‘1๐ท๐ท1

๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘๐‘2๐ท๐ท2

are rational expressions . (D1D2 โ‰  0)

Steps- Multiply the numerators .

- Multiply the denominators .

- Simplify (cancel or reduce common factors) if possible .

Example: 2๐‘ฅ๐‘ฅ2

3๐‘ฆ๐‘ฆ3โˆ™ 3๐‘ฅ๐‘ฅ4๐‘ฆ๐‘ฆ

= (2๐‘ฅ๐‘ฅ2)(3๐‘ฅ๐‘ฅ)(3๐‘ฆ๐‘ฆ3)(4๐‘ฆ๐‘ฆ)

= 6๐‘ฅ๐‘ฅ3

12๐‘ฆ๐‘ฆ4= ๐’™๐’™๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’a n a m = a n + m

โ€ข Note: It is more efficient to reduce or cancel common factors before multiplying . 1 1

Example:38

โˆ™ 49

= 1 โˆ™ 12 โˆ™ 3

= ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”

2 3

๐‘ฅ๐‘ฅ2

๐‘ฆ๐‘ฆโˆ™ ๐‘ฆ๐‘ฆ

4

4๐‘ฅ๐‘ฅ= ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

๐Ÿ’๐Ÿ’

Example: Perform the indicated operations and simplify .1

1. ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐’ƒ๐’ƒ๐Ÿ๐Ÿ

โˆ™ ๐’ƒ๐’ƒ๐Ÿ‘๐Ÿ‘

๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’ƒ๐’ƒ= 1 โˆ™ ๐‘๐‘

2 = ๐’ƒ๐’ƒ๐Ÿ๐Ÿ

2

2. ๐’™๐’™๐Ÿ๐Ÿโˆ’๐’™๐’™๐Ÿ๐Ÿ+๐Ÿ๐Ÿ๐Ÿ๐Ÿ

(๐’™๐’™โˆ’๐Ÿ๐Ÿ)๐Ÿ๐Ÿโˆ™ ๐’™๐’™

๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’™๐’™๐Ÿ‘๐Ÿ‘+๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘= (๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ+๐‘ฆ๐‘ฆ2)

(๐‘ฅ๐‘ฅโˆ’๐‘ฆ๐‘ฆ)2โˆ™ (๐‘ฅ๐‘ฅ+๐‘ฆ๐‘ฆ)(๐‘ฅ๐‘ฅโˆ’๐‘ฆ๐‘ฆ)

๐‘ฅ๐‘ฅ3+๐‘ฆ๐‘ฆ3a2 โ€“ b2 = (a + b) (a โ€“ b)

= (๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ+๐‘ฆ๐‘ฆ2)(๐‘ฅ๐‘ฅโˆ’๐‘ฆ๐‘ฆ)

โˆ™ (๐‘ฅ๐‘ฅ+๐‘ฆ๐‘ฆ)๐‘ฅ๐‘ฅ3+๐‘ฆ๐‘ฆ3

(a + b)(a2 โ€“ ab + b2 ) = a3 + b3

= ๐Ÿ๐Ÿ๐’™๐’™โˆ’๐Ÿ๐Ÿ

3. ๐’ƒ๐’ƒ๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐’ƒ๐’ƒโˆ’ ๐Ÿ–๐Ÿ–๐’ƒ๐’ƒโˆ’๐Ÿ๐Ÿ

โˆ™ ๐’ƒ๐’ƒ๐Ÿ๐Ÿโˆ’๐Ÿ’๐Ÿ’๐’ƒ๐’ƒ+๐Ÿ๐Ÿ

= (๐‘๐‘+2)(๐‘๐‘โˆ’4)๐‘๐‘โˆ’2

โˆ™ (๐‘๐‘+2)(๐‘๐‘โˆ’2)๐‘๐‘+2

a2 โ€“ b2 = (a + b) (a โ€“ b)

= (b - 4)(b + 2)

4. ๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ‘๐Ÿ‘+๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

๐Ÿ’๐Ÿ’๏ฟฝ๐’™๐’™๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝโˆ™ (๐’™๐’™+๐Ÿ๐Ÿ)๐Ÿ‘๐Ÿ‘๏ฟฝ๐’™๐’™๐Ÿ๐Ÿโˆ’๐’™๐’™๐Ÿ๐Ÿ+๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ

= 3๏ฟฝ๐‘ฅ๐‘ฅ3+ ๐‘ฆ๐‘ฆ3๏ฟฝ4(๐‘ฅ๐‘ฅ+๐‘ฆ๐‘ฆ)(๐‘ฅ๐‘ฅโˆ’๐‘ฆ๐‘ฆ)

โˆ™ (๐‘ฅ๐‘ฅ+๐‘ฆ๐‘ฆ)3(๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ+๐‘ฆ๐‘ฆ2)

a2 โ€“ b2 = (a + b) (a โ€“ b)

= ๏ฟฝ๐‘ฅ๐‘ฅ3+ ๐‘ฆ๐‘ฆ3๏ฟฝ4(๐‘ฅ๐‘ฅโˆ’๐‘ฆ๐‘ฆ)

โˆ™ 1(๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ+๐‘ฆ๐‘ฆ2)

= (๐‘ฅ๐‘ฅ+๐‘ฆ๐‘ฆ)๏ฟฝ๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ+๐‘ฆ๐‘ฆ2๏ฟฝ4(๐‘ฅ๐‘ฅโˆ’๐‘ฆ๐‘ฆ)

โˆ™ 1๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ+๐‘ฆ๐‘ฆ2

a3 + b3 = (a + b)(a2 โ€“ ab + b2 )

= ๐’™๐’™+๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’(๐’™๐’™โˆ’๐Ÿ๐Ÿ)

1

2

b 2

b -4

Denominator

Numerator

Page 6-2

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 119

Algebra I & II Key Concepts, Practice, and Quizzes Unit 6 โ€“ Rational Expressions

Dividing Rational Expressions

Example

โ€ข Dividing fractions: to divide by a fraction, multiply by its reciprocal . 34

รท 52

= 34โˆ™ 25

= ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ

โ€ข Dividing rational expressions: ๐‘๐‘1๐ท๐ท1

รท ๐‘๐‘2๐ท๐ท2

= ๐‘๐‘1๐ท๐ท1โˆ™ ๐ท๐ท2๐‘๐‘2

D1, D2 , N2 โ‰  0

Steps

- Write as multiplication of the reciprocal . รท ร— , ๐‘๐‘2๐ท๐ท2

๐ท๐ท2๐‘๐‘2

- Simplify (cancel or reduce common factors) if possible .

- Multiply .

Example: Perform the indicated operations and simplify .

1. ๐’š๐’š๐Ÿ๐Ÿ

๐’™๐’™๐Ÿ‘๐Ÿ‘รท ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š

๐Ÿ๐Ÿ= ๐‘ฆ๐‘ฆ2

๐‘ฅ๐‘ฅ3โˆ™ 210๐‘ฆ๐‘ฆ

=๐‘ฆ๐‘ฆ โˆ™ 1๐‘ฅ๐‘ฅ3 โˆ™ 5

= ๐’š๐’š๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ‘๐Ÿ‘

รท ร— , 10๐‘ฆ๐‘ฆ2

210๐‘ฆ๐‘ฆ

2. ๐Ÿ“๐Ÿ“๐’‚๐’‚๐Ÿ๐Ÿโˆ’๐’‚๐’‚๐’‚๐’‚๐’‚๐’‚๐Ÿ๐Ÿโˆ’๐’‚๐’‚๐Ÿ๐Ÿ

รท ๐Ÿ“๐Ÿ“๐’‚๐’‚๐Ÿ๐Ÿโˆ’๐’‚๐’‚๐’‚๐’‚๐’‚๐’‚โˆ’๐’‚๐’‚

=5๐‘Ž๐‘Ž2โˆ’๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’๐‘Ž๐‘Ž2

โˆ™ ๐‘Ž๐‘Žโˆ’๐‘Ž๐‘Ž5๐‘Ž๐‘Ž2โˆ’๐‘Ž๐‘Ž๐‘Ž๐‘Ž

รท ร— , 5๐‘Ž๐‘Ž2โˆ’๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Žโˆ’๐‘Ž๐‘Ž

๐‘Ž๐‘Žโˆ’๐‘Ž๐‘Ž5๐‘Ž๐‘Ž2โˆ’๐‘Ž๐‘Ž๐‘Ž๐‘Ž

= ๐‘Ž๐‘Žโˆ’๐‘๐‘(๐‘Ž๐‘Ž+๐‘๐‘)(๐‘Ž๐‘Žโˆ’๐‘๐‘) ๐‘Ž๐‘Ž2โˆ’๐‘๐‘2 = (๐‘Ž๐‘Ž + ๐‘๐‘)(๐‘Ž๐‘Ž โˆ’ ๐‘๐‘)

=๐Ÿ๐Ÿ

(๐’‚๐’‚ + ๐’‚๐’‚)

3. ๐’™๐’™๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ+๐Ÿ’๐Ÿ’๐’™๐’™+๐Ÿ’๐Ÿ’

รท ๐’™๐’™โˆ’๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘๐’™๐’™+๐Ÿ๐Ÿ

=๐‘ฅ๐‘ฅ2โˆ’42

๐‘ฅ๐‘ฅ2+4๐‘ฅ๐‘ฅ+4โˆ™ 3๐‘ฅ๐‘ฅ+6๐‘ฅ๐‘ฅโˆ’4

รท ร— , xโˆ’43x+6

3๐‘ฅ๐‘ฅ+6๐‘ฅ๐‘ฅโˆ’4

= (๐‘ฅ๐‘ฅ+4)(๐‘ฅ๐‘ฅโˆ’4)(๐‘ฅ๐‘ฅ+2)2 โˆ™ 3(๐‘ฅ๐‘ฅ+2)

๐‘ฅ๐‘ฅโˆ’4 ๐‘Ž๐‘Ž2โˆ’๐‘๐‘2 = (๐‘Ž๐‘Ž + ๐‘๐‘)(๐‘Ž๐‘Ž โˆ’ ๐‘๐‘)

= ๐Ÿ‘๐Ÿ‘(๐’™๐’™+๐Ÿ’๐Ÿ’)๐’™๐’™+๐Ÿ๐Ÿ

4. ๐’™๐’™๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

รท ๐’™๐’™+๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

=๐‘ฅ๐‘ฅ2โˆ’13

โˆ™ 5๐‘ฅ๐‘ฅ+1

รท ร— , ๐’™๐’™+๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

5๐‘ฅ๐‘ฅ+1

=(๐‘ฅ๐‘ฅ+1)(๐‘ฅ๐‘ฅโˆ’1)

3โˆ™ 5๐‘ฅ๐‘ฅ+1

๐‘Ž๐‘Ž2โˆ’๐‘๐‘2 = (๐‘Ž๐‘Ž + ๐‘๐‘)(๐‘Ž๐‘Ž โˆ’ ๐‘๐‘)

= ๐Ÿ“๐Ÿ“(๐’™๐’™โˆ’๐Ÿ๐Ÿ)๐Ÿ‘๐Ÿ‘

1

5

x 2

x 2

2

1

๐‘๐‘1๐ท๐ท1

๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘๐‘2๐ท๐ท2

are rational ,

Page 6-3

Dividing Rational Expressions

Example

โ€ข Dividing fractions: to divide by a fraction, multiply by its reciprocal . 34

รท 52

= 34โˆ™ 25

= ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ

โ€ข Dividing rational expressions: ๐‘๐‘1๐ท๐ท1

รท ๐‘๐‘2๐ท๐ท2

= ๐‘๐‘1๐ท๐ท1โˆ™ ๐ท๐ท2๐‘๐‘2

D1, D2 , N2 โ‰  0

Steps

- Write as multiplication of the reciprocal . รท ร— , ๐‘๐‘2๐ท๐ท2

๐ท๐ท2๐‘๐‘2

- Simplify (cancel or reduce common factors) if possible .

- Multiply .

Example: Perform the indicated operations and simplify .

1. ๐’š๐’š๐Ÿ๐Ÿ

๐’™๐’™๐Ÿ‘๐Ÿ‘รท ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š

๐Ÿ๐Ÿ= ๐‘ฆ๐‘ฆ2

๐‘ฅ๐‘ฅ3โˆ™ 210๐‘ฆ๐‘ฆ

=๐‘ฆ๐‘ฆ โˆ™ 1๐‘ฅ๐‘ฅ3 โˆ™ 5

= ๐’š๐’š๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ‘๐Ÿ‘

รท ร— , 10๐‘ฆ๐‘ฆ2

210๐‘ฆ๐‘ฆ

2. ๐Ÿ“๐Ÿ“๐’‚๐’‚๐Ÿ๐Ÿโˆ’๐’‚๐’‚๐’‚๐’‚๐’‚๐’‚๐Ÿ๐Ÿโˆ’๐’‚๐’‚๐Ÿ๐Ÿ

รท ๐Ÿ“๐Ÿ“๐’‚๐’‚๐Ÿ๐Ÿโˆ’๐’‚๐’‚๐’‚๐’‚๐’‚๐’‚โˆ’๐’‚๐’‚

=5๐‘Ž๐‘Ž2โˆ’๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’๐‘Ž๐‘Ž2

โˆ™ ๐‘Ž๐‘Žโˆ’๐‘Ž๐‘Ž5๐‘Ž๐‘Ž2โˆ’๐‘Ž๐‘Ž๐‘Ž๐‘Ž

รท ร— , 5๐‘Ž๐‘Ž2โˆ’๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Žโˆ’๐‘Ž๐‘Ž

๐‘Ž๐‘Žโˆ’๐‘Ž๐‘Ž5๐‘Ž๐‘Ž2โˆ’๐‘Ž๐‘Ž๐‘Ž๐‘Ž

= ๐‘Ž๐‘Žโˆ’๐‘๐‘(๐‘Ž๐‘Ž+๐‘๐‘)(๐‘Ž๐‘Žโˆ’๐‘๐‘) ๐‘Ž๐‘Ž2โˆ’๐‘๐‘2 = (๐‘Ž๐‘Ž + ๐‘๐‘)(๐‘Ž๐‘Ž โˆ’ ๐‘๐‘)

=๐Ÿ๐Ÿ

(๐’‚๐’‚ + ๐’‚๐’‚)

3. ๐’™๐’™๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ+๐Ÿ’๐Ÿ’๐’™๐’™+๐Ÿ’๐Ÿ’

รท ๐’™๐’™โˆ’๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘๐’™๐’™+๐Ÿ๐Ÿ

=๐‘ฅ๐‘ฅ2โˆ’42

๐‘ฅ๐‘ฅ2+4๐‘ฅ๐‘ฅ+4โˆ™ 3๐‘ฅ๐‘ฅ+6๐‘ฅ๐‘ฅโˆ’4

รท ร— , xโˆ’43x+6

3๐‘ฅ๐‘ฅ+6๐‘ฅ๐‘ฅโˆ’4

= (๐‘ฅ๐‘ฅ+4)(๐‘ฅ๐‘ฅโˆ’4)(๐‘ฅ๐‘ฅ+2)2 โˆ™ 3(๐‘ฅ๐‘ฅ+2)

๐‘ฅ๐‘ฅโˆ’4 ๐‘Ž๐‘Ž2โˆ’๐‘๐‘2 = (๐‘Ž๐‘Ž + ๐‘๐‘)(๐‘Ž๐‘Ž โˆ’ ๐‘๐‘)

= ๐Ÿ‘๐Ÿ‘(๐’™๐’™+๐Ÿ’๐Ÿ’)๐’™๐’™+๐Ÿ๐Ÿ

4. ๐’™๐’™๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

รท ๐’™๐’™+๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

=๐‘ฅ๐‘ฅ2โˆ’13

โˆ™ 5๐‘ฅ๐‘ฅ+1

รท ร— , ๐’™๐’™+๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

5๐‘ฅ๐‘ฅ+1

=(๐‘ฅ๐‘ฅ+1)(๐‘ฅ๐‘ฅโˆ’1)

3โˆ™ 5๐‘ฅ๐‘ฅ+1

๐‘Ž๐‘Ž2โˆ’๐‘๐‘2 = (๐‘Ž๐‘Ž + ๐‘๐‘)(๐‘Ž๐‘Ž โˆ’ ๐‘๐‘)

= ๐Ÿ“๐Ÿ“(๐’™๐’™โˆ’๐Ÿ๐Ÿ)๐Ÿ‘๐Ÿ‘

1

5

x 2

x 2

2

1

๐‘๐‘1๐ท๐ท1

๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘๐‘2๐ท๐ท2

are rational ,

Page 6-3

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

120 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 6 โ€“ Rational Expressions

6-2 ADDING & SUBTRACTING RATIONAL EXPRESSIONS

Adding / Subtracting Like Rational Expressions

Example

โ€ข Like rational expressions: rational expressions that have the 3๐‘ฅ๐‘ฅ2

๐‘ฅ๐‘ฅ+2, 5๐‘ฅ๐‘ฅ

๐‘ฅ๐‘ฅ+2same denominator .

โ€ข Unlike rational expressions: rational expressions that have 7๐‘ฅ๐‘ฅ+3๐‘ฅ๐‘ฅโˆ’2

, 3๐‘ฅ๐‘ฅโˆ’5๐‘ฅ๐‘ฅ2+5

different denominators .

โ€ข Adding or subtracting like rational expressions๐‘๐‘1๐ท๐ท

+ ๐‘๐‘2๐ท๐ท

= ๐‘๐‘1+ ๐‘๐‘2 ๐ท๐ท

, ๐‘๐‘1๐ท๐ทโˆ’ ๐‘๐‘2

๐ท๐ท= ๐‘๐‘1โˆ’ ๐‘๐‘2

๐ท๐ท ๐‘๐‘1

๐ท๐ท ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž

๐‘๐‘2

๐ท๐ทare rational expressions . D โ‰  0

Steps Example- Combine the numerators . 3๐‘ฅ๐‘ฅ

2(๐‘ฅ๐‘ฅ+4)+ 5๐‘ฅ๐‘ฅ

2(๐‘ฅ๐‘ฅ+4)= 3๐‘ฅ๐‘ฅ+5๐‘ฅ๐‘ฅ

2(๐‘ฅ๐‘ฅ+4)

- Denominators do not change . = 8๐‘ฅ๐‘ฅ2(๐‘ฅ๐‘ฅ+4)

- Simplify (cancel or reduce common factors) if possible . = ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’+๐Ÿ’๐Ÿ’

Example: Add or subtract as indicated and simplify .

1. ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ+๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ+๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ ๐Ÿ’๐Ÿ’+๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๏ฟฝ๐‘ฅ๐‘ฅ2+2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ+๐‘ฅ๐‘ฅ2๏ฟฝโˆ’(๐‘ฅ๐‘ฅ+๐‘ฅ๐‘ฅ)

๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ2Combine numerators .

= (๐Ÿ’๐Ÿ’+๐Ÿ๐Ÿ)2โˆ’(๐Ÿ’๐Ÿ’+๐Ÿ๐Ÿ) โˆ™ 1(๐‘ฅ๐‘ฅ+๐‘ฅ๐‘ฅ)(๐‘ฅ๐‘ฅโˆ’๐‘ฅ๐‘ฅ)

= (๐Ÿ’๐Ÿ’+๐Ÿ๐Ÿ)[(๐‘ฅ๐‘ฅ+๐‘ฅ๐‘ฅ)โˆ’1](๐‘ฅ๐‘ฅ+๐‘ฅ๐‘ฅ)(๐‘ฅ๐‘ฅโˆ’๐‘ฅ๐‘ฅ)

Factor out (x + y) .

= ๐Ÿ’๐Ÿ’+๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’โˆ’๐Ÿ๐Ÿ

2. ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘+๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘โˆ’๐Ÿ“๐Ÿ“๐Ÿ—๐Ÿ—

+ ๐Ÿ’๐Ÿ’(๐Ÿ‘๐Ÿ‘+๐Ÿ‘๐Ÿ‘๐Ÿ—๐Ÿ—)๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘โˆ’๐Ÿ“๐Ÿ“๐Ÿ—๐Ÿ—

โˆ’ ๐Ÿ“๐Ÿ“๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘โˆ’๐Ÿ“๐Ÿ“๐Ÿ—๐Ÿ— = 3๐‘Ž๐‘Ž+9๐‘๐‘+4(๐‘Ž๐‘Ž+3๐‘๐‘)โˆ’5๐‘Ž๐‘Ž3

2๐‘Ž๐‘Žโˆ’5๐‘๐‘Combine numerators .

= 3(๐‘Ž๐‘Ž+3๐‘๐‘)+4(๐‘Ž๐‘Ž+3๐‘๐‘)โˆ’5๐‘Ž๐‘Ž3

2๐‘Ž๐‘Žโˆ’5๐‘๐‘ Factor out 3 .

= ๐Ÿ•๐Ÿ•(๐Ÿ‘๐Ÿ‘+๐Ÿ‘๐Ÿ‘๐Ÿ—๐Ÿ—)โˆ’๐Ÿ“๐Ÿ“๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘โˆ’๐Ÿ“๐Ÿ“๐Ÿ—๐Ÿ—Combine like terms .

3. ๐Ÿ‘๐Ÿ‘๐’Ž๐’Žโˆ’ ๐Ÿ๐Ÿ

-๐’Ž๐’Ž= 3

๐‘š๐‘š + 2

๐‘š๐‘š= 3+2

๐‘š๐‘š= ๐Ÿ“๐Ÿ“

๐’Ž๐’ŽCombine numerators .

4. ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’โˆ’๐Ÿ๐Ÿ

โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’๐Ÿ’๐Ÿ’

= 2๐‘ฅ๐‘ฅโˆ’๐‘ฅ๐‘ฅ

โˆ’ 1-(๐‘ฅ๐‘ฅโˆ’๐‘ฅ๐‘ฅ)

Factor out (-1) .

= 2๐‘ฅ๐‘ฅโˆ’๐‘ฅ๐‘ฅ

+ 1๐‘ฅ๐‘ฅโˆ’๐‘ฅ๐‘ฅ

= ๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’โˆ’๐Ÿ๐Ÿ

Combine numerators .

4

1

๐‘Ž๐‘Ž2 + 2๐‘Ž๐‘Ž๐‘Ž๐‘Ž + ๐‘Ž๐‘Ž2 = (๐‘Ž๐‘Ž + ๐‘Ž๐‘Ž)2

๐‘Ž๐‘Ž2 โˆ’ ๐‘Ž๐‘Ž2 = (๐‘Ž๐‘Ž + ๐‘Ž๐‘Ž)(๐‘Ž๐‘Ž โˆ’ ๐‘Ž๐‘Ž)

Page 6-4

6-2 ADDING & SUBTRACTING RATIONAL EXPRESSIONS

Adding / Subtracting Like Rational Expressions

Example

โ€ข Like rational expressions: rational expressions that have the 3๐‘ฅ๐‘ฅ2

๐‘ฅ๐‘ฅ+2, 5๐‘ฅ๐‘ฅ

๐‘ฅ๐‘ฅ+2same denominator .

โ€ข Unlike rational expressions: rational expressions that have 7๐‘ฅ๐‘ฅ+3๐‘ฅ๐‘ฅโˆ’2

, 3๐‘ฅ๐‘ฅโˆ’5๐‘ฅ๐‘ฅ2+5

different denominators .

โ€ข Adding or subtracting like rational expressions๐‘๐‘1๐ท๐ท

+ ๐‘๐‘2๐ท๐ท

= ๐‘๐‘1+ ๐‘๐‘2 ๐ท๐ท

, ๐‘๐‘1๐ท๐ทโˆ’ ๐‘๐‘2

๐ท๐ท= ๐‘๐‘1โˆ’ ๐‘๐‘2

๐ท๐ท ๐‘๐‘1

๐ท๐ท ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž

๐‘๐‘2

๐ท๐ทare rational expressions . D โ‰  0

Steps Example- Combine the numerators . 3๐‘ฅ๐‘ฅ

2(๐‘ฅ๐‘ฅ+4)+ 5๐‘ฅ๐‘ฅ

2(๐‘ฅ๐‘ฅ+4)= 3๐‘ฅ๐‘ฅ+5๐‘ฅ๐‘ฅ

2(๐‘ฅ๐‘ฅ+4)

- Denominators do not change . = 8๐‘ฅ๐‘ฅ2(๐‘ฅ๐‘ฅ+4)

- Simplify (cancel or reduce common factors) if possible . = ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’+๐Ÿ’๐Ÿ’

Example: Add or subtract as indicated and simplify .

1. ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ+๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ+๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ ๐Ÿ’๐Ÿ’+๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๏ฟฝ๐‘ฅ๐‘ฅ2+2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ+๐‘ฅ๐‘ฅ2๏ฟฝโˆ’(๐‘ฅ๐‘ฅ+๐‘ฅ๐‘ฅ)

๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅ2Combine numerators .

= (๐Ÿ’๐Ÿ’+๐Ÿ๐Ÿ)2โˆ’(๐Ÿ’๐Ÿ’+๐Ÿ๐Ÿ) โˆ™ 1(๐‘ฅ๐‘ฅ+๐‘ฅ๐‘ฅ)(๐‘ฅ๐‘ฅโˆ’๐‘ฅ๐‘ฅ)

= (๐Ÿ’๐Ÿ’+๐Ÿ๐Ÿ)[(๐‘ฅ๐‘ฅ+๐‘ฅ๐‘ฅ)โˆ’1](๐‘ฅ๐‘ฅ+๐‘ฅ๐‘ฅ)(๐‘ฅ๐‘ฅโˆ’๐‘ฅ๐‘ฅ)

Factor out (x + y) .

= ๐Ÿ’๐Ÿ’+๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’โˆ’๐Ÿ๐Ÿ

2. ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘+๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘โˆ’๐Ÿ“๐Ÿ“๐Ÿ—๐Ÿ—

+ ๐Ÿ’๐Ÿ’(๐Ÿ‘๐Ÿ‘+๐Ÿ‘๐Ÿ‘๐Ÿ—๐Ÿ—)๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘โˆ’๐Ÿ“๐Ÿ“๐Ÿ—๐Ÿ—

โˆ’ ๐Ÿ“๐Ÿ“๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘โˆ’๐Ÿ“๐Ÿ“๐Ÿ—๐Ÿ— = 3๐‘Ž๐‘Ž+9๐‘๐‘+4(๐‘Ž๐‘Ž+3๐‘๐‘)โˆ’5๐‘Ž๐‘Ž3

2๐‘Ž๐‘Žโˆ’5๐‘๐‘Combine numerators .

= 3(๐‘Ž๐‘Ž+3๐‘๐‘)+4(๐‘Ž๐‘Ž+3๐‘๐‘)โˆ’5๐‘Ž๐‘Ž3

2๐‘Ž๐‘Žโˆ’5๐‘๐‘ Factor out 3 .

= ๐Ÿ•๐Ÿ•(๐Ÿ‘๐Ÿ‘+๐Ÿ‘๐Ÿ‘๐Ÿ—๐Ÿ—)โˆ’๐Ÿ“๐Ÿ“๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘โˆ’๐Ÿ“๐Ÿ“๐Ÿ—๐Ÿ—Combine like terms .

3. ๐Ÿ‘๐Ÿ‘๐’Ž๐’Žโˆ’ ๐Ÿ๐Ÿ

-๐’Ž๐’Ž= 3

๐‘š๐‘š + 2

๐‘š๐‘š= 3+2

๐‘š๐‘š= ๐Ÿ“๐Ÿ“

๐’Ž๐’ŽCombine numerators .

4. ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’โˆ’๐Ÿ๐Ÿ

โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’๐Ÿ’๐Ÿ’

= 2๐‘ฅ๐‘ฅโˆ’๐‘ฅ๐‘ฅ

โˆ’ 1-(๐‘ฅ๐‘ฅโˆ’๐‘ฅ๐‘ฅ)

Factor out (-1) .

= 2๐‘ฅ๐‘ฅโˆ’๐‘ฅ๐‘ฅ

+ 1๐‘ฅ๐‘ฅโˆ’๐‘ฅ๐‘ฅ

= ๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’โˆ’๐Ÿ๐Ÿ

Combine numerators .

4

1

๐‘Ž๐‘Ž2 + 2๐‘Ž๐‘Ž๐‘Ž๐‘Ž + ๐‘Ž๐‘Ž2 = (๐‘Ž๐‘Ž + ๐‘Ž๐‘Ž)2

๐‘Ž๐‘Ž2 โˆ’ ๐‘Ž๐‘Ž2 = (๐‘Ž๐‘Ž + ๐‘Ž๐‘Ž)(๐‘Ž๐‘Ž โˆ’ ๐‘Ž๐‘Ž)

Page 6-4

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 121

Algebra I & II Key Concepts, Practice, and Quizzes Unit 6 โ€“ Rational Expressions

Least Common Denominator (LCD)

โ€ข Least common multiple (LCM): the lowest number that is divisible by each given number

without a remainder .

Example: The LCM of 2 and 3 is 6 .

- Multiples of 2: 2, 4, 6, 8, 10, 12, โ€ฆ

- Multiples of 3: 3, 6, 9, 12, 15, โ€ฆ

- Common multiples of 2 and 3 are 6 and 12, โ€ฆ

- The least common multiple (LCM) of 2 and 3 is 6 .The common multiple 12 is not the smallest (least) .

โ€ข Find the LCM: Use repeated division (or upside-down division) . The product of all the prime numbers around the outside is the LCM .

Example: Find the LCM of 30 and 45 .

5 30 453 6 9 30 รท 5 = 6 45 รท 5 = 9

2 3 6 รท 3 = 2 9 รท 3 = 3 (Stop dividing since 2 and 3 are prime numbers)

LCM = 5 ร— 32 ร— 2 = 90

โ€ข The least common denominator (LCD): the least common multiple (LCM) of the denominators of two or more given fractions .

โ€ข Find the LCD: Use repeated division to find the LCM for all denominators of given fractions .

Example: Find the LCD for 422and

165,

84 .

2 8 16 42 2 4 8 21 8 รท 2 = 4, 16 รท 2 = 8, 42 รท 2 = 21

2 2 4 21 4 รท 2 = 2, 8 รท 2 = 4, move down 21

1 2 21 2 รท 2 = 1, 4 รท 2 = 2, move down 21

LCD = 24 ร— 21 = 336

Page 6-5

Least Common Denominator (LCD)

โ€ข Least common multiple (LCM): the lowest number that is divisible by each given number

without a remainder .

Example: The LCM of 2 and 3 is 6 .

- Multiples of 2: 2, 4, 6, 8, 10, 12, โ€ฆ

- Multiples of 3: 3, 6, 9, 12, 15, โ€ฆ

- Common multiples of 2 and 3 are 6 and 12, โ€ฆ

- The least common multiple (LCM) of 2 and 3 is 6 .The common multiple 12 is not the smallest (least) .

โ€ข Find the LCM: Use repeated division (or upside-down division) . The product of all the prime numbers around the outside is the LCM .

Example: Find the LCM of 30 and 45 .

5 30 453 6 9 30 รท 5 = 6 45 รท 5 = 9

2 3 6 รท 3 = 2 9 รท 3 = 3 (Stop dividing since 2 and 3 are prime numbers)

LCM = 5 ร— 32 ร— 2 = 90

โ€ข The least common denominator (LCD): the least common multiple (LCM) of the denominators of two or more given fractions .

โ€ข Find the LCD: Use repeated division to find the LCM for all denominators of given fractions .

Example: Find the LCD for 422and

165,

84 .

2 8 16 42 2 4 8 21 8 รท 2 = 4, 16 รท 2 = 8, 42 รท 2 = 21

2 2 4 21 4 รท 2 = 2, 8 รท 2 = 4, move down 21

1 2 21 2 รท 2 = 1, 4 รท 2 = 2, move down 21

LCD = 24 ร— 21 = 336

Page 6-5

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

122 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 6 โ€“ Rational Expressions

Finding the LCM & LCD for Expressions

โ€ข The LCM for algebraic expressions: the smallest expression that is divisible by each of the given expressions . LCM โ€“ the least common multiple

โ€ข Finding the LCM for expressions

Factor each term . The LCM is the product of all unique factors with the highest exponent .

Example: Find the LCM for ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐’š๐’š๐Ÿ๐Ÿ, ๐Ÿ”๐Ÿ”๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š๐Ÿ‘๐Ÿ‘ and ๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ๐’š๐’š.Expression Factor Factor With the Highest Exponent

๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ๐’š๐’š 23 โˆ™ x โˆ™ y 23

๐Ÿ”๐Ÿ”๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š๐Ÿ‘๐Ÿ‘ 2 โˆ™ 3 โˆ™ x2 โˆ™ y3 3y3

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐’š๐’š๐Ÿ๐Ÿ 2 โˆ™ x4 โˆ™ y2 x4

LCM = 23โˆ™ 3y3 โˆ™ x4 = 24x4y3

Example: Find the LCM for ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ(๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’) and ๐Ÿ๐Ÿ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ).

Expression Factor Factor With the Highest Exponent๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ(๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’) 3 โˆ™ x โˆ™ (x + 2) โˆ™ (x โ€“ 2) 3 (x + 2) (x โ€“ 2)๐Ÿ๐Ÿ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ) x2 โˆ™ (x + 2) x2

LCM = 3x2 (x + 2)(x โ€“ 2)

โ€ข Finding the LCD for rational expressions LCD โ€“ the least common denominator

Factor each given denominator . Find the product of all unique factors with the highest exponent .

Example: Find the LCD for the following fractions .

1. ๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ๐Ÿ

, ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ๐Ÿ—๐Ÿ—

and ๐Ÿ’๐Ÿ’๐Ÿ•๐Ÿ•๐Ÿ—๐Ÿ—๐Ÿ”๐Ÿ”๐Ÿ•๐Ÿ•๐Ÿ’๐Ÿ’๐Ÿ—๐Ÿ—๐Ÿ๐Ÿ

Denominator Factor Factor With the Highest Exponent๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ๐Ÿ 32 โˆ™ b2 b2

๐Ÿ๐Ÿ๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ๐Ÿ—๐Ÿ— 33 โˆ™ a2 โˆ™ b 33

๐Ÿ”๐Ÿ”๐Ÿ•๐Ÿ•๐Ÿ’๐Ÿ’๐Ÿ—๐Ÿ—๐Ÿ๐Ÿ 3 โˆ™ 2 โˆ™ a4 โˆ™ b2 2a4

LCD = 2 โˆ™ 33 โˆ™ a4 โˆ™ b2 = 54a4b2

2. ๐Ÿ“๐Ÿ“๐Ÿ•๐Ÿ•๐Ÿ—๐Ÿ—๐Ÿ‘๐Ÿ‘๐Ÿ•๐Ÿ•๐Ÿ‘๐Ÿ‘(๐Ÿ•๐Ÿ•๐Ÿ๐Ÿโˆ’๐Ÿ–๐Ÿ–๐Ÿ•๐Ÿ•+๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”)

and ๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ+๐Ÿ—๐Ÿ—๐Ÿ•๐Ÿ•(๐Ÿ•๐Ÿ•โˆ’๐Ÿ’๐Ÿ’)๐Ÿ’๐Ÿ’

Denominator Factor Factor With the Highest Exponent๐Ÿ‘๐Ÿ‘๐Ÿ•๐Ÿ•๐Ÿ‘๐Ÿ‘(๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ โˆ’ ๐Ÿ–๐Ÿ–๐Ÿ•๐Ÿ• + ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”)

a -4a -4

3 โˆ™ a3 โˆ™ (a โ€“ 4)2 3 a3

๐Ÿ•๐Ÿ•(๐Ÿ•๐Ÿ• โˆ’ ๐Ÿ’๐Ÿ’)๐Ÿ’๐Ÿ’ a โˆ™ (a โ€“ 4)4 (a โ€“ 4)4

LCD = 3a3 (a โ€“ 4)4

Page 6-6

Finding the LCM & LCD for Expressions

โ€ข The LCM for algebraic expressions: the smallest expression that is divisible by each of the given expressions . LCM โ€“ the least common multiple

โ€ข Finding the LCM for expressions

Factor each term . The LCM is the product of all unique factors with the highest exponent .

Example: Find the LCM for ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐’š๐’š๐Ÿ๐Ÿ, ๐Ÿ”๐Ÿ”๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š๐Ÿ‘๐Ÿ‘ and ๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ๐’š๐’š.Expression Factor Factor With the Highest Exponent

๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ๐’š๐’š 23 โˆ™ x โˆ™ y 23

๐Ÿ”๐Ÿ”๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š๐Ÿ‘๐Ÿ‘ 2 โˆ™ 3 โˆ™ x2 โˆ™ y3 3y3

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐’š๐’š๐Ÿ๐Ÿ 2 โˆ™ x4 โˆ™ y2 x4

LCM = 23โˆ™ 3y3 โˆ™ x4 = 24x4y3

Example: Find the LCM for ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ(๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’) and ๐Ÿ๐Ÿ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ).

Expression Factor Factor With the Highest Exponent๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ(๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’) 3 โˆ™ x โˆ™ (x + 2) โˆ™ (x โ€“ 2) 3 (x + 2) (x โ€“ 2)๐Ÿ๐Ÿ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ) x2 โˆ™ (x + 2) x2

LCM = 3x2 (x + 2)(x โ€“ 2)

โ€ข Finding the LCD for rational expressions LCD โ€“ the least common denominator

Factor each given denominator . Find the product of all unique factors with the highest exponent .

Example: Find the LCD for the following fractions .

1. ๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ๐Ÿ

, ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ๐Ÿ—๐Ÿ—

and ๐Ÿ’๐Ÿ’๐Ÿ•๐Ÿ•๐Ÿ—๐Ÿ—๐Ÿ”๐Ÿ”๐Ÿ•๐Ÿ•๐Ÿ’๐Ÿ’๐Ÿ—๐Ÿ—๐Ÿ๐Ÿ

Denominator Factor Factor With the Highest Exponent๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ๐Ÿ 32 โˆ™ b2 b2

๐Ÿ๐Ÿ๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ๐Ÿ—๐Ÿ— 33 โˆ™ a2 โˆ™ b 33

๐Ÿ”๐Ÿ”๐Ÿ•๐Ÿ•๐Ÿ’๐Ÿ’๐Ÿ—๐Ÿ—๐Ÿ๐Ÿ 3 โˆ™ 2 โˆ™ a4 โˆ™ b2 2a4

LCD = 2 โˆ™ 33 โˆ™ a4 โˆ™ b2 = 54a4b2

2. ๐Ÿ“๐Ÿ“๐Ÿ•๐Ÿ•๐Ÿ—๐Ÿ—๐Ÿ‘๐Ÿ‘๐Ÿ•๐Ÿ•๐Ÿ‘๐Ÿ‘(๐Ÿ•๐Ÿ•๐Ÿ๐Ÿโˆ’๐Ÿ–๐Ÿ–๐Ÿ•๐Ÿ•+๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”)

and ๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ+๐Ÿ—๐Ÿ—๐Ÿ•๐Ÿ•(๐Ÿ•๐Ÿ•โˆ’๐Ÿ’๐Ÿ’)๐Ÿ’๐Ÿ’

Denominator Factor Factor With the Highest Exponent๐Ÿ‘๐Ÿ‘๐Ÿ•๐Ÿ•๐Ÿ‘๐Ÿ‘(๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ โˆ’ ๐Ÿ–๐Ÿ–๐Ÿ•๐Ÿ• + ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”)

a -4a -4

3 โˆ™ a3 โˆ™ (a โ€“ 4)2 3 a3

๐Ÿ•๐Ÿ•(๐Ÿ•๐Ÿ• โˆ’ ๐Ÿ’๐Ÿ’)๐Ÿ’๐Ÿ’ a โˆ™ (a โ€“ 4)4 (a โ€“ 4)4

LCD = 3a3 (a โ€“ 4)4

Page 6-6

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 123

Algebra I & II Key Concepts, Practice, and Quizzes Unit 6 โ€“ Rational Expressions

Adding/Subtracting Unlike Rational Expressions

โ€ข Adding or subtracting unlike fractions (with different denominators)

๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

+ ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’

= 2 โˆ™ ๐Ÿ’๐Ÿ’3 โˆ™ ๐Ÿ’๐Ÿ’

+ 1 โˆ™ ๐Ÿ‘๐Ÿ‘ 4 โˆ™ ๐Ÿ‘๐Ÿ‘

= 812

+ 312

= 8+312

= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

LCD = 12

๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ ๐Ÿ‘๐Ÿ‘

๐Ÿ–๐Ÿ–= 5โˆ™212โˆ™2

โˆ’ 3โˆ™38โˆ™3

= 1024โˆ’ 9

24 = 10โˆ’9

24= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’

2 12 8

2 6 4 3 2 LCD = 23 โˆ™ 3 = 24

โ€ข Adding or subtracting unlike rational expressions

Steps Example: ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ+๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ“๐Ÿ“

+ ๐Ÿ•๐Ÿ•๐Ÿ“๐Ÿ“๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ“๐Ÿ“

- Determine the LCD . LCD = 3 โˆ™ 4 โˆ™ x = 12x

- Rewrite expressions with the LCD . ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ+๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ“๐Ÿ“

+ ๐Ÿ•๐Ÿ•๐Ÿ“๐Ÿ“๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ“๐Ÿ“

= ๐Ÿ’๐Ÿ’๏ฟฝ5๐‘ฅ๐‘ฅ2+1๏ฟฝ๐Ÿ’๐Ÿ’ โˆ™ 3๐‘ฅ๐‘ฅ

+ ๐Ÿ‘๐Ÿ‘(7๐‘ฅ๐‘ฅ2โˆ’1) ๐Ÿ‘๐Ÿ‘ โˆ™ 4๐‘ฅ๐‘ฅ

- Combine the numerators . = 4๏ฟฝ5๐‘ฅ๐‘ฅ2+1๏ฟฝ+3(7๐‘ฅ๐‘ฅ2โˆ’1)12๐‘ฅ๐‘ฅ

= 20๐‘ฅ๐‘ฅ2+ 4+ 21๐‘ฅ๐‘ฅ2โˆ’312๐‘ฅ๐‘ฅ

- Simplify if possible . = 41๐‘ฅ๐‘ฅ2+ 112๐‘ฅ๐‘ฅ

= 41๐‘ฅ๐‘ฅ2

12 ๐‘ฅ๐‘ฅ+ 1

12๐‘ฅ๐‘ฅ= ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

๐Ÿ๐Ÿ๐Ÿ๐Ÿ+ ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

Example: Add or subtract and simplify .

1. ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘โˆ’๐Ÿ‘๐Ÿ‘

+ ๐Ÿ“๐Ÿ“๐Ÿ‘๐Ÿ‘+๐Ÿ‘๐Ÿ‘

โˆ’ ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿโˆ’๐Ÿ—๐Ÿ—

= 3๐‘Ž๐‘Ž(๐Ÿ‘๐Ÿ‘+๐Ÿ‘๐Ÿ‘)

(๐‘Ž๐‘Žโˆ’3)(๐Ÿ‘๐Ÿ‘+๐Ÿ‘๐Ÿ‘)+ 5(๐Ÿ‘๐Ÿ‘โˆ’๐Ÿ‘๐Ÿ‘)

(๐‘Ž๐‘Ž+3)(๐Ÿ‘๐Ÿ‘โˆ’๐Ÿ‘๐Ÿ‘)โˆ’ 2

(๐‘Ž๐‘Ž+3)(๐‘Ž๐‘Žโˆ’3)a2 โ€“ 9 = a2 โ€“ 32 , LCD = (a + 3)(a โ€“ 3)

= 3๐‘Ž๐‘Ž(๐‘Ž๐‘Ž+3)+5(๐‘Ž๐‘Žโˆ’3)โˆ’2(๐‘Ž๐‘Ž+3)(๐‘Ž๐‘Žโˆ’3)

Combine the numerators .

= 3๐‘Ž๐‘Ž2+9๐‘Ž๐‘Ž+5๐‘Ž๐‘Žโˆ’15โˆ’2(๐‘Ž๐‘Ž+3)(๐‘Ž๐‘Žโˆ’3)

= ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ+๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘โˆ’๐Ÿ๐Ÿ๐Ÿ•๐Ÿ•

(๐Ÿ‘๐Ÿ‘+๐Ÿ‘๐Ÿ‘)(๐Ÿ‘๐Ÿ‘โˆ’๐Ÿ‘๐Ÿ‘)Combine like terms .

2. ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ‘๐Ÿ‘๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ+ ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“โˆ’๐Ÿ๐Ÿ

โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ“๐Ÿ“+๐Ÿ๐Ÿ

= 2๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ+1)(3๐‘ฅ๐‘ฅโˆ’1)

โˆ’ 3๐‘ฅ๐‘ฅ+1

LCD = (x + 1) (3x โ€“ 1)

x 13x - 1

= 2๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ+1)(3๐‘ฅ๐‘ฅโˆ’1)

โˆ’ 3(3๐‘ฅ๐‘ฅโˆ’1)(๐‘ฅ๐‘ฅ+1)(3๐‘ฅ๐‘ฅโˆ’1)

Rewrite with the LCD .

= 2๐‘ฅ๐‘ฅ โˆ’ [3(3๐‘ฅ๐‘ฅโˆ’1)](๐‘ฅ๐‘ฅ+1)(3๐‘ฅ๐‘ฅโˆ’1)

Combine the numerators .

= 2๐‘ฅ๐‘ฅโˆ’9๐‘ฅ๐‘ฅ+3(๐‘ฅ๐‘ฅ+1)(3๐‘ฅ๐‘ฅโˆ’1)

Distribute

= -๐Ÿ•๐Ÿ•๐Ÿ“๐Ÿ“+๐Ÿ‘๐Ÿ‘(๐Ÿ“๐Ÿ“+๐Ÿ๐Ÿ)(๐Ÿ‘๐Ÿ‘๐Ÿ“๐Ÿ“โˆ’๐Ÿ๐Ÿ)

Combine like terms .

Page 6-7

Adding/Subtracting Unlike Rational Expressions

โ€ข Adding or subtracting unlike fractions (with different denominators)

๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

+ ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’

= 2 โˆ™ ๐Ÿ’๐Ÿ’3 โˆ™ ๐Ÿ’๐Ÿ’

+ 1 โˆ™ ๐Ÿ‘๐Ÿ‘ 4 โˆ™ ๐Ÿ‘๐Ÿ‘

= 812

+ 312

= 8+312

= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

LCD = 12

๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ ๐Ÿ‘๐Ÿ‘

๐Ÿ–๐Ÿ–= 5โˆ™212โˆ™2

โˆ’ 3โˆ™38โˆ™3

= 1024โˆ’ 9

24 = 10โˆ’9

24= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’

2 12 8

2 6 4 3 2 LCD = 23 โˆ™ 3 = 24

โ€ข Adding or subtracting unlike rational expressions

Steps Example: ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ+๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ“๐Ÿ“

+ ๐Ÿ•๐Ÿ•๐Ÿ“๐Ÿ“๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ“๐Ÿ“

- Determine the LCD . LCD = 3 โˆ™ 4 โˆ™ x = 12x

- Rewrite expressions with the LCD . ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ+๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ“๐Ÿ“

+ ๐Ÿ•๐Ÿ•๐Ÿ“๐Ÿ“๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ“๐Ÿ“

= ๐Ÿ’๐Ÿ’๏ฟฝ5๐‘ฅ๐‘ฅ2+1๏ฟฝ๐Ÿ’๐Ÿ’ โˆ™ 3๐‘ฅ๐‘ฅ

+ ๐Ÿ‘๐Ÿ‘(7๐‘ฅ๐‘ฅ2โˆ’1) ๐Ÿ‘๐Ÿ‘ โˆ™ 4๐‘ฅ๐‘ฅ

- Combine the numerators . = 4๏ฟฝ5๐‘ฅ๐‘ฅ2+1๏ฟฝ+3(7๐‘ฅ๐‘ฅ2โˆ’1)12๐‘ฅ๐‘ฅ

= 20๐‘ฅ๐‘ฅ2+ 4+ 21๐‘ฅ๐‘ฅ2โˆ’312๐‘ฅ๐‘ฅ

- Simplify if possible . = 41๐‘ฅ๐‘ฅ2+ 112๐‘ฅ๐‘ฅ

= 41๐‘ฅ๐‘ฅ2

12 ๐‘ฅ๐‘ฅ+ 1

12๐‘ฅ๐‘ฅ= ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

๐Ÿ๐Ÿ๐Ÿ๐Ÿ+ ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

Example: Add or subtract and simplify .

1. ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘โˆ’๐Ÿ‘๐Ÿ‘

+ ๐Ÿ“๐Ÿ“๐Ÿ‘๐Ÿ‘+๐Ÿ‘๐Ÿ‘

โˆ’ ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿโˆ’๐Ÿ—๐Ÿ—

= 3๐‘Ž๐‘Ž(๐Ÿ‘๐Ÿ‘+๐Ÿ‘๐Ÿ‘)

(๐‘Ž๐‘Žโˆ’3)(๐Ÿ‘๐Ÿ‘+๐Ÿ‘๐Ÿ‘)+ 5(๐Ÿ‘๐Ÿ‘โˆ’๐Ÿ‘๐Ÿ‘)

(๐‘Ž๐‘Ž+3)(๐Ÿ‘๐Ÿ‘โˆ’๐Ÿ‘๐Ÿ‘)โˆ’ 2

(๐‘Ž๐‘Ž+3)(๐‘Ž๐‘Žโˆ’3)a2 โ€“ 9 = a2 โ€“ 32 , LCD = (a + 3)(a โ€“ 3)

= 3๐‘Ž๐‘Ž(๐‘Ž๐‘Ž+3)+5(๐‘Ž๐‘Žโˆ’3)โˆ’2(๐‘Ž๐‘Ž+3)(๐‘Ž๐‘Žโˆ’3)

Combine the numerators .

= 3๐‘Ž๐‘Ž2+9๐‘Ž๐‘Ž+5๐‘Ž๐‘Žโˆ’15โˆ’2(๐‘Ž๐‘Ž+3)(๐‘Ž๐‘Žโˆ’3)

= ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ+๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘โˆ’๐Ÿ๐Ÿ๐Ÿ•๐Ÿ•

(๐Ÿ‘๐Ÿ‘+๐Ÿ‘๐Ÿ‘)(๐Ÿ‘๐Ÿ‘โˆ’๐Ÿ‘๐Ÿ‘)Combine like terms .

2. ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ‘๐Ÿ‘๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ+ ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“โˆ’๐Ÿ๐Ÿ

โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ“๐Ÿ“+๐Ÿ๐Ÿ

= 2๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ+1)(3๐‘ฅ๐‘ฅโˆ’1)

โˆ’ 3๐‘ฅ๐‘ฅ+1

LCD = (x + 1) (3x โ€“ 1)

x 13x - 1

= 2๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ+1)(3๐‘ฅ๐‘ฅโˆ’1)

โˆ’ 3(3๐‘ฅ๐‘ฅโˆ’1)(๐‘ฅ๐‘ฅ+1)(3๐‘ฅ๐‘ฅโˆ’1)

Rewrite with the LCD .

= 2๐‘ฅ๐‘ฅ โˆ’ [3(3๐‘ฅ๐‘ฅโˆ’1)](๐‘ฅ๐‘ฅ+1)(3๐‘ฅ๐‘ฅโˆ’1)

Combine the numerators .

= 2๐‘ฅ๐‘ฅโˆ’9๐‘ฅ๐‘ฅ+3(๐‘ฅ๐‘ฅ+1)(3๐‘ฅ๐‘ฅโˆ’1)

Distribute

= -๐Ÿ•๐Ÿ•๐Ÿ“๐Ÿ“+๐Ÿ‘๐Ÿ‘(๐Ÿ“๐Ÿ“+๐Ÿ๐Ÿ)(๐Ÿ‘๐Ÿ‘๐Ÿ“๐Ÿ“โˆ’๐Ÿ๐Ÿ)

Combine like terms .

Page 6-7

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

124 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 6 โ€“ Rational Expressions

6-3 POLYNOMIAL DIVISION

Dividing Polynomials

โ€ข Dividing a monomial by a monomial Monomial: one term

Example: -๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ๐’š๐’š๐Ÿ“๐Ÿ“

๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ‘๐Ÿ‘๐’š๐’š๐Ÿ๐Ÿ

Steps Solution

- Divide coefficients . -๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ๐’š๐’š๐Ÿ“๐Ÿ“

๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ‘๐Ÿ‘๐’š๐’š๐Ÿ๐Ÿ= ๏ฟฝ-12

4๏ฟฝ ๏ฟฝ๐‘ฅ๐‘ฅ

2๐‘ฆ๐‘ฆ5

๐‘ฅ๐‘ฅ3๐‘ฆ๐‘ฆ2๏ฟฝ

- Divide like variables . (apply ๐‘Ž๐‘Ž๐‘š๐‘š

๐‘Ž๐‘Ž๐‘›๐‘›= am-n ) = -3 ๏ฟฝ๐‘ฅ๐‘ฅ

2

๐‘ฅ๐‘ฅ3๏ฟฝ ๏ฟฝ๐‘ฆ๐‘ฆ

5

๐‘ฆ๐‘ฆ2๏ฟฝ

= -๐Ÿ‘๐Ÿ‘ ๏ฟฝ๐’š๐’š๐Ÿ‘๐Ÿ‘

๐’™๐’™๏ฟฝ

โ€ข Dividing a polynomial by a monomial

Example: 12๐‘ฅ๐‘ฅ2+4๐‘ฅ๐‘ฅโˆ’2

4๐‘ฅ๐‘ฅ

Steps Solution

- Split the polynomial into three parts . ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ+๐Ÿ’๐Ÿ’๐’™๐’™โˆ’๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐’™๐’™

= 12๐‘ฅ๐‘ฅ2

4๐‘ฅ๐‘ฅ+ 4๐‘ฅ๐‘ฅ

4๐‘ฅ๐‘ฅโˆ’ 2

4 ๐‘ฅ๐‘ฅ

- Divide a monomial by a monomial . = 3x + 1 โ€“ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™

Cancel or reduce common factors .

Example: ๐Ÿ‘๐Ÿ‘๐’š๐’š๐Ÿ๐Ÿ+๐Ÿ‘๐Ÿ‘๐’š๐’š+๐Ÿ๐Ÿ๐’š๐’š+๐Ÿ๐Ÿ๐’š๐’š+๐Ÿ๐Ÿ

Steps Solution

- Group . ๐Ÿ‘๐Ÿ‘๐’š๐’š๐Ÿ๐Ÿ+๐Ÿ‘๐Ÿ‘๐’š๐’š+๐Ÿ๐Ÿ๐’š๐’š+๐Ÿ๐Ÿ๐’š๐’š+๐Ÿ๐Ÿ

= (3๐‘ฆ๐‘ฆ2+3๐‘ฆ๐‘ฆ)+(2๐‘ฆ๐‘ฆ+2)๐‘ฆ๐‘ฆ+1

- Factor out the GCF . = 3๐‘ฆ๐‘ฆ(๐‘ฆ๐‘ฆ+1)+2(๐‘ฆ๐‘ฆ+1)๐‘ฆ๐‘ฆ+1

- Split the polynomial into two parts . = 3๐‘ฆ๐‘ฆ(๐‘ฆ๐‘ฆ+1)๐‘ฆ๐‘ฆ+1

+ 2(๐‘ฆ๐‘ฆ+1)๐‘ฆ๐‘ฆ+1

- Divide a monomial by a monomial . = 3y + 2

1

21

3

Page 6-8

6-3 POLYNOMIAL DIVISION

Dividing Polynomials

โ€ข Dividing a monomial by a monomial Monomial: one term

Example: -๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ๐’š๐’š๐Ÿ“๐Ÿ“

๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ‘๐Ÿ‘๐’š๐’š๐Ÿ๐Ÿ

Steps Solution

- Divide coefficients . -๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ๐’š๐’š๐Ÿ“๐Ÿ“

๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ‘๐Ÿ‘๐’š๐’š๐Ÿ๐Ÿ= ๏ฟฝ-12

4๏ฟฝ ๏ฟฝ๐‘ฅ๐‘ฅ

2๐‘ฆ๐‘ฆ5

๐‘ฅ๐‘ฅ3๐‘ฆ๐‘ฆ2๏ฟฝ

- Divide like variables . (apply ๐‘Ž๐‘Ž๐‘š๐‘š

๐‘Ž๐‘Ž๐‘›๐‘›= am-n ) = -3 ๏ฟฝ๐‘ฅ๐‘ฅ

2

๐‘ฅ๐‘ฅ3๏ฟฝ ๏ฟฝ๐‘ฆ๐‘ฆ

5

๐‘ฆ๐‘ฆ2๏ฟฝ

= -๐Ÿ‘๐Ÿ‘ ๏ฟฝ๐’š๐’š๐Ÿ‘๐Ÿ‘

๐’™๐’™๏ฟฝ

โ€ข Dividing a polynomial by a monomial

Example: 12๐‘ฅ๐‘ฅ2+4๐‘ฅ๐‘ฅโˆ’2

4๐‘ฅ๐‘ฅ

Steps Solution

- Split the polynomial into three parts . ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ+๐Ÿ’๐Ÿ’๐’™๐’™โˆ’๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐’™๐’™

= 12๐‘ฅ๐‘ฅ2

4๐‘ฅ๐‘ฅ+ 4๐‘ฅ๐‘ฅ

4๐‘ฅ๐‘ฅโˆ’ 2

4 ๐‘ฅ๐‘ฅ

- Divide a monomial by a monomial . = 3x + 1 โ€“ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™

Cancel or reduce common factors .

Example: ๐Ÿ‘๐Ÿ‘๐’š๐’š๐Ÿ๐Ÿ+๐Ÿ‘๐Ÿ‘๐’š๐’š+๐Ÿ๐Ÿ๐’š๐’š+๐Ÿ๐Ÿ๐’š๐’š+๐Ÿ๐Ÿ

Steps Solution

- Group . ๐Ÿ‘๐Ÿ‘๐’š๐’š๐Ÿ๐Ÿ+๐Ÿ‘๐Ÿ‘๐’š๐’š+๐Ÿ๐Ÿ๐’š๐’š+๐Ÿ๐Ÿ๐’š๐’š+๐Ÿ๐Ÿ

= (3๐‘ฆ๐‘ฆ2+3๐‘ฆ๐‘ฆ)+(2๐‘ฆ๐‘ฆ+2)๐‘ฆ๐‘ฆ+1

- Factor out the GCF . = 3๐‘ฆ๐‘ฆ(๐‘ฆ๐‘ฆ+1)+2(๐‘ฆ๐‘ฆ+1)๐‘ฆ๐‘ฆ+1

- Split the polynomial into two parts . = 3๐‘ฆ๐‘ฆ(๐‘ฆ๐‘ฆ+1)๐‘ฆ๐‘ฆ+1

+ 2(๐‘ฆ๐‘ฆ+1)๐‘ฆ๐‘ฆ+1

- Divide a monomial by a monomial . = 3y + 2

1

21

3

Page 6-8

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 125

Algebra I & II Key Concepts, Practice, and Quizzes Unit 6 โ€“ Rational Expressions

Long Division of Polynomials

โ€ข Division of whole numbers (long division): Example:

Quotient 3Divisor Dividend 4 15

โ€“ โ€“ 12 Remainder 3

โ€ข Polynomial long division works more conveniently for more general polynomials .

Example: 6๐‘ฅ๐‘ฅ2+9๐‘ฅ๐‘ฅ+2

3๐‘ฅ๐‘ฅSteps Solution Dividing whole numbers

- Write in divisor dividend form . 3x 6๐‘ฅ๐‘ฅ2 + 9๐‘ฅ๐‘ฅ + 2 3 692

2x 2- Divide the first term . 3x 6๐‘ฅ๐‘ฅ2 + 9๐‘ฅ๐‘ฅ + 2 3 692

โ€“ 6x2 (3x)(2x) = 6x

2 โ€“ 6 2โˆ™3 = 6

2x + 3 230- Divide the second term . 3x 6๐‘ฅ๐‘ฅ2 + 9๐‘ฅ๐‘ฅ + 2 3 692

6x2 6 Bring 9x down 9x 9 Bring 9 down

(3x)(3) = 9x โ€“ 9x โ€“ 9 3โˆ™3 = 9

2 2remainder

quotient remainder

Quotient + remainderdivisor

6๐‘ฅ๐‘ฅ2+9๐‘ฅ๐‘ฅ+2

3๐‘ฅ๐‘ฅ= (2x + 3) + ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ 692 รท 3 = 230 + ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘

divisor

Tip: Continue until the degree of the remainder is less than the degree of the divisor .

(i .e . 2 = 2 โˆ™ x0 and 3x = 3x1 )

0 < 1

- Check: Dividend = Quotient โˆ™ Divisor + Remainder ? ?

6๐‘ฅ๐‘ฅ2 + 9๐‘ฅ๐‘ฅ + 2 = (2x + 3)(3x) + 2 692 = 230 โˆ™ 3 + 2

โˆš โˆš 6๐‘ฅ๐‘ฅ2 + 9๐‘ฅ๐‘ฅ + 2 = 6๐‘ฅ๐‘ฅ2 + 9x + 2 Correct! 692 = 692

Page 6-9

Long Division of Polynomials

โ€ข Division of whole numbers (long division): Example:

Quotient 3Divisor Dividend 4 15

โ€“ โ€“ 12 Remainder 3

โ€ข Polynomial long division works more conveniently for more general polynomials .

Example: 6๐‘ฅ๐‘ฅ2+9๐‘ฅ๐‘ฅ+2

3๐‘ฅ๐‘ฅSteps Solution Dividing whole numbers

- Write in divisor dividend form . 3x 6๐‘ฅ๐‘ฅ2 + 9๐‘ฅ๐‘ฅ + 2 3 692

2x 2- Divide the first term . 3x 6๐‘ฅ๐‘ฅ2 + 9๐‘ฅ๐‘ฅ + 2 3 692

โ€“ 6x2 (3x)(2x) = 6x

2 โ€“ 6 2โˆ™3 = 6

2x + 3 230- Divide the second term . 3x 6๐‘ฅ๐‘ฅ2 + 9๐‘ฅ๐‘ฅ + 2 3 692

6x2 6 Bring 9x down 9x 9 Bring 9 down

(3x)(3) = 9x โ€“ 9x โ€“ 9 3โˆ™3 = 9

2 2remainder

quotient remainder

Quotient + remainderdivisor

6๐‘ฅ๐‘ฅ2+9๐‘ฅ๐‘ฅ+2

3๐‘ฅ๐‘ฅ= (2x + 3) + ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ 692 รท 3 = 230 + ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘

divisor

Tip: Continue until the degree of the remainder is less than the degree of the divisor .

(i .e . 2 = 2 โˆ™ x0 and 3x = 3x1 )

0 < 1

- Check: Dividend = Quotient โˆ™ Divisor + Remainder ? ?

6๐‘ฅ๐‘ฅ2 + 9๐‘ฅ๐‘ฅ + 2 = (2x + 3)(3x) + 2 692 = 230 โˆ™ 3 + 2

โˆš โˆš 6๐‘ฅ๐‘ฅ2 + 9๐‘ฅ๐‘ฅ + 2 = 6๐‘ฅ๐‘ฅ2 + 9x + 2 Correct! 692 = 692

Page 6-9

26926

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

126 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 6 โ€“ Rational Expressions

Missing Terms in Long Division

Missing terms in long division: If there is a missing consecutive power term in a polynomial

(i .e . if there are x3 and x, but not x2), insert the missing power term with a coefficient of 0 .

Example: ๐Ÿ“๐Ÿ“โˆ’๐Ÿ‘๐Ÿ‘๐’‚๐’‚๐Ÿ๐Ÿ+๐’‚๐’‚๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ+๐’‚๐’‚

Steps Solution

- Rewrite both polynomials in descending order .๐‘Ž๐‘Ž3โˆ’3๐‘Ž๐‘Ž2+5

๐‘Ž๐‘Ž+1Descending order: ๐ด๐ด๐ด๐ด3 + B๐ด๐ด2 + ๐ถ๐ถ๐ด๐ด + ๐ท๐ท , ๐ด๐ด๐ด๐ด + ๐ต๐ต

- Write in divisor Dividend form and insert a + 1 ๐‘Ž๐‘Ž3 โˆ’ 3๐‘Ž๐‘Ž2 + ๐ŸŽ๐ŸŽ๐’‚๐’‚ + 5

a 0 coefficient for the missing power term . Missing power

๐‘Ž๐‘Ž2 โˆ’ 4๐‘Ž๐‘Ž + 4- Divide as usual . a + 1 ๐‘Ž๐‘Ž3 โˆ’ 3๐‘Ž๐‘Ž2 + 0๐‘Ž๐‘Ž + 5

โˆ’ ๐‘Ž๐‘Ž3 + ๐‘Ž๐‘Ž2

-4๐‘Ž๐‘Ž2 + 0๐‘Ž๐‘Ž โˆ’ -4๐‘Ž๐‘Ž2 โˆ’ 4๐‘Ž๐‘Ž 4a + 5

โˆ’ 4a + 41

- Solution . 5โˆ’3๐‘Ž๐‘Ž2+๐‘Ž๐‘Ž3

1+๐‘Ž๐‘Ž= (๐’‚๐’‚๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐’‚๐’‚ + ๐Ÿ’๐Ÿ’) +

๐Ÿ๐Ÿ๐’‚๐’‚+๐Ÿ๐Ÿ

Quotient + remainderdivisor

- Check: Dividend = Quotient โˆ™ Divisor + Remainder ?

5 โˆ’ 3๐‘Ž๐‘Ž2 + ๐‘Ž๐‘Ž3 = (๐‘Ž๐‘Ž2 โˆ’ 4๐‘Ž๐‘Ž + 4)(๐‘Ž๐‘Ž + 1) + 1

? 5 โˆ’ 3๐‘Ž๐‘Ž2 + ๐‘Ž๐‘Ž3 = (๐‘Ž๐‘Ž3 + ๐‘Ž๐‘Ž2 โˆ’ 4๐‘Ž๐‘Ž2 โˆ’ 4๐‘Ž๐‘Ž + 4๐‘Ž๐‘Ž + 4) + 1

โˆš 5 โˆ’ 3๐‘Ž๐‘Ž2 + ๐‘Ž๐‘Ž3 = ๐‘Ž๐‘Ž3 โˆ’ 3๐‘Ž๐‘Ž2 + 5 Correct!

Page 6-10

Missing Terms in Long Division

Missing terms in long division: If there is a missing consecutive power term in a polynomial

(i .e . if there are x3 and x, but not x2), insert the missing power term with a coefficient of 0 .

Example: ๐Ÿ“๐Ÿ“โˆ’๐Ÿ‘๐Ÿ‘๐’‚๐’‚๐Ÿ๐Ÿ+๐’‚๐’‚๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ+๐’‚๐’‚

Steps Solution

- Rewrite both polynomials in descending order .๐‘Ž๐‘Ž3โˆ’3๐‘Ž๐‘Ž2+5

๐‘Ž๐‘Ž+1Descending order: ๐ด๐ด๐ด๐ด3 + B๐ด๐ด2 + ๐ถ๐ถ๐ด๐ด + ๐ท๐ท , ๐ด๐ด๐ด๐ด + ๐ต๐ต

- Write in divisor Dividend form and insert a + 1 ๐‘Ž๐‘Ž3 โˆ’ 3๐‘Ž๐‘Ž2 + ๐ŸŽ๐ŸŽ๐’‚๐’‚ + 5

a 0 coefficient for the missing power term . Missing power

๐‘Ž๐‘Ž2 โˆ’ 4๐‘Ž๐‘Ž + 4- Divide as usual . a + 1 ๐‘Ž๐‘Ž3 โˆ’ 3๐‘Ž๐‘Ž2 + 0๐‘Ž๐‘Ž + 5

โˆ’ ๐‘Ž๐‘Ž3 + ๐‘Ž๐‘Ž2

-4๐‘Ž๐‘Ž2 + 0๐‘Ž๐‘Ž โˆ’ -4๐‘Ž๐‘Ž2 โˆ’ 4๐‘Ž๐‘Ž 4a + 5

โˆ’ 4a + 41

- Solution . 5โˆ’3๐‘Ž๐‘Ž2+๐‘Ž๐‘Ž3

1+๐‘Ž๐‘Ž= (๐’‚๐’‚๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐’‚๐’‚ + ๐Ÿ’๐Ÿ’) +

๐Ÿ๐Ÿ๐’‚๐’‚+๐Ÿ๐Ÿ

Quotient + remainderdivisor

- Check: Dividend = Quotient โˆ™ Divisor + Remainder ?

5 โˆ’ 3๐‘Ž๐‘Ž2 + ๐‘Ž๐‘Ž3 = (๐‘Ž๐‘Ž2 โˆ’ 4๐‘Ž๐‘Ž + 4)(๐‘Ž๐‘Ž + 1) + 1

? 5 โˆ’ 3๐‘Ž๐‘Ž2 + ๐‘Ž๐‘Ž3 = (๐‘Ž๐‘Ž3 + ๐‘Ž๐‘Ž2 โˆ’ 4๐‘Ž๐‘Ž2 โˆ’ 4๐‘Ž๐‘Ž + 4๐‘Ž๐‘Ž + 4) + 1

โˆš 5 โˆ’ 3๐‘Ž๐‘Ž2 + ๐‘Ž๐‘Ž3 = ๐‘Ž๐‘Ž3 โˆ’ 3๐‘Ž๐‘Ž2 + 5 Correct!

Page 6-10

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 127

Algebra I & II Key Concepts, Practice, and Quizzes Unit 6 โ€“ Rational Expressions

Synthetic Division

Synthetic Division: a shortcut method of dividing a polynomial by a binomial of the form

(x โ€“ a), by using only the coefficients of the terms .

Steps Example (x โ€“ a)

(๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ + ๐Ÿ’๐Ÿ’๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ) รท (๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)

- Rewrite the polynomial in descending order . ๐‘ฅ๐‘ฅ โˆ’ 2 3๐‘ฅ๐‘ฅ4 + 0๐‘ฅ๐‘ฅ3 โˆ’ 2๐‘ฅ๐‘ฅ2 + 4๐‘ฅ๐‘ฅ โˆ’ 40Insert a zero coefficient for the missing power . Missing power

a in the divisor The coefficient of the dividend- Set up the synthetic coefficients. 2 3 0 -2 4 -40

- Bring down the leading coefficient and multiply 2 3 0 -2 4 -40it by a in (x โ€“ a) . Place the product beneath the 2 ร— 3

second coefficient. 3 6

- Add the numbers in column 2 . 2 3 0 -2 4 -40

63 6 (0 + 6)

- Repeat until the last column done . 2 3 0 -2 4 -40 2 ร— 6 = 12 , -2 + 12 = 10 6 12 20 482 ร— 10 = 20 , 4 + 20 = 24 3 6 10 24 82 ร— 24 = 48 , -40 + 48 = 8

- Write out the answer . ๐‘ฅ๐‘ฅ3 ๐‘ฅ๐‘ฅ2 x constant remainder

Quotient + remainderdivisor

Answer: (๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ‘๐Ÿ‘ + ๐Ÿ”๐Ÿ”๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’) + ๐Ÿ–๐Ÿ–๐’™๐’™โˆ’๐Ÿ๐Ÿ

One less than the degree of the dividend

Example: Divide . (๐Ÿ”๐Ÿ” + ๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ) รท (๐’™๐’™ + ๐Ÿ๐Ÿ)๐‘ฅ๐‘ฅ + ๐Ÿ๐Ÿ 4๐‘ฅ๐‘ฅ3โˆ’2๐‘ฅ๐‘ฅ2 โˆ’ 2๐‘ฅ๐‘ฅ + 6 Write in descending order .

-1 4 -2 -2 6

-1 ร— 4 -4 6 -4

4 -6 4 2 ๐‘ฅ๐‘ฅ2 x constant remainder

Answer: (๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ”๐Ÿ”๐’™๐’™ + ๐Ÿ’๐Ÿ’) + ๐Ÿ๐Ÿ๐’™๐’™+๐Ÿ๐Ÿ

Quotient + remainderdivisor

+

+

(a = 2)

+ +

2nd coefficient

(x โ€“ a): x + 1 = x โ€“ (-1) , โˆด a = -1The synthetic coefficients

-1 ร— 4 = -4 , -2 + (-4) = -6-1 ร— (-6) = 6 , -2 + 6 = 4-1 ร— 4 = -4 , 6 + (-4) = 2

Page 6-11

Synthetic Division

Synthetic Division: a shortcut method of dividing a polynomial by a binomial of the form

(x โ€“ a), by using only the coefficients of the terms .

Steps Example (x โ€“ a)

(๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ + ๐Ÿ’๐Ÿ’๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ) รท (๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)

- Rewrite the polynomial in descending order . ๐‘ฅ๐‘ฅ โˆ’ 2 3๐‘ฅ๐‘ฅ4 + 0๐‘ฅ๐‘ฅ3 โˆ’ 2๐‘ฅ๐‘ฅ2 + 4๐‘ฅ๐‘ฅ โˆ’ 40Insert a zero coefficient for the missing power . Missing power

a in the divisor The coefficient of the dividend- Set up the synthetic coefficients. 2 3 0 -2 4 -40

- Bring down the leading coefficient and multiply 2 3 0 -2 4 -40it by a in (x โ€“ a) . Place the product beneath the 2 ร— 3

second coefficient. 3 6

- Add the numbers in column 2 . 2 3 0 -2 4 -40

63 6 (0 + 6)

- Repeat until the last column done . 2 3 0 -2 4 -40 2 ร— 6 = 12 , -2 + 12 = 10 6 12 20 482 ร— 10 = 20 , 4 + 20 = 24 3 6 10 24 82 ร— 24 = 48 , -40 + 48 = 8

- Write out the answer . ๐‘ฅ๐‘ฅ3 ๐‘ฅ๐‘ฅ2 x constant remainder

Quotient + remainderdivisor

Answer: (๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ‘๐Ÿ‘ + ๐Ÿ”๐Ÿ”๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’) + ๐Ÿ–๐Ÿ–๐’™๐’™โˆ’๐Ÿ๐Ÿ

One less than the degree of the dividend

Example: Divide . (๐Ÿ”๐Ÿ” + ๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ) รท (๐’™๐’™ + ๐Ÿ๐Ÿ)๐‘ฅ๐‘ฅ + ๐Ÿ๐Ÿ 4๐‘ฅ๐‘ฅ3โˆ’2๐‘ฅ๐‘ฅ2 โˆ’ 2๐‘ฅ๐‘ฅ + 6 Write in descending order .

-1 4 -2 -2 6

-1 ร— 4 -4 6 -4

4 -6 4 2 ๐‘ฅ๐‘ฅ2 x constant remainder

Answer: (๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ”๐Ÿ”๐’™๐’™ + ๐Ÿ’๐Ÿ’) + ๐Ÿ๐Ÿ๐’™๐’™+๐Ÿ๐Ÿ

Quotient + remainderdivisor

+

+

(a = 2)

+ +

2nd coefficient

(x โ€“ a): x + 1 = x โ€“ (-1) , โˆด a = -1The synthetic coefficients

-1 ร— 4 = -4 , -2 + (-4) = -6-1 ร— (-6) = 6 , -2 + 6 = 4-1 ร— 4 = -4 , 6 + (-4) = 2

Page 6-11

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

128 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 6 โ€“ Rational Expressions

6-4 COMPLEX RATIONAL EXPRESSIONS

Simplify Complex Rational ExpressionsMethod I

โ€ข Complex fraction: a fraction that contains another fraction in its numerator or denominator(or both) . fractions

Example: 34 32

= 34

รท 32 รท

โ€ข Complex rational expression: a rational expression whose numerator or denominator (or both) contains rational expressions .

Example

๐‘๐‘1๐ท๐ท1

๐‘๐‘2๐ท๐ท2

๐‘๐‘1๐ท๐ท1

and ๐‘๐‘2๐ท๐ท2

are rational expressions . D1, D2 & N2 โ‰  0 5๐‘ฅ๐‘ฅ โˆ’ 3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

2

๐‘ฅ๐‘ฅ 3๐‘ฅ๐‘ฅ + 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

โ€ข Simplifying a complex rational expression โ€” method I: multiplying the LCD .

Examples: Simplify the following .

1. ๐Ÿ๐Ÿ๐’˜๐’˜ โˆ’ ๐Ÿ‘๐Ÿ‘ ๐Ÿ๐Ÿ๐’˜๐’˜ + ๐’˜๐’˜

= ๏ฟฝ 1๐‘ค๐‘ค โˆ’ 3 1๐‘ค๐‘ค + ๐‘ค๐‘ค

๏ฟฝ โˆ™ ๐’˜๐’˜๐’˜๐’˜

= ๐‘ค๐‘ค๐‘ค๐‘ค โˆ’ 3๐‘ค๐‘ค ๐‘ค๐‘ค๐‘ค๐‘ค + ๐‘ค๐‘ค2 Multiply num . & den . by the LCD . (w)

= ๐Ÿ๐Ÿโˆ’๐Ÿ‘๐Ÿ‘๐’˜๐’˜๐Ÿ๐Ÿ+๐’˜๐’˜๐Ÿ๐Ÿ Simplify .

2. ๐Ÿ๐Ÿ๐’‚๐’‚๐Ÿ๐Ÿ

+ ๐Ÿ๐Ÿ๐’ƒ๐’ƒ

๐Ÿ‘๐Ÿ‘๐’‚๐’‚๐’ƒ๐’ƒ๐Ÿ๐Ÿ

โˆ’ ๐Ÿ๐Ÿ๐’‚๐’‚๐Ÿ๐Ÿ

=

๏ฟฝ 1 ๐‘Ž๐‘Ž2

+ 2๐‘๐‘ ๏ฟฝ(๐’‚๐’‚๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐Ÿ๐Ÿ)

๏ฟฝ3๐‘Ž๐‘Ž ๐‘๐‘2โˆ’ 1๐‘Ž๐‘Ž2

๏ฟฝ(๐’‚๐’‚๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐Ÿ๐Ÿ) Multiply num . & den . by the LCD . (a2b2)

= ๐’‚๐’‚๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐Ÿ๐Ÿ

๐‘Ž๐‘Ž2+ 2(๐’‚๐’‚๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐Ÿ๐Ÿ)

๐‘๐‘3๐‘Ž๐‘Ž(๐’‚๐’‚๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐Ÿ๐Ÿ)

๐‘๐‘2 โˆ’ (๐’‚๐’‚

๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐Ÿ๐Ÿ) ๐‘Ž๐‘Ž2

= ๐‘๐‘2+ 2๐‘Ž๐‘Ž2๐‘๐‘3๐‘Ž๐‘Ž3 โˆ’ ๐‘๐‘2

Simplify .

= ๐’ƒ๐’ƒ(๐’ƒ๐’ƒ+๐Ÿ๐Ÿ๐’‚๐’‚๐Ÿ๐Ÿ)๐Ÿ‘๐Ÿ‘๐’‚๐’‚๐Ÿ‘๐Ÿ‘โˆ’๐’ƒ๐’ƒ๐Ÿ๐Ÿ

Factor out b.

Page 6-12

6-4 COMPLEX RATIONAL EXPRESSIONS

Simplify Complex Rational ExpressionsMethod I

โ€ข Complex fraction: a fraction that contains another fraction in its numerator or denominator(or both) . fractions

Example: 34 32

= 34

รท 32 รท

โ€ข Complex rational expression: a rational expression whose numerator or denominator (or both) contains rational expressions .

Example

๐‘๐‘1๐ท๐ท1

๐‘๐‘2๐ท๐ท2

๐‘๐‘1๐ท๐ท1

and ๐‘๐‘2๐ท๐ท2

are rational expressions . D1, D2 & N2 โ‰  0 5๐‘ฅ๐‘ฅ โˆ’ 3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

2

๐‘ฅ๐‘ฅ 3๐‘ฅ๐‘ฅ + 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

โ€ข Simplifying a complex rational expression โ€” method I: multiplying the LCD .

Examples: Simplify the following .

1. ๐Ÿ๐Ÿ๐’˜๐’˜ โˆ’ ๐Ÿ‘๐Ÿ‘ ๐Ÿ๐Ÿ๐’˜๐’˜ + ๐’˜๐’˜

= ๏ฟฝ 1๐‘ค๐‘ค โˆ’ 3 1๐‘ค๐‘ค + ๐‘ค๐‘ค

๏ฟฝ โˆ™ ๐’˜๐’˜๐’˜๐’˜

= ๐‘ค๐‘ค๐‘ค๐‘ค โˆ’ 3๐‘ค๐‘ค ๐‘ค๐‘ค๐‘ค๐‘ค + ๐‘ค๐‘ค2 Multiply num . & den . by the LCD . (w)

= ๐Ÿ๐Ÿโˆ’๐Ÿ‘๐Ÿ‘๐’˜๐’˜๐Ÿ๐Ÿ+๐’˜๐’˜๐Ÿ๐Ÿ Simplify .

2. ๐Ÿ๐Ÿ๐’‚๐’‚๐Ÿ๐Ÿ

+ ๐Ÿ๐Ÿ๐’ƒ๐’ƒ

๐Ÿ‘๐Ÿ‘๐’‚๐’‚๐’ƒ๐’ƒ๐Ÿ๐Ÿ

โˆ’ ๐Ÿ๐Ÿ๐’‚๐’‚๐Ÿ๐Ÿ

=

๏ฟฝ 1 ๐‘Ž๐‘Ž2

+ 2๐‘๐‘ ๏ฟฝ(๐’‚๐’‚๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐Ÿ๐Ÿ)

๏ฟฝ3๐‘Ž๐‘Ž ๐‘๐‘2โˆ’ 1๐‘Ž๐‘Ž2

๏ฟฝ(๐’‚๐’‚๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐Ÿ๐Ÿ) Multiply num . & den . by the LCD . (a2b2)

= ๐’‚๐’‚๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐Ÿ๐Ÿ

๐‘Ž๐‘Ž2+ 2(๐’‚๐’‚๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐Ÿ๐Ÿ)

๐‘๐‘3๐‘Ž๐‘Ž(๐’‚๐’‚๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐Ÿ๐Ÿ)

๐‘๐‘2 โˆ’ (๐’‚๐’‚

๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐Ÿ๐Ÿ) ๐‘Ž๐‘Ž2

= ๐‘๐‘2+ 2๐‘Ž๐‘Ž2๐‘๐‘3๐‘Ž๐‘Ž3 โˆ’ ๐‘๐‘2

Simplify .

= ๐’ƒ๐’ƒ(๐’ƒ๐’ƒ+๐Ÿ๐Ÿ๐’‚๐’‚๐Ÿ๐Ÿ)๐Ÿ‘๐Ÿ‘๐’‚๐’‚๐Ÿ‘๐Ÿ‘โˆ’๐’ƒ๐’ƒ๐Ÿ๐Ÿ

Factor out b.

Page 6-12

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 129

Algebra I & II Key Concepts, Practice, and Quizzes Unit 6 โ€“ Rational Expressions

Simplify Complex Rational ExpressionsMethod II

Simplifying a complex rational expression โ€” method II: multiply the reciprocal of the

denominator (รท โ†’ ร—) .

๐‘๐‘1๐ท๐ท1

๐‘๐‘2๐ท๐ท2

= ๐‘๐‘1

๐ท๐ท1รท ๐‘ต๐‘ต๐Ÿ๐Ÿ

๐‘ซ๐‘ซ๐Ÿ๐Ÿ= ๐‘๐‘1

๐ท๐ท1โˆ™ ๐‘ซ๐‘ซ๐Ÿ๐Ÿ ๐‘ต๐‘ต๐Ÿ๐Ÿ

๐‘๐‘1๐ท๐ท1

and ๐‘๐‘2๐ท๐ท2

are rational expressions . 34 32

= 34

รท 32

= 34

โˆ™ 23

= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Examples: Simplify the following .

1. ๐Ÿ๐Ÿ๐’˜๐’˜ โˆ’ ๐Ÿ‘๐Ÿ‘ ๐Ÿ๐Ÿ๐’˜๐’˜ + ๐’˜๐’˜

= 1๐‘ค๐‘ค โˆ’ 31 1๐‘ค๐‘ค + ๐‘ค๐‘ค1

= 1

๐‘ค๐‘ค โˆ’ 3๐’˜๐’˜๐’˜๐’˜ 1๐‘ค๐‘ค + ๐‘ค๐‘ค

๐Ÿ๐Ÿ๐’˜๐’˜

Multiply num . & den . by the LCD . LCD = w

= 1โˆ’3๐‘ค๐‘ค๐‘ค๐‘ค 1+ ๐‘ค๐‘ค2๐‘ค๐‘ค

= 1โˆ’3๐‘ค๐‘ค๐‘ค๐‘ค

รท 1+๐‘ค๐‘ค2

๐‘ค๐‘ค รท

= 1โˆ’3๐‘ค๐‘ค๐‘ค๐‘ค

โˆ™ ๐’˜๐’˜๐Ÿ๐Ÿ+๐’˜๐’˜๐Ÿ๐Ÿ

รท ร— , 1+๐‘ค๐‘ค2 ๐‘ค๐‘ค

๐‘ค๐‘ค1+๐‘ค๐‘ค2

= ๐Ÿ๐Ÿโˆ’๐Ÿ‘๐Ÿ‘๐’˜๐’˜๐Ÿ๐Ÿ+๐’˜๐’˜๐Ÿ๐Ÿ

2. ๐’š๐’š๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐’š๐’šโˆ’๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ๐’š๐’š+๐Ÿ”๐Ÿ”๐’š๐’š๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๐’š๐’š๐Ÿ๐Ÿ+๐Ÿ’๐Ÿ’๐’š๐’šโˆ’๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘๐’š๐’š+๐Ÿ๐Ÿ

= ๐‘ฆ๐‘ฆ2โˆ’2๐‘ฆ๐‘ฆโˆ’82๐‘ฆ๐‘ฆ+6๐‘ฆ๐‘ฆ2

รท 3๐‘ฆ๐‘ฆ2+4๐‘ฆ๐‘ฆโˆ’43๐‘ฆ๐‘ฆ+1

= ๐‘ฆ๐‘ฆ2โˆ’2๐‘ฆ๐‘ฆโˆ’8

2๐‘ฆ๐‘ฆ+6๐‘ฆ๐‘ฆ2 โˆ™ ๐Ÿ‘๐Ÿ‘๐’š๐’š+๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐’š๐’š๐Ÿ๐Ÿ+๐Ÿ’๐Ÿ’๐’š๐’šโˆ’๐Ÿ’๐Ÿ’

Factor: ๐‘ฆ๐‘ฆ2 โˆ’ 2๐‘ฆ๐‘ฆ โˆ’ 8 , 3๐‘ฆ๐‘ฆ2 + 4๐‘ฆ๐‘ฆ โˆ’ 4

= (๐‘ฆ๐‘ฆ+2)(๐‘ฆ๐‘ฆโˆ’4)2๐‘ฆ๐‘ฆ(1+3๐‘ฆ๐‘ฆ)

โˆ™ 3๐‘ฆ๐‘ฆ+1(๐‘ฆ๐‘ฆ+2)(3๐‘ฆ๐‘ฆโˆ’2)

Simplify .

= ๐’š๐’šโˆ’๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ๐’š๐’š(๐Ÿ‘๐Ÿ‘๐’š๐’šโˆ’๐Ÿ๐Ÿ)

3. ๐Ÿ‘๐Ÿ‘๐’•๐’•+๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ

๐’•๐’•โˆ’๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’๐’•๐’•=

3(๐’•๐’•โˆ’๐Ÿ๐Ÿ)(๐‘ก๐‘ก+2)(๐’•๐’•โˆ’๐Ÿ๐Ÿ)โˆ’ 1(๐’•๐’•+๐Ÿ๐Ÿ)

(๐‘ก๐‘กโˆ’1)(๐’•๐’•+๐Ÿ๐Ÿ) 4๐‘ก๐‘ก1

The LCD = (t + 2)(t โ€“ 1) .

= 3(๐‘ก๐‘กโˆ’1)โˆ’(๐‘ก๐‘ก+2)

(๐‘ก๐‘ก+2)(๐‘ก๐‘กโˆ’1) 4๐‘ก๐‘ก1

= 3(๐‘ก๐‘กโˆ’1)โˆ’(๐‘ก๐‘ก+2)(๐‘ก๐‘ก+2)(๐‘ก๐‘กโˆ’1)

รท 4๐‘ก๐‘ก 1

รท

= 3(๐‘ก๐‘กโˆ’1)โˆ’(๐‘ก๐‘ก+2)(๐‘ก๐‘ก+2)(๐‘ก๐‘กโˆ’1)

โˆ™ ๐Ÿ๐Ÿ ๐Ÿ’๐Ÿ’๐’•๐’•

รท ร— , 4๐‘ก๐‘ก 1

14๐‘ก๐‘ก

= 3๐‘ก๐‘กโˆ’3โˆ’๐‘ก๐‘กโˆ’2(๐‘ก๐‘ก+2)(๐‘ก๐‘กโˆ’1)

โˆ™ 1 4๐‘ก๐‘ก

Distribute

= ๐Ÿ๐Ÿ๐’•๐’•โˆ’๐Ÿ“๐Ÿ“๐Ÿ’๐Ÿ’๐’•๐’•(๐’•๐’•+๐Ÿ๐Ÿ)(๐’•๐’•โˆ’๐Ÿ๐Ÿ)

Combine like terms .

y 2

y -4

y 2

3y -2

รท

รท ร— , 3๐‘ฆ๐‘ฆ2+4๐‘ฆ๐‘ฆโˆ’4

3๐‘ฆ๐‘ฆ+1 3๐‘ฆ๐‘ฆ+1

3๐‘ฆ๐‘ฆ2+4๐‘ฆ๐‘ฆโˆ’4

Rewrite to get a single rational expression in the den . & num .

Rewrite to get a single rational expression in the den . & num .

Page 6-13

Simplify Complex Rational ExpressionsMethod II

Simplifying a complex rational expression โ€” method II: multiply the reciprocal of the

denominator (รท โ†’ ร—) .

๐‘๐‘1๐ท๐ท1

๐‘๐‘2๐ท๐ท2

= ๐‘๐‘1

๐ท๐ท1รท ๐‘ต๐‘ต๐Ÿ๐Ÿ

๐‘ซ๐‘ซ๐Ÿ๐Ÿ= ๐‘๐‘1

๐ท๐ท1โˆ™ ๐‘ซ๐‘ซ๐Ÿ๐Ÿ ๐‘ต๐‘ต๐Ÿ๐Ÿ

๐‘๐‘1๐ท๐ท1

and ๐‘๐‘2๐ท๐ท2

are rational expressions . 34 32

= 34

รท 32

= 34

โˆ™ 23

= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Examples: Simplify the following .

1. ๐Ÿ๐Ÿ๐’˜๐’˜ โˆ’ ๐Ÿ‘๐Ÿ‘ ๐Ÿ๐Ÿ๐’˜๐’˜ + ๐’˜๐’˜

= 1๐‘ค๐‘ค โˆ’ 31 1๐‘ค๐‘ค + ๐‘ค๐‘ค1

= 1

๐‘ค๐‘ค โˆ’ 3๐’˜๐’˜๐’˜๐’˜ 1๐‘ค๐‘ค + ๐‘ค๐‘ค

๐Ÿ๐Ÿ๐’˜๐’˜

Multiply num . & den . by the LCD . LCD = w

= 1โˆ’3๐‘ค๐‘ค๐‘ค๐‘ค 1+ ๐‘ค๐‘ค2๐‘ค๐‘ค

= 1โˆ’3๐‘ค๐‘ค๐‘ค๐‘ค

รท 1+๐‘ค๐‘ค2

๐‘ค๐‘ค รท

= 1โˆ’3๐‘ค๐‘ค๐‘ค๐‘ค

โˆ™ ๐’˜๐’˜๐Ÿ๐Ÿ+๐’˜๐’˜๐Ÿ๐Ÿ

รท ร— , 1+๐‘ค๐‘ค2 ๐‘ค๐‘ค

๐‘ค๐‘ค1+๐‘ค๐‘ค2

= ๐Ÿ๐Ÿโˆ’๐Ÿ‘๐Ÿ‘๐’˜๐’˜๐Ÿ๐Ÿ+๐’˜๐’˜๐Ÿ๐Ÿ

2. ๐’š๐’š๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐’š๐’šโˆ’๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ๐’š๐’š+๐Ÿ”๐Ÿ”๐’š๐’š๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๐’š๐’š๐Ÿ๐Ÿ+๐Ÿ’๐Ÿ’๐’š๐’šโˆ’๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘๐’š๐’š+๐Ÿ๐Ÿ

= ๐‘ฆ๐‘ฆ2โˆ’2๐‘ฆ๐‘ฆโˆ’82๐‘ฆ๐‘ฆ+6๐‘ฆ๐‘ฆ2

รท 3๐‘ฆ๐‘ฆ2+4๐‘ฆ๐‘ฆโˆ’43๐‘ฆ๐‘ฆ+1

= ๐‘ฆ๐‘ฆ2โˆ’2๐‘ฆ๐‘ฆโˆ’8

2๐‘ฆ๐‘ฆ+6๐‘ฆ๐‘ฆ2 โˆ™ ๐Ÿ‘๐Ÿ‘๐’š๐’š+๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐’š๐’š๐Ÿ๐Ÿ+๐Ÿ’๐Ÿ’๐’š๐’šโˆ’๐Ÿ’๐Ÿ’

Factor: ๐‘ฆ๐‘ฆ2 โˆ’ 2๐‘ฆ๐‘ฆ โˆ’ 8 , 3๐‘ฆ๐‘ฆ2 + 4๐‘ฆ๐‘ฆ โˆ’ 4

= (๐‘ฆ๐‘ฆ+2)(๐‘ฆ๐‘ฆโˆ’4)2๐‘ฆ๐‘ฆ(1+3๐‘ฆ๐‘ฆ)

โˆ™ 3๐‘ฆ๐‘ฆ+1(๐‘ฆ๐‘ฆ+2)(3๐‘ฆ๐‘ฆโˆ’2)

Simplify .

= ๐’š๐’šโˆ’๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ๐’š๐’š(๐Ÿ‘๐Ÿ‘๐’š๐’šโˆ’๐Ÿ๐Ÿ)

3. ๐Ÿ‘๐Ÿ‘๐’•๐’•+๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ

๐’•๐’•โˆ’๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’๐’•๐’•=

3(๐’•๐’•โˆ’๐Ÿ๐Ÿ)(๐‘ก๐‘ก+2)(๐’•๐’•โˆ’๐Ÿ๐Ÿ)โˆ’ 1(๐’•๐’•+๐Ÿ๐Ÿ)

(๐‘ก๐‘กโˆ’1)(๐’•๐’•+๐Ÿ๐Ÿ) 4๐‘ก๐‘ก1

The LCD = (t + 2)(t โ€“ 1) .

= 3(๐‘ก๐‘กโˆ’1)โˆ’(๐‘ก๐‘ก+2)

(๐‘ก๐‘ก+2)(๐‘ก๐‘กโˆ’1) 4๐‘ก๐‘ก1

= 3(๐‘ก๐‘กโˆ’1)โˆ’(๐‘ก๐‘ก+2)(๐‘ก๐‘ก+2)(๐‘ก๐‘กโˆ’1)

รท 4๐‘ก๐‘ก 1

รท

= 3(๐‘ก๐‘กโˆ’1)โˆ’(๐‘ก๐‘ก+2)(๐‘ก๐‘ก+2)(๐‘ก๐‘กโˆ’1)

โˆ™ ๐Ÿ๐Ÿ ๐Ÿ’๐Ÿ’๐’•๐’•

รท ร— , 4๐‘ก๐‘ก 1

14๐‘ก๐‘ก

= 3๐‘ก๐‘กโˆ’3โˆ’๐‘ก๐‘กโˆ’2(๐‘ก๐‘ก+2)(๐‘ก๐‘กโˆ’1)

โˆ™ 1 4๐‘ก๐‘ก

Distribute

= ๐Ÿ๐Ÿ๐’•๐’•โˆ’๐Ÿ“๐Ÿ“๐Ÿ’๐Ÿ’๐’•๐’•(๐’•๐’•+๐Ÿ๐Ÿ)(๐’•๐’•โˆ’๐Ÿ๐Ÿ)

Combine like terms .

y 2

y -4

y 2

3y -2

รท

รท ร— , 3๐‘ฆ๐‘ฆ2+4๐‘ฆ๐‘ฆโˆ’4

3๐‘ฆ๐‘ฆ+1 3๐‘ฆ๐‘ฆ+1

3๐‘ฆ๐‘ฆ2+4๐‘ฆ๐‘ฆโˆ’4

Rewrite to get a single rational expression in the den . & num .

Rewrite to get a single rational expression in the den . & num .

Page 6-13

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

130 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 6 โ€“ Rational Expressions

6-5 RATIONAL EQUATIONS

Rational Equations

โ€ข Review Example

Expression: a mathematical statement that contains numbers, 2ab2 + 3a

variables, and arithmetic operations (without an equal sign) .

Equation: a mathematical statement that contains two 3x2 + 4x = 2

expressions and separated by an equal sign .

Rational (fractional) expression: an expression that is a ratio 2๐‘ฅ๐‘ฅโˆ’37๐‘ฅ๐‘ฅ+5

or quotient of two polynomials .

โ€ข Rational (fractional) equation: an equation that contains rational expressions .

Example

Rational Expression Rational Equation5๐‘ฅ๐‘ฅ2 + 3๐‘ฅ๐‘ฅ

4 โˆ’ ๐‘ฅ๐‘ฅ3๐‘ฅ๐‘ฅ

+2

5๐‘ฅ๐‘ฅ= 7

๐‘Ž๐‘Ž2 + ๐‘๐‘2

2๐‘Ž๐‘Ž๐‘๐‘ โˆ’ ๐‘๐‘โˆ’

3๐‘Ž๐‘Ž2

4๐‘Ž๐‘Ž2๐‘Ž๐‘Ž๐‘๐‘ + 3

4๐‘Ž๐‘Žโˆ’

5๐‘Ž๐‘Ž + 74

=3๐‘Ž๐‘Ž๐‘๐‘5๐‘Ž๐‘Ž

โ€ข Solving a rational equation

Steps Example: Solve ๐Ÿ๐Ÿ๐’™๐’™

+ ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐’™๐’™

= ๐Ÿ“๐Ÿ“ .

- Find the least common denominator (LCD) . LCD = 2x

- Multiply each term by the LCD . 1๐‘ฅ๐‘ฅโˆ™ 2๐‘ฅ๐‘ฅ + 3

2๐‘ฅ๐‘ฅโˆ™ 2๐‘ฅ๐‘ฅ = 5 โˆ™ 2๐‘ฅ๐‘ฅ

2 + 3 = 10x

- Solve the variable . 5 = 10x

x = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

?

- Check . 112

+ 32 โˆ™ 1 2

= 5 112

= 1รท 12

= 1 โˆ™ 21

= 2

โˆš2 + 3 = 5 Correct!

Note: Checking is necessary, not optional (check for a valid solution rather than errors) .

Page 6-14

6-5 RATIONAL EQUATIONS

Rational Equations

โ€ข Review Example

Expression: a mathematical statement that contains numbers, 2ab2 + 3a

variables, and arithmetic operations (without an equal sign) .

Equation: a mathematical statement that contains two 3x2 + 4x = 2

expressions and separated by an equal sign .

Rational (fractional) expression: an expression that is a ratio 2๐‘ฅ๐‘ฅโˆ’37๐‘ฅ๐‘ฅ+5

or quotient of two polynomials .

โ€ข Rational (fractional) equation: an equation that contains rational expressions .

Example

Rational Expression Rational Equation5๐‘ฅ๐‘ฅ2 + 3๐‘ฅ๐‘ฅ

4 โˆ’ ๐‘ฅ๐‘ฅ3๐‘ฅ๐‘ฅ

+2

5๐‘ฅ๐‘ฅ= 7

๐‘Ž๐‘Ž2 + ๐‘๐‘2

2๐‘Ž๐‘Ž๐‘๐‘ โˆ’ ๐‘๐‘โˆ’

3๐‘Ž๐‘Ž2

4๐‘Ž๐‘Ž2๐‘Ž๐‘Ž๐‘๐‘ + 3

4๐‘Ž๐‘Žโˆ’

5๐‘Ž๐‘Ž + 74

=3๐‘Ž๐‘Ž๐‘๐‘5๐‘Ž๐‘Ž

โ€ข Solving a rational equation

Steps Example: Solve ๐Ÿ๐Ÿ๐’™๐’™

+ ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐’™๐’™

= ๐Ÿ“๐Ÿ“ .

- Find the least common denominator (LCD) . LCD = 2x

- Multiply each term by the LCD . 1๐‘ฅ๐‘ฅโˆ™ 2๐‘ฅ๐‘ฅ + 3

2๐‘ฅ๐‘ฅโˆ™ 2๐‘ฅ๐‘ฅ = 5 โˆ™ 2๐‘ฅ๐‘ฅ

2 + 3 = 10x

- Solve the variable . 5 = 10x

x = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

?

- Check . 112

+ 32 โˆ™ 1 2

= 5 112

= 1รท 12

= 1 โˆ™ 21

= 2

โˆš2 + 3 = 5 Correct!

Note: Checking is necessary, not optional (check for a valid solution rather than errors) .

Page 6-14

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 131

Algebra I & II Key Concepts, Practice, and Quizzes Unit 6 โ€“ Rational Expressions

Solving Rational Equations

Example: Solve the following .

1. ๐Ÿ‘๐Ÿ‘๐’‚๐’‚โˆ’๐Ÿ๐Ÿ

= ๐Ÿ“๐Ÿ“๐’‚๐’‚+๐Ÿ’๐Ÿ’

LCD = (a โ€“ 2)(a + 4)

3๐‘Ž๐‘Žโˆ’2

(๐’‚๐’‚ โˆ’ ๐Ÿ๐Ÿ)(๐’‚๐’‚ + ๐Ÿ’๐Ÿ’) = 5๐‘Ž๐‘Ž+4

(๐’‚๐’‚ โˆ’ ๐Ÿ๐Ÿ)(๐’‚๐’‚ + ๐Ÿ’๐Ÿ’) Multiply each term by the LCD .

3(a + 4) = 5(a โ€“ 2) Distribute

3a + 12 = 5a โ€“ 10 Solve for a: add 10, subtract 3a.

22 = 2a , a = 11 Divide by 2 .

? ?

Check: 311โˆ’2

= 511+4

, 39

= 515

โˆš13

= 13

Correct!

2. ๐Ÿ๐Ÿโˆ’๐’•๐’•๐’•๐’•+๐Ÿ“๐Ÿ“

= ๐Ÿ๐Ÿ + ๐Ÿ•๐Ÿ•๐’•๐’•+๐Ÿ“๐Ÿ“

LCD = t + 5

2โˆ’๐‘ก๐‘ก๐‘ก๐‘ก+5

โˆ™ (๐’•๐’• + ๐Ÿ“๐Ÿ“) = 2(๐’•๐’• + ๐Ÿ“๐Ÿ“) + 7๐‘ก๐‘ก+5

โˆ™ (๐’•๐’• + ๐Ÿ“๐Ÿ“) Multiply each term by the LCD .

2 โ€“ t = 2t + 10 + 7 Solve for t : add t, subtract 17 .

-15 = 3t , t = -5 Divide by 3 .

?

Check: 2โˆ’(-5)โˆ’5 + 5 = 2 + 7

-5 + 5, 7

0= 2 + 7

0 No solution (undefined)

3. ๐Ÿ“๐Ÿ“๐’™๐’™+๐Ÿ๐Ÿ

+ ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™๐Ÿ๐Ÿโˆ’๐Ÿ’๐Ÿ’

= ๐Ÿ‘๐Ÿ‘๐’™๐’™โˆ’๐Ÿ๐Ÿ

x2 โ€“ 4 = x2 โ€“ 22 = (x + 2)(x โ€“ 2)

LCD = (x + 2)(x -2) 5

๐‘ฅ๐‘ฅ+2โˆ™ (๐‘ฅ๐‘ฅ โˆ’ 2)(๐‘ฅ๐‘ฅ + 2) + 2๐‘ฅ๐‘ฅ

๐‘ฅ๐‘ฅ2โˆ’4(๐‘ฅ๐‘ฅ โˆ’ 2)(๐‘ฅ๐‘ฅ + 2) = 3

๐‘ฅ๐‘ฅโˆ’2(๐‘ฅ๐‘ฅ โˆ’ 2)(๐‘ฅ๐‘ฅ + 2)

Multiply each term by the LCD .

5(x โ€“ 2) + 2x = 3(x + 2) Distribute

5x โ€“ 10 + 2x = 3x + 6 Solve for x: subtract 3x, add 10 .

4x = 16 , x = 4 Divide by 4 .

? ?

Check: 54+2

+ 2โˆ™ 442โˆ’4

= 34โˆ’2

, 56

+ 812

= 32

? โˆš

5โˆ™26โˆ™2

+ 812

= 1812

, 1812

= 1812

Correct!

1

3

1

3

Page 6-15

Solving Rational Equations

Example: Solve the following .

1. ๐Ÿ‘๐Ÿ‘๐’‚๐’‚โˆ’๐Ÿ๐Ÿ

= ๐Ÿ“๐Ÿ“๐’‚๐’‚+๐Ÿ’๐Ÿ’

LCD = (a โ€“ 2)(a + 4)

3๐‘Ž๐‘Žโˆ’2

(๐’‚๐’‚ โˆ’ ๐Ÿ๐Ÿ)(๐’‚๐’‚ + ๐Ÿ’๐Ÿ’) = 5๐‘Ž๐‘Ž+4

(๐’‚๐’‚ โˆ’ ๐Ÿ๐Ÿ)(๐’‚๐’‚ + ๐Ÿ’๐Ÿ’) Multiply each term by the LCD .

3(a + 4) = 5(a โ€“ 2) Distribute

3a + 12 = 5a โ€“ 10 Solve for a: add 10, subtract 3a.

22 = 2a , a = 11 Divide by 2 .

? ?

Check: 311โˆ’2

= 511+4

, 39

= 515

โˆš13

= 13

Correct!

2. ๐Ÿ๐Ÿโˆ’๐’•๐’•๐’•๐’•+๐Ÿ“๐Ÿ“

= ๐Ÿ๐Ÿ + ๐Ÿ•๐Ÿ•๐’•๐’•+๐Ÿ“๐Ÿ“

LCD = t + 5

2โˆ’๐‘ก๐‘ก๐‘ก๐‘ก+5

โˆ™ (๐’•๐’• + ๐Ÿ“๐Ÿ“) = 2(๐’•๐’• + ๐Ÿ“๐Ÿ“) + 7๐‘ก๐‘ก+5

โˆ™ (๐’•๐’• + ๐Ÿ“๐Ÿ“) Multiply each term by the LCD .

2 โ€“ t = 2t + 10 + 7 Solve for t : add t, subtract 17 .

-15 = 3t , t = -5 Divide by 3 .

?

Check: 2โˆ’(-5)โˆ’5 + 5 = 2 + 7

-5 + 5, 7

0= 2 + 7

0 No solution (undefined)

3. ๐Ÿ“๐Ÿ“๐’™๐’™+๐Ÿ๐Ÿ

+ ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™๐Ÿ๐Ÿโˆ’๐Ÿ’๐Ÿ’

= ๐Ÿ‘๐Ÿ‘๐’™๐’™โˆ’๐Ÿ๐Ÿ

x2 โ€“ 4 = x2 โ€“ 22 = (x + 2)(x โ€“ 2)

LCD = (x + 2)(x -2) 5

๐‘ฅ๐‘ฅ+2โˆ™ (๐‘ฅ๐‘ฅ โˆ’ 2)(๐‘ฅ๐‘ฅ + 2) + 2๐‘ฅ๐‘ฅ

๐‘ฅ๐‘ฅ2โˆ’4(๐‘ฅ๐‘ฅ โˆ’ 2)(๐‘ฅ๐‘ฅ + 2) = 3

๐‘ฅ๐‘ฅโˆ’2(๐‘ฅ๐‘ฅ โˆ’ 2)(๐‘ฅ๐‘ฅ + 2)

Multiply each term by the LCD .

5(x โ€“ 2) + 2x = 3(x + 2) Distribute

5x โ€“ 10 + 2x = 3x + 6 Solve for x: subtract 3x, add 10 .

4x = 16 , x = 4 Divide by 4 .

? ?

Check: 54+2

+ 2โˆ™ 442โˆ’4

= 34โˆ’2

, 56

+ 812

= 32

? โˆš

5โˆ™26โˆ™2

+ 812

= 1812

, 1812

= 1812

Correct!

1

3

1

3

Page 6-15

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

132 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 6 โ€“ Rational Expressions

6-6 APPLICATIONS OF RATIONAL EQUATIONS

Applications

โ€ข Mathematical model: uses mathematical language to describe the behavior of a real-lifephenomenon .

โ€ข World-problem solving strategy reviewProcedure for Solving Word Problems

- Organize the facts given from the problem .- Identify and label the unknown quantity (let x = unknown) .- Draw a diagram if it will make the problem clearer .- Convert the wording into a mathematical equation .- Solve the equation and find the solution(s) .- Check and state the answer.

Example: Tom plans to plant a flower garden in his backyard . If the size of the garden is as

indicated in the following figure, what is the total area of the garden?

- Diagram . 2m A1 A2

4m

- Organize the facts .

rectangle width (w) = 2m , length (l) = 4m triangle base (b) = 2m , height (h) = 1mtotal area A = A1 + 2A2

Recall: Area of a rectangle A = wl , area of a triangle A = 12๐‘๐‘๐‘

- Equation: A = wl + 2 ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐’ƒ๐’ƒ๏ฟฝ

- Solution: A = (2)(4) + 2 โˆ™ 12

(2)(1) w = 2m , l = 4m , b = 2m , h = 1m

A = 10 m2

?

- Check . 10 = (2)(4) + 2 โˆ™ 12

(2)(1)โˆš

10 = 8 + 2 Correct!

- Answer: The total area of the garden is 10 m2 .

1m

1 rectangle 2 triangles

1m

2m

Page 6-16

6-6 APPLICATIONS OF RATIONAL EQUATIONS

Applications

โ€ข Mathematical model: uses mathematical language to describe the behavior of a real-lifephenomenon .

โ€ข World-problem solving strategy reviewProcedure for Solving Word Problems

- Organize the facts given from the problem .- Identify and label the unknown quantity (let x = unknown) .- Draw a diagram if it will make the problem clearer .- Convert the wording into a mathematical equation .- Solve the equation and find the solution(s) .- Check and state the answer.

Example: Tom plans to plant a flower garden in his backyard . If the size of the garden is as

indicated in the following figure, what is the total area of the garden?

- Diagram . 2m A1 A2

4m

- Organize the facts .

rectangle width (w) = 2m , length (l) = 4m triangle base (b) = 2m , height (h) = 1mtotal area A = A1 + 2A2

Recall: Area of a rectangle A = wl , area of a triangle A = 12๐‘๐‘๐‘

- Equation: A = wl + 2 ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐’ƒ๐’ƒ๏ฟฝ

- Solution: A = (2)(4) + 2 โˆ™ 12

(2)(1) w = 2m , l = 4m , b = 2m , h = 1m

A = 10 m2

?

- Check . 10 = (2)(4) + 2 โˆ™ 12

(2)(1)โˆš

10 = 8 + 2 Correct!

- Answer: The total area of the garden is 10 m2 .

1m

1 rectangle 2 triangles

1m

2m

Page 6-16

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 133

Algebra I & II Key Concepts, Practice, and Quizzes Unit 6 โ€“ Rational Expressions

Page 6-17

Number Problems

Example: Three divided by one more than a number is equal to the quotient of two and the

same number less than 3. What is the number?

- Facts: 3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ+1

23โˆ’๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

Let x = number

- Equation: ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐’™๐’™+๐Ÿ๐Ÿ๐Ÿ๐Ÿ

= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘โˆ’๐’™๐’™๐’™๐’™

LCD = (๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 1)(3โˆ’ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ)

- Solve for x. 3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ+1

(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 1)(3 โˆ’ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 23โˆ’๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 1)(3 โˆ’ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) ร— LCD

3(3 โˆ’ x) = 2 (x + 1) Solve for x.

9 โ€“ 3x = 2x + 2 , x = ๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“

Example: The quotient of 5 and the product of a number and 4 is equal to the quotient of 7 and

5 times that number less than 2. What is the number?

- Facts: 54๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

72โˆ’5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

Let x = number

- Equation: ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐’™๐’™๐’™๐’™

= ๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“๐’™๐’™๐’™๐’™

LCD = 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ(2โˆ’ 5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ)

- Solve for x. 54๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅโˆ™ 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ(2 โˆ’ 5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 7

2โˆ’5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅโˆ™ 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ(2 โˆ’ 5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) ร— LCD

5(2 โˆ’ 5x) = 28x 10 โˆ’25x = 28x , ๐’™๐’™๐’™๐’™ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

Example: The difference between the reciprocals of two consecutive positive odd integers is

four over thirty. What are the two integers? English Phrase Algebraic Expression Example

two consecutive integers x , x + 1 If x = 1, x + 1 = 2 two consecutive odd integers x , x + 2 If x = 1, x + 2 = 3 two consecutive even integers x , x + 2

or 2x , 2x + 2 If x = 2, x + 2 = 4 If x = 2, 2x = 4, 2x + 2 = 6

- Equation: ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’™๐’™๐’™๐’™+๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’

๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ Let x = 1st even integer , x+2 = 2nd even integer

- Solve for x. 1๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅโˆ™ 30๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 2) โˆ’ 1

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ+2โˆ™ 30๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 2) = 4

30โˆ™ 30๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 2) LCD = 30๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 2)

30(x + 2) โˆ’ 30x = 4x (x + 2)

30x + 60 โ€“ 30x = 4x2 + 8x

4x2 + 8x โˆ’ 60 = 0 , 4(x2 + 2x โ€“ 15) = 0 Factor. 4 4

(x2 + 2x โ€“ 15) = 04 Divide by 4.

(x โ€“ 3)(x + 5) = 0 Factor. x โ€“ 3 = 0 or x + 5 = 0 Zero product property. So x = 3 or x = -5 Ignore the negative answer. The two integers are x = 3 and x + 2 = 5

Page 6-17

Number Problems

Example: Three divided by one more than a number is equal to the quotient of two and the

same number less than 3. What is the number?

- Facts: 3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ+1

23โˆ’๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

Let x = number

- Equation: ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐’™๐’™+๐Ÿ๐Ÿ๐Ÿ๐Ÿ

= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘โˆ’๐’™๐’™๐’™๐’™

LCD = (๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 1)(3โˆ’ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ)

- Solve for x. 3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ+1

(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 1)(3 โˆ’ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 23โˆ’๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 1)(3 โˆ’ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) ร— LCD

3(3 โˆ’ x) = 2 (x + 1) Solve for x.

9 โ€“ 3x = 2x + 2 , x = ๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“

Example: The quotient of 5 and the product of a number and 4 is equal to the quotient of 7 and

5 times that number less than 2. What is the number?

- Facts: 54๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

72โˆ’5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

Let x = number

- Equation: ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐’™๐’™๐’™๐’™

= ๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“๐’™๐’™๐’™๐’™

LCD = 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ(2โˆ’ 5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ)

- Solve for x. 54๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅโˆ™ 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ(2 โˆ’ 5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 7

2โˆ’5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅโˆ™ 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ(2 โˆ’ 5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) ร— LCD

5(2 โˆ’ 5x) = 28x 10 โˆ’25x = 28x , ๐’™๐’™๐’™๐’™ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

Example: The difference between the reciprocals of two consecutive positive odd integers is

four over thirty. What are the two integers? English Phrase Algebraic Expression Example

two consecutive integers x , x + 1 If x = 1, x + 1 = 2 two consecutive odd integers x , x + 2 If x = 1, x + 2 = 3 two consecutive even integers x , x + 2

or 2x , 2x + 2 If x = 2, x + 2 = 4 If x = 2, 2x = 4, 2x + 2 = 6

- Equation: ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’™๐’™๐’™๐’™+๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’

๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ Let x = 1st even integer , x+2 = 2nd even integer

- Solve for x. 1๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅโˆ™ 30๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 2) โˆ’ 1

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ+2โˆ™ 30๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 2) = 4

30โˆ™ 30๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 2) LCD = 30๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 2)

30(x + 2) โˆ’ 30x = 4x (x + 2)

30x + 60 โ€“ 30x = 4x2 + 8x

4x2 + 8x โˆ’ 60 = 0 , 4(x2 + 2x โ€“ 15) = 0 Factor. 4 4

(x2 + 2x โ€“ 15) = 04 Divide by 4.

(x โ€“ 3)(x + 5) = 0 Factor. x โ€“ 3 = 0 or x + 5 = 0 Zero product property. So x = 3 or x = -5 Ignore the negative answer. The two integers are x = 3 and x + 2 = 5

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

134 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 6 โ€“ Rational Expressions

Page 6-18

Work Problems

The formula for โ€œworkโ€ problems that involve two people is:

1๐‘ก๐‘ก๐‘ก๐‘ก๐ด๐ด๐ด๐ด

+ 1๐‘ก๐‘ก๐‘ก๐‘ก๐ต๐ต๐ต๐ต

= 1 ๐‘ก๐‘ก๐‘ก๐‘ก

Time ๏ฟฝ ๐‘ก๐‘ก๐‘ก๐‘ก๐ด๐ด๐ด๐ด โˆ’ time required when person ๐ด๐ด๐ด๐ด works alone ๐‘ก๐‘ก๐‘ก๐‘ก๐ต๐ต๐ต๐ต โˆ’ time required when person ๐ต๐ต๐ต๐ต works alone ๐‘ก๐‘ก๐‘ก๐‘ก โˆ’ time required when two people work together

Rate ๏ฟฝ 1/ ๐‘ก๐‘ก๐‘ก๐‘ก๐ด๐ด๐ด๐ด โˆ’ person ๐ด๐ด๐ด๐ด can finish 1 job every ๐‘ก๐‘ก๐‘ก๐‘ก๐ด๐ด๐ด๐ด hours 1/ ๐‘ก๐‘ก๐‘ก๐‘ก๐ต๐ต๐ต๐ต โˆ’ person ๐ต๐ต๐ต๐ต can finish 1 job every ๐‘ก๐‘ก๐‘ก๐‘ก๐ต๐ต๐ต๐ต hours

Example: Tom can paint a room in 2 hours. Susan can paint a room in 3 hours. How long will it take both of them to paint a room together?

- Organize the facts Time to Paint a Room Part of Job Finished in 1 hour Comments Tom: 2 hours 1

2 job If Tom can finish the job in 2 hours, he can finish ยฝ

of the job in 1 hour.

Susan: 3 hours 13 job If Susan can finish the job in 3 hours, she can finish

1/3 of the job in 1 hour.

Together: t hours 12

+ 13 = 1

๐‘ก๐‘ก๐‘ก๐‘ก

If Tom and Susan work together, they can finish the job in t hours, and they can finish 1/ t of the job in 1 hour.

Let t = time needed to paint a room together.

- Equation: ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

+ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’•๐’•๐’•๐’• 1

๐‘ก๐‘ก๐‘ก๐‘ก๐ด๐ด๐ด๐ด+ 1

๐‘ก๐‘ก๐‘ก๐‘ก๐ต๐ต๐ต๐ต= 1

๐‘ก๐‘ก๐‘ก๐‘ก , tA = 2 , tB = 3

- Solve for t. 12โˆ™ ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐’•๐’•๐’•๐’• + 1

3โˆ™ ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐’•๐’•๐’•๐’• = 1

๐‘ก๐‘ก๐‘ก๐‘กโˆ™ ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐’•๐’•๐’•๐’• Multiply each term by the LCD. (6t)

3t + 2t = 6 , t = 1.2 hours - Answer: It will take Tom and Susan 1.2 hours to paint a room together.

Example: Jason can plow the snow from the schoolโ€™s parking lot 3 fewer hours than Shawn. If they work together, they can finish the job in 2 hours. How long will it take each of them to finish the job alone?

- Organize the facts Time to Finish the Job Part of Job Finished in 1 hour Comments Shawn: t hours 1

๐‘ก๐‘ก๐‘ก๐‘ก job If Shawn can finish the job in t hours, he can finish 1/t of the job

in 1 hour.

Jason: t โ€“ 3 hours 1๐‘ก๐‘ก๐‘ก๐‘กโˆ’3

job If Jason can finish the job in (t โ€“ 3) hours, he can finish 1/(t โ€“ 3) of the job in 1 hour.

Together: 2 hours 1๐‘ก๐‘ก๐‘ก๐‘ก

+ 1๐‘ก๐‘ก๐‘ก๐‘กโˆ’3

= 12 If Shawn and Jason work together, they can finish the job in 2

hours, and they can finish 1/2 of the job in 1 hour. Let t = time required for Shawn to finish the job alone.

- Equation: ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’•๐’•๐’•๐’•

+ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’•๐’•๐’•๐’•โˆ’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ 1

๐‘ก๐‘ก๐‘ก๐‘ก๐ด๐ด๐ด๐ด+ 1

๐‘ก๐‘ก๐‘ก๐‘ก๐ต๐ต๐ต๐ต= 1

๐‘ก๐‘ก๐‘ก๐‘ก , tA = t , tB = t โ€“ 3. t = 2

- Solve for t. 1๐‘ก๐‘ก๐‘ก๐‘กโˆ™ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’•๐’•๐’•๐’•(๐’•๐’•๐’•๐’• โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘) + 1

๐‘ก๐‘ก๐‘ก๐‘กโˆ’3โˆ™ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’•๐’•๐’•๐’•(๐’•๐’•๐’•๐’• โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘) = 1

2โˆ™ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’•๐’•๐’•๐’•(๐’•๐’•๐’•๐’• โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘) LCD = 2t (t โ€“ 3)

2(t โˆ’ 3) + 2t = t (t โ€“ 3) Distribute.

2t โ€“ 6 + 2t = t2 โ€“ 3t Subtract 4t, add 6. t2 โ€“ 7t + 6 = 0 Factor.

(t โˆ’ 1)(t โ€“ 6) = 0 , t โ€“ 1 = 0 or t โ€“ 6 = 0 Zero product property - Shawn: t = 1 , t = 6 t = 1 hour is not possible

- Jason: t โ€“ 3 = 6 โ€“ 3 = 3 (2 people can finish the job in 2 hours.)

- Answer: It will take Shawn 6 hours and Jason 3 hours to clean the schoolโ€™s parking lot.

Page 6-18

Work Problems

The formula for โ€œworkโ€ problems that involve two people is:

1๐‘ก๐‘ก๐‘ก๐‘ก๐ด๐ด๐ด๐ด

+ 1๐‘ก๐‘ก๐‘ก๐‘ก๐ต๐ต๐ต๐ต

= 1 ๐‘ก๐‘ก๐‘ก๐‘ก

Time ๏ฟฝ ๐‘ก๐‘ก๐‘ก๐‘ก๐ด๐ด๐ด๐ด โˆ’ time required when person ๐ด๐ด๐ด๐ด works alone ๐‘ก๐‘ก๐‘ก๐‘ก๐ต๐ต๐ต๐ต โˆ’ time required when person ๐ต๐ต๐ต๐ต works alone ๐‘ก๐‘ก๐‘ก๐‘ก โˆ’ time required when two people work together

Rate ๏ฟฝ 1/ ๐‘ก๐‘ก๐‘ก๐‘ก๐ด๐ด๐ด๐ด โˆ’ person ๐ด๐ด๐ด๐ด can finish 1 job every ๐‘ก๐‘ก๐‘ก๐‘ก๐ด๐ด๐ด๐ด hours 1/ ๐‘ก๐‘ก๐‘ก๐‘ก๐ต๐ต๐ต๐ต โˆ’ person ๐ต๐ต๐ต๐ต can finish 1 job every ๐‘ก๐‘ก๐‘ก๐‘ก๐ต๐ต๐ต๐ต hours

Example: Tom can paint a room in 2 hours. Susan can paint a room in 3 hours. How long will it take both of them to paint a room together?

- Organize the facts Time to Paint a Room Part of Job Finished in 1 hour Comments Tom: 2 hours 1

2 job If Tom can finish the job in 2 hours, he can finish ยฝ

of the job in 1 hour.

Susan: 3 hours 13 job If Susan can finish the job in 3 hours, she can finish

1/3 of the job in 1 hour.

Together: t hours 12

+ 13 = 1

๐‘ก๐‘ก๐‘ก๐‘ก

If Tom and Susan work together, they can finish the job in t hours, and they can finish 1/ t of the job in 1 hour.

Let t = time needed to paint a room together.

- Equation: ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

+ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’•๐’•๐’•๐’• 1

๐‘ก๐‘ก๐‘ก๐‘ก๐ด๐ด๐ด๐ด+ 1

๐‘ก๐‘ก๐‘ก๐‘ก๐ต๐ต๐ต๐ต= 1

๐‘ก๐‘ก๐‘ก๐‘ก , tA = 2 , tB = 3

- Solve for t. 12โˆ™ ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐’•๐’•๐’•๐’• + 1

3โˆ™ ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐’•๐’•๐’•๐’• = 1

๐‘ก๐‘ก๐‘ก๐‘กโˆ™ ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐’•๐’•๐’•๐’• Multiply each term by the LCD. (6t)

3t + 2t = 6 , t = 1.2 hours - Answer: It will take Tom and Susan 1.2 hours to paint a room together.

Example: Jason can plow the snow from the schoolโ€™s parking lot 3 fewer hours than Shawn. If they work together, they can finish the job in 2 hours. How long will it take each of them to finish the job alone?

- Organize the facts Time to Finish the Job Part of Job Finished in 1 hour Comments Shawn: t hours 1

๐‘ก๐‘ก๐‘ก๐‘ก job If Shawn can finish the job in t hours, he can finish 1/t of the job

in 1 hour.

Jason: t โ€“ 3 hours 1๐‘ก๐‘ก๐‘ก๐‘กโˆ’3

job If Jason can finish the job in (t โ€“ 3) hours, he can finish 1/(t โ€“ 3) of the job in 1 hour.

Together: 2 hours 1๐‘ก๐‘ก๐‘ก๐‘ก

+ 1๐‘ก๐‘ก๐‘ก๐‘กโˆ’3

= 12 If Shawn and Jason work together, they can finish the job in 2

hours, and they can finish 1/2 of the job in 1 hour. Let t = time required for Shawn to finish the job alone.

- Equation: ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’•๐’•๐’•๐’•

+ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’•๐’•๐’•๐’•โˆ’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ 1

๐‘ก๐‘ก๐‘ก๐‘ก๐ด๐ด๐ด๐ด+ 1

๐‘ก๐‘ก๐‘ก๐‘ก๐ต๐ต๐ต๐ต= 1

๐‘ก๐‘ก๐‘ก๐‘ก , tA = t , tB = t โ€“ 3. t = 2

- Solve for t. 1๐‘ก๐‘ก๐‘ก๐‘กโˆ™ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’•๐’•๐’•๐’•(๐’•๐’•๐’•๐’• โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘) + 1

๐‘ก๐‘ก๐‘ก๐‘กโˆ’3โˆ™ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’•๐’•๐’•๐’•(๐’•๐’•๐’•๐’• โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘) = 1

2โˆ™ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’•๐’•๐’•๐’•(๐’•๐’•๐’•๐’• โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘) LCD = 2t (t โ€“ 3)

2(t โˆ’ 3) + 2t = t (t โ€“ 3) Distribute.

2t โ€“ 6 + 2t = t2 โ€“ 3t Subtract 4t, add 6. t2 โ€“ 7t + 6 = 0 Factor.

(t โˆ’ 1)(t โ€“ 6) = 0 , t โ€“ 1 = 0 or t โ€“ 6 = 0 Zero product property - Shawn: t = 1 , t = 6 t = 1 hour is not possible

- Jason: t โ€“ 3 = 6 โ€“ 3 = 3 (2 people can finish the job in 2 hours.)

- Answer: It will take Shawn 6 hours and Jason 3 hours to clean the schoolโ€™s parking lot.

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 135

Algebra I & II Key Concepts, Practice, and Quizzes Unit 6 โ€“ Rational Expressions

Proportions

โ€ข Ratio, rate, and proportion

Representation Example

Ratio a to b or a:b or ๐‘Ž๐‘Ž๐‘๐‘ with the same unit . 5 to 9 or 5:9 or

m9m5

Rate a to b or a:b or ๐‘Ž๐‘Ž๐‘๐‘ with different units . 3 to 7 or 3:7 or

m7cm3

Proportion๐‘Ž๐‘Ž๐‘๐‘ =

๐‘๐‘๐‘‘๐‘‘

an equation with a ratio on each side . m5

cm17cm3

=m

Note: The units for both numerators must match and the units for both denominators must match .

Example: inft

= inft

, minuteshours

= minuteshours

โ€ข Solving a proportion: Example

- Cross multiply: multiply along two diagonals .dc

ba=

62

9=

x

- Solve for the unknown . 6 ยท x = 2 ยท 9

36

186

92==

โ‹…= x

โ€ข Application

Example: To determine the number of moose in an area, a conservationist catches 50

moose, tags them, and lets them loose . Later, 20 moose are caught; 5 of them

are tagged. How many moose are in the area?

- Equation: ๐‘ฅ๐‘ฅ moose50 tagged moose

= 20 moose5 tagged moose

Let x = the numbers of moose

- Cross multiply . ๐‘ฅ๐‘ฅ 50

= 20 5

- Solve for x . 5ยทx = 20ยท50

๐’™๐’™ = 20 โˆ™ 50 5

= 200

- Answer: There are 200 moose in the area .

Page 6-19

Proportions

โ€ข Ratio, rate, and proportion

Representation Example

Ratio a to b or a:b or ๐‘Ž๐‘Ž๐‘๐‘ with the same unit . 5 to 9 or 5:9 or

m9m5

Rate a to b or a:b or ๐‘Ž๐‘Ž๐‘๐‘ with different units . 3 to 7 or 3:7 or

m7cm3

Proportion๐‘Ž๐‘Ž๐‘๐‘ =

๐‘๐‘๐‘‘๐‘‘

an equation with a ratio on each side . m5

cm17cm3

=m

Note: The units for both numerators must match and the units for both denominators must match .

Example: inft

= inft

, minuteshours

= minuteshours

โ€ข Solving a proportion: Example

- Cross multiply: multiply along two diagonals .dc

ba=

62

9=

x

- Solve for the unknown . 6 ยท x = 2 ยท 9

36

186

92==

โ‹…= x

โ€ข Application

Example: To determine the number of moose in an area, a conservationist catches 50

moose, tags them, and lets them loose . Later, 20 moose are caught; 5 of them

are tagged. How many moose are in the area?

- Equation: ๐‘ฅ๐‘ฅ moose50 tagged moose

= 20 moose5 tagged moose

Let x = the numbers of moose

- Cross multiply . ๐‘ฅ๐‘ฅ 50

= 20 5

- Solve for x . 5ยทx = 20ยท50

๐’™๐’™ = 20 โˆ™ 50 5

= 200

- Answer: There are 200 moose in the area .

Page 6-19

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

136 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 6 โ€“ Rational Expressions

Motion Problems

โ€ข Motion formulas

distance = speed โˆ™ time d = r t t = ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ

r = ๐‘‘๐‘‘๐‘ก๐‘ก

โ€ข Table for motion problem

Condition Distance (d) Speed or Rate (r) Time (t) t = ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ

A d r dr

B d r ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ

Total

Example: Bob biked twice as fast the 150 km to town B than he did the 60 km to town A .

If the total trip took 4.5 hours, then how fast was he biking to town A?

- Table:Condition Distance (d) km Speed (r) km/h Time (t) h t = ๐‘‘๐‘‘

๐‘Ÿ๐‘Ÿ

To town A 60 km r 60 km๐‘Ÿ๐‘Ÿ

To town B 150 km 2r 150 km2๐‘Ÿ๐‘Ÿ

Total 4 .5 h

- Equation: ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐’“๐’“

+ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”๐Ÿ๐Ÿ๐’“๐’“

= 4.5 time to A + time to B = 4 .5 h

- Solve for r: 60๐‘Ÿ๐‘Ÿโˆ™ 2๐‘Ÿ๐‘Ÿ + 150

2๐‘Ÿ๐‘Ÿ โˆ™ 2๐‘Ÿ๐‘Ÿ = (4 .5)(2r) Multiply by the LCD . (2r)

120 + 150 = 9 r Combine like terms .

270 = 9 r r = 30 km/h Divide by 9 .

- Answer: To town A: r = 30 km/h To town B: 2r = (2)(30) = 60 km/h

Example: John boats at a speed of 30 km per hour in still water . The river flows at a

speed of 10 km per hour . How long will it take John to boat 2 km

downstream? 2 km upstream?

Condition Speed (r) Distance (d) Time ๏ฟฝ๐’•๐’• = ๐’…๐’…๐’“๐’“๏ฟฝ

Downstream r = 30 + 10 = 40 km/h d = 2 km 2 km

40 km/h

Upstream r = 30 โˆ’ 10 = 20 km /h d = 2 km 2 km

20 km/h

Downstream (fast): speed of boat + speed of riverUpstream (slower): speed of boat โ€“ speed of river

Downstream: t = ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ

= 2 km40 km/h

= 0.05 h

Upstream: t = ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ

= 2 km20 km/h

= 0.1 h

Page 6-20

Motion Problems

โ€ข Motion formulas

distance = speed โˆ™ time d = r t t = ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ

r = ๐‘‘๐‘‘๐‘ก๐‘ก

โ€ข Table for motion problem

Condition Distance (d) Speed or Rate (r) Time (t) t = ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ

A d r dr

B d r ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ

Total

Example: Bob biked twice as fast the 150 km to town B than he did the 60 km to town A .

If the total trip took 4.5 hours, then how fast was he biking to town A?

- Table:Condition Distance (d) km Speed (r) km/h Time (t) h t = ๐‘‘๐‘‘

๐‘Ÿ๐‘Ÿ

To town A 60 km r 60 km๐‘Ÿ๐‘Ÿ

To town B 150 km 2r 150 km2๐‘Ÿ๐‘Ÿ

Total 4 .5 h

- Equation: ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐’“๐’“

+ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”๐Ÿ๐Ÿ๐’“๐’“

= 4.5 time to A + time to B = 4 .5 h

- Solve for r: 60๐‘Ÿ๐‘Ÿโˆ™ 2๐‘Ÿ๐‘Ÿ + 150

2๐‘Ÿ๐‘Ÿ โˆ™ 2๐‘Ÿ๐‘Ÿ = (4 .5)(2r) Multiply by the LCD . (2r)

120 + 150 = 9 r Combine like terms .

270 = 9 r r = 30 km/h Divide by 9 .

- Answer: To town A: r = 30 km/h To town B: 2r = (2)(30) = 60 km/h

Example: John boats at a speed of 30 km per hour in still water . The river flows at a

speed of 10 km per hour . How long will it take John to boat 2 km

downstream? 2 km upstream?

Condition Speed (r) Distance (d) Time ๏ฟฝ๐’•๐’• = ๐’…๐’…๐’“๐’“๏ฟฝ

Downstream r = 30 + 10 = 40 km/h d = 2 km 2 km

40 km/h

Upstream r = 30 โˆ’ 10 = 20 km /h d = 2 km 2 km

20 km/h

Downstream (fast): speed of boat + speed of riverUpstream (slower): speed of boat โ€“ speed of river

Downstream: t = ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ

= 2 km40 km/h

= 0.05 h

Upstream: t = ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ

= 2 km20 km/h

= 0.1 h

Page 6-20

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 137

Algebra I & II Key Concepts, Practice, and Quizzes Unit 6 โ€“ Rational Expressions

Unit 6 Summary

โ€ข Rational expression: an expression that is a ratio or quotient of two polynomials .

โ€ข Rational function: a function that is a ratio or quotient of two polynomials .

Rational Function Example

๐‘“๐‘“(๐‘ฅ๐‘ฅ) = ๐‘Ž๐‘Ž(๐‘ฅ๐‘ฅ)๐‘๐‘(๐‘ฅ๐‘ฅ)

b(x) โ‰  0 ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = 4๐‘ฅ๐‘ฅ+35๐‘ฅ๐‘ฅโˆ’7

, ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = 3๐‘ฆ๐‘ฆ2โˆ’2๐‘ฆ๐‘ฆ+45๐‘ฆ๐‘ฆโˆ’6

โ€ข Multiplying rational expressions: ๐‘๐‘1๐ท๐ท1

โˆ™ ๐‘๐‘2๐ท๐ท2

= ๐‘๐‘1๐‘๐‘2๐ท๐ท1๐ท๐ท2

๐‘๐‘1๐ท๐ท1

๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘๐‘2๐ท๐ท2

are rational expressions . (D1D2 โ‰  0)

โ€ข Dividing rational expressions: ๐‘๐‘1๐ท๐ท1

รท ๐‘๐‘2๐ท๐ท2

= ๐‘๐‘1๐ท๐ท1โˆ™ ๐ท๐ท2๐‘๐‘2

โ€ข Like rational expressions: rational expressions that have the same denominator .

โ€ข Unlike rational expressions: rational expressions that have different denominators .

โ€ข Adding or subtracting like rational expressions

๐‘๐‘1๐ท๐ท

+ ๐‘๐‘2๐ท๐ท

= ๐‘๐‘1+ ๐‘๐‘2 ๐ท๐ท

, ๐‘๐‘1๐ท๐ทโˆ’ ๐‘๐‘2

๐ท๐ท= ๐‘๐‘1โˆ’ ๐‘๐‘2

๐ท๐ท ๐‘๐‘1

๐ท๐ท ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž

๐‘๐‘2

๐ท๐ทare rational expressions . (D โ‰  0)

โ€ข Find the LCD Example: Find LCD for ,422and

165

84

2 8 16 42 2 4 8 21 8 รท 2 = 4, 16 รท 2 = 8, 42 รท 2 = 21

2 2 4 21 4 รท 2 = 2, 8 รท 2 = 4, move down 21

1 2 21 2 รท 2 = 1, 4 รท 2 = 2, move down 21

LCD = 24 ร— 21 = 336

โ€ข Adding or subtracting unlike rational expressions

- Determine the LCD .

- Rewrite expressions with the LCD .

- Combine the numerators .

- Simplify if possible .

โ€ข Complex rational expression: a rational expression whose numerator or denominator

(or both) contains rational expressions .

๐‘๐‘1๐ท๐ท1

๐‘๐‘2๐ท๐ท2

๐‘๐‘1๐ท๐ท1

and ๐‘๐‘2๐ท๐ท2

are rational expressions, D1, D2 & N2 โ‰  0

๐‘๐‘1๐ท๐ท1

๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘๐‘2๐ท๐ท2

are rational expressions . (D1, D2 , N2 โ‰  0)

polynomials

Page 6-21

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

138 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 6 โ€“ Rational Expressions

โ€ข Simplifying a complex rational expression โ€” method I: multiply by the LCD .

โ€ข Simplifying a complex rational expression โ€” method II: multiply by the reciprocal of the

denominator (รท โ†’ ร—) .

๐‘๐‘1๐ท๐ท1 ๐‘๐‘2๐ท๐ท2

= ๐‘๐‘1๐ท๐ท1

รท ๐‘ต๐‘ต๐Ÿ๐Ÿ๐‘ซ๐‘ซ๐Ÿ๐Ÿ

= ๐‘๐‘1๐ท๐ท1โˆ™ ๐‘ซ๐‘ซ๐Ÿ๐Ÿ ๐‘ต๐‘ต๐Ÿ๐Ÿ

๐‘๐‘1๐ท๐ท1

and ๐‘๐‘2๐ท๐ท2

are rational expressions .

โ€ข Rational (fractional) equation: an equation that contains rational expressions .

โ€ข Polynomial long division Example: 6๐‘ฅ๐‘ฅ2+9๐‘ฅ๐‘ฅ+2

3๐‘ฅ๐‘ฅ

Steps Solution Dividing whole numbers

- Write in divisor dividend form . 3x 6๐‘ฅ๐‘ฅ2 + 9๐‘ฅ๐‘ฅ + 2 3 692

2x 2- Divide the first term . 3x 6๐‘ฅ๐‘ฅ2 + 9๐‘ฅ๐‘ฅ + 2 3 692

โˆ’ 6x2 (3x)(2x) = 6x

2 โˆ’ 6 2โˆ™3 = 6

2x + 3 230

- Divide the second term . 3x 6๐‘ฅ๐‘ฅ2 + 9๐‘ฅ๐‘ฅ + 2 3 692 6x2 6

Bring 9x down 9x 9 Bring 9 down

(3x)(3) = 9x โˆ’ 9x โˆ’ 9 3โˆ™3 = 9

2 2Remainder

quotient remainder

Quotient + remainderdivisor

6๐‘ฅ๐‘ฅ2+9๐‘ฅ๐‘ฅ+2

3๐‘ฅ๐‘ฅ= (2x + 3) + ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ 692 รท 3 = 230 + ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘

divisor

- Check: Dividend = Quotient โˆ™ Divisor + Remainder Quotient Divisor Dividend

โˆ’ Remainder

โ€ข Missing terms in long division: If there is a missing consecutive power term in a

polynomial, insert the missing power term with a coefficient of 0 .

โ€ข Solving a rational equation

- Find the least common denominator (LCD) .

- Multiply each term by the LCD .

- Solve the variable .

- Check .

Page 6-22

3 692

2 3 692 โ€“ 6

2303 692 6 9 โ€“ 9 2

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 139

Algebra I & II Key Concepts, Practice, and Quizzes Unit 6 โ€“ Rational Expressions

โ€ข Synthetic division: a shortcut method of dividing a polynomial by a binomial of the form

(x โ€“ a), by using only the coefficients of the terms .

Steps Example (x โ€“ a)

(๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ + ๐Ÿ’๐Ÿ’๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ) รท (๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)

- Rewrite the polynomial in descending order . ๐‘ฅ๐‘ฅ โˆ’ 2 3๐‘ฅ๐‘ฅ4 + 0๐‘ฅ๐‘ฅ3 โˆ’ 2๐‘ฅ๐‘ฅ2 + 4๐‘ฅ๐‘ฅ โˆ’ 40Insert a zero coefficient for the missing power . Missing power

a in the divisor The coefficient of the dividend- Set up the synthetic coefficients. 2 3 0 -2 4 -40

- Bring down the leading coefficient and multiply 2 3 0 -2 4 -40it by a in (x โ€“ a) . Place the product beneath the 2 ร— 3

second coefficient. 3 6

- Add column 2 . 2 3 0 -2 4 -40 6

3 6 (0 + 6)

- Repeat until the last column done . 2 3 0 -2 4 -40 2 ร— 6 = 12 , -2 + 12 = 10 6 12 20 482 ร— 10 = 20 , 4 + 20 = 24 3 6 10 24 82 ร— 24 = 48 , -40 + 48 = 8

- Write out the answer . ๐‘ฅ๐‘ฅ3 ๐‘ฅ๐‘ฅ2 x constant remainder

Quotient + remainderdivisor

Answer: (๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ‘๐Ÿ‘ + ๐Ÿ”๐Ÿ”๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’) + ๐Ÿ–๐Ÿ–๐’™๐’™โˆ’๐Ÿ๐Ÿ

One less than the degree of the dividend .

โ€ข The formula for โ€œworkโ€ problems that involve two people

1๐‘ก๐‘ก๐ด๐ด

+ 1๐‘ก๐‘ก๐ต๐ต

= 1 ๐‘ก๐‘ก

Time ๏ฟฝ ๐‘ก๐‘ก๐ด๐ด โˆ’ time required when person ๐ด๐ด works alone ๐‘ก๐‘ก๐ต๐ต โˆ’ time required when person ๐ต๐ต works alone ๐‘ก๐‘ก โˆ’ time required when two people work together

Rate ๏ฟฝ 1/ ๐‘ก๐‘ก๐ด๐ด โˆ’ person ๐ด๐ด can finish 1 job every ๐‘ก๐‘ก๐ด๐ด hours 1/ ๐‘ก๐‘ก๐ต๐ต โˆ’ person ๐ต๐ต can finish 1 job every ๐‘ก๐‘ก๐ต๐ต hours

โ€ข Ratio, rate and proportion

Representation ExampleRatio a to b or a:b or ๐‘Ž๐‘Ž

๐‘๐‘ with the same unit . 5 to 9 or 5:9 or

Rate a to b or a:b or ๐‘Ž๐‘Ž๐‘๐‘ with different units . 3 to 7 or 3:7 or

Proportion๐‘Ž๐‘Ž๐‘๐‘ =

๐‘๐‘๐‘‘๐‘‘

an equation with a ratio on each side . m5

cm17cm3

=m

โ€ข Motion formulasdistance = speed โˆ™ time d = r t t = ๐‘‘๐‘‘

๐‘Ÿ๐‘Ÿr = ๐‘‘๐‘‘

๐‘ก๐‘ก

+

+

(a = 2)

+ +

m9m5

m7cm3

Page 6-23

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

140 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 6 โ€“ Rational Expressions

PRACTICE QUIZ

Unit 6 Rational Expressions

1. Reduce to lowest terms .

a . 2๐‘ฅ๐‘ฅ2โˆ’8๐‘ฅ๐‘ฅ24๐‘ฅ๐‘ฅ

b . ๐‘๐‘(๐‘๐‘+1)(3๐‘๐‘โˆ’7)3๐‘๐‘2โˆ’4๐‘๐‘โˆ’7

2 . Perform the indicated operations and simplify .

a . ๐‘ฅ๐‘ฅ2โˆ’4๐‘ฅ๐‘ฅโˆ’5๐‘ฅ๐‘ฅโˆ’3

โˆ™ ๐‘ฅ๐‘ฅ2โˆ’9๐‘ฅ๐‘ฅโˆ’5

b . ๐‘ฆ๐‘ฆ2โˆ’12

รท ๐‘ฆ๐‘ฆ+13

c . 5๐‘ฅ๐‘ฅโˆ’ 3

- ๐‘ฅ๐‘ฅ

3. Find the LCD for the following .

3๐‘ฅ๐‘ฅ4๐‘ฅ๐‘ฅ2

, 712๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆ

and 3๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ2๐‘ฅ๐‘ฅ4๐‘ฆ๐‘ฆ2

4. Perform the indicated operations and simplify .

2๐‘๐‘๐‘๐‘โˆ’2

โˆ’ 1๐‘๐‘+2

+ 3๐‘๐‘2โˆ’4

5. Simplify:27๐‘ฆ๐‘ฆ2โˆ’9๐‘ฆ๐‘ฆโˆ’36

3๐‘ฆ๐‘ฆ

6. Divide using long division .

a . 6y2 โ€“ 3y + 4 by 3yb . x3 + 2x2 + 3 by x โ€“ 1

7. Use synthetic division to divide .

2x3 โ€“ 3x2 + 5x โ€“ 7 by x โ€“ 2

Page 9

PRACTICE QUIZ

Unit 6 Rational Expressions

1. Reduce to lowest terms .

a . 2๐‘ฅ๐‘ฅ2โˆ’8๐‘ฅ๐‘ฅ24๐‘ฅ๐‘ฅ

b . ๐‘๐‘(๐‘๐‘+1)(3๐‘๐‘โˆ’7)3๐‘๐‘2โˆ’4๐‘๐‘โˆ’7

2 . Perform the indicated operations and simplify .

a . ๐‘ฅ๐‘ฅ2โˆ’4๐‘ฅ๐‘ฅโˆ’5๐‘ฅ๐‘ฅโˆ’3

โˆ™ ๐‘ฅ๐‘ฅ2โˆ’9๐‘ฅ๐‘ฅโˆ’5

b . ๐‘ฆ๐‘ฆ2โˆ’12

รท ๐‘ฆ๐‘ฆ+13

c . 5๐‘ฅ๐‘ฅโˆ’ 3

- ๐‘ฅ๐‘ฅ

3. Find the LCD for the following .

3๐‘ฅ๐‘ฅ4๐‘ฅ๐‘ฅ2

, 712๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆ

and 3๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ2๐‘ฅ๐‘ฅ4๐‘ฆ๐‘ฆ2

4. Perform the indicated operations and simplify .

2๐‘๐‘๐‘๐‘โˆ’2

โˆ’ 1๐‘๐‘+2

+ 3๐‘๐‘2โˆ’4

5. Simplify:27๐‘ฆ๐‘ฆ2โˆ’9๐‘ฆ๐‘ฆโˆ’36

3๐‘ฆ๐‘ฆ

6. Divide using long division .

a . 6y2 โ€“ 3y + 4 by 3yb . x3 + 2x2 + 3 by x โ€“ 1

7. Use synthetic division to divide .

2x3 โ€“ 3x2 + 5x โ€“ 7 by x โ€“ 2

Page 9

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 141

Algebra I & II Key Concepts, Practice, and Quizzes Unit 6 โ€“ Rational Expressions

8. Simplify the following .

a . 1๐‘ฅ๐‘ฅ + 5 1๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ

b . 2๐‘ฆ๐‘ฆ+3 โˆ’ 1

๐‘ฆ๐‘ฆโˆ’2

3๐‘ฆ๐‘ฆ

9. Solve the following .

a . 2๐‘ฆ๐‘ฆโˆ’ 3

4๐‘ฆ๐‘ฆ = 7

b . 3โˆ’๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ+4

= 3 โˆ’ 1๐‘ฅ๐‘ฅ+4

10. It takes Tim 4 hours to clean a house and it takes 3 hours for Amanda to do the same job . How long will it take for both of them to clean the house together?

11. Watermelon is on sale at 2 for $7; how much will it cost for 12 watermelons?

12. Evan walked the 20km to location B twice as fast as he did the 15 km to

location A . If the total trip took 5 hours, then how fast was he walking to

location A?

Page 10

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

142 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 7 โ€“ Radicals

UNIT 7 RADICALS 7-1 ROOTS AND RADICALS

Square Roots

โ€ข Square root ( ): a number with the symbol that is the opposite of the square of a

number, such as 24 = and 22 = 4, respectively .Square (22)

2 4 Square root (โˆš4)

โ€ข Perfect square: a number that is the exact square of a whole number .

Examples

Square Root Perfect Square864 = 82 = 64

11-121- = -(11) 2 = -121

32

94

94

==22 = 432 = 9

โˆš0.16 = 0.4 0 .42 = 0 .16

โˆš0 = 0 02 = 0

โ€ข Using a calculator: ?25 = 2nd F 25 = (The display reads 5 .)

Or 2nd F 25 = for some calculators .

โ€ข Each positive number has two square roots, one positive and one negative .

Example: 24 = and 4 = -2 or โˆš4 = ยฑ2

โˆต 22 = 4 and (-2)2= 4, so 2 and -2 are both square roots of 4 .

Square Roots ExampleIf x2 = A,

Then ๏ฟฝ ๐‘ฅ๐‘ฅ = โˆš๐ด๐ด ๐‘ฅ๐‘ฅ = -โˆš๐ด๐ด

This can be written as Ax ยฑ= . (A โ‰ฅ 0)

If x2 = 9,

Then ๏ฟฝ๐‘ฅ๐‘ฅ = โˆš9 = 3 ๐‘ฅ๐‘ฅ = -โˆš9 = -3

This can be written as ๐‘ฅ๐‘ฅ = ยฑโˆš9 = ยฑ3 .

Note: All even indexed radicals have 2 possible answers โ€“ positive and negative roots .

The principal square root (positive root)

Negative root

Page 7-1

UNIT 7 RADICALS 7-1 ROOTS AND RADICALS

Square Roots

โ€ข Square root ( ): a number with the symbol that is the opposite of the square of a

number, such as 24 = and 22 = 4, respectively .Square (22)

2 4 Square root (โˆš4)

โ€ข Perfect square: a number that is the exact square of a whole number .

Examples

Square Root Perfect Square864 = 82 = 64

11-121- = -(11) 2 = -121

32

94

94

==22 = 432 = 9

โˆš0.16 = 0.4 0 .42 = 0 .16

โˆš0 = 0 02 = 0

โ€ข Using a calculator: ?25 = 2nd F 25 = (The display reads 5 .)

Or 2nd F 25 = for some calculators .

โ€ข Each positive number has two square roots, one positive and one negative .

Example: 24 = and 4 = -2 or โˆš4 = ยฑ2

โˆต 22 = 4 and (-2)2= 4, so 2 and -2 are both square roots of 4 .

Square Roots ExampleIf x2 = A,

Then ๏ฟฝ ๐‘ฅ๐‘ฅ = โˆš๐ด๐ด ๐‘ฅ๐‘ฅ = -โˆš๐ด๐ด

This can be written as Ax ยฑ= . (A โ‰ฅ 0)

If x2 = 9,

Then ๏ฟฝ๐‘ฅ๐‘ฅ = โˆš9 = 3 ๐‘ฅ๐‘ฅ = -โˆš9 = -3

This can be written as ๐‘ฅ๐‘ฅ = ยฑโˆš9 = ยฑ3 .

Note: All even indexed radicals have 2 possible answers โ€“ positive and negative roots .

The principal square root (positive root)

Negative root

Page 7-1

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 143

Algebra I & II Key Concepts, Practice, and Quizzes Unit 7 โ€“ Radicals

Square Root Functions

โ€ข Square root function: f (x) = โˆš๐‘ฅ๐‘ฅ Example: Given the function f (x) = โˆš2๐‘ฅ๐‘ฅ + 5 ,

1. Determine the function values f (2), f (0), and f (-3) .

f (2) = โˆš2 โˆ™ 2 + 5 = โˆš9 = 3 Replace x with 2 .

f (0) = โˆš2 โˆ™ 0 + 5 = โˆš๐Ÿ“๐Ÿ“ Replace x with 0 .

f (-3) = ๏ฟฝ2(-3) + 5 = ๏ฟฝ-๐Ÿ๐Ÿ It is not a real number. Replace x with -3 .

2. Identify the domain of the function f (x) = โˆš2๐‘ฅ๐‘ฅ + 5 .

2๐‘ฅ๐‘ฅ + 5 โ‰ฅ 02x โ‰ฅ -5 Subtract 5 .

x โ‰ฅ - 52

Divide by 2 .

Domain = { x | x โ‰ฅ - ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๏ฟฝ = ๏ฟฝ- ๐Ÿ“๐Ÿ“

๐Ÿ๐Ÿ, โˆž)

Review: The domain is the set of x-values for which a function is defined .

โ€ข Graphing square root function

Example: Graph f (x) = -โˆš2๐‘ฅ๐‘ฅ .

x y = -โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ (x, y)0 -โˆš2 โˆ™ 0 = 0 (0, 0)2 -โˆš2 โˆ™ 2 = -2 (2, -2)8 -โˆš2 โˆ™ 8 = -โˆš16 = -4 (8, -4)

โ€ข Finding โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ : โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ = |๐Ÿ๐Ÿ| x is any real number Use the absolute value sign to ensure that the positive root is non-negative (x2 never represents a negative number) .

Example: 1. ๐Ÿ๐Ÿโˆš๐Ÿ—๐Ÿ— = ๐Ÿ๐Ÿโˆš๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ = 2 โˆ™ 3 = 6

2. ๐Ÿ๐Ÿ ๏ฟฝ๏ฟฝ-๐Ÿ‘๐Ÿ‘๏ฟฝ๐Ÿ๐Ÿ

= 2 โˆ™ 3 = ๐Ÿ”๐Ÿ”

3. โˆš๐ŸŽ๐ŸŽ๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ

4. ๏ฟฝ(-๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ = ๏ฟฝ(-17)2๐‘ฅ๐‘ฅ2 = ๏ฟฝ(-17)2 โˆš๐‘ฅ๐‘ฅ2 = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ|๐Ÿ๐Ÿ| Split -17 and x.

5. โˆš๐’‚๐’‚๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐’‚๐’‚ + ๐Ÿ’๐Ÿ’ = ๏ฟฝ(๐‘Ž๐‘Ž โˆ’ 2)2 = |๐’‚๐’‚ โˆ’ ๐Ÿ๐Ÿ| Factor , โˆš๐‘ฅ๐‘ฅ2 = |๐‘ฅ๐‘ฅ| a - 2

a - 2

x

y

โˆ™ (0, 0)

โˆ™ (2, -2)

โˆ™ (8, -4)

Page 7-2

Square Root Functions

โ€ข Square root function: f (x) = โˆš๐‘ฅ๐‘ฅ Example: Given the function f (x) = โˆš2๐‘ฅ๐‘ฅ + 5 ,

1. Determine the function values f (2), f (0), and f (-3) .

f (2) = โˆš2 โˆ™ 2 + 5 = โˆš9 = 3 Replace x with 2 .

f (0) = โˆš2 โˆ™ 0 + 5 = โˆš๐Ÿ“๐Ÿ“ Replace x with 0 .

f (-3) = ๏ฟฝ2(-3) + 5 = ๏ฟฝ-๐Ÿ๐Ÿ It is not a real number. Replace x with -3 .

2. Identify the domain of the function f (x) = โˆš2๐‘ฅ๐‘ฅ + 5 .

2๐‘ฅ๐‘ฅ + 5 โ‰ฅ 02x โ‰ฅ -5 Subtract 5 .

x โ‰ฅ - 52

Divide by 2 .

Domain = { x | x โ‰ฅ - ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๏ฟฝ = ๏ฟฝ- ๐Ÿ“๐Ÿ“

๐Ÿ๐Ÿ, โˆž)

Review: The domain is the set of x-values for which a function is defined .

โ€ข Graphing square root function

Example: Graph f (x) = -โˆš2๐‘ฅ๐‘ฅ .

x y = -โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ (x, y)0 -โˆš2 โˆ™ 0 = 0 (0, 0)2 -โˆš2 โˆ™ 2 = -2 (2, -2)8 -โˆš2 โˆ™ 8 = -โˆš16 = -4 (8, -4)

โ€ข Finding โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ : โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ = |๐Ÿ๐Ÿ| x is any real number Use the absolute value sign to ensure that the positive root is non-negative (x2 never represents a negative number) .

Example: 1. ๐Ÿ๐Ÿโˆš๐Ÿ—๐Ÿ— = ๐Ÿ๐Ÿโˆš๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ = 2 โˆ™ 3 = 6

2. ๐Ÿ๐Ÿ ๏ฟฝ๏ฟฝ-๐Ÿ‘๐Ÿ‘๏ฟฝ๐Ÿ๐Ÿ

= 2 โˆ™ 3 = ๐Ÿ”๐Ÿ”

3. โˆš๐ŸŽ๐ŸŽ๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ

4. ๏ฟฝ(-๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ = ๏ฟฝ(-17)2๐‘ฅ๐‘ฅ2 = ๏ฟฝ(-17)2 โˆš๐‘ฅ๐‘ฅ2 = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ|๐Ÿ๐Ÿ| Split -17 and x.

5. โˆš๐’‚๐’‚๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐’‚๐’‚ + ๐Ÿ’๐Ÿ’ = ๏ฟฝ(๐‘Ž๐‘Ž โˆ’ 2)2 = |๐’‚๐’‚ โˆ’ ๐Ÿ๐Ÿ| Factor , โˆš๐‘ฅ๐‘ฅ2 = |๐‘ฅ๐‘ฅ| a - 2

a - 2

x

y

โˆ™ (0, 0)

โˆ™ (2, -2)

โˆ™ (8, -4)

Page 7-2

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

144 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 7 โ€“ Radicals

Radical

โ€ข A radical (root) is an expression that uses a root, such as Examples

square root, cube root, etc . โˆš2๐‘ฅ๐‘ฅ + 3 , โˆš5๐‘Ž๐‘Ž3 , ๏ฟฝ2๐‘ค๐‘คโˆ’34๐‘ก๐‘ก

7 The โ€œradicalโ€ comes from the Latin word โ€œradicโ€, meaning โ€œroot .โ€

โ€ข Radical notation for the nth root โˆš๐’๐’ Example

โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๏ฟฝโˆš โˆ’ the radical sign ๐‘Ž๐‘Ž โˆ’ the radicand (a real number)

๐‘›๐‘› โˆ’ the index (a positive integer > 1) 1. โˆš5๐‘Ž๐‘Ž3 ๏ฟฝ5๐‘Ž๐‘Ž โˆ’ radicand

3 โˆ’ index

โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆ’ radical or radical expression 2. ๏ฟฝ2๐‘ค๐‘คโˆ’34๐‘ก๐‘ก

7 ๏ฟฝ2๐‘ค๐‘คโˆ’34๐‘ก๐‘ก

โˆ’ radicand7 โˆ’ index

โ€ข Rational (fractional) exponent notation a Example

A fractional power or a number is raised to a fraction . 7 13

โ€ข Rational exponent and radical are both used to indicate the nth root .

nth Root Example

Radical notation โˆš๐‘Ž๐‘Ž๐‘›๐‘› = ๐‘Ž๐‘Ž1๐‘›๐‘› Rational exponent notation โˆš73 = 7 1 3

Note: if n = 2 , write โˆš๐‘Ž๐‘Ž rather than โˆš๐‘Ž๐‘Ž2 Omit 2 in โˆš52 , write โˆš5

โ€ข nth root to the nth power Example

โˆš๐’‚๐’‚๐’๐’ ๐’๐’= ๐’‚๐’‚ โˆต โˆš๐’‚๐’‚๐’๐’ ๐’๐’

= (๐’‚๐’‚๐’๐’)๐Ÿ๐Ÿ๐’๐’ = ๐’‚๐’‚

๐’๐’๐’๐’ = ๐’‚๐’‚๐Ÿ๐Ÿ = ๐’‚๐’‚ Note: โˆš๐’‚๐’‚๐’๐’ ๐’๐’

= โˆš๐’‚๐’‚๐’๐’๐’๐’ โˆš๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ

= (๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ•๐Ÿ•

๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ = ๐Ÿ•๐Ÿ•

โ€ข The cube root Example

โˆš๐‘Ž๐‘Ž3 = ๐‘๐‘ means a = b3 โˆš83 = 2 means 8 = 23

โˆต ๐‘–๐‘–๐‘–๐‘– โˆš๐‘Ž๐‘Ž3 3= ๐‘๐‘3 , then a = b3 โˆต if โˆš83 3

= 23, then 8 = 23

Example: Find each root .

1. โˆš64 3 = โˆš433 = ๐Ÿ’๐Ÿ’ โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž ; 2nd F โˆš3 64 = 4

2. ๏ฟฝ0.027(๐‘Ž๐‘Ž + 3)3 3 = ๏ฟฝ(0.3)3(๐‘Ž๐‘Ž + 3)3 30 .33 = 0 .027 ; 2nd F โˆš3 .027 = 0 .3

= ๏ฟฝ(0.3)3 3 ๏ฟฝ(๐‘Ž๐‘Ž + 3)3 3โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž

= 0.3 (a + 3)โ€ข nth root Example

โˆš๐‘Ž๐‘Ž๐‘›๐‘› = ๐‘๐‘ means a = bn โˆš164 = 2 means 16 = 24

โˆต ๐‘–๐‘–๐‘–๐‘– โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›= ๐‘๐‘๐‘›๐‘› , then a = bn โˆต if โˆš164 4

= 24, then 16 = 24

1

n

โ€“ a

Page 7-3

Radical

โ€ข A radical (root) is an expression that uses a root, such as Examples

square root, cube root, etc . โˆš2๐‘ฅ๐‘ฅ + 3 , โˆš5๐‘Ž๐‘Ž3 , ๏ฟฝ2๐‘ค๐‘คโˆ’34๐‘ก๐‘ก

7 The โ€œradicalโ€ comes from the Latin word โ€œradicโ€, meaning โ€œroot .โ€

โ€ข Radical notation for the nth root โˆš๐’๐’ Example

โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๏ฟฝโˆš โˆ’ the radical sign ๐‘Ž๐‘Ž โˆ’ the radicand (a real number)

๐‘›๐‘› โˆ’ the index (a positive integer > 1) 1. โˆš5๐‘Ž๐‘Ž3 ๏ฟฝ5๐‘Ž๐‘Ž โˆ’ radicand

3 โˆ’ index

โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆ’ radical or radical expression 2. ๏ฟฝ2๐‘ค๐‘คโˆ’34๐‘ก๐‘ก

7 ๏ฟฝ2๐‘ค๐‘คโˆ’34๐‘ก๐‘ก

โˆ’ radicand7 โˆ’ index

โ€ข Rational (fractional) exponent notation a Example

A fractional power or a number is raised to a fraction . 7 13

โ€ข Rational exponent and radical are both used to indicate the nth root .

nth Root Example

Radical notation โˆš๐‘Ž๐‘Ž๐‘›๐‘› = ๐‘Ž๐‘Ž1๐‘›๐‘› Rational exponent notation โˆš73 = 7 1 3

Note: if n = 2 , write โˆš๐‘Ž๐‘Ž rather than โˆš๐‘Ž๐‘Ž2 Omit 2 in โˆš52 , write โˆš5

โ€ข nth root to the nth power Example

โˆš๐’‚๐’‚๐’๐’ ๐’๐’= ๐’‚๐’‚ โˆต โˆš๐’‚๐’‚๐’๐’ ๐’๐’

= (๐’‚๐’‚๐’๐’)๐Ÿ๐Ÿ๐’๐’ = ๐’‚๐’‚

๐’๐’๐’๐’ = ๐’‚๐’‚๐Ÿ๐Ÿ = ๐’‚๐’‚ Note: โˆš๐’‚๐’‚๐’๐’ ๐’๐’

= โˆš๐’‚๐’‚๐’๐’๐’๐’ โˆš๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ

= (๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ•๐Ÿ•

๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ = ๐Ÿ•๐Ÿ•

โ€ข The cube root Example

โˆš๐‘Ž๐‘Ž3 = ๐‘๐‘ means a = b3 โˆš83 = 2 means 8 = 23

โˆต ๐‘–๐‘–๐‘–๐‘– โˆš๐‘Ž๐‘Ž3 3= ๐‘๐‘3 , then a = b3 โˆต if โˆš83 3

= 23, then 8 = 23

Example: Find each root .

1. โˆš64 3 = โˆš433 = ๐Ÿ’๐Ÿ’ โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž ; 2nd F โˆš3 64 = 4

2. ๏ฟฝ0.027(๐‘Ž๐‘Ž + 3)3 3 = ๏ฟฝ(0.3)3(๐‘Ž๐‘Ž + 3)3 30 .33 = 0 .027 ; 2nd F โˆš3 .027 = 0 .3

= ๏ฟฝ(0.3)3 3 ๏ฟฝ(๐‘Ž๐‘Ž + 3)3 3โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž

= 0.3 (a + 3)โ€ข nth root Example

โˆš๐‘Ž๐‘Ž๐‘›๐‘› = ๐‘๐‘ means a = bn โˆš164 = 2 means 16 = 24

โˆต ๐‘–๐‘–๐‘–๐‘– โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›= ๐‘๐‘๐‘›๐‘› , then a = bn โˆต if โˆš164 4

= 24, then 16 = 24

1

n

โ€“ a

Page 7-3

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 145

Algebra I & II Key Concepts, Practice, and Quizzes Unit 7 โ€“ Radicals

Page 7-4

Odd and Even Roots

Example

โ€ข If the index n is an even natural number: โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› ๐‘›๐‘›๐‘›๐‘›= |๐‘Ž๐‘Ž๐‘Ž๐‘Ž|

โ€ข If the index n is an odd natural number: โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› ๐‘›๐‘›๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

Natural numbers: 1, 2, 3, โ€ฆ

Example: Find each root.

1. ๏ฟฝ(-๐Ÿ๐Ÿ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๏ฟฝ(-2)22

= ๏ฟฝ-2๏ฟฝ = 2 n = 2 is even ; โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› ๐‘›๐‘›๐‘›๐‘›= |๐‘Ž๐‘Ž๐‘Ž๐‘Ž|

2. ๏ฟฝ(๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘)๐Ÿ–๐Ÿ–๐Ÿ–๐Ÿ– ๐Ÿ–๐Ÿ–๐Ÿ–๐Ÿ– = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘|๐ฒ๐ฒ๐ฒ๐ฒ| Use an | | when a variable is involved.

3. ๏ฟฝ-๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“

= ๏ฟฝ-255

= -๐Ÿ๐Ÿ๐Ÿ๐Ÿ Rewrite 32 as a perfect 5th power. 25

n = 5 is odd; a = -2 ; โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› ๐‘›๐‘›๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

4. ๏ฟฝ(๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ— โˆ’ ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’)๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ— โˆ’ ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ n = 177 is odd ; โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› ๐‘›๐‘›๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

5. ๏ฟฝ-๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

= ๏ฟฝ(-๐Ÿ๐Ÿ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

= -๐Ÿ๐Ÿ๐Ÿ๐Ÿ n = 11 is odd; โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› ๐‘›๐‘›๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘Ž๐‘Ž ; 1n = 1

6. ๏ฟฝ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ = ๏ฟฝ 1

244 = โˆš14

โˆš244 = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ 24 = 16; ๏ฟฝ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

๐‘๐‘๐‘๐‘๐‘›๐‘›๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž

๐‘›๐‘›๐‘›๐‘›

โˆš๐‘๐‘๐‘๐‘๐‘›๐‘›๐‘›๐‘›

7. โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’•๐’•๐’•๐’•๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ = โˆš35 ๐‘ก๐‘ก๐‘ก๐‘ก55 = โˆš35 5 โˆš๐‘ก๐‘ก๐‘ก๐‘ก5 5 = 3 t 35 = 243; โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› ; โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› ๐‘›๐‘›๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

5 2nd F โˆš๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ 243 = 3

or 5 MATH 5 243 Enter 3 (T1-83 Plus)

โ€ข Find the function values

Example: Given the function f (x) = - โˆš4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 1 3

, determine the function values f (0) and f (31).

f (0) = - โˆš4 โˆ™ ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ + 1 3 = - โˆš1 3 = -1 Replace y with 0.

f (31) = - โˆš4 โˆ™ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ + 1 3 Replace y with 31.

= -โˆš125 3 = - โˆš53 3 = -5 โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› ๐‘›๐‘›๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘Ž๐‘Ž; 3 2nd F โˆš๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ 125 = 5

or MATH 4 125 Enter 5 (T1-83 Plus)

๏ฟฝ-3๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’

๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’

= ๏ฟฝ-3๏ฟฝ = 3

โˆš6๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“= 6 a = 6

๏ฟฝ-6๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“

๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“

= -6 a = - 6

โˆš0๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“= 0 a = 0

Page 7-4

Odd and Even Roots

Example

โ€ข If the index n is an even natural number: โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› ๐‘›๐‘›๐‘›๐‘›= |๐‘Ž๐‘Ž๐‘Ž๐‘Ž|

โ€ข If the index n is an odd natural number: โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› ๐‘›๐‘›๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

Natural numbers: 1, 2, 3, โ€ฆ

Example: Find each root.

1. ๏ฟฝ(-๐Ÿ๐Ÿ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๏ฟฝ(-2)22

= ๏ฟฝ-2๏ฟฝ = 2 n = 2 is even ; โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› ๐‘›๐‘›๐‘›๐‘›= |๐‘Ž๐‘Ž๐‘Ž๐‘Ž|

2. ๏ฟฝ(๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘)๐Ÿ–๐Ÿ–๐Ÿ–๐Ÿ– ๐Ÿ–๐Ÿ–๐Ÿ–๐Ÿ– = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘|๐ฒ๐ฒ๐ฒ๐ฒ| Use an | | when a variable is involved.

3. ๏ฟฝ-๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“

= ๏ฟฝ-255

= -๐Ÿ๐Ÿ๐Ÿ๐Ÿ Rewrite 32 as a perfect 5th power. 25

n = 5 is odd; a = -2 ; โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› ๐‘›๐‘›๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

4. ๏ฟฝ(๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ— โˆ’ ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’)๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ— โˆ’ ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ n = 177 is odd ; โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› ๐‘›๐‘›๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

5. ๏ฟฝ-๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

= ๏ฟฝ(-๐Ÿ๐Ÿ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

= -๐Ÿ๐Ÿ๐Ÿ๐Ÿ n = 11 is odd; โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› ๐‘›๐‘›๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘Ž๐‘Ž ; 1n = 1

6. ๏ฟฝ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ = ๏ฟฝ 1

244 = โˆš14

โˆš244 = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ 24 = 16; ๏ฟฝ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

๐‘๐‘๐‘๐‘๐‘›๐‘›๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž

๐‘›๐‘›๐‘›๐‘›

โˆš๐‘๐‘๐‘๐‘๐‘›๐‘›๐‘›๐‘›

7. โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’•๐’•๐’•๐’•๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ = โˆš35 ๐‘ก๐‘ก๐‘ก๐‘ก55 = โˆš35 5 โˆš๐‘ก๐‘ก๐‘ก๐‘ก5 5 = 3 t 35 = 243; โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› ; โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› ๐‘›๐‘›๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

5 2nd F โˆš๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ 243 = 3

or 5 MATH 5 243 Enter 3 (T1-83 Plus)

โ€ข Find the function values

Example: Given the function f (x) = - โˆš4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 1 3

, determine the function values f (0) and f (31).

f (0) = - โˆš4 โˆ™ ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ + 1 3 = - โˆš1 3 = -1 Replace y with 0.

f (31) = - โˆš4 โˆ™ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ + 1 3 Replace y with 31.

= -โˆš125 3 = - โˆš53 3 = -5 โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› ๐‘›๐‘›๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘Ž๐‘Ž; 3 2nd F โˆš๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ 125 = 5

or MATH 4 125 Enter 5 (T1-83 Plus)

๏ฟฝ-3๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’

๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’

= ๏ฟฝ-3๏ฟฝ = 3

โˆš6๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“= 6 a = 6

๏ฟฝ-6๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“

๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“

= -6 a = - 6

โˆš0๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“= 0 a = 0

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

146 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 7 โ€“ Radicals

7-2 RATIONAL EXPONENTS

Powers of Roots

โ€ข Review: โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๏ฟฝโˆš โˆ’ the radical sign๐‘Ž๐‘Ž โˆ’ the radicand ๐‘›๐‘› โˆ’ the index

โ€ข The index of a radical

Index n Read Example Read

๐‘Ž๐‘Ž12 = โˆš๐‘Ž๐‘Ž the square root of a 3

12 = โˆš3 the square root of 3

๐‘Ž๐‘Ž13 = โˆš๐‘Ž๐‘Ž3 the cube root of a 5

13 = โˆš53 the cube root of 5

๐‘Ž๐‘Ž14 = โˆš๐‘Ž๐‘Ž4 the fourth root of a 7

14 = โˆš74 the fourth root of 7

๐‘Ž๐‘Ž1๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› the nth root of a 2

111 = โˆš211 the 11th root of 2

๐‘Ž๐‘Ž๐‘š๐‘š๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘›

๐‘š๐‘šthe nth root of a to the mth power 7

56 = โˆš76 5 the 6th root of 7 to the 5th power

โ€ข Powers of roots

The nth Root to the mth Power Example๐‘Ž๐‘Ž๐‘š๐‘š๐‘›๐‘› = (โˆš๐‘Ž๐‘Ž๐‘›๐‘› )๐‘š๐‘š = โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘š๐‘š

= โˆš๐‘Ž๐‘Ž๐‘š๐‘š๐‘›๐‘›m โ€“ power 7

23 = (โˆš73 )2 = โˆš73 2

= โˆš723

Example: Rewrite without rational exponents .

1. (81)14 = โˆš814 = โˆš344 = 3 Rewrite 81 as 34 ; โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›

= ๐‘Ž๐‘Ž

2. (๐‘ฅ๐‘ฅ2 ๐‘ฆ๐‘ฆ3)17 = ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ๐’š๐’š๐Ÿ‘๐Ÿ‘๐Ÿ•๐Ÿ• ๐‘Ž๐‘Ž

1๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘›

3. (8)23 = โˆš823 = ๏ฟฝโˆš83 ๏ฟฝ

2 = ๏ฟฝโˆš233 ๏ฟฝ

2= 22 = 4 ๐‘Ž๐‘Ž

๐‘š๐‘š๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘š๐‘š

= (โˆš๐‘Ž๐‘Ž๐‘›๐‘› )๐‘š๐‘š ; โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›= ๐‘Ž๐‘Ž

Rewrite 8 as 23

Example: Rewrite the radicals using rational exponents .

1. (โˆš3๐‘Ž๐‘Ž4๐‘๐‘59 )7 = (๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’๐’ƒ๐’ƒ๐Ÿ“๐Ÿ“)๐Ÿ•๐Ÿ•๐Ÿ—๐Ÿ— ๏ฟฝ โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๏ฟฝ

๐‘š๐‘š= ๐‘Ž๐‘Ž

๐‘š๐‘š๐‘›๐‘›

2. (๏ฟฝ5๐‘๐‘5๐‘ž๐‘ž)3 = (๐Ÿ“๐Ÿ“๐’‘๐’‘๐Ÿ“๐Ÿ“๐’’๐’’)๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ (๏ฟฝ5๐‘๐‘5๐‘ž๐‘ž)3 ; ๏ฟฝ โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๏ฟฝ

๐‘š๐‘š= ๐‘Ž๐‘Ž

๐‘š๐‘š๐‘›๐‘›

3. โˆš2๐‘ก๐‘ก3 = (๐Ÿ๐Ÿ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆš๐‘Ž๐‘Ž๐‘›๐‘› = ๐‘Ž๐‘Ž

1๐‘›๐‘›

4. 2w

โˆš7๐‘ก๐‘ก5 = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ(๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ)๐Ÿ๐Ÿ/๐Ÿ“๐Ÿ“ โˆš๐‘Ž๐‘Ž๐‘›๐‘› = ๐‘Ž๐‘Ž

1๐‘›๐‘›

n = 2

rational exponent notation

radical notation

- Rational exponent notation: ๐‘Ž๐‘Ž1 ๐‘›๐‘›

- Radical notation: โˆš๐‘›๐‘›

Page 7-5

7-2 RATIONAL EXPONENTS

Powers of Roots

โ€ข Review: โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๏ฟฝโˆš โˆ’ the radical sign๐‘Ž๐‘Ž โˆ’ the radicand ๐‘›๐‘› โˆ’ the index

โ€ข The index of a radical

Index n Read Example Read

๐‘Ž๐‘Ž12 = โˆš๐‘Ž๐‘Ž the square root of a 3

12 = โˆš3 the square root of 3

๐‘Ž๐‘Ž13 = โˆš๐‘Ž๐‘Ž3 the cube root of a 5

13 = โˆš53 the cube root of 5

๐‘Ž๐‘Ž14 = โˆš๐‘Ž๐‘Ž4 the fourth root of a 7

14 = โˆš74 the fourth root of 7

๐‘Ž๐‘Ž1๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› the nth root of a 2

111 = โˆš211 the 11th root of 2

๐‘Ž๐‘Ž๐‘š๐‘š๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘›

๐‘š๐‘šthe nth root of a to the mth power 7

56 = โˆš76 5 the 6th root of 7 to the 5th power

โ€ข Powers of roots

The nth Root to the mth Power Example๐‘Ž๐‘Ž๐‘š๐‘š๐‘›๐‘› = (โˆš๐‘Ž๐‘Ž๐‘›๐‘› )๐‘š๐‘š = โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘š๐‘š

= โˆš๐‘Ž๐‘Ž๐‘š๐‘š๐‘›๐‘›m โ€“ power 7

23 = (โˆš73 )2 = โˆš73 2

= โˆš723

Example: Rewrite without rational exponents .

1. (81)14 = โˆš814 = โˆš344 = 3 Rewrite 81 as 34 ; โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›

= ๐‘Ž๐‘Ž

2. (๐‘ฅ๐‘ฅ2 ๐‘ฆ๐‘ฆ3)17 = ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ๐’š๐’š๐Ÿ‘๐Ÿ‘๐Ÿ•๐Ÿ• ๐‘Ž๐‘Ž

1๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘›

3. (8)23 = โˆš823 = ๏ฟฝโˆš83 ๏ฟฝ

2 = ๏ฟฝโˆš233 ๏ฟฝ

2= 22 = 4 ๐‘Ž๐‘Ž

๐‘š๐‘š๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘š๐‘š

= (โˆš๐‘Ž๐‘Ž๐‘›๐‘› )๐‘š๐‘š ; โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›= ๐‘Ž๐‘Ž

Rewrite 8 as 23

Example: Rewrite the radicals using rational exponents .

1. (โˆš3๐‘Ž๐‘Ž4๐‘๐‘59 )7 = (๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’๐’ƒ๐’ƒ๐Ÿ“๐Ÿ“)๐Ÿ•๐Ÿ•๐Ÿ—๐Ÿ— ๏ฟฝ โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๏ฟฝ

๐‘š๐‘š= ๐‘Ž๐‘Ž

๐‘š๐‘š๐‘›๐‘›

2. (๏ฟฝ5๐‘๐‘5๐‘ž๐‘ž)3 = (๐Ÿ“๐Ÿ“๐’‘๐’‘๐Ÿ“๐Ÿ“๐’’๐’’)๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ (๏ฟฝ5๐‘๐‘5๐‘ž๐‘ž)3 ; ๏ฟฝ โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๏ฟฝ

๐‘š๐‘š= ๐‘Ž๐‘Ž

๐‘š๐‘š๐‘›๐‘›

3. โˆš2๐‘ก๐‘ก3 = (๐Ÿ๐Ÿ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆš๐‘Ž๐‘Ž๐‘›๐‘› = ๐‘Ž๐‘Ž

1๐‘›๐‘›

4. 2w

โˆš7๐‘ก๐‘ก5 = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ(๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ)๐Ÿ๐Ÿ/๐Ÿ“๐Ÿ“ โˆš๐‘Ž๐‘Ž๐‘›๐‘› = ๐‘Ž๐‘Ž

1๐‘›๐‘›

n = 2

rational exponent notation

radical notation

- Rational exponent notation: ๐‘Ž๐‘Ž1 ๐‘›๐‘›

- Radical notation: โˆš๐‘›๐‘›

Page 7-5

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 147

Algebra I & II Key Concepts, Practice, and Quizzes Unit 7 โ€“ Radicals

Exponents & Rules

โ€ข Exponents: review of basic rules

Name Rule Examplezero exponent a0 a0 = 1 (a โ‰  0, 00 is undefined) (15)0 = 1 one exponent a1 a1 = a (But 1n = 1) 71 = 7 , 113 = 1

negative exponent ๐’‚๐’‚-๐’๐’

๐‘Ž๐‘Ž-๐‘›๐‘› = 1๐‘Ž๐‘Ž๐‘›๐‘›

5-2 = 152

= 125

1๐‘Ž๐‘Ž-๐‘›๐‘› = ๐‘Ž๐‘Ž๐‘›๐‘› 1

6-2 = 62 = 36

๏ฟฝ๐‘Ž๐‘Ž๐‘๐‘๏ฟฝ

-๐‘›๐‘›= ๏ฟฝ

๐‘๐‘๐‘Ž๐‘Ž๏ฟฝ๐‘›๐‘›

๏ฟฝ45๏ฟฝ

-3= ๏ฟฝ

54๏ฟฝ

3

Example: Express each of the following in positive exponential form .

1. (- 0 .1356)0 = 1 a0 = 1

2. 64-1/3 = 1641/3 = 1

โˆš643 = 1

โˆš433 = ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’

๐‘Ž๐‘Ž-๐‘›๐‘› = 1๐‘Ž๐‘Ž๐‘›๐‘›

, ๐‘Ž๐‘Ž1๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› , โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›

= ๐‘Ž๐‘Ž

3. โ€“5๐‘๐‘โ€“3/4 ๐‘ž๐‘ž2/5 ๐‘Ÿ๐‘Ÿโ€“1/2 = โˆ’๐Ÿ“๐Ÿ“ ๐’’๐’’๐Ÿ๐Ÿ/๐Ÿ“๐Ÿ“

๐’‘๐’‘๐Ÿ‘๐Ÿ‘/๐Ÿ’๐Ÿ’ ๐’“๐’“๐Ÿ๐Ÿ/๐Ÿ๐Ÿ ๐‘Ž๐‘Ž-๐‘›๐‘› = 1

๐‘Ž๐‘Ž๐‘›๐‘›

4. ๏ฟฝ4๐‘๐‘๐‘๐‘3๐‘Ž๐‘Ž๐‘Ž๐‘Ž

๏ฟฝ-4/7

= ๏ฟฝ๐Ÿ‘๐Ÿ‘๐’‚๐’‚๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’

๏ฟฝ๐Ÿ’๐Ÿ’/๐Ÿ•๐Ÿ•

๏ฟฝ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๏ฟฝ

-๐‘›๐‘›= ๏ฟฝ๐‘Ž๐‘Ž

๐‘Ž๐‘Ž๏ฟฝ๐‘›๐‘›

โ€ข Exponent rules review

Name Ruleproduct of like bases aman = am + n

quotient of like bases ๐‘Ž๐‘Ž๐‘š๐‘š

๐‘Ž๐‘Ž๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘š๐‘šโˆ’๐‘›๐‘›

power of a power (am)n = am n power of a product (a โˆ™ b )n = an bn (am โˆ™ b n)p = amp bnp

power of a quotient ๏ฟฝ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๏ฟฝ๐‘›๐‘›

= ๐‘Ž๐‘Ž๐‘›๐‘›

๐‘Ž๐‘Ž๐‘›๐‘› ๏ฟฝ๐‘Ž๐‘Ž

๐‘š๐‘š

๐‘Ž๐‘Ž๐‘›๐‘›๏ฟฝ๐‘๐‘

= ๐‘Ž๐‘Ž๐‘š๐‘š๐‘š๐‘š

๐‘Ž๐‘Ž๐‘›๐‘›๐‘š๐‘š

Example: Express each of the following in positive exponential form .

1. 101/2 10 -2/3 = 101/2 โ€“ 2/3 = 103/6 โ€“ 4/6 =10-1/6 = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ/๐Ÿ”๐Ÿ” am an = am + n , ๐‘Ž๐‘Ž-๐‘›๐‘› = 1

๐‘Ž๐‘Ž๐‘›๐‘›

2. ๐’˜๐’˜๐Ÿ“๐Ÿ“/๐Ÿ•๐Ÿ•

๐’˜๐’˜๐Ÿ๐Ÿ/๐Ÿ•๐Ÿ• = ๐‘ค๐‘ค5/7โˆ’2/7 = ๐’˜๐’˜๐Ÿ‘๐Ÿ‘/๐Ÿ•๐Ÿ• ๐‘Ž๐‘Ž๐‘š๐‘š

๐‘Ž๐‘Ž๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘š๐‘šโˆ’๐‘›๐‘›

3. (y-2/3) 4/5 = y(-2/3) (4/5) = y-8/15 = ๐Ÿ๐Ÿ๐’š๐’š๐Ÿ–๐Ÿ–/๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“ (an)m = an m , ๐‘Ž๐‘Ž-๐‘›๐‘› = 1

๐‘Ž๐‘Ž๐‘›๐‘›

4. (u โˆ™ v )3/5 = u 3/5 v3/5(a โˆ™ b)n = an bn

5. (a 2 โˆ™ ๐Ÿ‘๐Ÿ‘ -3)2/5 = a 2 โˆ™ (2/5) โˆ™ ๐‘๐‘ -3 โˆ™ (2/5) = a 4/5 โˆ™ ๐‘๐‘ -6/5 = ๐’‚๐’‚๐Ÿ’๐Ÿ’/๐Ÿ“๐Ÿ“

๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ”/๐Ÿ“๐Ÿ“ (am โˆ™bn)p = a m p b n p , ๐‘Ž๐‘Ž-๐‘›๐‘› = 1๐‘Ž๐‘Ž๐‘›๐‘›

6. ๏ฟฝ๐’™๐’™๐’š๐’š๏ฟฝโˆ’๐Ÿ‘๐Ÿ‘

= ๏ฟฝ๐‘ฆ๐‘ฆ๐‘ฅ๐‘ฅ๏ฟฝ3

= ๐’š๐’š๐Ÿ‘๐Ÿ‘

๐’™๐’™๐Ÿ‘๐Ÿ‘ ๏ฟฝ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๏ฟฝ

-๐‘›๐‘›= ๏ฟฝ๐‘Ž๐‘Ž

๐‘Ž๐‘Ž๏ฟฝ๐‘›๐‘›

, ๏ฟฝ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๏ฟฝ๐‘›๐‘›

= ๐‘Ž๐‘Ž๐‘›๐‘›

๐‘Ž๐‘Ž๐‘›๐‘›

7. ๏ฟฝ ๐’•๐’•๐Ÿ“๐Ÿ“

๐’–๐’–-๐Ÿ๐Ÿ๏ฟฝ๐Ÿ๐Ÿ

= ๐‘ก๐‘ก5 โˆ™ 2

๐‘ข๐‘ข(-2)(2) = ๐‘ก๐‘ก10

๐‘ข๐‘ข-4 = ๐’•๐’•๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’–๐’–๐Ÿ’๐Ÿ’ ๏ฟฝ๐‘Ž๐‘Ž๐‘š๐‘š

๐‘Ž๐‘Ž๐‘›๐‘›๏ฟฝ๐‘๐‘

= ๐‘Ž๐‘Ž๐‘š๐‘š๐‘š๐‘š

๐‘Ž๐‘Ž๐‘›๐‘›๐‘š๐‘š, 1๐‘Ž๐‘Ž-๐‘›๐‘› = ๐‘Ž๐‘Ž๐‘›๐‘›

Page 7-6

Exponents & Rules

โ€ข Exponents: review of basic rules

Name Rule Examplezero exponent a0 a0 = 1 (a โ‰  0, 00 is undefined) (15)0 = 1 one exponent a1 a1 = a (But 1n = 1) 71 = 7 , 113 = 1

negative exponent ๐’‚๐’‚-๐’๐’

๐‘Ž๐‘Ž-๐‘›๐‘› = 1๐‘Ž๐‘Ž๐‘›๐‘›

5-2 = 152

= 125

1๐‘Ž๐‘Ž-๐‘›๐‘› = ๐‘Ž๐‘Ž๐‘›๐‘› 1

6-2 = 62 = 36

๏ฟฝ๐‘Ž๐‘Ž๐‘๐‘๏ฟฝ

-๐‘›๐‘›= ๏ฟฝ

๐‘๐‘๐‘Ž๐‘Ž๏ฟฝ๐‘›๐‘›

๏ฟฝ45๏ฟฝ

-3= ๏ฟฝ

54๏ฟฝ

3

Example: Express each of the following in positive exponential form .

1. (- 0 .1356)0 = 1 a0 = 1

2. 64-1/3 = 1641/3 = 1

โˆš643 = 1

โˆš433 = ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’

๐‘Ž๐‘Ž-๐‘›๐‘› = 1๐‘Ž๐‘Ž๐‘›๐‘›

, ๐‘Ž๐‘Ž1๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› , โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›

= ๐‘Ž๐‘Ž

3. โ€“5๐‘๐‘โ€“3/4 ๐‘ž๐‘ž2/5 ๐‘Ÿ๐‘Ÿโ€“1/2 = โˆ’๐Ÿ“๐Ÿ“ ๐’’๐’’๐Ÿ๐Ÿ/๐Ÿ“๐Ÿ“

๐’‘๐’‘๐Ÿ‘๐Ÿ‘/๐Ÿ’๐Ÿ’ ๐’“๐’“๐Ÿ๐Ÿ/๐Ÿ๐Ÿ ๐‘Ž๐‘Ž-๐‘›๐‘› = 1

๐‘Ž๐‘Ž๐‘›๐‘›

4. ๏ฟฝ4๐‘๐‘๐‘๐‘3๐‘Ž๐‘Ž๐‘Ž๐‘Ž

๏ฟฝ-4/7

= ๏ฟฝ๐Ÿ‘๐Ÿ‘๐’‚๐’‚๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’

๏ฟฝ๐Ÿ’๐Ÿ’/๐Ÿ•๐Ÿ•

๏ฟฝ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๏ฟฝ

-๐‘›๐‘›= ๏ฟฝ๐‘Ž๐‘Ž

๐‘Ž๐‘Ž๏ฟฝ๐‘›๐‘›

โ€ข Exponent rules review

Name Ruleproduct of like bases aman = am + n

quotient of like bases ๐‘Ž๐‘Ž๐‘š๐‘š

๐‘Ž๐‘Ž๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘š๐‘šโˆ’๐‘›๐‘›

power of a power (am)n = am n power of a product (a โˆ™ b )n = an bn (am โˆ™ b n)p = amp bnp

power of a quotient ๏ฟฝ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๏ฟฝ๐‘›๐‘›

= ๐‘Ž๐‘Ž๐‘›๐‘›

๐‘Ž๐‘Ž๐‘›๐‘› ๏ฟฝ๐‘Ž๐‘Ž

๐‘š๐‘š

๐‘Ž๐‘Ž๐‘›๐‘›๏ฟฝ๐‘๐‘

= ๐‘Ž๐‘Ž๐‘š๐‘š๐‘š๐‘š

๐‘Ž๐‘Ž๐‘›๐‘›๐‘š๐‘š

Example: Express each of the following in positive exponential form .

1. 101/2 10 -2/3 = 101/2 โ€“ 2/3 = 103/6 โ€“ 4/6 =10-1/6 = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ/๐Ÿ”๐Ÿ” am an = am + n , ๐‘Ž๐‘Ž-๐‘›๐‘› = 1

๐‘Ž๐‘Ž๐‘›๐‘›

2. ๐’˜๐’˜๐Ÿ“๐Ÿ“/๐Ÿ•๐Ÿ•

๐’˜๐’˜๐Ÿ๐Ÿ/๐Ÿ•๐Ÿ• = ๐‘ค๐‘ค5/7โˆ’2/7 = ๐’˜๐’˜๐Ÿ‘๐Ÿ‘/๐Ÿ•๐Ÿ• ๐‘Ž๐‘Ž๐‘š๐‘š

๐‘Ž๐‘Ž๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘š๐‘šโˆ’๐‘›๐‘›

3. (y-2/3) 4/5 = y(-2/3) (4/5) = y-8/15 = ๐Ÿ๐Ÿ๐’š๐’š๐Ÿ–๐Ÿ–/๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“ (an)m = an m , ๐‘Ž๐‘Ž-๐‘›๐‘› = 1

๐‘Ž๐‘Ž๐‘›๐‘›

4. (u โˆ™ v )3/5 = u 3/5 v3/5(a โˆ™ b)n = an bn

5. (a 2 โˆ™ ๐Ÿ‘๐Ÿ‘ -3)2/5 = a 2 โˆ™ (2/5) โˆ™ ๐‘๐‘ -3 โˆ™ (2/5) = a 4/5 โˆ™ ๐‘๐‘ -6/5 = ๐’‚๐’‚๐Ÿ’๐Ÿ’/๐Ÿ“๐Ÿ“

๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ”/๐Ÿ“๐Ÿ“ (am โˆ™bn)p = a m p b n p , ๐‘Ž๐‘Ž-๐‘›๐‘› = 1๐‘Ž๐‘Ž๐‘›๐‘›

6. ๏ฟฝ๐’™๐’™๐’š๐’š๏ฟฝโˆ’๐Ÿ‘๐Ÿ‘

= ๏ฟฝ๐‘ฆ๐‘ฆ๐‘ฅ๐‘ฅ๏ฟฝ3

= ๐’š๐’š๐Ÿ‘๐Ÿ‘

๐’™๐’™๐Ÿ‘๐Ÿ‘ ๏ฟฝ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๏ฟฝ

-๐‘›๐‘›= ๏ฟฝ๐‘Ž๐‘Ž

๐‘Ž๐‘Ž๏ฟฝ๐‘›๐‘›

, ๏ฟฝ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๏ฟฝ๐‘›๐‘›

= ๐‘Ž๐‘Ž๐‘›๐‘›

๐‘Ž๐‘Ž๐‘›๐‘›

7. ๏ฟฝ ๐’•๐’•๐Ÿ“๐Ÿ“

๐’–๐’–-๐Ÿ๐Ÿ๏ฟฝ๐Ÿ๐Ÿ

= ๐‘ก๐‘ก5 โˆ™ 2

๐‘ข๐‘ข(-2)(2) = ๐‘ก๐‘ก10

๐‘ข๐‘ข-4 = ๐’•๐’•๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’–๐’–๐Ÿ’๐Ÿ’ ๏ฟฝ๐‘Ž๐‘Ž๐‘š๐‘š

๐‘Ž๐‘Ž๐‘›๐‘›๏ฟฝ๐‘๐‘

= ๐‘Ž๐‘Ž๐‘š๐‘š๐‘š๐‘š

๐‘Ž๐‘Ž๐‘›๐‘›๐‘š๐‘š, 1๐‘Ž๐‘Ž-๐‘›๐‘› = ๐‘Ž๐‘Ž๐‘›๐‘›

Page 7-6

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

148 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 7 โ€“ Radicals

Page 7-7

Simplifying Radical Expressions

Example

โ€ข A radical expression is an algebraic expression containing a radical sign โˆš๐‘›๐‘›๐‘›๐‘› . ๏ฟฝ7๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ23

โ€ข Simplifying radical expressions

Example: Express in simplest radical form.

1. โˆš๐’™๐’™๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = (๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ)210 = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

15 = โˆš๐’™๐’™๐’™๐’™๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› ๐‘š๐‘š๐‘š๐‘š

= ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘š๐‘š๐‘š๐‘š๐‘›๐‘›๐‘›๐‘›

2. ๏ฟฝ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ = (25 ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ10๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2)15

โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› = ๐‘Ž๐‘Ž๐‘Ž๐‘Ž1๐‘›๐‘›๐‘›๐‘›

= 25 โˆ™ 15 ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ10 โˆ™ 15 ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2 โˆ™ 15 = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๏ฟฝ๐’š๐’š๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ (am โˆ™ bn) p = amp bnp ,

๐‘Ž๐‘Ž๐‘Ž๐‘Ž1๐‘›๐‘›๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘›

3. โˆš๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ = (3๐‘Ž๐‘Ž๐‘Ž๐‘Ž)14 (2๐‘Ž๐‘Ž๐‘Ž๐‘Ž)

12 = (3๐‘Ž๐‘Ž๐‘Ž๐‘Ž)

14 (2๐‘Ž๐‘Ž๐‘Ž๐‘Ž)

24

โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› = ๐‘Ž๐‘Ž๐‘Ž๐‘Ž1๐‘›๐‘›๐‘›๐‘› , LCD = 4

= [(3๐‘Ž๐‘Ž๐‘Ž๐‘Ž)1(2๐‘Ž๐‘Ž๐‘Ž๐‘Ž)2]๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ = ๏ฟฝ(3๐‘Ž๐‘Ž๐‘Ž๐‘Ž)(2๐‘Ž๐‘Ž๐‘Ž๐‘Ž)24 amp bnp=(am โˆ™ bn)p , โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› ๐‘š๐‘š๐‘š๐‘š

= ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘š๐‘š๐‘š๐‘š๐‘›๐‘›๐‘›๐‘›

= โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ am an = am + n

4. ๏ฟฝโˆš๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ” = ๏ฟฝ๐‘Ž๐‘Ž๐‘Ž๐‘Ž13

6

= (๐‘Ž๐‘Ž๐‘Ž๐‘Ž13)

16

โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› = ๐‘Ž๐‘Ž๐‘Ž๐‘Ž1๐‘›๐‘›๐‘›๐‘›

= ๐‘Ž๐‘Ž๐‘Ž๐‘Ž13 โˆ™ 16 = ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

118 = โˆš๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ (an)m = anm

, ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

1๐‘›๐‘›๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘›

5. ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’š๐’š๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐’š๐’š๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

= 34๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ

12โˆ’

23 = 3

4๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ36โˆ’

46 ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘š๐‘š๐‘š๐‘š

๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘š๐‘š๐‘š๐‘šโˆ’๐‘›๐‘›๐‘›๐‘› , LCD = 6

= 34๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ

-16 = 3

4๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ16

= ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ ๏ฟฝ๐’š๐’š๐’š๐’š ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ” ๐‘Ž๐‘Ž๐‘Ž๐‘Ž-๐‘›๐‘›๐‘›๐‘› = 1

๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘›

, ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

1๐‘›๐‘›๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› n

6. ๐’™๐’™๐’™๐’™๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ ๐’š๐’š๐’š๐’š

๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ ๐’›๐’›๐’›๐’›

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

912 ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ

1612 ๐‘ง๐‘ง๐‘ง๐‘ง

612 LCD = 12

= (๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ9 ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ16 ๐‘ง๐‘ง๐‘ง๐‘ง6)๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๏ฟฝ๐’™๐’™๐’™๐’™๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐’š๐’š๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐’›๐’›๐’›๐’›๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ anm = (an)m

, ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

1๐‘›๐‘›๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘›

7. ๏ฟฝ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ/๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’ƒ๐’ƒ๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ/๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐’„๐’„๐’„๐’„๐Ÿ๐Ÿ๐Ÿ๐Ÿ/๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐’…๐’…๐’…๐’…๐Ÿ๐Ÿ๐Ÿ๐Ÿ/๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๏ฟฝ2

= (๐‘Ž๐‘Ž๐‘Ž๐‘Ž1/3)๐Ÿ๐Ÿ๐Ÿ๐Ÿ(๐‘๐‘๐‘๐‘1/3)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

(๐‘๐‘๐‘๐‘1/6๐‘‘๐‘‘๐‘‘๐‘‘1/6)๐Ÿ๐Ÿ๐Ÿ๐Ÿ = (๐‘Ž๐‘Ž๐‘Ž๐‘Ž2/๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘)(๐‘๐‘๐‘๐‘2/๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘)

๐‘๐‘๐‘๐‘2/6๐‘‘๐‘‘๐‘‘๐‘‘2/6 ๏ฟฝ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘š๐‘š๐‘š๐‘š

๐‘๐‘๐‘๐‘๐‘›๐‘›๐‘›๐‘›๏ฟฝ๐‘๐‘๐‘๐‘

= ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š

๐‘๐‘๐‘๐‘๐‘›๐‘›๐‘›๐‘›๐‘š๐‘š๐‘š๐‘š

= (๐‘Ž๐‘Ž๐‘Ž๐‘Ž2/๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘)(๐‘๐‘๐‘๐‘2/๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘)(๐‘๐‘๐‘๐‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ/๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘)(๐‘‘๐‘‘๐‘‘๐‘‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ/๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘)

= ๏ฟฝ(๐‘Ž๐‘Ž๐‘Ž๐‘Ž2)(๐‘๐‘๐‘๐‘2)(๐‘๐‘๐‘๐‘1)(๐‘‘๐‘‘๐‘‘๐‘‘1)

๏ฟฝ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ amp bnp=(am โˆ™bn)p

= ๏ฟฝ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’„๐’„๐’„๐’„๐’…๐’…๐’…๐’…

๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐‘Ž๐‘Ž๐‘Ž๐‘Ž1๐‘›๐‘›๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘›

Page 7-7

Simplifying Radical Expressions

Example

โ€ข A radical expression is an algebraic expression containing a radical sign โˆš๐‘›๐‘›๐‘›๐‘› . ๏ฟฝ7๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ23

โ€ข Simplifying radical expressions

Example: Express in simplest radical form.

1. โˆš๐’™๐’™๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = (๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ)210 = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

15 = โˆš๐’™๐’™๐’™๐’™๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› ๐‘š๐‘š๐‘š๐‘š

= ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘š๐‘š๐‘š๐‘š๐‘›๐‘›๐‘›๐‘›

2. ๏ฟฝ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ = (25 ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ10๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2)15

โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› = ๐‘Ž๐‘Ž๐‘Ž๐‘Ž1๐‘›๐‘›๐‘›๐‘›

= 25 โˆ™ 15 ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ10 โˆ™ 15 ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2 โˆ™ 15 = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๏ฟฝ๐’š๐’š๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ (am โˆ™ bn) p = amp bnp ,

๐‘Ž๐‘Ž๐‘Ž๐‘Ž1๐‘›๐‘›๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘›

3. โˆš๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ = (3๐‘Ž๐‘Ž๐‘Ž๐‘Ž)14 (2๐‘Ž๐‘Ž๐‘Ž๐‘Ž)

12 = (3๐‘Ž๐‘Ž๐‘Ž๐‘Ž)

14 (2๐‘Ž๐‘Ž๐‘Ž๐‘Ž)

24

โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› = ๐‘Ž๐‘Ž๐‘Ž๐‘Ž1๐‘›๐‘›๐‘›๐‘› , LCD = 4

= [(3๐‘Ž๐‘Ž๐‘Ž๐‘Ž)1(2๐‘Ž๐‘Ž๐‘Ž๐‘Ž)2]๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ = ๏ฟฝ(3๐‘Ž๐‘Ž๐‘Ž๐‘Ž)(2๐‘Ž๐‘Ž๐‘Ž๐‘Ž)24 amp bnp=(am โˆ™ bn)p , โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› ๐‘š๐‘š๐‘š๐‘š

= ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘š๐‘š๐‘š๐‘š๐‘›๐‘›๐‘›๐‘›

= โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ am an = am + n

4. ๏ฟฝโˆš๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ” = ๏ฟฝ๐‘Ž๐‘Ž๐‘Ž๐‘Ž13

6

= (๐‘Ž๐‘Ž๐‘Ž๐‘Ž13)

16

โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› = ๐‘Ž๐‘Ž๐‘Ž๐‘Ž1๐‘›๐‘›๐‘›๐‘›

= ๐‘Ž๐‘Ž๐‘Ž๐‘Ž13 โˆ™ 16 = ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

118 = โˆš๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ (an)m = anm

, ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

1๐‘›๐‘›๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘›

5. ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’š๐’š๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐’š๐’š๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

= 34๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ

12โˆ’

23 = 3

4๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ36โˆ’

46 ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘š๐‘š๐‘š๐‘š

๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘š๐‘š๐‘š๐‘šโˆ’๐‘›๐‘›๐‘›๐‘› , LCD = 6

= 34๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ

-16 = 3

4๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ16

= ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ ๏ฟฝ๐’š๐’š๐’š๐’š ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ” ๐‘Ž๐‘Ž๐‘Ž๐‘Ž-๐‘›๐‘›๐‘›๐‘› = 1

๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘›

, ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

1๐‘›๐‘›๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› n

6. ๐’™๐’™๐’™๐’™๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ ๐’š๐’š๐’š๐’š

๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ ๐’›๐’›๐’›๐’›

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

912 ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ

1612 ๐‘ง๐‘ง๐‘ง๐‘ง

612 LCD = 12

= (๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ9 ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ16 ๐‘ง๐‘ง๐‘ง๐‘ง6)๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๏ฟฝ๐’™๐’™๐’™๐’™๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐’š๐’š๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐’›๐’›๐’›๐’›๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ anm = (an)m

, ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

1๐‘›๐‘›๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘›

7. ๏ฟฝ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ/๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’ƒ๐’ƒ๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ/๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐’„๐’„๐’„๐’„๐Ÿ๐Ÿ๐Ÿ๐Ÿ/๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐’…๐’…๐’…๐’…๐Ÿ๐Ÿ๐Ÿ๐Ÿ/๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๏ฟฝ2

= (๐‘Ž๐‘Ž๐‘Ž๐‘Ž1/3)๐Ÿ๐Ÿ๐Ÿ๐Ÿ(๐‘๐‘๐‘๐‘1/3)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

(๐‘๐‘๐‘๐‘1/6๐‘‘๐‘‘๐‘‘๐‘‘1/6)๐Ÿ๐Ÿ๐Ÿ๐Ÿ = (๐‘Ž๐‘Ž๐‘Ž๐‘Ž2/๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘)(๐‘๐‘๐‘๐‘2/๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘)

๐‘๐‘๐‘๐‘2/6๐‘‘๐‘‘๐‘‘๐‘‘2/6 ๏ฟฝ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘š๐‘š๐‘š๐‘š

๐‘๐‘๐‘๐‘๐‘›๐‘›๐‘›๐‘›๏ฟฝ๐‘๐‘๐‘๐‘

= ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š

๐‘๐‘๐‘๐‘๐‘›๐‘›๐‘›๐‘›๐‘š๐‘š๐‘š๐‘š

= (๐‘Ž๐‘Ž๐‘Ž๐‘Ž2/๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘)(๐‘๐‘๐‘๐‘2/๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘)(๐‘๐‘๐‘๐‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ/๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘)(๐‘‘๐‘‘๐‘‘๐‘‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ/๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘)

= ๏ฟฝ(๐‘Ž๐‘Ž๐‘Ž๐‘Ž2)(๐‘๐‘๐‘๐‘2)(๐‘๐‘๐‘๐‘1)(๐‘‘๐‘‘๐‘‘๐‘‘1)

๏ฟฝ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ amp bnp=(am โˆ™bn)p

= ๏ฟฝ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’„๐’„๐’„๐’„๐’…๐’…๐’…๐’…

๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐‘Ž๐‘Ž๐‘Ž๐‘Ž1๐‘›๐‘›๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘›

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 149

Algebra I & II Key Concepts, Practice, and Quizzes Unit 7 โ€“ Radicals

7-3 SIMPLIFY RADICALS USING PRODUCT & QUOTIENT RULES

Product and Quotient Rules

โ€ข Product and quotient rule for radicals

Name Rule Exampleproduct rule โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆ™ โˆš๐‘Ž๐‘Ž๐‘›๐‘› a โ‰ฅ 0 , b โ‰ฅ 0 โˆš12 = โˆš4 โˆ™ 3 = โˆš4 โˆš3 = ๏ฟฝ22 โˆš3 = 2โˆš3

quotient rule ๏ฟฝ๐‘Ž๐‘Ž๐‘๐‘

๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘›

โˆš๐‘๐‘๐‘›๐‘› a โ‰ฅ 0 , b > 0 , b โ‰  0 ๏ฟฝ 827

3 = โˆš83

โˆš273 =๏ฟฝ233

๏ฟฝ333 = 23

Read โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘›๐‘› : The nth root of the product of a and b is the product of the nth root of a and the nth root of b .

๏ฟฝ๐‘Ž๐‘Ž๐‘๐‘

๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘›

โˆš๐‘๐‘๐‘›๐‘› : The nth root of ๐‘Ž๐‘Ž๐‘๐‘

is the nth root of a over the nth root of b .

โ€ข Simplifying radical expressions: a radical expression is in simplest form if it satisfies the

following conditions .

A radical expression is in simplest form when: Simplest Form Not Simplest FormThe exponent (m) of the radical is less than the index (n).

m < n โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘š๐‘š ๏ฟฝ๐‘ฅ๐‘ฅ3 5 or โˆš๐‘Ž๐‘Ž5 3

3 < 5

๏ฟฝ๐‘ฅ๐‘ฅ87

8 > 7

No fractions appear within a radical sign. ๏ฟฝ2๐‘ฆ๐‘ฆ3 ๏ฟฝ2

3๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ4

No radicals appear in the denominator of a fraction. โˆš35

โˆš3โˆš8

โ€ข Tips: To use the product and quotient rule for radicals, factor out any perfect square, perfect

cube, and perfect 4th power, perfect 5th power, etc .

Perfect square: a number that is the exact square of a whole number .

Perfect cube: a number that is the exact cube of a whole number .

Perfect nth power: a number that is the exact nth power of a whole number .

Examples

Perfect Square Perfect Cube Perfect 4th Power Perfect 5th Power โ€ฆ โ€ฆ22 = 4 23 = 8 24 = 16 25 = 3232 = 9 33 = 27 34 = 81 35 = 243

42 = 16 43 = 64 44 = 256 45 = 102452 = 25 53 = 125 54 = 625 55 = 312562 = 36 63 = 216 64 = 1296 65 = 777672 = 49 73 = 343 74 = 2401 75 = 1680782 = 64 83 = 512 84 = 4096 85 = 32768

โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ

2 y x 5 = 32

or 2 ^ 5 Enter 32

Page 7-8

7-3 SIMPLIFY RADICALS USING PRODUCT & QUOTIENT RULES

Product and Quotient Rules

โ€ข Product and quotient rule for radicals

Name Rule Exampleproduct rule โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆ™ โˆš๐‘Ž๐‘Ž๐‘›๐‘› a โ‰ฅ 0 , b โ‰ฅ 0 โˆš12 = โˆš4 โˆ™ 3 = โˆš4 โˆš3 = ๏ฟฝ22 โˆš3 = 2โˆš3

quotient rule ๏ฟฝ๐‘Ž๐‘Ž๐‘๐‘

๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘›

โˆš๐‘๐‘๐‘›๐‘› a โ‰ฅ 0 , b > 0 , b โ‰  0 ๏ฟฝ 827

3 = โˆš83

โˆš273 =๏ฟฝ233

๏ฟฝ333 = 23

Read โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘›๐‘› : The nth root of the product of a and b is the product of the nth root of a and the nth root of b .

๏ฟฝ๐‘Ž๐‘Ž๐‘๐‘

๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘›

โˆš๐‘๐‘๐‘›๐‘› : The nth root of ๐‘Ž๐‘Ž๐‘๐‘

is the nth root of a over the nth root of b .

โ€ข Simplifying radical expressions: a radical expression is in simplest form if it satisfies the

following conditions .

A radical expression is in simplest form when: Simplest Form Not Simplest FormThe exponent (m) of the radical is less than the index (n).

m < n โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘š๐‘š ๏ฟฝ๐‘ฅ๐‘ฅ3 5 or โˆš๐‘Ž๐‘Ž5 3

3 < 5

๏ฟฝ๐‘ฅ๐‘ฅ87

8 > 7

No fractions appear within a radical sign. ๏ฟฝ2๐‘ฆ๐‘ฆ3 ๏ฟฝ2

3๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ4

No radicals appear in the denominator of a fraction. โˆš35

โˆš3โˆš8

โ€ข Tips: To use the product and quotient rule for radicals, factor out any perfect square, perfect

cube, and perfect 4th power, perfect 5th power, etc .

Perfect square: a number that is the exact square of a whole number .

Perfect cube: a number that is the exact cube of a whole number .

Perfect nth power: a number that is the exact nth power of a whole number .

Examples

Perfect Square Perfect Cube Perfect 4th Power Perfect 5th Power โ€ฆ โ€ฆ22 = 4 23 = 8 24 = 16 25 = 3232 = 9 33 = 27 34 = 81 35 = 243

42 = 16 43 = 64 44 = 256 45 = 102452 = 25 53 = 125 54 = 625 55 = 312562 = 36 63 = 216 64 = 1296 65 = 777672 = 49 73 = 343 74 = 2401 75 = 1680782 = 64 83 = 512 84 = 4096 85 = 32768

โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ

2 y x 5 = 32

or 2 ^ 5 Enter 32

Page 7-8

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

150 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 7 โ€“ Radicals

Simplifying Radicals

Example: Simplify .

1. โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ = โˆš2 โˆ™ 9 ๐‘ฅ๐‘ฅ2 โˆ™ ๐‘ฅ๐‘ฅ Factor out a perfect square: 9 = 32

= ๏ฟฝ(3๐‘ฅ๐‘ฅ)2 โˆš2๐‘ฅ๐‘ฅ = ๐Ÿ‘๐Ÿ‘|๐Ÿ๐Ÿ|โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘›๐‘› ; โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›= ๐‘Ž๐‘Ž

2. โˆš๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ ๐Ÿ‘๐Ÿ‘ = โˆš5 โˆ™ 83 = โˆš5 โˆ™ 233Factor out a perfect cube: 8 = 23

= โˆš53 โˆš233 = ๐Ÿ๐Ÿโˆš๐Ÿ“๐Ÿ“ ๐Ÿ‘๐Ÿ‘โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘›๐‘› ; โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›

= ๐‘Ž๐‘Ž

3. ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐’š๐’š ๐Ÿ‘๐Ÿ‘ = ๏ฟฝ3 โˆ™ 8๐‘ฅ๐‘ฅ3๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆ 3 = ๏ฟฝ3๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆ 3 โˆš8๐‘ฅ๐‘ฅ33โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘›๐‘› ; regroup

= ๏ฟฝ3๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆ 3 ๏ฟฝ(2๐‘ฅ๐‘ฅ)33 = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๏ฟฝ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š ๐Ÿ‘๐Ÿ‘ 8 = 23 ; โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›= ๐‘Ž๐‘Ž

4. โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’ โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’ = โˆš๐‘ฅ๐‘ฅ2 โˆ™ 16๐‘ฅ๐‘ฅ6 4โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› ; am an = am + n

= โˆš24 โˆ™ ๐‘ฅ๐‘ฅ8 4Rewrite 16 as a perfect 4th power: 16 = 24

= โˆš244 โˆš๐‘ฅ๐‘ฅ8 4 = 2 โˆš๐‘ฅ๐‘ฅ8 4โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘›๐‘› ; โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›

= ๐‘Ž๐‘Ž

= 2 ๐‘ฅ๐‘ฅ84 = 2x2

โˆš๐‘Ž๐‘Ž ๐‘›๐‘› m = ๐‘Ž๐‘Ž

๐‘š๐‘š๐‘›๐‘›

5. ๏ฟฝ ๐Ÿ—๐Ÿ—๐Ÿ’๐Ÿ’๐Ÿ—๐Ÿ—

= โˆš9โˆš49

= โˆš32

โˆš72= ๐Ÿ‘๐Ÿ‘

๐Ÿ•๐Ÿ•๏ฟฝ๐‘Ž๐‘Ž๐‘๐‘

๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘›

โˆš๐‘๐‘๐‘›๐‘› ; โˆš๐‘Ž๐‘Ž ๐‘›๐‘› ๐‘›๐‘›= ๐‘Ž๐‘Ž

6. ๏ฟฝ ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘

๐Ÿ“๐Ÿ“= โˆš325

โˆš2435 = โˆš255

๏ฟฝ355 = ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ ๏ฟฝ๐‘Ž๐‘Ž

๐‘๐‘๐‘›๐‘› = โˆš๐‘Ž๐‘Ž

๐‘›๐‘›

โˆš๐‘๐‘๐‘›๐‘› ; 25 = 32 ; 35 = 243

5 2nd F โˆš๐‘ฅ๐‘ฅ 243 = 3

7. ๏ฟฝ ๐Ÿ“๐Ÿ“๐Ÿ’๐Ÿ’๐’‚๐’‚๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐’‚๐’‚๐Ÿ’๐Ÿ’= ๏ฟฝ 9๐‘Ž๐‘Ž8

๐‘Ž๐‘Ž4 = โˆš32๐’‚๐’‚๐Ÿ’๐Ÿ’ ๐‘Ž๐‘Ž๐‘š๐‘š

๐‘Ž๐‘Ž๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘š๐‘šโˆ’๐‘›๐‘›

= ๏ฟฝ32(๐’‚๐’‚๐Ÿ๐Ÿ)๐Ÿ๐Ÿ = โˆš32 โˆ™ ๏ฟฝ(๐‘Ž๐‘Ž2)2 = 3a2โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘›๐‘› ; โˆš๐‘Ž๐‘Ž ๐‘›๐‘› ๐‘›๐‘›

= ๐‘Ž๐‘Ž

8.๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’‚๐’‚๐Ÿ“๐Ÿ“๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

๏ฟฝ๐Ÿ‘๐Ÿ‘๐’‚๐’‚๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ = ๏ฟฝ81๐‘Ž๐‘Ž5๐‘๐‘8

3๐‘Ž๐‘Ž2๐‘๐‘23

= โˆš27๐‘Ž๐‘Ž3๐‘Ž๐‘Ž6 3 = โˆš33๐‘Ž๐‘Ž3๐‘Ž๐‘Ž6 3 โˆš๐‘Ž๐‘Ž๐‘›๐‘›

โˆš๐‘๐‘๐‘›๐‘› = ๏ฟฝ๐‘Ž๐‘Ž๐‘๐‘

๐‘›๐‘› ; ๐‘Ž๐‘Ž๐‘š๐‘š

๐‘Ž๐‘Ž๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘š๐‘šโˆ’๐‘›๐‘›

= โˆš333 โˆš๐‘Ž๐‘Ž33 โˆš๐‘Ž๐‘Ž63 = 3a๐‘Ž๐‘Ž63 = 3a๐’ƒ๐’ƒ๐Ÿ๐Ÿ โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘›๐‘› ; โˆš๐‘Ž๐‘Ž ๐‘›๐‘› ๐‘›๐‘›

= ๐‘Ž๐‘Ž; โˆš๐‘Ž๐‘Ž ๐‘›๐‘› m = ๐‘Ž๐‘Ž

๐‘š๐‘š๐‘›๐‘›

9.๏ฟฝ๐’‚๐’‚๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐Ÿ’๐Ÿ’๐Ÿ“๐Ÿ“

โˆš๐’‚๐’‚๐’ƒ๐’ƒ๐Ÿ‘๐Ÿ‘ = (๐‘Ž๐‘Ž2๐‘๐‘4)15

(๐‘Ž๐‘Ž๐‘๐‘)13

= ๐‘Ž๐‘Ž25 ๐‘๐‘

45

๐‘Ž๐‘Ž13 ๐‘๐‘

13

โˆš๐‘Ž๐‘Ž๐‘›๐‘› = ๐‘Ž๐‘Ž1๐‘›๐‘› ; (am โˆ™bn) p = amp bnp

= ๏ฟฝ๐‘Ž๐‘Ž25 โ€“ 13๏ฟฝ ๏ฟฝ๐‘Ž๐‘Ž

45 โˆ’ 13๏ฟฝ = ๏ฟฝ๐‘Ž๐‘Ž

615 โ€“ 515๏ฟฝ ๏ฟฝ๐‘Ž๐‘Ž

1215 โˆ’ 515๏ฟฝ ๐‘Ž๐‘Ž๐‘š๐‘š

๐‘Ž๐‘Ž๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘š๐‘šโˆ’๐‘›๐‘› ; LCD = 15

= ๐‘Ž๐‘Ž115 ๐‘Ž๐‘Ž

715 = (๐‘Ž๐‘Ž1 ๐‘Ž๐‘Ž7)

115 = โˆš๐’‚๐’‚๐’ƒ๐’ƒ๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

๐‘Ž๐‘Ž1๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘›

9

1n = 2

n = 2

Page 7-9

Simplifying Radicals

Example: Simplify .

1. โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ = โˆš2 โˆ™ 9 ๐‘ฅ๐‘ฅ2 โˆ™ ๐‘ฅ๐‘ฅ Factor out a perfect square: 9 = 32

= ๏ฟฝ(3๐‘ฅ๐‘ฅ)2 โˆš2๐‘ฅ๐‘ฅ = ๐Ÿ‘๐Ÿ‘|๐Ÿ๐Ÿ|โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘›๐‘› ; โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›= ๐‘Ž๐‘Ž

2. โˆš๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ ๐Ÿ‘๐Ÿ‘ = โˆš5 โˆ™ 83 = โˆš5 โˆ™ 233Factor out a perfect cube: 8 = 23

= โˆš53 โˆš233 = ๐Ÿ๐Ÿโˆš๐Ÿ“๐Ÿ“ ๐Ÿ‘๐Ÿ‘โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘›๐‘› ; โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›

= ๐‘Ž๐‘Ž

3. ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐’š๐’š ๐Ÿ‘๐Ÿ‘ = ๏ฟฝ3 โˆ™ 8๐‘ฅ๐‘ฅ3๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆ 3 = ๏ฟฝ3๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆ 3 โˆš8๐‘ฅ๐‘ฅ33โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘›๐‘› ; regroup

= ๏ฟฝ3๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆ 3 ๏ฟฝ(2๐‘ฅ๐‘ฅ)33 = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๏ฟฝ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š ๐Ÿ‘๐Ÿ‘ 8 = 23 ; โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›= ๐‘Ž๐‘Ž

4. โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’ โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’ = โˆš๐‘ฅ๐‘ฅ2 โˆ™ 16๐‘ฅ๐‘ฅ6 4โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› ; am an = am + n

= โˆš24 โˆ™ ๐‘ฅ๐‘ฅ8 4Rewrite 16 as a perfect 4th power: 16 = 24

= โˆš244 โˆš๐‘ฅ๐‘ฅ8 4 = 2 โˆš๐‘ฅ๐‘ฅ8 4โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘›๐‘› ; โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›

= ๐‘Ž๐‘Ž

= 2 ๐‘ฅ๐‘ฅ84 = 2x2

โˆš๐‘Ž๐‘Ž ๐‘›๐‘› m = ๐‘Ž๐‘Ž

๐‘š๐‘š๐‘›๐‘›

5. ๏ฟฝ ๐Ÿ—๐Ÿ—๐Ÿ’๐Ÿ’๐Ÿ—๐Ÿ—

= โˆš9โˆš49

= โˆš32

โˆš72= ๐Ÿ‘๐Ÿ‘

๐Ÿ•๐Ÿ•๏ฟฝ๐‘Ž๐‘Ž๐‘๐‘

๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘›

โˆš๐‘๐‘๐‘›๐‘› ; โˆš๐‘Ž๐‘Ž ๐‘›๐‘› ๐‘›๐‘›= ๐‘Ž๐‘Ž

6. ๏ฟฝ ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘

๐Ÿ“๐Ÿ“= โˆš325

โˆš2435 = โˆš255

๏ฟฝ355 = ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ ๏ฟฝ๐‘Ž๐‘Ž

๐‘๐‘๐‘›๐‘› = โˆš๐‘Ž๐‘Ž

๐‘›๐‘›

โˆš๐‘๐‘๐‘›๐‘› ; 25 = 32 ; 35 = 243

5 2nd F โˆš๐‘ฅ๐‘ฅ 243 = 3

7. ๏ฟฝ ๐Ÿ“๐Ÿ“๐Ÿ’๐Ÿ’๐’‚๐’‚๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐’‚๐’‚๐Ÿ’๐Ÿ’= ๏ฟฝ 9๐‘Ž๐‘Ž8

๐‘Ž๐‘Ž4 = โˆš32๐’‚๐’‚๐Ÿ’๐Ÿ’ ๐‘Ž๐‘Ž๐‘š๐‘š

๐‘Ž๐‘Ž๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘š๐‘šโˆ’๐‘›๐‘›

= ๏ฟฝ32(๐’‚๐’‚๐Ÿ๐Ÿ)๐Ÿ๐Ÿ = โˆš32 โˆ™ ๏ฟฝ(๐‘Ž๐‘Ž2)2 = 3a2โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘›๐‘› ; โˆš๐‘Ž๐‘Ž ๐‘›๐‘› ๐‘›๐‘›

= ๐‘Ž๐‘Ž

8.๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’‚๐’‚๐Ÿ“๐Ÿ“๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

๏ฟฝ๐Ÿ‘๐Ÿ‘๐’‚๐’‚๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ = ๏ฟฝ81๐‘Ž๐‘Ž5๐‘๐‘8

3๐‘Ž๐‘Ž2๐‘๐‘23

= โˆš27๐‘Ž๐‘Ž3๐‘Ž๐‘Ž6 3 = โˆš33๐‘Ž๐‘Ž3๐‘Ž๐‘Ž6 3 โˆš๐‘Ž๐‘Ž๐‘›๐‘›

โˆš๐‘๐‘๐‘›๐‘› = ๏ฟฝ๐‘Ž๐‘Ž๐‘๐‘

๐‘›๐‘› ; ๐‘Ž๐‘Ž๐‘š๐‘š

๐‘Ž๐‘Ž๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘š๐‘šโˆ’๐‘›๐‘›

= โˆš333 โˆš๐‘Ž๐‘Ž33 โˆš๐‘Ž๐‘Ž63 = 3a๐‘Ž๐‘Ž63 = 3a๐’ƒ๐’ƒ๐Ÿ๐Ÿ โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘›๐‘› ; โˆš๐‘Ž๐‘Ž ๐‘›๐‘› ๐‘›๐‘›

= ๐‘Ž๐‘Ž; โˆš๐‘Ž๐‘Ž ๐‘›๐‘› m = ๐‘Ž๐‘Ž

๐‘š๐‘š๐‘›๐‘›

9.๏ฟฝ๐’‚๐’‚๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐Ÿ’๐Ÿ’๐Ÿ“๐Ÿ“

โˆš๐’‚๐’‚๐’ƒ๐’ƒ๐Ÿ‘๐Ÿ‘ = (๐‘Ž๐‘Ž2๐‘๐‘4)15

(๐‘Ž๐‘Ž๐‘๐‘)13

= ๐‘Ž๐‘Ž25 ๐‘๐‘

45

๐‘Ž๐‘Ž13 ๐‘๐‘

13

โˆš๐‘Ž๐‘Ž๐‘›๐‘› = ๐‘Ž๐‘Ž1๐‘›๐‘› ; (am โˆ™bn) p = amp bnp

= ๏ฟฝ๐‘Ž๐‘Ž25 โ€“ 13๏ฟฝ ๏ฟฝ๐‘Ž๐‘Ž

45 โˆ’ 13๏ฟฝ = ๏ฟฝ๐‘Ž๐‘Ž

615 โ€“ 515๏ฟฝ ๏ฟฝ๐‘Ž๐‘Ž

1215 โˆ’ 515๏ฟฝ ๐‘Ž๐‘Ž๐‘š๐‘š

๐‘Ž๐‘Ž๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘š๐‘šโˆ’๐‘›๐‘› ; LCD = 15

= ๐‘Ž๐‘Ž115 ๐‘Ž๐‘Ž

715 = (๐‘Ž๐‘Ž1 ๐‘Ž๐‘Ž7)

115 = โˆš๐’‚๐’‚๐’ƒ๐’ƒ๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

๐‘Ž๐‘Ž1๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘›

9

1n = 2

n = 2

Page 7-9

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 151

Algebra I & II Key Concepts, Practice, and Quizzes Unit 7 โ€“ Radicals

7-4 OPERATIONS WITH RADICALS

Adding and Subtracting Radicals

โ€ข Add and subtract radical expressions by combining the like radicals (or like terms) .

โ€ข Like radicals are radicals with exactly the same index (n) and radicand (a) . โˆš๐‘Ž๐‘Ž๐‘›๐‘›

Example

Like Radicals 4 โˆš๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ ๐Ÿ‘๐Ÿ‘ and -6 โˆš๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ ๐Ÿ‘๐Ÿ‘ The same index (3) and radicand (5a)

Unlike Radicals 7x โˆš6๐‘ฅ๐‘ฅ ๐Ÿ‘๐Ÿ‘ and 5x โˆš6๐‘ฅ๐‘ฅ ๐Ÿ•๐Ÿ• The same radicand but different index (3 and 7)

Tips: Combine expressions: 7ab โ€“ 2ab + 3ab = ab (7 โ€“ 2 + 3) = 8ab

Combine radicals: 7โˆš๐Ÿ“๐Ÿ“๐’‚๐’‚ โ€“ 2โˆš๐Ÿ“๐Ÿ“๐’‚๐’‚ + 3โˆš๐Ÿ“๐Ÿ“๐’‚๐’‚ = โˆš๐Ÿ“๐Ÿ“๐’‚๐’‚ (7 โ€“ 2 + 3) = 8โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž

Example: Perform the indicated operations and simplify .

1. 5โˆš๐Ÿ‘๐Ÿ‘ + 4โˆš๐Ÿ‘๐Ÿ‘ โ€“ 2โˆš๐Ÿ‘๐Ÿ‘ = โˆš๐Ÿ‘๐Ÿ‘ (5 + 4 โ€“ 2) = 7โˆš๐Ÿ‘๐Ÿ‘ Factor out โˆš3.

2. 3โˆš๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ + โˆš๐Ÿ๐Ÿ๐Ÿ”๐Ÿ” = 3โˆš64 โˆ™ 4 + โˆš64 Rewrite: 256 = 64 โˆ™ 4

= 3โˆš๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”โˆš4 + โˆš๐Ÿ๐Ÿ๐Ÿ”๐Ÿ” โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘›๐‘›

= โˆš๐Ÿ๐Ÿ๐Ÿ”๐Ÿ” (3โˆš4 + 1) Factor out โˆš64.

= โˆš82 (3โˆ™2 + 1) = 8 โˆ™ 7 = 56 โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›= ๐‘Ž๐‘Ž

3. 9โˆš๐Ÿ‘๐Ÿ‘๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿโˆš๐Ÿ•๐Ÿ•๐’™๐’™๐Ÿ‘๐Ÿ‘ = 9โˆš5 โˆ™ 7๐‘ฅ๐‘ฅ3 โ€“ 2โˆš7๐‘ฅ๐‘ฅ3 Rewrite: 35 = 5โˆ™7

= 9โˆš5 โˆš๐Ÿ•๐Ÿ•๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’ 2โˆš๐Ÿ•๐Ÿ•๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘›๐‘›

= โˆš7๐‘ฅ๐‘ฅ3 (9โˆš5 โˆ’ 2) Factor out โˆš7๐‘ฅ๐‘ฅ3.

= โˆš7๐‘ฅ๐‘ฅ โˆ™ ๐‘ฅ๐‘ฅ2 (9โˆš5 โˆ’ 2) am an = am + n

= ๐’™๐’™โˆš๐Ÿ•๐Ÿ•๐’™๐’™ (๐Ÿ—๐Ÿ—โˆš๐Ÿ“๐Ÿ“ โˆ’ ๐Ÿ๐Ÿ) โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›= ๐‘Ž๐‘Ž

4. 2 ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘ โ€“ 3 ๏ฟฝ๐Ÿ“๐Ÿ“๐Ÿ”๐Ÿ”๐Ÿ๐Ÿ๐Ÿ”๐Ÿ” ๐Ÿ‘๐Ÿ‘ = 2 ๏ฟฝ2 โˆ™ 8๐‘ฆ๐‘ฆ 3 โˆ’ 3 ๏ฟฝ2 โˆ™ 27๐‘ฆ๐‘ฆ โˆ™ ๐‘ฆ๐‘ฆ3 3Rewrite: ๐‘ฆ๐‘ฆ4 = ๐‘ฆ๐‘ฆ1๐‘ฆ๐‘ฆ3; 16 = 2โˆ™8 ; 54 = 2โˆ™27

= 2 ๏ฟฝ2๐‘ฆ๐‘ฆ 3 โˆš23 3 โˆ’ 3 ๏ฟฝ2๐‘ฆ๐‘ฆ 3 โˆš33 3 ๏ฟฝ๐‘ฆ๐‘ฆ3 3โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘›๐‘› ; regroup

= 2 ๏ฟฝ2๐‘ฆ๐‘ฆ 3 โˆ™ 2 โˆ’ 3 โˆ™ ๏ฟฝ2๐‘ฆ๐‘ฆ 3 โˆ™ 3 โˆ™ ๐‘ฆ๐‘ฆ โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›= ๐‘Ž๐‘Ž

= 4 ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘ โˆ’ 9 ๐‘ฆ๐‘ฆ ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘

= ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘ (๐Ÿ”๐Ÿ” โˆ’ ๐Ÿ—๐Ÿ—๐Ÿ๐Ÿ) Factor out ๏ฟฝ2๐‘ฆ๐‘ฆ 3.

Page 7-10

7-4 OPERATIONS WITH RADICALS

Adding and Subtracting Radicals

โ€ข Add and subtract radical expressions by combining the like radicals (or like terms) .

โ€ข Like radicals are radicals with exactly the same index (n) and radicand (a) . โˆš๐‘Ž๐‘Ž๐‘›๐‘›

Example

Like Radicals 4 โˆš๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ ๐Ÿ‘๐Ÿ‘ and -6 โˆš๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ ๐Ÿ‘๐Ÿ‘ The same index (3) and radicand (5a)

Unlike Radicals 7x โˆš6๐‘ฅ๐‘ฅ ๐Ÿ‘๐Ÿ‘ and 5x โˆš6๐‘ฅ๐‘ฅ ๐Ÿ•๐Ÿ• The same radicand but different index (3 and 7)

Tips: Combine expressions: 7ab โ€“ 2ab + 3ab = ab (7 โ€“ 2 + 3) = 8ab

Combine radicals: 7โˆš๐Ÿ“๐Ÿ“๐’‚๐’‚ โ€“ 2โˆš๐Ÿ“๐Ÿ“๐’‚๐’‚ + 3โˆš๐Ÿ“๐Ÿ“๐’‚๐’‚ = โˆš๐Ÿ“๐Ÿ“๐’‚๐’‚ (7 โ€“ 2 + 3) = 8โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž

Example: Perform the indicated operations and simplify .

1. 5โˆš๐Ÿ‘๐Ÿ‘ + 4โˆš๐Ÿ‘๐Ÿ‘ โ€“ 2โˆš๐Ÿ‘๐Ÿ‘ = โˆš๐Ÿ‘๐Ÿ‘ (5 + 4 โ€“ 2) = 7โˆš๐Ÿ‘๐Ÿ‘ Factor out โˆš3.

2. 3โˆš๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ + โˆš๐Ÿ๐Ÿ๐Ÿ”๐Ÿ” = 3โˆš64 โˆ™ 4 + โˆš64 Rewrite: 256 = 64 โˆ™ 4

= 3โˆš๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”โˆš4 + โˆš๐Ÿ๐Ÿ๐Ÿ”๐Ÿ” โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘›๐‘›

= โˆš๐Ÿ๐Ÿ๐Ÿ”๐Ÿ” (3โˆš4 + 1) Factor out โˆš64.

= โˆš82 (3โˆ™2 + 1) = 8 โˆ™ 7 = 56 โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›= ๐‘Ž๐‘Ž

3. 9โˆš๐Ÿ‘๐Ÿ‘๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿโˆš๐Ÿ•๐Ÿ•๐’™๐’™๐Ÿ‘๐Ÿ‘ = 9โˆš5 โˆ™ 7๐‘ฅ๐‘ฅ3 โ€“ 2โˆš7๐‘ฅ๐‘ฅ3 Rewrite: 35 = 5โˆ™7

= 9โˆš5 โˆš๐Ÿ•๐Ÿ•๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’ 2โˆš๐Ÿ•๐Ÿ•๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘›๐‘›

= โˆš7๐‘ฅ๐‘ฅ3 (9โˆš5 โˆ’ 2) Factor out โˆš7๐‘ฅ๐‘ฅ3.

= โˆš7๐‘ฅ๐‘ฅ โˆ™ ๐‘ฅ๐‘ฅ2 (9โˆš5 โˆ’ 2) am an = am + n

= ๐’™๐’™โˆš๐Ÿ•๐Ÿ•๐’™๐’™ (๐Ÿ—๐Ÿ—โˆš๐Ÿ“๐Ÿ“ โˆ’ ๐Ÿ๐Ÿ) โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›= ๐‘Ž๐‘Ž

4. 2 ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘ โ€“ 3 ๏ฟฝ๐Ÿ“๐Ÿ“๐Ÿ”๐Ÿ”๐Ÿ๐Ÿ๐Ÿ”๐Ÿ” ๐Ÿ‘๐Ÿ‘ = 2 ๏ฟฝ2 โˆ™ 8๐‘ฆ๐‘ฆ 3 โˆ’ 3 ๏ฟฝ2 โˆ™ 27๐‘ฆ๐‘ฆ โˆ™ ๐‘ฆ๐‘ฆ3 3Rewrite: ๐‘ฆ๐‘ฆ4 = ๐‘ฆ๐‘ฆ1๐‘ฆ๐‘ฆ3; 16 = 2โˆ™8 ; 54 = 2โˆ™27

= 2 ๏ฟฝ2๐‘ฆ๐‘ฆ 3 โˆš23 3 โˆ’ 3 ๏ฟฝ2๐‘ฆ๐‘ฆ 3 โˆš33 3 ๏ฟฝ๐‘ฆ๐‘ฆ3 3โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘›๐‘› ; regroup

= 2 ๏ฟฝ2๐‘ฆ๐‘ฆ 3 โˆ™ 2 โˆ’ 3 โˆ™ ๏ฟฝ2๐‘ฆ๐‘ฆ 3 โˆ™ 3 โˆ™ ๐‘ฆ๐‘ฆ โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›= ๐‘Ž๐‘Ž

= 4 ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘ โˆ’ 9 ๐‘ฆ๐‘ฆ ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘

= ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘ (๐Ÿ”๐Ÿ” โˆ’ ๐Ÿ—๐Ÿ—๐Ÿ๐Ÿ) Factor out ๏ฟฝ2๐‘ฆ๐‘ฆ 3.

Page 7-10

7-4 OPERATIONS WITH RADICALS

Adding and Subtracting Radicals

โ€ข Add and subtract radical expressions by combining the like radicals (or like terms) .

โ€ข Like radicals are radicals with exactly the same index (n) and radicand (a) . โˆš๐‘Ž๐‘Ž๐‘›๐‘›

Example

Like Radicals 4 โˆš๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ ๐Ÿ‘๐Ÿ‘ and -6 โˆš๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ ๐Ÿ‘๐Ÿ‘ The same index (3) and radicand (5a)

Unlike Radicals 7x โˆš6๐‘ฅ๐‘ฅ ๐Ÿ‘๐Ÿ‘ and 5x โˆš6๐‘ฅ๐‘ฅ ๐Ÿ•๐Ÿ• The same radicand but different index (3 and 7)

Tips: Combine expressions: 7ab โ€“ 2ab + 3ab = ab (7 โ€“ 2 + 3) = 8ab

Combine radicals: 7โˆš๐Ÿ“๐Ÿ“๐’‚๐’‚ โ€“ 2โˆš๐Ÿ“๐Ÿ“๐’‚๐’‚ + 3โˆš๐Ÿ“๐Ÿ“๐’‚๐’‚ = โˆš๐Ÿ“๐Ÿ“๐’‚๐’‚ (7 โ€“ 2 + 3) = 8โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž

Example: Perform the indicated operations and simplify .

1. 5โˆš๐Ÿ‘๐Ÿ‘ + 4โˆš๐Ÿ‘๐Ÿ‘ โ€“ 2โˆš๐Ÿ‘๐Ÿ‘ = โˆš๐Ÿ‘๐Ÿ‘ (5 + 4 โ€“ 2) = 7โˆš๐Ÿ‘๐Ÿ‘ Factor out โˆš3.

2. 3โˆš๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ + โˆš๐Ÿ๐Ÿ๐Ÿ”๐Ÿ” = 3โˆš64 โˆ™ 4 + โˆš64 Rewrite: 256 = 64 โˆ™ 4

= 3โˆš๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”โˆš4 + โˆš๐Ÿ๐Ÿ๐Ÿ”๐Ÿ” โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘›๐‘›

= โˆš๐Ÿ๐Ÿ๐Ÿ”๐Ÿ” (3โˆš4 + 1) Factor out โˆš64.

= โˆš82 (3โˆ™2 + 1) = 8 โˆ™ 7 = 56 โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›= ๐‘Ž๐‘Ž

3. 9โˆš๐Ÿ‘๐Ÿ‘๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿโˆš๐Ÿ•๐Ÿ•๐’™๐’™๐Ÿ‘๐Ÿ‘ = 9โˆš5 โˆ™ 7๐‘ฅ๐‘ฅ3 โ€“ 2โˆš7๐‘ฅ๐‘ฅ3 Rewrite: 35 = 5โˆ™7

= 9โˆš5 โˆš๐Ÿ•๐Ÿ•๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’ 2โˆš๐Ÿ•๐Ÿ•๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘›๐‘›

= โˆš7๐‘ฅ๐‘ฅ3 (9โˆš5 โˆ’ 2) Factor out โˆš7๐‘ฅ๐‘ฅ3.

= โˆš7๐‘ฅ๐‘ฅ โˆ™ ๐‘ฅ๐‘ฅ2 (9โˆš5 โˆ’ 2) am an = am + n

= ๐’™๐’™โˆš๐Ÿ•๐Ÿ•๐’™๐’™ (๐Ÿ—๐Ÿ—โˆš๐Ÿ“๐Ÿ“ โˆ’ ๐Ÿ๐Ÿ) โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›= ๐‘Ž๐‘Ž

4. 2 ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘ โ€“ 3 ๏ฟฝ๐Ÿ“๐Ÿ“๐Ÿ”๐Ÿ”๐Ÿ๐Ÿ๐Ÿ”๐Ÿ” ๐Ÿ‘๐Ÿ‘ = 2 ๏ฟฝ2 โˆ™ 8๐‘ฆ๐‘ฆ 3 โˆ’ 3 ๏ฟฝ2 โˆ™ 27๐‘ฆ๐‘ฆ โˆ™ ๐‘ฆ๐‘ฆ3 3Rewrite: ๐‘ฆ๐‘ฆ4 = ๐‘ฆ๐‘ฆ1๐‘ฆ๐‘ฆ3; 16 = 2โˆ™8 ; 54 = 2โˆ™27

= 2 ๏ฟฝ2๐‘ฆ๐‘ฆ 3 โˆš23 3 โˆ’ 3 ๏ฟฝ2๐‘ฆ๐‘ฆ 3 โˆš33 3 ๏ฟฝ๐‘ฆ๐‘ฆ3 3โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘›๐‘› ; regroup

= 2 ๏ฟฝ2๐‘ฆ๐‘ฆ 3 โˆ™ 2 โˆ’ 3 โˆ™ ๏ฟฝ2๐‘ฆ๐‘ฆ 3 โˆ™ 3 โˆ™ ๐‘ฆ๐‘ฆ โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›= ๐‘Ž๐‘Ž

= 4 ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘ โˆ’ 9 ๐‘ฆ๐‘ฆ ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘

= ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘ (๐Ÿ”๐Ÿ” โˆ’ ๐Ÿ—๐Ÿ—๐Ÿ๐Ÿ) Factor out ๏ฟฝ2๐‘ฆ๐‘ฆ 3.

Page 7-10

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

152 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 7 โ€“ Radicals

Multiplying Radicals

โ€ข Multiplying radical expressions is based on the product rule and distributive property . Multiply

โ€ข Review: Product rule: โˆš๐‘Ž๐‘Ž ๐‘›๐‘› โˆš๐‘๐‘๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘๐‘ ๐‘›๐‘›Note: โˆš๐‘Ž๐‘Ž ๐‘›๐‘› โˆš๐‘๐‘ ๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘๐‘ ๐‘›๐‘›

Distributive property: a (b + c) = a b + a c Simplify

Example: Find the following products .

1. 2โˆš๐Ÿ‘๐Ÿ‘ (3โˆš๐Ÿ๐Ÿ +โˆš๐Ÿ‘๐Ÿ‘) = 2โˆš3 โˆ™ 3โˆš2 + 2โˆš3โˆš3 = 6โˆš3 โˆ™ 2 + 2โˆš32 Distributive property

= 6โˆš6 + 2 โˆ™ 3 = ๐Ÿ”๐Ÿ”(โˆš๐Ÿ”๐Ÿ” + 1) โˆš๐‘Ž๐‘Ž๐‘๐‘๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘๐‘๐‘›๐‘› ; โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›= ๐‘Ž๐‘Ž

2. โˆš๐Ÿ๐Ÿ ๐Ÿ’๐Ÿ’ ๏ฟฝโˆš๐Ÿ–๐Ÿ–๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ‘๐Ÿ‘ โˆš๐Ÿ‘๐Ÿ‘ ๐Ÿ’๐Ÿ’ ๏ฟฝ = โˆš2 4 โˆš84 โˆ’ 3โˆš24 โˆš3 4 = โˆš164 โˆ’ 3โˆš64Distribute, โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘๐‘๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘๐‘๐‘›๐‘›

= โˆš244 โˆ’ 3โˆš64 = ๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘โˆš๐Ÿ”๐Ÿ”๐Ÿ’๐Ÿ’โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›

= ๐‘Ž๐‘Ž

3. ๐Ÿ๐Ÿ โˆš๐’™๐’™ ๐Ÿ‘๐Ÿ‘ ๏ฟฝโˆš๐’™๐’™๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ + ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ๐’š๐’š๐Ÿ‘๐Ÿ‘ ๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ‘๐Ÿ‘โˆš๐’™๐’™๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ ๏ฟฝ = 2โˆš๐‘ฅ๐‘ฅ3 โˆš๐‘ฅ๐‘ฅ23 + 2โˆš๐‘ฅ๐‘ฅ3 ๏ฟฝ๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆ3 3 + 2 โˆš๐‘ฅ๐‘ฅ 3 (-3 โˆš๐‘ฅ๐‘ฅ2 3 ) Distribute

= 2โˆš๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ23 + 2 ๏ฟฝ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆ3 3 โˆ’ 6 โˆš๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ2 3โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘๐‘๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘๐‘๐‘›๐‘›

= 2โˆš๐‘ฅ๐‘ฅ3๐Ÿ‘๐Ÿ‘ + 2 ๏ฟฝ๐‘ฅ๐‘ฅ3๐‘ฆ๐‘ฆ3 3 โˆ’ 6โˆš๐‘ฅ๐‘ฅ3๐Ÿ‘๐Ÿ‘am an = am + n

= 2๐‘ฅ๐‘ฅ + 2 โˆš๐‘ฅ๐‘ฅ3 3 ๏ฟฝ๐‘ฆ๐‘ฆ3 3 โˆ’ 6๐‘ฅ๐‘ฅ โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›= ๐‘Ž๐‘Ž

= 2๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ โˆ’ 4๐‘ฅ๐‘ฅ = ๐Ÿ๐Ÿ๐’™๐’™ (๐’š๐’š โˆ’ ๐Ÿ๐Ÿ) Factor out 2x.

4. (โˆš๐Ÿ‘๐Ÿ‘ โˆ’ โˆš๐Ÿ๐Ÿ) (3โˆš๐Ÿ๐Ÿ +โˆš๐Ÿ‘๐Ÿ‘) = 3โˆš3 โˆš2 + โˆš3โˆš3 โˆ’ 3โˆš2โˆš2 โˆ’ โˆš2โˆš3 FOIL

= 3โˆš6 + โˆš32 โˆ’ 3โˆš22 โˆ’ โˆš6 โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘๐‘๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘๐‘๐‘›๐‘› ; โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›= ๐‘Ž๐‘Ž

= 3โˆš๐Ÿ”๐Ÿ” + 3 โˆ’ 3 โˆ™ 2 โˆ’ โˆš๐Ÿ”๐Ÿ” = 2โˆš๐Ÿ”๐Ÿ” โˆ’ ๐Ÿ‘๐Ÿ‘ Combine like radicals .

5. (โˆš๐Ÿ๐Ÿ โˆ’ โˆš๐Ÿ“๐Ÿ“)2 = โˆš22โˆ’ 2โˆš2โˆš5 + โˆš5

2= 2 โˆ’ 2โˆš10 + 5 = 7 โˆ’ ๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ (๐‘Ž๐‘Ž โˆ’ ๐‘๐‘)2 = ๐‘Ž๐‘Ž2 โˆ’ 2๐‘Ž๐‘Ž๐‘๐‘ + ๐‘๐‘2

โ€ข Conjugates are two binomials (2 terms) whose only difference is the sign of one term . (Switch the middle sign of a pair of binomials, then conjugate to (a + b) is (a โ€“ b) .)

Conjugates Switch the middle sign3 โˆ’ 4 3 + 4

2x + โˆš5 2x โˆ’ โˆš5โˆš๐‘Ž๐‘Ž โˆ’ โˆš๐‘๐‘ โˆš๐‘Ž๐‘Ž + โˆš๐‘๐‘

5 + 7i 5 โˆ’ 7i

Example: Find the following products .

1. (โˆš5 + โˆš3) (โˆš5 โˆ’ โˆš3) = โˆš52โˆ’ โˆš3

2= 5 โ€“ 3 = 2 (๐‘Ž๐‘Ž + ๐‘๐‘) (๐‘Ž๐‘Ž โ€“ ๐‘๐‘) = ๐‘Ž๐‘Ž2โ€“ ๐‘๐‘2

or = โˆš52โˆ’ โˆš5โˆš3 + โˆš3โˆš5 โˆ’โˆš3

2= โˆš5

2โˆ’ โˆš3

2FOIL

2. (โˆš๐‘Ž๐‘Ž โˆ’ โˆš3) (โˆš๐‘Ž๐‘Ž + โˆš3) = โˆš๐‘Ž๐‘Ž2โˆ’ โˆš3

2= a โˆ’ 3 (๐‘Ž๐‘Ž + ๐‘๐‘) (๐‘Ž๐‘Ž โ€“ ๐‘๐‘) = ๐‘Ž๐‘Ž2โ€“ ๐‘๐‘2

Tip: The radicals will disappear if a pair of conjugates are mulitplied .

Example:

Page 7-11

Multiplying Radicals

โ€ข Multiplying radical expressions is based on the product rule and distributive property . Multiply

โ€ข Review: Product rule: โˆš๐‘Ž๐‘Ž ๐‘›๐‘› โˆš๐‘๐‘๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘๐‘ ๐‘›๐‘›Note: โˆš๐‘Ž๐‘Ž ๐‘›๐‘› โˆš๐‘๐‘ ๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘๐‘ ๐‘›๐‘›

Distributive property: a (b + c) = a b + a c Simplify

Example: Find the following products .

1. 2โˆš๐Ÿ‘๐Ÿ‘ (3โˆš๐Ÿ๐Ÿ +โˆš๐Ÿ‘๐Ÿ‘) = 2โˆš3 โˆ™ 3โˆš2 + 2โˆš3โˆš3 = 6โˆš3 โˆ™ 2 + 2โˆš32 Distributive property

= 6โˆš6 + 2 โˆ™ 3 = ๐Ÿ”๐Ÿ”(โˆš๐Ÿ”๐Ÿ” + 1) โˆš๐‘Ž๐‘Ž๐‘๐‘๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘๐‘๐‘›๐‘› ; โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›= ๐‘Ž๐‘Ž

2. โˆš๐Ÿ๐Ÿ ๐Ÿ’๐Ÿ’ ๏ฟฝโˆš๐Ÿ–๐Ÿ–๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ‘๐Ÿ‘ โˆš๐Ÿ‘๐Ÿ‘ ๐Ÿ’๐Ÿ’ ๏ฟฝ = โˆš2 4 โˆš84 โˆ’ 3โˆš24 โˆš3 4 = โˆš164 โˆ’ 3โˆš64Distribute, โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘๐‘๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘๐‘๐‘›๐‘›

= โˆš244 โˆ’ 3โˆš64 = ๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘โˆš๐Ÿ”๐Ÿ”๐Ÿ’๐Ÿ’โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›

= ๐‘Ž๐‘Ž

3. ๐Ÿ๐Ÿ โˆš๐’™๐’™ ๐Ÿ‘๐Ÿ‘ ๏ฟฝโˆš๐’™๐’™๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ + ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ๐’š๐’š๐Ÿ‘๐Ÿ‘ ๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ‘๐Ÿ‘โˆš๐’™๐’™๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ ๏ฟฝ = 2โˆš๐‘ฅ๐‘ฅ3 โˆš๐‘ฅ๐‘ฅ23 + 2โˆš๐‘ฅ๐‘ฅ3 ๏ฟฝ๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆ3 3 + 2 โˆš๐‘ฅ๐‘ฅ 3 (-3 โˆš๐‘ฅ๐‘ฅ2 3 ) Distribute

= 2โˆš๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ23 + 2 ๏ฟฝ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆ3 3 โˆ’ 6 โˆš๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ2 3โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘๐‘๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘๐‘๐‘›๐‘›

= 2โˆš๐‘ฅ๐‘ฅ3๐Ÿ‘๐Ÿ‘ + 2 ๏ฟฝ๐‘ฅ๐‘ฅ3๐‘ฆ๐‘ฆ3 3 โˆ’ 6โˆš๐‘ฅ๐‘ฅ3๐Ÿ‘๐Ÿ‘am an = am + n

= 2๐‘ฅ๐‘ฅ + 2 โˆš๐‘ฅ๐‘ฅ3 3 ๏ฟฝ๐‘ฆ๐‘ฆ3 3 โˆ’ 6๐‘ฅ๐‘ฅ โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›= ๐‘Ž๐‘Ž

= 2๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ โˆ’ 4๐‘ฅ๐‘ฅ = ๐Ÿ๐Ÿ๐’™๐’™ (๐’š๐’š โˆ’ ๐Ÿ๐Ÿ) Factor out 2x.

4. (โˆš๐Ÿ‘๐Ÿ‘ โˆ’ โˆš๐Ÿ๐Ÿ) (3โˆš๐Ÿ๐Ÿ +โˆš๐Ÿ‘๐Ÿ‘) = 3โˆš3 โˆš2 + โˆš3โˆš3 โˆ’ 3โˆš2โˆš2 โˆ’ โˆš2โˆš3 FOIL

= 3โˆš6 + โˆš32 โˆ’ 3โˆš22 โˆ’ โˆš6 โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘๐‘๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘๐‘๐‘›๐‘› ; โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›= ๐‘Ž๐‘Ž

= 3โˆš๐Ÿ”๐Ÿ” + 3 โˆ’ 3 โˆ™ 2 โˆ’ โˆš๐Ÿ”๐Ÿ” = 2โˆš๐Ÿ”๐Ÿ” โˆ’ ๐Ÿ‘๐Ÿ‘ Combine like radicals .

5. (โˆš๐Ÿ๐Ÿ โˆ’ โˆš๐Ÿ“๐Ÿ“)2 = โˆš22โˆ’ 2โˆš2โˆš5 + โˆš5

2= 2 โˆ’ 2โˆš10 + 5 = 7 โˆ’ ๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ (๐‘Ž๐‘Ž โˆ’ ๐‘๐‘)2 = ๐‘Ž๐‘Ž2 โˆ’ 2๐‘Ž๐‘Ž๐‘๐‘ + ๐‘๐‘2

โ€ข Conjugates are two binomials (2 terms) whose only difference is the sign of one term . (Switch the middle sign of a pair of binomials, then conjugate to (a + b) is (a โ€“ b) .)

Conjugates Switch the middle sign3 โˆ’ 4 3 + 4

2x + โˆš5 2x โˆ’ โˆš5โˆš๐‘Ž๐‘Ž โˆ’ โˆš๐‘๐‘ โˆš๐‘Ž๐‘Ž + โˆš๐‘๐‘

5 + 7i 5 โˆ’ 7i

Example: Find the following products .

1. (โˆš5 + โˆš3) (โˆš5 โˆ’ โˆš3) = โˆš52โˆ’ โˆš3

2= 5 โ€“ 3 = 2 (๐‘Ž๐‘Ž + ๐‘๐‘) (๐‘Ž๐‘Ž โ€“ ๐‘๐‘) = ๐‘Ž๐‘Ž2โ€“ ๐‘๐‘2

or = โˆš52โˆ’ โˆš5โˆš3 + โˆš3โˆš5 โˆ’โˆš3

2= โˆš5

2โˆ’ โˆš3

2FOIL

2. (โˆš๐‘Ž๐‘Ž โˆ’ โˆš3) (โˆš๐‘Ž๐‘Ž + โˆš3) = โˆš๐‘Ž๐‘Ž2โˆ’ โˆš3

2= a โˆ’ 3 (๐‘Ž๐‘Ž + ๐‘๐‘) (๐‘Ž๐‘Ž โ€“ ๐‘๐‘) = ๐‘Ž๐‘Ž2โ€“ ๐‘๐‘2

Tip: The radicals will disappear if a pair of conjugates are mulitplied .

Example:

Page 7-11

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 153

Algebra I & II Key Concepts, Practice, and Quizzes Unit 7 โ€“ Radicals

7-5 DIVIDING RADICALS

Rationalizing Denominators

โ€ข Rationalize the denominator by getting rid of the radicals in the denominator to satisfy the

simplest condition โ€“ no radical appears in the denominator .

โ€ข Rationalize a monomial by multiplying both denominator (bottom) and numerator (top) by

the root in the denominator .

In General Example

๐‘Ž๐‘Žโˆš๐‘๐‘

= ๐‘Ž๐‘Žโˆš๐’ƒ๐’ƒโˆš๐‘๐‘โˆš๐’ƒ๐’ƒ

= ๐‘Ž๐‘Žโˆš๐‘๐‘โˆš๐‘๐‘2

= ๐‘Ž๐‘Žโˆš๐‘๐‘๐‘๐‘

Multiply by โˆš๐‘๐‘ to get a perfect square. ๐Ÿ๐Ÿโˆš๐Ÿ”๐Ÿ”

= 2โˆš๐Ÿ”๐Ÿ”โˆš6โˆš๐Ÿ”๐Ÿ”

= 2โˆš6โˆš62

= 2โˆš66

= โˆš๐Ÿ”๐Ÿ”๐Ÿ‘๐Ÿ‘

โˆš๐‘๐‘2

= โˆš๐‘๐‘2 2 = ๐‘๐‘

Example: ๏ฟฝ ๐Ÿ‘๐Ÿ‘๐’‚๐’‚๐Ÿ‘๐Ÿ‘

๐Ÿ•๐Ÿ•๐’‚๐’‚๐Ÿ–๐Ÿ–=๏ฟฝ 3๐‘Ž๐‘Ž3

7๐‘Ž๐‘Ž3๐‘Ž๐‘Ž5=๏ฟฝ 3

7๐‘Ž๐‘Ž5 am an = a m + n ; โˆš๐‘Ž๐‘Ž๐‘›๐‘›

โˆš๐‘๐‘๐‘›๐‘› = ๏ฟฝ๐‘Ž๐‘Ž๐‘๐‘

๐‘›๐‘›

= โˆš3๏ฟฝ7๐‘Ž๐‘Ž5

= โˆš3๏ฟฝ7๐‘Ž๐‘Ž5

๏ฟฝ๐Ÿ•๐Ÿ•๐’‚๐’‚๐Ÿ“๐Ÿ“

๏ฟฝ๐Ÿ•๐Ÿ•๐’‚๐’‚๐Ÿ“๐Ÿ“ =

๏ฟฝ3โˆ™7๐‘Ž๐‘Ž5

๏ฟฝ(7๐‘Ž๐‘Ž5)(7๐‘Ž๐‘Ž5) Multiply by โˆš7๐‘Ž๐‘Ž5 ; โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘๐‘๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘๐‘๐‘›๐‘›

= โˆš21๐‘Ž๐‘Žโˆ™๐‘Ž๐‘Ž4

๏ฟฝ(7๐‘Ž๐‘Ž5)2 = โˆš21๐‘Ž๐‘Ž๏ฟฝ(๐‘Ž๐‘Ž2)2

๏ฟฝ(7๐‘Ž๐‘Ž5)2 = ๐‘Ž๐‘Ž2โˆš21๐‘Ž๐‘Ž

7๐‘Ž๐‘Ž5 = โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’‚๐’‚

๐Ÿ•๐Ÿ•๐’‚๐’‚๐Ÿ‘๐Ÿ‘ am an = a m + n ; anm = (an)m ; โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž

โ€ข Rationalize a binomial (two terms) in denominator by multiplying both denominator and

numerator by the conjugate of the denominator .

In General Example

1. ๐’‚๐’‚โˆš๐’ƒ๐’ƒ +โˆš๐’„๐’„

= ๐‘Ž๐‘Ž๏ฟฝโˆš๐’ƒ๐’ƒ โ€“โˆš๐’„๐’„๏ฟฝ๏ฟฝโˆš๐‘๐‘ +โˆš๐‘๐‘๏ฟฝ๏ฟฝโˆš๐’ƒ๐’ƒ โ€“โˆš๐’„๐’„๏ฟฝ

Multiply by ๏ฟฝโˆš๐‘๐‘ โ€“โˆš๐‘๐‘๏ฟฝ. 1. ๐Ÿ’๐Ÿ’โˆš๐Ÿ”๐Ÿ”+โˆš๐Ÿ๐Ÿ

= 4๏ฟฝโˆš๐Ÿ”๐Ÿ” โˆ’โˆš๐Ÿ๐Ÿ๏ฟฝ๏ฟฝโˆš6 +โˆš2๏ฟฝ๏ฟฝโˆš๐Ÿ”๐Ÿ” โˆ’โˆš๐Ÿ๐Ÿ๏ฟฝ

Multiply by ๏ฟฝโˆš6 โ€“โˆš2๏ฟฝ.

= ๐‘Ž๐‘Ž(โˆš๐‘๐‘โˆ’โˆš๐‘๐‘)(โˆš๐‘๐‘)2 โˆ’(โˆš๐‘๐‘)2

(a + b)(a โ€“ b) = a2 โ€“ b2 : = 4(โˆš6โˆ’โˆš2)(โˆš6)2 โˆ’(โˆš2)2

(a + b)(a โ€“ b) = a2 โ€“ b2 :

= ๐‘Ž๐‘Ž(โˆš๐‘๐‘โˆ’โˆš๐‘๐‘)๐‘๐‘โˆ’๐‘๐‘

= 4๏ฟฝโˆš6โˆ’โˆš2๏ฟฝ6โˆ’2

= โˆš๐Ÿ”๐Ÿ” โˆ’ โˆš๐Ÿ๐Ÿ

2. ๐’‚๐’‚โˆš๐’ƒ๐’ƒโˆ’โˆš๐’„๐’„

= ๐‘Ž๐‘Ž(โˆš๐’ƒ๐’ƒ+โˆš๐’„๐’„)(โˆš๐‘๐‘ โˆ’โˆš๐‘๐‘)(โˆš๐’ƒ๐’ƒ+โˆš๐’„๐’„)

Multiply by ๏ฟฝโˆš๐‘๐‘ + โˆš๐‘๐‘๏ฟฝ. 2. ๐Ÿ“๐Ÿ“โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’โˆš๐Ÿ“๐Ÿ“

= 5(โˆš10+โˆš5)(โˆš10 โˆ’โˆš5)(โˆš10+โˆš5)

Multiply by ๏ฟฝโˆš10 + โˆš5๏ฟฝ.

= ๐‘Ž๐‘Ž(โˆš๐‘๐‘+โˆš๐‘๐‘)(โˆš๐‘๐‘)2โˆ’(โˆš๐‘๐‘)2

a2 โ€“ b2 = (a + b)(a โ€“ b) : = 5(โˆš10+โˆš5)(โˆš10)2โˆ’(โˆš5)2

(a + b)(a โ€“ b) = a2 โ€“ b2:

= ๐‘Ž๐‘Ž(โˆš๐‘๐‘+โˆš๐‘๐‘)๐‘๐‘โˆ’๐‘๐‘

= 5(โˆš10+โˆš5)10โˆ’5

= โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ + โˆš๐Ÿ“๐Ÿ“

1

3

๐‘Ž๐‘Ž = โˆš๐‘๐‘ , ๐‘๐‘ = โˆš๐‘๐‘โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž

๐‘Ž๐‘Ž = โˆš6 , ๐‘๐‘ = โˆš2

๐‘Ž๐‘Ž = โˆš๐‘๐‘ , ๐‘๐‘ = โˆš๐‘๐‘โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž

๐‘Ž๐‘Ž = โˆš10 , ๐‘๐‘ = โˆš5โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž

Page 7-12

7-5 DIVIDING RADICALS

Rationalizing Denominators

โ€ข Rationalize the denominator by getting rid of the radicals in the denominator to satisfy the

simplest condition โ€“ no radical appears in the denominator .

โ€ข Rationalize a monomial by multiplying both denominator (bottom) and numerator (top) by

the root in the denominator .

In General Example

๐‘Ž๐‘Žโˆš๐‘๐‘

= ๐‘Ž๐‘Žโˆš๐’ƒ๐’ƒโˆš๐‘๐‘โˆš๐’ƒ๐’ƒ

= ๐‘Ž๐‘Žโˆš๐‘๐‘โˆš๐‘๐‘2

= ๐‘Ž๐‘Žโˆš๐‘๐‘๐‘๐‘

Multiply by โˆš๐‘๐‘ to get a perfect square. ๐Ÿ๐Ÿโˆš๐Ÿ”๐Ÿ”

= 2โˆš๐Ÿ”๐Ÿ”โˆš6โˆš๐Ÿ”๐Ÿ”

= 2โˆš6โˆš62

= 2โˆš66

= โˆš๐Ÿ”๐Ÿ”๐Ÿ‘๐Ÿ‘

โˆš๐‘๐‘2

= โˆš๐‘๐‘2 2 = ๐‘๐‘

Example: ๏ฟฝ ๐Ÿ‘๐Ÿ‘๐’‚๐’‚๐Ÿ‘๐Ÿ‘

๐Ÿ•๐Ÿ•๐’‚๐’‚๐Ÿ–๐Ÿ–=๏ฟฝ 3๐‘Ž๐‘Ž3

7๐‘Ž๐‘Ž3๐‘Ž๐‘Ž5=๏ฟฝ 3

7๐‘Ž๐‘Ž5 am an = a m + n ; โˆš๐‘Ž๐‘Ž๐‘›๐‘›

โˆš๐‘๐‘๐‘›๐‘› = ๏ฟฝ๐‘Ž๐‘Ž๐‘๐‘

๐‘›๐‘›

= โˆš3๏ฟฝ7๐‘Ž๐‘Ž5

= โˆš3๏ฟฝ7๐‘Ž๐‘Ž5

๏ฟฝ๐Ÿ•๐Ÿ•๐’‚๐’‚๐Ÿ“๐Ÿ“

๏ฟฝ๐Ÿ•๐Ÿ•๐’‚๐’‚๐Ÿ“๐Ÿ“ =

๏ฟฝ3โˆ™7๐‘Ž๐‘Ž5

๏ฟฝ(7๐‘Ž๐‘Ž5)(7๐‘Ž๐‘Ž5) Multiply by โˆš7๐‘Ž๐‘Ž5 ; โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘๐‘๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘๐‘๐‘›๐‘›

= โˆš21๐‘Ž๐‘Žโˆ™๐‘Ž๐‘Ž4

๏ฟฝ(7๐‘Ž๐‘Ž5)2 = โˆš21๐‘Ž๐‘Ž๏ฟฝ(๐‘Ž๐‘Ž2)2

๏ฟฝ(7๐‘Ž๐‘Ž5)2 = ๐‘Ž๐‘Ž2โˆš21๐‘Ž๐‘Ž

7๐‘Ž๐‘Ž5 = โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’‚๐’‚

๐Ÿ•๐Ÿ•๐’‚๐’‚๐Ÿ‘๐Ÿ‘ am an = a m + n ; anm = (an)m ; โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž

โ€ข Rationalize a binomial (two terms) in denominator by multiplying both denominator and

numerator by the conjugate of the denominator .

In General Example

1. ๐’‚๐’‚โˆš๐’ƒ๐’ƒ +โˆš๐’„๐’„

= ๐‘Ž๐‘Ž๏ฟฝโˆš๐’ƒ๐’ƒ โ€“โˆš๐’„๐’„๏ฟฝ๏ฟฝโˆš๐‘๐‘ +โˆš๐‘๐‘๏ฟฝ๏ฟฝโˆš๐’ƒ๐’ƒ โ€“โˆš๐’„๐’„๏ฟฝ

Multiply by ๏ฟฝโˆš๐‘๐‘ โ€“โˆš๐‘๐‘๏ฟฝ. 1. ๐Ÿ’๐Ÿ’โˆš๐Ÿ”๐Ÿ”+โˆš๐Ÿ๐Ÿ

= 4๏ฟฝโˆš๐Ÿ”๐Ÿ” โˆ’โˆš๐Ÿ๐Ÿ๏ฟฝ๏ฟฝโˆš6 +โˆš2๏ฟฝ๏ฟฝโˆš๐Ÿ”๐Ÿ” โˆ’โˆš๐Ÿ๐Ÿ๏ฟฝ

Multiply by ๏ฟฝโˆš6 โ€“โˆš2๏ฟฝ.

= ๐‘Ž๐‘Ž(โˆš๐‘๐‘โˆ’โˆš๐‘๐‘)(โˆš๐‘๐‘)2 โˆ’(โˆš๐‘๐‘)2

(a + b)(a โ€“ b) = a2 โ€“ b2 : = 4(โˆš6โˆ’โˆš2)(โˆš6)2 โˆ’(โˆš2)2

(a + b)(a โ€“ b) = a2 โ€“ b2 :

= ๐‘Ž๐‘Ž(โˆš๐‘๐‘โˆ’โˆš๐‘๐‘)๐‘๐‘โˆ’๐‘๐‘

= 4๏ฟฝโˆš6โˆ’โˆš2๏ฟฝ6โˆ’2

= โˆš๐Ÿ”๐Ÿ” โˆ’ โˆš๐Ÿ๐Ÿ

2. ๐’‚๐’‚โˆš๐’ƒ๐’ƒโˆ’โˆš๐’„๐’„

= ๐‘Ž๐‘Ž(โˆš๐’ƒ๐’ƒ+โˆš๐’„๐’„)(โˆš๐‘๐‘ โˆ’โˆš๐‘๐‘)(โˆš๐’ƒ๐’ƒ+โˆš๐’„๐’„)

Multiply by ๏ฟฝโˆš๐‘๐‘ + โˆš๐‘๐‘๏ฟฝ. 2. ๐Ÿ“๐Ÿ“โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’โˆš๐Ÿ“๐Ÿ“

= 5(โˆš10+โˆš5)(โˆš10 โˆ’โˆš5)(โˆš10+โˆš5)

Multiply by ๏ฟฝโˆš10 + โˆš5๏ฟฝ.

= ๐‘Ž๐‘Ž(โˆš๐‘๐‘+โˆš๐‘๐‘)(โˆš๐‘๐‘)2โˆ’(โˆš๐‘๐‘)2

a2 โ€“ b2 = (a + b)(a โ€“ b) : = 5(โˆš10+โˆš5)(โˆš10)2โˆ’(โˆš5)2

(a + b)(a โ€“ b) = a2 โ€“ b2:

= ๐‘Ž๐‘Ž(โˆš๐‘๐‘+โˆš๐‘๐‘)๐‘๐‘โˆ’๐‘๐‘

= 5(โˆš10+โˆš5)10โˆ’5

= โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ + โˆš๐Ÿ“๐Ÿ“

1

3

๐‘Ž๐‘Ž = โˆš๐‘๐‘ , ๐‘๐‘ = โˆš๐‘๐‘โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž

๐‘Ž๐‘Ž = โˆš6 , ๐‘๐‘ = โˆš2

๐‘Ž๐‘Ž = โˆš๐‘๐‘ , ๐‘๐‘ = โˆš๐‘๐‘โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž

๐‘Ž๐‘Ž = โˆš10 , ๐‘๐‘ = โˆš5โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž

Page 7-12

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

154 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 7 โ€“ Radicals

Dividing Radicals

โ€ข Dividing radical expressions is based on the quotient rule . Dividing

โ€ข Recall quotient rule: Note:

Simplify

โ€ข Tip: Multiply both denominator and numerator by a radical to get a perfect square, perfect

cube, perfect 4th power, perfect 5th power, etc . in the denominator .

Example: Perform the indicated operations (rationalize each denominator) .

1. ๏ฟฝ๐Ÿ“๐Ÿ“๐Ÿ‘๐Ÿ‘

= โˆš5โˆš3

= โˆš5โˆš๐Ÿ‘๐Ÿ‘โˆš3โˆš๐Ÿ‘๐Ÿ‘

๏ฟฝ๐‘Ž๐‘Ž๐‘๐‘

๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘›

โˆš๐‘๐‘๐‘›๐‘› ;

= โˆš5 โˆ™ 3

โˆš32 = โˆš๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

๐Ÿ‘๐Ÿ‘ โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž

2. โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘

๏ฟฝ๐’š๐’š ๐Ÿ‘๐Ÿ‘ = โˆš2๐‘ฅ๐‘ฅ 3 ๏ฟฝ๐’š๐’š๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘

๏ฟฝ๐‘ฆ๐‘ฆ1 3 ๏ฟฝ๐’š๐’š๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘ = ๏ฟฝ2๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ2 3

๏ฟฝ๐‘ฆ๐‘ฆ1 ๐‘ฆ๐‘ฆ2 3

= ๏ฟฝ2๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ2 3

๏ฟฝ๐‘ฆ๐‘ฆ1+2 3 = ๏ฟฝ2๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ2 3

๏ฟฝ๐‘ฆ๐‘ฆ3 3 = ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘

๐’š๐’šam an = am + n ; โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž

3. ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ โˆ’ โˆš๐Ÿ๐Ÿ

= 3๐‘ฅ๐‘ฅ ๏ฟฝโˆš๐Ÿ๐Ÿ + โˆš๐Ÿ๐Ÿ๏ฟฝ๏ฟฝโˆš2 โ€“ โˆš๐‘ฅ๐‘ฅ๏ฟฝ๏ฟฝโˆš๐Ÿ๐Ÿ + โˆš๐Ÿ๐Ÿ๏ฟฝ

Multiply by โˆš2 + โˆš๐‘ฅ๐‘ฅ.

= 3๐‘ฅ๐‘ฅ ๏ฟฝโˆš2 + โˆš๐‘ฅ๐‘ฅ๏ฟฝ

๏ฟฝโˆš2๏ฟฝ2โˆ’ ๏ฟฝโˆš๐‘ฅ๐‘ฅ๏ฟฝ

2 Distribute; (a + b)(a โ€“ b) = a2 โ€“ b2

= ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ

โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž

4. ๐Ÿ๐Ÿโˆš๐Ÿ‘๐Ÿ‘ + โˆš๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ โˆ’ โˆš๐Ÿ‘๐Ÿ‘

= ๏ฟฝ2โˆš3 + โˆš2๏ฟฝ๏ฟฝโˆš๐Ÿ๐Ÿ +โˆš๐Ÿ‘๐Ÿ‘๏ฟฝ๏ฟฝโˆš2 โˆ’ โˆš3๏ฟฝ๏ฟฝโˆš๐Ÿ๐Ÿ + โˆš๐Ÿ‘๐Ÿ‘๏ฟฝ

Multiply by โˆš2 + โˆš3.

= 2โˆš3โˆš2 + 2โˆš3โˆš3 + โˆš2โˆš2 + โˆš2โˆš3

๏ฟฝโˆš2๏ฟฝ2โˆ’ ๏ฟฝโˆš3๏ฟฝ

2 FOIL; (a + b)(a โ€“ b) = a2 โ€“ b2

= 2โˆš3โˆ™2 + 2โˆš3โˆ™3 + โˆš2โˆ™2 + โˆš2โˆ™32 โˆ’ 3

= 2โˆš๐Ÿ”๐Ÿ” + 6 + 2 + โˆš๐Ÿ”๐Ÿ”2 โˆ’ 3

โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘๐‘๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘๐‘๐‘›๐‘›

= 3โˆš๐Ÿ”๐Ÿ” + 8-1

= -(๐Ÿ‘๐Ÿ‘โˆš๐Ÿ”๐Ÿ” + ๐Ÿ–๐Ÿ–) Combine like radicals .

5. ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๏ฟฝ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’ƒ๐’ƒ๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’ = 3๐‘Ž๐‘Ž ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐Ÿ’๐Ÿ’

๏ฟฝ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐Ÿ’๐Ÿ’ ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’ Multiply by โˆš23๐‘Ž๐‘Ž1๐‘๐‘2 4 to get a perfect 4th power .

= 3๐‘Ž๐‘Ž โˆš23๐‘Ž๐‘Ž1๐‘๐‘2 4

๏ฟฝ(2โˆ™23)(๐‘Ž๐‘Ž3๐‘Ž๐‘Ž1)(๐‘๐‘2๐‘๐‘2) 4 = 3๐‘Ž๐‘Ž โˆš23๐‘Ž๐‘Ž๐‘๐‘2 4

โˆš24๐‘Ž๐‘Ž4๐‘๐‘4 4 am an = am + n

= 3๐‘Ž๐‘Ž โˆš8๐‘Ž๐‘Ž๐‘๐‘2 4

โˆš24 4 โˆš๐‘Ž๐‘Ž4 4 โˆš๐‘๐‘4 4 = 3๐‘Ž๐‘Ž โˆš8๐‘Ž๐‘Ž๐‘๐‘2 4

2๐‘Ž๐‘Ž๐‘๐‘ = ๐Ÿ‘๐Ÿ‘ ๏ฟฝ๐Ÿ–๐Ÿ–๐Ÿ‘๐Ÿ‘๐’ƒ๐’ƒ๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’

๐Ÿ๐Ÿ๐’ƒ๐’ƒ โˆš๐‘Ž๐‘Ž๐‘๐‘๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘๐‘๐‘›๐‘› ; โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž

Multiply by ๏ฟฝ๐‘ฆ๐‘ฆ2 3 to get a perfect cube; โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘๐‘๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘๐‘๐‘›๐‘›

โˆš๐‘Ž๐‘Ž๐‘›๐‘›

โˆš๐‘๐‘๐‘›๐‘› = ๏ฟฝ๐‘Ž๐‘Ž๐‘๐‘

๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘›๐‘›

โˆš๐‘๐‘๐‘›๐‘› = ๏ฟฝ๐‘Ž๐‘Ž๐‘๐‘

๐‘›๐‘›

multiply by โˆš3 to get a perfect square .

Page 7-13

Dividing Radicals

โ€ข Dividing radical expressions is based on the quotient rule . Dividing

โ€ข Recall quotient rule: Note:

Simplify

โ€ข Tip: Multiply both denominator and numerator by a radical to get a perfect square, perfect

cube, perfect 4th power, perfect 5th power, etc . in the denominator .

Example: Perform the indicated operations (rationalize each denominator) .

1. ๏ฟฝ๐Ÿ“๐Ÿ“๐Ÿ‘๐Ÿ‘

= โˆš5โˆš3

= โˆš5โˆš๐Ÿ‘๐Ÿ‘โˆš3โˆš๐Ÿ‘๐Ÿ‘

๏ฟฝ๐‘Ž๐‘Ž๐‘๐‘

๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘›

โˆš๐‘๐‘๐‘›๐‘› ;

= โˆš5 โˆ™ 3

โˆš32 = โˆš๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

๐Ÿ‘๐Ÿ‘ โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž

2. โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘

๏ฟฝ๐’š๐’š ๐Ÿ‘๐Ÿ‘ = โˆš2๐‘ฅ๐‘ฅ 3 ๏ฟฝ๐’š๐’š๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘

๏ฟฝ๐‘ฆ๐‘ฆ1 3 ๏ฟฝ๐’š๐’š๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘ = ๏ฟฝ2๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ2 3

๏ฟฝ๐‘ฆ๐‘ฆ1 ๐‘ฆ๐‘ฆ2 3

= ๏ฟฝ2๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ2 3

๏ฟฝ๐‘ฆ๐‘ฆ1+2 3 = ๏ฟฝ2๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ2 3

๏ฟฝ๐‘ฆ๐‘ฆ3 3 = ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘

๐’š๐’šam an = am + n ; โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž

3. ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ โˆ’ โˆš๐Ÿ๐Ÿ

= 3๐‘ฅ๐‘ฅ ๏ฟฝโˆš๐Ÿ๐Ÿ + โˆš๐Ÿ๐Ÿ๏ฟฝ๏ฟฝโˆš2 โ€“ โˆš๐‘ฅ๐‘ฅ๏ฟฝ๏ฟฝโˆš๐Ÿ๐Ÿ + โˆš๐Ÿ๐Ÿ๏ฟฝ

Multiply by โˆš2 + โˆš๐‘ฅ๐‘ฅ.

= 3๐‘ฅ๐‘ฅ ๏ฟฝโˆš2 + โˆš๐‘ฅ๐‘ฅ๏ฟฝ

๏ฟฝโˆš2๏ฟฝ2โˆ’ ๏ฟฝโˆš๐‘ฅ๐‘ฅ๏ฟฝ

2 Distribute; (a + b)(a โ€“ b) = a2 โ€“ b2

= ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ

โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž

4. ๐Ÿ๐Ÿโˆš๐Ÿ‘๐Ÿ‘ + โˆš๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ โˆ’ โˆš๐Ÿ‘๐Ÿ‘

= ๏ฟฝ2โˆš3 + โˆš2๏ฟฝ๏ฟฝโˆš๐Ÿ๐Ÿ +โˆš๐Ÿ‘๐Ÿ‘๏ฟฝ๏ฟฝโˆš2 โˆ’ โˆš3๏ฟฝ๏ฟฝโˆš๐Ÿ๐Ÿ + โˆš๐Ÿ‘๐Ÿ‘๏ฟฝ

Multiply by โˆš2 + โˆš3.

= 2โˆš3โˆš2 + 2โˆš3โˆš3 + โˆš2โˆš2 + โˆš2โˆš3

๏ฟฝโˆš2๏ฟฝ2โˆ’ ๏ฟฝโˆš3๏ฟฝ

2 FOIL; (a + b)(a โ€“ b) = a2 โ€“ b2

= 2โˆš3โˆ™2 + 2โˆš3โˆ™3 + โˆš2โˆ™2 + โˆš2โˆ™32 โˆ’ 3

= 2โˆš๐Ÿ”๐Ÿ” + 6 + 2 + โˆš๐Ÿ”๐Ÿ”2 โˆ’ 3

โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘๐‘๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘๐‘๐‘›๐‘›

= 3โˆš๐Ÿ”๐Ÿ” + 8-1

= -(๐Ÿ‘๐Ÿ‘โˆš๐Ÿ”๐Ÿ” + ๐Ÿ–๐Ÿ–) Combine like radicals .

5. ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๏ฟฝ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’ƒ๐’ƒ๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’ = 3๐‘Ž๐‘Ž ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐Ÿ’๐Ÿ’

๏ฟฝ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐Ÿ’๐Ÿ’ ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’ Multiply by โˆš23๐‘Ž๐‘Ž1๐‘๐‘2 4 to get a perfect 4th power .

= 3๐‘Ž๐‘Ž โˆš23๐‘Ž๐‘Ž1๐‘๐‘2 4

๏ฟฝ(2โˆ™23)(๐‘Ž๐‘Ž3๐‘Ž๐‘Ž1)(๐‘๐‘2๐‘๐‘2) 4 = 3๐‘Ž๐‘Ž โˆš23๐‘Ž๐‘Ž๐‘๐‘2 4

โˆš24๐‘Ž๐‘Ž4๐‘๐‘4 4 am an = am + n

= 3๐‘Ž๐‘Ž โˆš8๐‘Ž๐‘Ž๐‘๐‘2 4

โˆš24 4 โˆš๐‘Ž๐‘Ž4 4 โˆš๐‘๐‘4 4 = 3๐‘Ž๐‘Ž โˆš8๐‘Ž๐‘Ž๐‘๐‘2 4

2๐‘Ž๐‘Ž๐‘๐‘ = ๐Ÿ‘๐Ÿ‘ ๏ฟฝ๐Ÿ–๐Ÿ–๐Ÿ‘๐Ÿ‘๐’ƒ๐’ƒ๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’

๐Ÿ๐Ÿ๐’ƒ๐’ƒ โˆš๐‘Ž๐‘Ž๐‘๐‘๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘๐‘๐‘›๐‘› ; โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž

Multiply by ๏ฟฝ๐‘ฆ๐‘ฆ2 3 to get a perfect cube; โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘๐‘๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘๐‘๐‘›๐‘›

โˆš๐‘Ž๐‘Ž๐‘›๐‘›

โˆš๐‘๐‘๐‘›๐‘› = ๏ฟฝ๐‘Ž๐‘Ž๐‘๐‘

๐‘›๐‘› โˆš๐‘Ž๐‘Ž๐‘›๐‘›

โˆš๐‘๐‘๐‘›๐‘› = ๏ฟฝ๐‘Ž๐‘Ž๐‘๐‘

๐‘›๐‘›

multiply by โˆš3 to get a perfect square .

Page 7-13

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 155

Algebra I & II Key Concepts, Practice, and Quizzes Unit 7 โ€“ Radicals

7-6 SOLVING EQUATIONS WITH RADICALS

Square Root Equations

โ€ข A square root equation is an equation containing a square root . Example

โˆš๐‘ฅ๐‘ฅ โˆ’ 5 = 3โ€ข To solve a square root equation

Steps Example: Solve โˆš๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ = ๐Ÿ‘๐Ÿ‘ .

- Isolate the square root term (on one side of the โˆš๐‘ฅ๐‘ฅ = 3 + 2 Add 2 .

equation). โˆš๐‘ฅ๐‘ฅ = 5

- Get rid of the square root by squaring both sides . โˆš๐‘ฅ๐‘ฅ2

= 52 Square both sides .

- Solve for x : x = 25 โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž, โˆš๐‘ฅ๐‘ฅ2

= โˆš๐‘ฅ๐‘ฅ2 2

- Check . ?

โˆš25 โˆ’ 2 = 3 Replace x by 25 in the equation . ?

โˆš52 โˆ’ 2 = 3 โˆš

5 โ€“ 2 = 3 Correct!

Example: Solve for x .5

โˆš4โˆ’3๐‘ฅ๐‘ฅ= 1

5โˆš4โˆ’3๐‘ฅ๐‘ฅ

โˆ™ โˆš4 โˆ’ 3๐‘ฅ๐‘ฅ = 1 โˆ™ โˆš4 โˆ’ 3๐‘ฅ๐‘ฅ Multiply by โˆš4 โˆ’ 3๐‘ฅ๐‘ฅ.

โˆš4 โˆ’ 3๐‘ฅ๐‘ฅ = 5

โˆš4 โˆ’ 3๐‘ฅ๐‘ฅ2

= 52 Square both sides ; โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž

4 โ€“ 3x = 25 Solve for x ; subtract 4 .

-3x = 21 Divide by -3 .

x = -7 ?

Check: 5

๏ฟฝ4โˆ’3(-๐Ÿ•๐Ÿ•) = 1 Replace x by -7 in the equation .

?

5

โˆš25 = 1

โˆš55

= 1 Correct!

Page 7-14

7-6 SOLVING EQUATIONS WITH RADICALS

Square Root Equations

โ€ข A square root equation is an equation containing a square root . Example

โˆš๐‘ฅ๐‘ฅ โˆ’ 5 = 3โ€ข To solve a square root equation

Steps Example: Solve โˆš๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ = ๐Ÿ‘๐Ÿ‘ .

- Isolate the square root term (on one side of the โˆš๐‘ฅ๐‘ฅ = 3 + 2 Add 2 .

equation). โˆš๐‘ฅ๐‘ฅ = 5

- Get rid of the square root by squaring both sides . โˆš๐‘ฅ๐‘ฅ2

= 52 Square both sides .

- Solve for x : x = 25 โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž, โˆš๐‘ฅ๐‘ฅ2

= โˆš๐‘ฅ๐‘ฅ2 2

- Check . ?

โˆš25 โˆ’ 2 = 3 Replace x by 25 in the equation . ?

โˆš52 โˆ’ 2 = 3 โˆš

5 โ€“ 2 = 3 Correct!

Example: Solve for x .5

โˆš4โˆ’3๐‘ฅ๐‘ฅ= 1

5โˆš4โˆ’3๐‘ฅ๐‘ฅ

โˆ™ โˆš4 โˆ’ 3๐‘ฅ๐‘ฅ = 1 โˆ™ โˆš4 โˆ’ 3๐‘ฅ๐‘ฅ Multiply by โˆš4 โˆ’ 3๐‘ฅ๐‘ฅ.

โˆš4 โˆ’ 3๐‘ฅ๐‘ฅ = 5

โˆš4 โˆ’ 3๐‘ฅ๐‘ฅ2

= 52 Square both sides ; โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž

4 โ€“ 3x = 25 Solve for x ; subtract 4 .

-3x = 21 Divide by -3 .

x = -7 ?

Check: 5

๏ฟฝ4โˆ’3(-๐Ÿ•๐Ÿ•) = 1 Replace x by -7 in the equation .

?

5

โˆš25 = 1

โˆš55

= 1 Correct!

Page 7-14

7-6 SOLVING EQUATIONS WITH RADICALS

Square Root Equations

โ€ข A square root equation is an equation containing a square root . Example

โˆš๐‘ฅ๐‘ฅ โˆ’ 5 = 3โ€ข To solve a square root equation

Steps Example: Solve โˆš๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ = ๐Ÿ‘๐Ÿ‘ .

- Isolate the square root term (on one side of the โˆš๐‘ฅ๐‘ฅ = 3 + 2 Add 2 .

equation). โˆš๐‘ฅ๐‘ฅ = 5

- Get rid of the square root by squaring both sides . โˆš๐‘ฅ๐‘ฅ2

= 52 Square both sides .

- Solve for x : x = 25 โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž, โˆš๐‘ฅ๐‘ฅ2

= โˆš๐‘ฅ๐‘ฅ2 2

- Check . ?

โˆš25 โˆ’ 2 = 3 Replace x by 25 in the equation . ?

โˆš52 โˆ’ 2 = 3 โˆš

5 โ€“ 2 = 3 Correct!

Example: Solve for x .5

โˆš4โˆ’3๐‘ฅ๐‘ฅ= 1

5โˆš4โˆ’3๐‘ฅ๐‘ฅ

โˆ™ โˆš4 โˆ’ 3๐‘ฅ๐‘ฅ = 1 โˆ™ โˆš4 โˆ’ 3๐‘ฅ๐‘ฅ Multiply by โˆš4 โˆ’ 3๐‘ฅ๐‘ฅ.

โˆš4 โˆ’ 3๐‘ฅ๐‘ฅ = 5

โˆš4 โˆ’ 3๐‘ฅ๐‘ฅ2

= 52 Square both sides ; โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘› = ๐‘Ž๐‘Ž

4 โ€“ 3x = 25 Solve for x ; subtract 4 .

-3x = 21 Divide by -3 .

x = -7 ?

Check: 5

๏ฟฝ4โˆ’3(-๐Ÿ•๐Ÿ•) = 1 Replace x by -7 in the equation .

?

5

โˆš25 = 1

โˆš55

= 1 Correct!

Page 7-14

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

156 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 7 โ€“ Radicals

Page 7-15

Square Root Equations & Extraneous Solutions

Example: Solve the following equation. โˆš๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ + ๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ• โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

โˆš3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 7 = 3 + ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ Isolate the โˆš term: add x

โˆš3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 72

= (3 + ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ)2 Square both sides ; โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› ๐‘›๐‘›๐‘›๐‘› = ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

3x + 7 = 9 + 6x + x2 (๐‘Ž๐‘Ž๐‘Ž๐‘Ž + ๐‘๐‘๐‘๐‘)2 = ๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 + 2๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘๐‘๐‘๐‘ + ๐‘๐‘๐‘๐‘2

x2 + 3x + 2 = 0 Combine like terms: subtract 3x ; subtract 7.

(x + 1)(x + 2) = 0 Factor.

(x + 1) = 0 , (x + 2) = 0 Zero product property

x = -1 or x = -2 Solve for x.

Check: x = -1 x = -2 โˆš3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 7โˆ’ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 3 ? ?

๏ฟฝ3(โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ) + 7 โˆ’ ๏ฟฝ-๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ = 3 ๏ฟฝ3(โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ) + 7 โˆ’ ๏ฟฝ-๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ = 3 Replace x by -1 and -2 in the equation. ? ?

โˆš4 + 1 = 3 โˆš1 + 2 = 3 โˆš โˆš 2 + 1 = 3 1 + 2 = 3 Correct!

โ€ข The squaring, cubing, etc. process can sometimes create extraneous solutions that do not

satisfy the original equation. So always check solutions. Checking is necessary, not optional.

โ€ข An extraneous solution (false solution) is a solution that does not satisfy the original equation.

Example: x = -3 Original equation

x2 = (-3)2 Square both sides.

x2 = 9 Take the square root of both sides. โˆš๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2 = ยฑโˆš9 If x2 = A , then โˆš๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2 = ยฑโˆš๐ด๐ด๐ด๐ด .

x = ยฑ3 Solutions ๏ฟฝ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 3 ,

๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ = โˆ’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ ,

Example: ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ โˆ’ โˆš๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ = ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ 1 + ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = โˆš5 โˆ’ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ Isolate the โˆš term: add โˆš5 โˆ’ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ.

(1 + ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ)2 = โˆš5 โˆ’ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2 Square both sides.

1+ 2x + x2 = 5 โˆ’ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› ๐‘›๐‘›๐‘›๐‘› = ๐‘Ž๐‘Ž๐‘Ž๐‘Ž , (๐‘Ž๐‘Ž๐‘Ž๐‘Ž + ๐‘๐‘๐‘๐‘)2 = ๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 + 2๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘๐‘๐‘๐‘ + ๐‘๐‘๐‘๐‘2 x2 + 3x โ€“ 4 = 0 , (x โ€“1) (x + 4) = 0 Factor.

๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ or ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = -4 Solve for x (zero product property).

Check: ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ = -๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ 1 + ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ โˆš5 โˆ’ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 0

? ?

1 + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ โˆš5 โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = 0 1 + (โˆ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’) โˆ’๏ฟฝ5 โˆ’ (โˆ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’) = 0 Replace x by 1 and -4 in the equation. โˆš

2 โ€“ 2 = 0 True -3 โ€“ 3 โ‰  0 False (an extraneous solution)

an extraneous solution (discard it, 3 โ‰  -3) the solution of the original equation

Page 7-15

Square Root Equations & Extraneous Solutions

Example: Solve the following equation. โˆš๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ + ๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ• โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

โˆš3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 7 = 3 + ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ Isolate the โˆš term: add x

โˆš3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 72

= (3 + ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ)2 Square both sides ; โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› ๐‘›๐‘›๐‘›๐‘› = ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

3x + 7 = 9 + 6x + x2 (๐‘Ž๐‘Ž๐‘Ž๐‘Ž + ๐‘๐‘๐‘๐‘)2 = ๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 + 2๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘๐‘๐‘๐‘ + ๐‘๐‘๐‘๐‘2

x2 + 3x + 2 = 0 Combine like terms: subtract 3x ; subtract 7.

(x + 1)(x + 2) = 0 Factor.

(x + 1) = 0 , (x + 2) = 0 Zero product property

x = -1 or x = -2 Solve for x.

Check: x = -1 x = -2 โˆš3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 7โˆ’ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 3 ? ?

๏ฟฝ3(โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ) + 7 โˆ’ ๏ฟฝ-๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ = 3 ๏ฟฝ3(โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ) + 7 โˆ’ ๏ฟฝ-๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ = 3 Replace x by -1 and -2 in the equation. ? ?

โˆš4 + 1 = 3 โˆš1 + 2 = 3 โˆš โˆš 2 + 1 = 3 1 + 2 = 3 Correct!

โ€ข The squaring, cubing, etc. process can sometimes create extraneous solutions that do not

satisfy the original equation. So always check solutions. Checking is necessary, not optional.

โ€ข An extraneous solution (false solution) is a solution that does not satisfy the original equation.

Example: x = -3 Original equation

x2 = (-3)2 Square both sides.

x2 = 9 Take the square root of both sides. โˆš๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2 = ยฑโˆš9 If x2 = A , then โˆš๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2 = ยฑโˆš๐ด๐ด๐ด๐ด .

x = ยฑ3 Solutions ๏ฟฝ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 3 ,

๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ = โˆ’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ ,

Example: ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ โˆ’ โˆš๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ = ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ 1 + ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = โˆš5 โˆ’ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ Isolate the โˆš term: add โˆš5 โˆ’ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ.

(1 + ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ)2 = โˆš5 โˆ’ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2 Square both sides.

1+ 2x + x2 = 5 โˆ’ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› ๐‘›๐‘›๐‘›๐‘› = ๐‘Ž๐‘Ž๐‘Ž๐‘Ž , (๐‘Ž๐‘Ž๐‘Ž๐‘Ž + ๐‘๐‘๐‘๐‘)2 = ๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 + 2๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘๐‘๐‘๐‘ + ๐‘๐‘๐‘๐‘2 x2 + 3x โ€“ 4 = 0 , (x โ€“1) (x + 4) = 0 Factor.

๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ or ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = -4 Solve for x (zero product property).

Check: ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ = -๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ 1 + ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ โˆš5 โˆ’ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 0

? ?

1 + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ โˆš5 โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = 0 1 + (โˆ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’) โˆ’๏ฟฝ5 โˆ’ (โˆ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’) = 0 Replace x by 1 and -4 in the equation. โˆš

2 โ€“ 2 = 0 True -3 โ€“ 3 โ‰  0 False (an extraneous solution)

an extraneous solution (discard it, 3 โ‰  -3) the solution of the original equation

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 157

Algebra I & II Key Concepts, Practice, and Quizzes Unit 7 โ€“ Radicals

Radical Equations

โ€ข A radical equation is an equation containing radical expressions. Example (Expressions containing radical signs โˆš๐‘›๐‘› ) โˆš๐‘ฅ๐‘ฅ3 โˆ’ 2๐‘ฅ๐‘ฅ = 7

โ€ข Solve a radical equation by generalizing the squaring property to other powers .

Tips: - Get rid of a square root by squaring . - Get rid of a cube root by cubing . - Get rid of the 4th root by raising to the 4th power . โ€ฆ โ€ฆ - Get rid of the nth root by raising to the nth power . โˆša๐‘›๐‘› ๐‘›๐‘›

= a

Radical Equation Do Example Solutionsquare root equation squaring โˆš๐‘ฅ๐‘ฅ = 2, โˆš๐‘ฅ๐‘ฅ

2= 22 x = 4

cube root equation cubing โˆš๐‘ฅ๐‘ฅ3 = 2, โˆš๐‘ฅ๐‘ฅ3 3= 23 x = 8

4th root equation raising to the 4th power โˆš๐‘ฅ๐‘ฅ4 = 2, โˆš๐‘ฅ๐‘ฅ4 4= 24 x = 16

5th root equation raising to the 5th power โˆš๐‘ฅ๐‘ฅ5 = 2, โˆš๐‘ฅ๐‘ฅ5 5= 25 x = 32

nth root equation raising to the nth power โˆš๐‘ฅ๐‘ฅ๐‘›๐‘› = 2, โˆš๐‘ฅ๐‘ฅ๐‘›๐‘› ๐‘›๐‘›= 2๐‘›๐‘› ๐‘ฅ๐‘ฅ = 2๐‘›๐‘›

โ€ข Procedure to solve a radical equationSteps Example Solve โˆš๐’‚๐’‚๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ

- Isolate the radical term (on one side of the equation) . โˆš๐‘Ž๐‘Ž3 = 2 + 1 Isolate โˆša3 .

โˆš๐‘Ž๐‘Ž3 = 3

- Get rid of the radical by raising the power of both โˆš๐‘Ž๐‘Ž3 3= 33 Cube both sides .

sides to n .

- Solve for variable. a = 27 โˆšan n= a

- Check . ?

โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ3 โˆ’ 1 = 2 Replace a by 27. ? โˆš

โˆš333 โˆ’ 1 = 2 , 3 โ€“ 1 = 2 Correct!

Example: ๐Ÿ‘๐Ÿ‘ + โˆš๐’‚๐’‚ + ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’ = ๐Ÿ“๐Ÿ“ Isolate โˆš๐‘Ž๐‘Ž + 24 .

โˆš๐‘Ž๐‘Ž + 24 = 2 Raise to the 4th power .

โˆš๐‘Ž๐‘Ž + 24 4= 24 โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›

= ๐‘Ž๐‘Ž

a + 2 = 16 , a = 14 Solve for a. ?Check: 3 + โˆš14 + 24 = 5

?3 + โˆš164 = 5

? โˆš

3 + โˆš244 = 5 , 3 + 2 = 5 Correct!

Page 7-16

Radical Equations

โ€ข A radical equation is an equation containing radical expressions. Example (Expressions containing radical signs โˆš๐‘›๐‘› ) โˆš๐‘ฅ๐‘ฅ3 โˆ’ 2๐‘ฅ๐‘ฅ = 7

โ€ข Solve a radical equation by generalizing the squaring property to other powers .

Tips: - Get rid of a square root by squaring . - Get rid of a cube root by cubing . - Get rid of the 4th root by raising to the 4th power . โ€ฆ โ€ฆ - Get rid of the nth root by raising to the nth power . โˆša๐‘›๐‘› ๐‘›๐‘›

= a

Radical Equation Do Example Solutionsquare root equation squaring โˆš๐‘ฅ๐‘ฅ = 2, โˆš๐‘ฅ๐‘ฅ

2= 22 x = 4

cube root equation cubing โˆš๐‘ฅ๐‘ฅ3 = 2, โˆš๐‘ฅ๐‘ฅ3 3= 23 x = 8

4th root equation raising to the 4th power โˆš๐‘ฅ๐‘ฅ4 = 2, โˆš๐‘ฅ๐‘ฅ4 4= 24 x = 16

5th root equation raising to the 5th power โˆš๐‘ฅ๐‘ฅ5 = 2, โˆš๐‘ฅ๐‘ฅ5 5= 25 x = 32

nth root equation raising to the nth power โˆš๐‘ฅ๐‘ฅ๐‘›๐‘› = 2, โˆš๐‘ฅ๐‘ฅ๐‘›๐‘› ๐‘›๐‘›= 2๐‘›๐‘› ๐‘ฅ๐‘ฅ = 2๐‘›๐‘›

โ€ข Procedure to solve a radical equationSteps Example Solve โˆš๐’‚๐’‚๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ

- Isolate the radical term (on one side of the equation) . โˆš๐‘Ž๐‘Ž3 = 2 + 1 Isolate โˆša3 .

โˆš๐‘Ž๐‘Ž3 = 3

- Get rid of the radical by raising the power of both โˆš๐‘Ž๐‘Ž3 3= 33 Cube both sides .

sides to n .

- Solve for variable. a = 27 โˆšan n= a

- Check . ?

โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ3 โˆ’ 1 = 2 Replace a by 27. ? โˆš

โˆš333 โˆ’ 1 = 2 , 3 โ€“ 1 = 2 Correct!

Example: ๐Ÿ‘๐Ÿ‘ + โˆš๐’‚๐’‚ + ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’ = ๐Ÿ“๐Ÿ“ Isolate โˆš๐‘Ž๐‘Ž + 24 .

โˆš๐‘Ž๐‘Ž + 24 = 2 Raise to the 4th power .

โˆš๐‘Ž๐‘Ž + 24 4= 24 โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›

= ๐‘Ž๐‘Ž

a + 2 = 16 , a = 14 Solve for a. ?Check: 3 + โˆš14 + 24 = 5

?3 + โˆš164 = 5

? โˆš

3 + โˆš244 = 5 , 3 + 2 = 5 Correct!

Page 7-16

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

158 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 7 โ€“ Radicals

Page 7-17

Equations With Two Radicals

Equations with two radicals: perform the same steps as equations with one radical term.

Example: Solve the following equations.

โˆš๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ• + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ Isolate one โˆš term.

โˆš7 + 2๐‘Ž๐‘Ž๐‘Ž๐‘Ž = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž + 15 โˆ’ 1 Add โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž + 15 ; subtract 1.

โˆš7 + 2๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐Ÿ๐Ÿ๐Ÿ๐Ÿ = (โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ)2 Square both sides.

7 + 2๐‘Ž๐‘Ž๐‘Ž๐‘Ž = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž + 152 โˆ’ 2โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž + 15 โˆ™ 1 + 12 (๐‘Ž๐‘Ž๐‘Ž๐‘Ž โˆ’ ๐‘๐‘๐‘๐‘)2 = ๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 โˆ’ 2๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘๐‘๐‘๐‘ + ๐‘๐‘๐‘๐‘2:

a = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž + 15 ; b = 1

7 + 2๐‘Ž๐‘Ž๐‘Ž๐‘Ž = a + 15 โˆ’ 2โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž + 15 + 1

7 + 2๐‘Ž๐‘Ž๐‘Ž๐‘Ž = a + 16 โˆ’ 2โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž + 15 15 + 1 = 16

2โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž + 15 = 9 โˆ’ a Isolate โˆš again: add 2โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž + 15 ; subtract 2a & 7.

22 โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž + 152 = (9 โˆ’ a)2

Square both sides.

4(a + 15) = 92 โˆ’ 18a + a2 (๐‘Ž๐‘Ž๐‘Ž๐‘Ž โˆ’ ๐‘๐‘๐‘๐‘)2 = ๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 โˆ’ 2๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘๐‘๐‘๐‘ + ๐‘๐‘๐‘๐‘2

4a + 60 = 81 โˆ’ 18a + a2 Combine like terms: subtract 4a & 60.

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 โˆ’ 22๐‘Ž๐‘Ž๐‘Ž๐‘Ž + 21 = 0 Factor.

(a โ€“ 1)(a โ€“ 21) = 0 , (a โ€“ 1) = 0 (a โ€“ 21) = 0 Zero product rule

a = 1 a = 21 Solve for a.

Check: โˆš7 + 2๐‘Ž๐‘Ž๐‘Ž๐‘Ž โˆ’ โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž + 15 + 1 = 0 Original equation

a = 1 a = 21 ? ?

โˆš7 + 2 โˆ™ 1 โˆ’ โˆš1 + 15 + 1 = 0 โˆš7 + 2 โˆ™ 21 โˆ’ โˆš21 + 15 + 1 = 0 ? ?

โˆš9 โˆ’โˆš16 + 1 = 0 โˆš49 โˆ’ โˆš36 + 1 = 0 โˆš ?

3 โˆ’ 4 + 1 = 0 7 โˆ’ 6 + 1 = 0 โˆš

โˆ’1 + 1 = 0 2 โ‰  0

Solution: a = 1 a = 21 is an extraneous solution.

Write in descending order.

Page 7-17

Equations With Two Radicals

Equations with two radicals: perform the same steps as equations with one radical term.

Example: Solve the following equations.

โˆš๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ• + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ Isolate one โˆš term.

โˆš7 + 2๐‘Ž๐‘Ž๐‘Ž๐‘Ž = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž + 15 โˆ’ 1 Add โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž + 15 ; subtract 1.

โˆš7 + 2๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐Ÿ๐Ÿ๐Ÿ๐Ÿ = (โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ)2 Square both sides.

7 + 2๐‘Ž๐‘Ž๐‘Ž๐‘Ž = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž + 152 โˆ’ 2โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž + 15 โˆ™ 1 + 12 (๐‘Ž๐‘Ž๐‘Ž๐‘Ž โˆ’ ๐‘๐‘๐‘๐‘)2 = ๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 โˆ’ 2๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘๐‘๐‘๐‘ + ๐‘๐‘๐‘๐‘2:

a = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž + 15 ; b = 1

7 + 2๐‘Ž๐‘Ž๐‘Ž๐‘Ž = a + 15 โˆ’ 2โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž + 15 + 1

7 + 2๐‘Ž๐‘Ž๐‘Ž๐‘Ž = a + 16 โˆ’ 2โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž + 15 15 + 1 = 16

2โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž + 15 = 9 โˆ’ a Isolate โˆš again: add 2โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž + 15 ; subtract 2a & 7.

22 โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž + 152 = (9 โˆ’ a)2

Square both sides.

4(a + 15) = 92 โˆ’ 18a + a2 (๐‘Ž๐‘Ž๐‘Ž๐‘Ž โˆ’ ๐‘๐‘๐‘๐‘)2 = ๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 โˆ’ 2๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘๐‘๐‘๐‘ + ๐‘๐‘๐‘๐‘2

4a + 60 = 81 โˆ’ 18a + a2 Combine like terms: subtract 4a & 60.

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 โˆ’ 22๐‘Ž๐‘Ž๐‘Ž๐‘Ž + 21 = 0 Factor.

(a โ€“ 1)(a โ€“ 21) = 0 , (a โ€“ 1) = 0 (a โ€“ 21) = 0 Zero product rule

a = 1 a = 21 Solve for a.

Check: โˆš7 + 2๐‘Ž๐‘Ž๐‘Ž๐‘Ž โˆ’ โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž + 15 + 1 = 0 Original equation

a = 1 a = 21 ? ?

โˆš7 + 2 โˆ™ 1 โˆ’ โˆš1 + 15 + 1 = 0 โˆš7 + 2 โˆ™ 21 โˆ’ โˆš21 + 15 + 1 = 0 ? ?

โˆš9 โˆ’โˆš16 + 1 = 0 โˆš49 โˆ’ โˆš36 + 1 = 0 โˆš ?

3 โˆ’ 4 + 1 = 0 7 โˆ’ 6 + 1 = 0 โˆš

โˆ’1 + 1 = 0 2 โ‰  0

Solution: a = 1 a = 21 is an extraneous solution.

Write in descending order.

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 159

Algebra I & II Key Concepts, Practice, and Quizzes Unit 7 โ€“ Radicals

7-7 COMPLEX NUMBERS

Complex Number System

โ€ข Recall an even root of a negative number is not a real number .Such as ๐‘ฅ๐‘ฅ = โˆšโˆ’1 is not real, โˆต x2 = -1 has no real solution (no real number squared gives -1.)

โ€ข The complex number system is an expanded number system that is larger than the real

number system and includes an even root of a negative number such as ๏ฟฝ-1 .

โ€ข A complex number is an expression of the form A + iB, which is the sum of a real number

A and an imaginary number Bi .Complex Number Example

A โ€“ real partA + iB iB โ€“ imaginary part

A and B are real numbers

3 + 7i 3 โ€“ real part

7i โ€“ imaginary part

โ€ข Imaginary unit (i): the square root of negative one . Imaginary Unit

๐‘–๐‘– = ๏ฟฝ-1 , i2 = -1 (๐‘–๐‘–2 = ๏ฟฝ-12

= -1)

โ€ข Examples of complex numbersComplex Number Real Part Imaginary Part

-4 + โˆš3 ๐‘–๐‘– -4 โˆš3 ๐‘–๐‘–6 โˆ’ ๐œ‹๐œ‹ ๐‘–๐‘– 6 - ๐œ‹๐œ‹ ๐‘–๐‘–

โˆš23

โˆ’12

๐‘–๐‘– โˆš23

-12

๐‘–๐‘–

-7 i 0 -7 ๐‘–๐‘–Note: Either part can be 0 .

โ€ข Extended number system

Complex Numbers (A + Bi) ๐‘–๐‘– = ๏ฟฝ-1

3 + 5i, 4i, 7- โ€ฆReal Numbers

3, 0, -7, 4/9, ฯ€, 5 โ€ฆRational Numbers Irrational Numbers6, 4/5 , -4 .5 โ€ฆ 5 , ฯ€ โ€ฆ .

Page 7-18

7-7 COMPLEX NUMBERS

Complex Number System

โ€ข Recall an even root of a negative number is not a real number .Such as ๐‘ฅ๐‘ฅ = โˆšโˆ’1 is not real, โˆต x2 = -1 has no real solution (no real number squared gives -1.)

โ€ข The complex number system is an expanded number system that is larger than the real

number system and includes an even root of a negative number such as ๏ฟฝ-1 .

โ€ข A complex number is an expression of the form A + iB, which is the sum of a real number

A and an imaginary number Bi .Complex Number Example

A โ€“ real partA + iB iB โ€“ imaginary part

A and B are real numbers

3 + 7i 3 โ€“ real part

7i โ€“ imaginary part

โ€ข Imaginary unit (i): the square root of negative one . Imaginary Unit

๐‘–๐‘– = ๏ฟฝ-1 , i2 = -1 (๐‘–๐‘–2 = ๏ฟฝ-12

= -1)

โ€ข Examples of complex numbersComplex Number Real Part Imaginary Part

-4 + โˆš3 ๐‘–๐‘– -4 โˆš3 ๐‘–๐‘–6 โˆ’ ๐œ‹๐œ‹ ๐‘–๐‘– 6 - ๐œ‹๐œ‹ ๐‘–๐‘–

โˆš23

โˆ’12

๐‘–๐‘– โˆš23

-12

๐‘–๐‘–

-7 i 0 -7 ๐‘–๐‘–Note: Either part can be 0 .

โ€ข Extended number system

Complex Numbers (A + Bi) ๐‘–๐‘– = ๏ฟฝ-1

3 + 5i, 4i, 7- โ€ฆReal Numbers

3, 0, -7, 4/9, ฯ€, 5 โ€ฆRational Numbers Irrational Numbers6, 4/5 , -4 .5 โ€ฆ 5 , ฯ€ โ€ฆ .

Page 7-18

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

160 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 7 โ€“ Radicals

Imaginary Unit i

โ€ข Powers of imaginary unit i Powers of i

i = ๏ฟฝ-1 i

i2 = ๏ฟฝ๏ฟฝ-1๏ฟฝ 2 = -1 i2=-1i3 = i2 โˆ™ i = (-1) i = -i i3= -ii4 = i2 โˆ™ i2 = (-1)(-1) = 1 i4= 1i5 = i4 โˆ™ i = (1) i i5 = ii6 = i4 โˆ™ i2 = (1)(-1) = -1 i6= -1i7 = i6 โˆ™ i1 = (-1) i i7= -ii8 = i4 โˆ™ i4 = 1 โˆ™ 1 i8 = 1

Note: i , -1, -i and 1 keep repeating .

Example: Write in terms of i .

1. ๏ฟฝ-13 = ๏ฟฝ(-1)(13) = โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ i ๐‘–๐‘– = ๏ฟฝ-1

2. -๏ฟฝ-20 = -๏ฟฝ๏ฟฝ-1๏ฟฝ(4 โˆ™ 5)

= -๏ฟฝ-1โˆš4โˆš5 = -๐Ÿ๐Ÿโˆš๐Ÿ“๐Ÿ“ ๐’Š๐’Š ๐‘–๐‘– = ๏ฟฝ-1

Example: Simplify the following .

1. -5 i 4 = -5 โˆ™ 1 = -5 i 4 = 1

2. 3 + 4 โˆ™ i 3 = 3 + 4 (-i) = 3 โ€“ 4i i 3 = - i

3. 7 i 13 = 7 i 5 โˆ™ i 8 = 7 โˆ™ i 5 โˆ™ 1 am an = am+ n ; i 8 = 1

= 7 โˆ™ i โˆ™ 1 = 7 i i 5 = i

โ€ข A shortcut for powers of imaginary unit iPower of i Example

i n = i R

R = the remainder of n รท 4

5i 23 = i 3 = -i 4 23

203

Proof: i 23 = (i4)5 โˆ™ i3 = 15 โˆ™ i3 = i3 ( i 4 = 1)

Example: Simplify the following .

1. i 85 = i 1 = i 85 รท 4 = 21 R 1 214 85

8 5 4

2. i 91 = i 3 = -i 91 รท 4 = 22 R 3 1 i 3 = -i

โ€ฆ โ€ฆ

One cycle

Another cycle

anm = (an)m ; 1 n = 1

Page 7-19

Imaginary Unit i

โ€ข Powers of imaginary unit i Powers of i

i = ๏ฟฝ-1 i

i2 = ๏ฟฝ๏ฟฝ-1๏ฟฝ 2 = -1 i2=-1i3 = i2 โˆ™ i = (-1) i = -i i3= -ii4 = i2 โˆ™ i2 = (-1)(-1) = 1 i4= 1i5 = i4 โˆ™ i = (1) i i5 = ii6 = i4 โˆ™ i2 = (1)(-1) = -1 i6= -1i7 = i6 โˆ™ i1 = (-1) i i7= -ii8 = i4 โˆ™ i4 = 1 โˆ™ 1 i8 = 1

Note: i , -1, -i and 1 keep repeating .

Example: Write in terms of i .

1. ๏ฟฝ-13 = ๏ฟฝ(-1)(13) = โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ i ๐‘–๐‘– = ๏ฟฝ-1

2. -๏ฟฝ-20 = -๏ฟฝ๏ฟฝ-1๏ฟฝ(4 โˆ™ 5)

= -๏ฟฝ-1โˆš4โˆš5 = -๐Ÿ๐Ÿโˆš๐Ÿ“๐Ÿ“ ๐’Š๐’Š ๐‘–๐‘– = ๏ฟฝ-1

Example: Simplify the following .

1. -5 i 4 = -5 โˆ™ 1 = -5 i 4 = 1

2. 3 + 4 โˆ™ i 3 = 3 + 4 (-i) = 3 โ€“ 4i i 3 = - i

3. 7 i 13 = 7 i 5 โˆ™ i 8 = 7 โˆ™ i 5 โˆ™ 1 am an = am+ n ; i 8 = 1

= 7 โˆ™ i โˆ™ 1 = 7 i i 5 = i

โ€ข A shortcut for powers of imaginary unit iPower of i Example

i n = i R

R = the remainder of n รท 4

5i 23 = i 3 = -i 4 23

203

Proof: i 23 = (i4)5 โˆ™ i3 = 15 โˆ™ i3 = i3 ( i 4 = 1)

Example: Simplify the following .

1. i 85 = i 1 = i 85 รท 4 = 21 R 1 214 85

8 5 4

2. i 91 = i 3 = -i 91 รท 4 = 22 R 3 1 i 3 = -i

โ€ฆ โ€ฆ

One cycle

Another cycle

anm = (an)m ; 1 n = 1

Page 7-19

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 161

Algebra I & II Key Concepts, Practice, and Quizzes Unit 7 โ€“ Radicals

Operations With Complex Numbers

โ€ข Add and subtract complex numbers by combining real numbers together and imaginary

numbers together (combine like terms) .

Adding/Subtracting Complex Numbers Example(A + Bi) + (C + Di) = (A + C) + (B + D) i (2 + 5i) + (1 โ€“ 3i) = (2 + 1) + (5 โ€“ 3) i = 3 + 2i (A + Bi) โ€“ (C + Di) = (A โ€“ C) + (B โ€“ D) i

Or remove parentheses and combine like terms .(7 + 6i) โ€“ (2 + 3i) = (7 โ€“ 2) + (6 โ€“ 3) i = 5 + 3ior (7 + 6i) โ€“ (2 + 3i) = 7 + 6i โ€“ 2 โ€“ 3i = 5 + 3i

Example: Perform the indicated operations and simplify .

1. (-2 โ€“ 3i ) + (6 โ€“ 7i) = (-2 + 6) + [-3 + (-7)]i = 4 โ€“ 10i = 2(2 โ€“ 5i)

2. (4 + 9i) โ€“ (5 โ€“ 6i) = (4 โ€“ 5) + [9 โ€“ (-6)]i = -1 + 15i

or (4 + 9i) โ€“ (5 โ€“ 6i) = 4 + 9i โ€“ 5 + 6i = -1 + 15i Treat i as a variable .

โ€ข Multiply complex numbers using the FOIL method .

Multiplying Complex Numbers Example(A + Bi) (C + Di) = AC + ADi + BCi + BDi2

F O I L = AC + (AD + BC)i + BD(-1)

= (AC โ€“ BD) + (AD + BC) i

(4 + 3i) (3 + 7i) = 12 + 28i + 9i + 21i2

F O I L = 12 + 37i โ€“ 21 (i 2 = -1) = -9 + 37i

Example: Perform the indicated operations and simplify .

1. (3 โ€“ 4i) (4 + 5i) = 12 + 15i โ€“ 16i โ€“ 20i2FOIL

= 12 โ€“ i โ€“ 20(-1) i 2 = -1

= 32 โ€“ i

2. 4i (3 โ€“ 2i) = 12 i โ€“ 8 i2 = 12 i โ€“ 8(-1) = 8 + 12i Distribute , i 2 = -1

3. 2i โ€“ (3 โ€“ 2i)2 = 2 i โ€“ [32 โ€“ 2 โˆ™ 3 (2i) + (2i)2] (๐‘Ž๐‘Ž โˆ’ ๐‘๐‘)2 = ๐‘Ž๐‘Ž2 โˆ’ 2๐‘Ž๐‘Ž๐‘๐‘ + ๐‘๐‘2

= 2 i โ€“ (9 โ€“ 12 i + 4 i2)

= 2 i โ€“ 9 + 12 i โ€“ 4 i2

= 14 i โ€“ 9 โ€“ 4(-1) i 2 = -1

= โ€“ 5 + 14 i

4. โˆš๐’•๐’•๐Ÿ–๐Ÿ–๐Ÿ–๐Ÿ– โˆ™ โˆš ๐Ÿ’๐Ÿ’ = ๏ฟฝ( 1)(81) โˆ™ ๏ฟฝ( 1)(4) = โˆš ๐Ÿ–๐Ÿ– โˆš92 โˆ™ โˆš ๐Ÿ–๐Ÿ–โˆš22

= (๐’Š๐’Š 9) โˆ™ (๐’Š๐’Š 2) = i2 18 = (-1) 18 = -18 i 2 = -1

(i 2 = -1)

๐‘Ž๐‘Ž = 3, ๐‘๐‘ = 2๐‘–๐‘–

Note: โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘๐‘๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘๐‘๐‘›๐‘› This rule applies only when both a and b are non-negative .

โˆš๐‘ก๐‘ก81โˆš๐‘ก๐‘ก4 = ๏ฟฝ(๐‘ก๐‘ก81)(๐‘ก๐‘ก4) = โˆš92 โˆ™ 22 = 9 โˆ™ 2 = 18 Incorrect!

Page 7-20

Operations With Complex Numbers

โ€ข Add and subtract complex numbers by combining real numbers together and imaginary

numbers together (combine like terms) .

Adding/Subtracting Complex Numbers Example(A + Bi) + (C + Di) = (A + C) + (B + D) i (2 + 5i) + (1 โ€“ 3i) = (2 + 1) + (5 โ€“ 3) i = 3 + 2i (A + Bi) โ€“ (C + Di) = (A โ€“ C) + (B โ€“ D) i

Or remove parentheses and combine like terms .(7 + 6i) โ€“ (2 + 3i) = (7 โ€“ 2) + (6 โ€“ 3) i = 5 + 3ior (7 + 6i) โ€“ (2 + 3i) = 7 + 6i โ€“ 2 โ€“ 3i = 5 + 3i

Example: Perform the indicated operations and simplify .

1. (-2 โ€“ 3i ) + (6 โ€“ 7i) = (-2 + 6) + [-3 + (-7)]i = 4 โ€“ 10i = 2(2 โ€“ 5i)

2. (4 + 9i) โ€“ (5 โ€“ 6i) = (4 โ€“ 5) + [9 โ€“ (-6)]i = -1 + 15i

or (4 + 9i) โ€“ (5 โ€“ 6i) = 4 + 9i โ€“ 5 + 6i = -1 + 15i Treat i as a variable .

โ€ข Multiply complex numbers using the FOIL method .

Multiplying Complex Numbers Example(A + Bi) (C + Di) = AC + ADi + BCi + BDi2

F O I L = AC + (AD + BC)i + BD(-1)

= (AC โ€“ BD) + (AD + BC) i

(4 + 3i) (3 + 7i) = 12 + 28i + 9i + 21i2

F O I L = 12 + 37i โ€“ 21 (i 2 = -1) = -9 + 37i

Example: Perform the indicated operations and simplify .

1. (3 โ€“ 4i) (4 + 5i) = 12 + 15i โ€“ 16i โ€“ 20i2FOIL

= 12 โ€“ i โ€“ 20(-1) i 2 = -1

= 32 โ€“ i

2. 4i (3 โ€“ 2i) = 12 i โ€“ 8 i2 = 12 i โ€“ 8(-1) = 8 + 12i Distribute , i 2 = -1

3. 2i โ€“ (3 โ€“ 2i)2 = 2 i โ€“ [32 โ€“ 2 โˆ™ 3 (2i) + (2i)2] (๐‘Ž๐‘Ž โˆ’ ๐‘๐‘)2 = ๐‘Ž๐‘Ž2 โˆ’ 2๐‘Ž๐‘Ž๐‘๐‘ + ๐‘๐‘2

= 2 i โ€“ (9 โ€“ 12 i + 4 i2)

= 2 i โ€“ 9 + 12 i โ€“ 4 i2

= 14 i โ€“ 9 โ€“ 4(-1) i 2 = -1

= โ€“ 5 + 14 i

4. โˆš๐’•๐’•๐Ÿ–๐Ÿ–๐Ÿ–๐Ÿ– โˆ™ โˆš ๐Ÿ’๐Ÿ’ = ๏ฟฝ( 1)(81) โˆ™ ๏ฟฝ( 1)(4) = โˆš ๐Ÿ–๐Ÿ– โˆš92 โˆ™ โˆš ๐Ÿ–๐Ÿ–โˆš22

= (๐’Š๐’Š 9) โˆ™ (๐’Š๐’Š 2) = i2 18 = (-1) 18 = -18 i 2 = -1

(i 2 = -1)

๐‘Ž๐‘Ž = 3, ๐‘๐‘ = 2๐‘–๐‘–

Note: โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆš๐‘๐‘๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘๐‘๐‘›๐‘› This rule applies only when both a and b are non-negative .

โˆš๐‘ก๐‘ก81โˆš๐‘ก๐‘ก4 = ๏ฟฝ(๐‘ก๐‘ก81)(๐‘ก๐‘ก4) = โˆš92 โˆ™ 22 = 9 โˆ™ 2 = 18 Incorrect!

Page 7-20

-- -

- - --

- - -

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

162 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 7 โ€“ Radicals

Complex Conjugates and Division

Example

โ€ข Review conjugates: A + B and A โ€“ B 3 + โˆš2 and 3 โ€“ โˆš2

โ€ข Complex conjugates: each complex number has a complex conjugate .

Complex Conjugates Example Conjugates

A + Bi and A โ€“ Bi

Conjugates

4 + 3i and 4 โ€“ 3i

Tip: Change the sign of the imaginary part .

Example

Complex Number Complex Conjugate 11 + 7i 11 โ€“ 7i -2 โ€“ 5i -2 + 5i

-21i (0 โ€“ 21i) 21i (0 + 21i)

โ€ข To divide complex numbers, rationalize the denominator to get rid of the imaginary

number in the denominator .

Steps Example: -๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ+๐’Š๐’Š

- Multiply the nominator and denominator - 32+๐‘–๐‘–

= - 3(๐Ÿ๐Ÿโˆ’๐’Š๐’Š)(2+๐‘–๐‘–)(๐Ÿ๐Ÿโˆ’๐’Š๐’Š)

Multiply by (2 โ€“ i) .

by the conjugate of the denominator .

- Apply (๐‘Ž๐‘Ž + ๐‘๐‘)(๐‘Ž๐‘Ž โˆ’ ๐‘๐‘) = ๐‘Ž๐‘Ž2 โˆ’ ๐‘๐‘2 . = - 6+3๐‘–๐‘–22โˆ’๐’Š๐’Š2

a = 2 , b = i

- Simplify . = - 6+3๐‘–๐‘– 4โˆ’(-๐Ÿ๐Ÿ)

i 2 = -1

- Write in the A + Bi form . = - 6 + 3๐‘–๐‘– 5

= - ๐Ÿ”๐Ÿ” ๐Ÿ“๐Ÿ“

+ ๐Ÿ‘๐Ÿ‘ ๐Ÿ“๐Ÿ“๐’Š๐’Š

Page 7-21

Complex Conjugates and Division

Example

โ€ข Review conjugates: A + B and A โ€“ B 3 + โˆš2 and 3 โ€“ โˆš2

โ€ข Complex conjugates: each complex number has a complex conjugate .

Complex Conjugates Example Conjugates

A + Bi and A โ€“ Bi

Conjugates

4 + 3i and 4 โ€“ 3i

Tip: Change the sign of the imaginary part .

Example

Complex Number Complex Conjugate 11 + 7i 11 โ€“ 7i -2 โ€“ 5i -2 + 5i

-21i (0 โ€“ 21i) 21i (0 + 21i)

โ€ข To divide complex numbers, rationalize the denominator to get rid of the imaginary

number in the denominator .

Steps Example: -๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ+๐’Š๐’Š

- Multiply the nominator and denominator - 32+๐‘–๐‘–

= - 3(๐Ÿ๐Ÿโˆ’๐’Š๐’Š)(2+๐‘–๐‘–)(๐Ÿ๐Ÿโˆ’๐’Š๐’Š)

Multiply by (2 โ€“ i) .

by the conjugate of the denominator .

- Apply (๐‘Ž๐‘Ž + ๐‘๐‘)(๐‘Ž๐‘Ž โˆ’ ๐‘๐‘) = ๐‘Ž๐‘Ž2 โˆ’ ๐‘๐‘2 . = - 6+3๐‘–๐‘–22โˆ’๐’Š๐’Š2

a = 2 , b = i

- Simplify . = - 6+3๐‘–๐‘– 4โˆ’(-๐Ÿ๐Ÿ)

i 2 = -1

- Write in the A + Bi form . = - 6 + 3๐‘–๐‘– 5

= - ๐Ÿ”๐Ÿ” ๐Ÿ“๐Ÿ“

+ ๐Ÿ‘๐Ÿ‘ ๐Ÿ“๐Ÿ“๐’Š๐’Š

Page 7-21

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 163

Algebra I & II Key Concepts, Practice, and Quizzes Unit 7 โ€“ Radicals

Page 7-22

Complex Division and Solution

โ€ข Complex division

Example: Simplify and write the answer in the form A + Bi.

1. ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

= (2 โˆ’ 3๐‘–๐‘–๐‘–๐‘–)(๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ + ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘)(3 โˆ’ 4๐‘–๐‘–๐‘–๐‘–)(๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ + ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘)

Multiply by (3 + 4i) (the conjugate of (3 โˆ’ 4i)).

= 6 + 8๐‘–๐‘–๐‘–๐‘– โˆ’ 9๐‘–๐‘–๐‘–๐‘– โˆ’ 12 ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ

32 โˆ’ (4๐‘–๐‘–๐‘–๐‘–)2 FOIL ; (๐‘Ž๐‘Ž๐‘Ž๐‘Ž + ๐‘๐‘๐‘๐‘)(๐‘Ž๐‘Ž๐‘Ž๐‘Ž โˆ’ ๐‘๐‘๐‘๐‘) = ๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 โˆ’ ๐‘๐‘๐‘๐‘2

= 6 โˆ’ ๐‘–๐‘–๐‘–๐‘– โˆ’ 12(-๐Ÿ๐Ÿ๐Ÿ๐Ÿ)9 โˆ’ 42 ๐‘–๐‘–๐‘–๐‘–2

i2 = -1

= 6 โˆ’ ๐‘–๐‘–๐‘–๐‘– + 129 โˆ’ 16 (โˆ’1)

= 18 โˆ’ ๐‘–๐‘–๐‘–๐‘– 25

= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ A + Bi

2. ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

= 2๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘5๐‘–๐‘–๐‘–๐‘– โˆ™ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

= 2๐‘–๐‘–๐‘–๐‘–5๐‘–๐‘–๐‘–๐‘–2

Multiply by i.

= 2๐‘–๐‘–๐‘–๐‘–5(-1)

i 2 = -1

= - ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ A + Bi (0 โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘)

3. ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

= (2 โˆ’ 3๐‘–๐‘–๐‘–๐‘–)๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘4๐‘–๐‘–๐‘–๐‘– โˆ™ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

Multiply by i.

= 2๐‘–๐‘–๐‘–๐‘– โˆ’ 3๐‘–๐‘–๐‘–๐‘–2

4(-1) i 2 = -1

=2๐‘–๐‘–๐‘–๐‘– โˆ’ 3(-1)

-4

=2๐‘–๐‘–๐‘–๐‘– + 3

-4

= -๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ A + B i

โ€ข Complex solution

Example: Determine whether the complex number (2 โ€“ i) is a solution of the equation.

y2 โ€“ 4y + 5 = 0. ? (2 โ€“ i)2 โ€“ 4(2 โ€“ i) + 5 = 0 Replace y with (2 โ€“ i). ? (22 โ€“ 2 + 2i + i 2) โ€“ 8 + 4i + 5 = 0 (๐‘Ž๐‘Ž๐‘Ž๐‘Ž โˆ’ ๐‘๐‘๐‘๐‘)2 = ๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 โˆ’ 2๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘๐‘๐‘๐‘ + ๐‘๐‘๐‘๐‘2; combine like terms. ? i 2 + 1 = 0 i 2 = -1 โˆš

-1 + 1 = 0 Yes, (2 โ€“ i) is a solution. Page 7-22

Complex Division and Solution

โ€ข Complex division

Example: Simplify and write the answer in the form A + Bi.

1. ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

= (2 โˆ’ 3๐‘–๐‘–๐‘–๐‘–)(๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ + ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘)(3 โˆ’ 4๐‘–๐‘–๐‘–๐‘–)(๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ + ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘)

Multiply by (3 + 4i) (the conjugate of (3 โˆ’ 4i)).

= 6 + 8๐‘–๐‘–๐‘–๐‘– โˆ’ 9๐‘–๐‘–๐‘–๐‘– โˆ’ 12 ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ

32 โˆ’ (4๐‘–๐‘–๐‘–๐‘–)2 FOIL ; (๐‘Ž๐‘Ž๐‘Ž๐‘Ž + ๐‘๐‘๐‘๐‘)(๐‘Ž๐‘Ž๐‘Ž๐‘Ž โˆ’ ๐‘๐‘๐‘๐‘) = ๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 โˆ’ ๐‘๐‘๐‘๐‘2

= 6 โˆ’ ๐‘–๐‘–๐‘–๐‘– โˆ’ 12(-๐Ÿ๐Ÿ๐Ÿ๐Ÿ)9 โˆ’ 42 ๐‘–๐‘–๐‘–๐‘–2

i2 = -1

= 6 โˆ’ ๐‘–๐‘–๐‘–๐‘– + 129 โˆ’ 16 (โˆ’1)

= 18 โˆ’ ๐‘–๐‘–๐‘–๐‘– 25

= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ A + Bi

2. ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

= 2๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘5๐‘–๐‘–๐‘–๐‘– โˆ™ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

= 2๐‘–๐‘–๐‘–๐‘–5๐‘–๐‘–๐‘–๐‘–2

Multiply by i.

= 2๐‘–๐‘–๐‘–๐‘–5(-1)

i 2 = -1

= - ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ A + Bi (0 โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘)

3. ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

= (2 โˆ’ 3๐‘–๐‘–๐‘–๐‘–)๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘4๐‘–๐‘–๐‘–๐‘– โˆ™ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

Multiply by i.

= 2๐‘–๐‘–๐‘–๐‘– โˆ’ 3๐‘–๐‘–๐‘–๐‘–2

4(-1) i 2 = -1

=2๐‘–๐‘–๐‘–๐‘– โˆ’ 3(-1)

-4

=2๐‘–๐‘–๐‘–๐‘– + 3

-4

= -๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ A + B i

โ€ข Complex solution

Example: Determine whether the complex number (2 โ€“ i) is a solution of the equation.

y2 โ€“ 4y + 5 = 0. ? (2 โ€“ i)2 โ€“ 4(2 โ€“ i) + 5 = 0 Replace y with (2 โ€“ i). ? (22 โ€“ 2 + 2i + i 2) โ€“ 8 + 4i + 5 = 0 (๐‘Ž๐‘Ž๐‘Ž๐‘Ž โˆ’ ๐‘๐‘๐‘๐‘)2 = ๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 โˆ’ 2๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘๐‘๐‘๐‘ + ๐‘๐‘๐‘๐‘2; combine like terms. ? i 2 + 1 = 0 i 2 = -1 โˆš

-1 + 1 = 0 Yes, (2 โ€“ i) is a solution.

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

164 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 7 โ€“ Radicals

Unit 7 Summary โ€ข Square roots

Square Roots ExampleIf x2 = A,

Then ๏ฟฝ ๐‘ฅ๐‘ฅ = โˆš๐ด๐ด ๐‘ฅ๐‘ฅ = -โˆš๐ด๐ด

This can be written as Ax ยฑ= . (A โ‰ฅ 0)

If x2 = 9,

Then ๏ฟฝ๐‘ฅ๐‘ฅ = โˆš9 = 3 ๐‘ฅ๐‘ฅ = -โˆš9 = -3

This can be written as ๐‘ฅ๐‘ฅ = ยฑโˆš9 = ยฑ3 .

โ€ข Radical (root) is an expression that uses a root, such as square root, cube root, etc .

โ€ข Radical notation for the nth root โˆš๐’๐’

โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๏ฟฝโˆš โˆ’ the radical sign ๐‘Ž๐‘Ž โˆ’ the radicand (a real number) ๐‘›๐‘› โˆ’ the index (a positive integer > 1)

โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆ’ radical or radical expression

โ€ข Rational (fractional) exponent notation a is a fractional power or a number is raised to a fraction .

nth Root Example

Radical notation โˆš๐‘Ž๐‘Ž๐‘›๐‘› = ๐‘Ž๐‘Ž1๐‘›๐‘› Rational exponent notation โˆš73 = 7 1 3

Note: if n = 2 , write โˆš๐‘Ž๐‘Ž rather than โˆš๐‘Ž๐‘Ž2 . Omit 2 in โˆš52 , write โˆš5 . โ€ข nth root to the nth power Example

โˆš๐’‚๐’‚๐’๐’ ๐’๐’= ๐’‚๐’‚ Note: โˆš๐’‚๐’‚๐’๐’ ๐’๐’

= โˆš๐’‚๐’‚๐’๐’๐’๐’ โˆš๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ

= (๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ•๐Ÿ•

๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ = ๐Ÿ•๐Ÿ•

โ€ข nth root Example

โˆš๐‘Ž๐‘Ž๐‘›๐‘› = ๐‘๐‘ means a = bn โˆš164 = 2 means 16 = 24

Exampleโ€ข If the index n is an even natural number: โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›

= |๐‘Ž๐‘Ž| โˆš 3๐Ÿ’๐Ÿ’ ๐Ÿ’๐Ÿ’= ๏ฟฝ-3๏ฟฝ = 3

โ€ข If the index n is an odd natural number: โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›= ๐‘Ž๐‘Ž

Natural numbers: 1, 2, 3, โ€ฆ

โ€ข Index of a radical (n)Index n Read Example Read

๐‘Ž๐‘Ž12 = โˆš๐‘Ž๐‘Ž the square root of a 3

12 = โˆš3 the square root of 3

๐‘Ž๐‘Ž13 = โˆš๐‘Ž๐‘Ž3 the cube root of a 5

13 = โˆš53 the cube root of 5

๐‘Ž๐‘Ž14 = โˆš๐‘Ž๐‘Ž4 the fourth root of a 7

14 = โˆš74 the fourth root of 7

๐‘Ž๐‘Ž1๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› the nth root of a 2

111 = โˆš211 the 11th root of 2

๐‘Ž๐‘Ž๐‘š๐‘š๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘›

๐‘š๐‘šthe nth root of a to the mth power 7

56 = โˆš76 5 the 6th root of 7 to the 5th power

rational exponent notation

radical notation

โˆš6๐Ÿ“๐Ÿ“ ๐Ÿ“๐Ÿ“= 6 a = 6

๏ฟฝ-6๐Ÿ“๐Ÿ“

๐Ÿ“๐Ÿ“

= - 6 a = - 6

โˆš0 ๐Ÿ“๐Ÿ“ ๐Ÿ“๐Ÿ“= 0 a = 0

The principal square root (positive root)

Negative root

1n

โ€“ a

Page 7-23

Unit 7 Summary โ€ข Square roots

Square Roots ExampleIf x2 = A,

Then ๏ฟฝ ๐‘ฅ๐‘ฅ = โˆš๐ด๐ด ๐‘ฅ๐‘ฅ = -โˆš๐ด๐ด

This can be written as Ax ยฑ= . (A โ‰ฅ 0)

If x2 = 9,

Then ๏ฟฝ๐‘ฅ๐‘ฅ = โˆš9 = 3 ๐‘ฅ๐‘ฅ = -โˆš9 = -3

This can be written as ๐‘ฅ๐‘ฅ = ยฑโˆš9 = ยฑ3 .

โ€ข Radical (root) is an expression that uses a root, such as square root, cube root, etc .

โ€ข Radical notation for the nth root โˆš๐’๐’

โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๏ฟฝโˆš โˆ’ the radical sign ๐‘Ž๐‘Ž โˆ’ the radicand (a real number) ๐‘›๐‘› โˆ’ the index (a positive integer > 1)

โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆ’ radical or radical expression

โ€ข Rational (fractional) exponent notation a is a fractional power or a number is raised to a fraction .

nth Root Example

Radical notation โˆš๐‘Ž๐‘Ž๐‘›๐‘› = ๐‘Ž๐‘Ž1๐‘›๐‘› Rational exponent notation โˆš73 = 7 1 3

Note: if n = 2 , write โˆš๐‘Ž๐‘Ž rather than โˆš๐‘Ž๐‘Ž2 . Omit 2 in โˆš52 , write โˆš5 . โ€ข nth root to the nth power Example

โˆš๐’‚๐’‚๐’๐’ ๐’๐’= ๐’‚๐’‚ Note: โˆš๐’‚๐’‚๐’๐’ ๐’๐’

= โˆš๐’‚๐’‚๐’๐’๐’๐’ โˆš๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ

= (๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ•๐Ÿ•

๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ = ๐Ÿ•๐Ÿ•

โ€ข nth root Example

โˆš๐‘Ž๐‘Ž๐‘›๐‘› = ๐‘๐‘ means a = bn โˆš164 = 2 means 16 = 24

Exampleโ€ข If the index n is an even natural number: โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›

= |๐‘Ž๐‘Ž| โˆš 3๐Ÿ’๐Ÿ’ ๐Ÿ’๐Ÿ’= ๏ฟฝ-3๏ฟฝ = 3

โ€ข If the index n is an odd natural number: โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘›๐‘›= ๐‘Ž๐‘Ž

Natural numbers: 1, 2, 3, โ€ฆ

โ€ข Index of a radical (n)Index n Read Example Read

๐‘Ž๐‘Ž12 = โˆš๐‘Ž๐‘Ž the square root of a 3

12 = โˆš3 the square root of 3

๐‘Ž๐‘Ž13 = โˆš๐‘Ž๐‘Ž3 the cube root of a 5

13 = โˆš53 the cube root of 5

๐‘Ž๐‘Ž14 = โˆš๐‘Ž๐‘Ž4 the fourth root of a 7

14 = โˆš74 the fourth root of 7

๐‘Ž๐‘Ž1๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› the nth root of a 2

111 = โˆš211 the 11th root of 2

๐‘Ž๐‘Ž๐‘š๐‘š๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘›

๐‘š๐‘šthe nth root of a to the mth power 7

56 = โˆš76 5 the 6th root of 7 to the 5th power

rational exponent notation

radical notation

โˆš6๐Ÿ“๐Ÿ“ ๐Ÿ“๐Ÿ“= 6 a = 6

๏ฟฝ-6๐Ÿ“๐Ÿ“

๐Ÿ“๐Ÿ“

= - 6 a = - 6

โˆš0 ๐Ÿ“๐Ÿ“ ๐Ÿ“๐Ÿ“= 0 a = 0

The principal square root (positive root)

Negative root

1n

โ€“ a

Page 7-23

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 165

Algebra I & II Key Concepts, Practice, and Quizzes Unit 7 โ€“ Radicals

โ€ข Powers of roots The nth Root to the mth Power Example

๐‘Ž๐‘Ž๐‘š๐‘š๐‘›๐‘› = (โˆš๐‘Ž๐‘Ž๐‘›๐‘› )๐‘š๐‘š = โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘š๐‘š

= โˆš๐‘Ž๐‘Ž๐‘š๐‘š๐‘›๐‘› m โ€“ power 723 = (โˆš73 )2 = โˆš73 2

= โˆš723

โ€ข A radical expression is an algebraic expression containing a radical sign โˆš๐‘›๐‘› .

โ€ข Product and quotient rule for radicalsName Rule Example

product rule โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘› โˆ™ โˆš๐‘Ž๐‘Ž๐‘›๐‘› a โ‰ฅ 0 , b โ‰ฅ 0 โˆš12 = โˆš4 โˆ™ 3 = โˆš4 โˆš3 = ๏ฟฝ22 โˆš3 = 2โˆš3

quotient rule ๏ฟฝ๐‘Ž๐‘Ž๐‘๐‘

๐‘›๐‘› = โˆš๐‘Ž๐‘Ž๐‘›๐‘›

โˆš๐‘๐‘๐‘›๐‘› a โ‰ฅ 0 , b > 0 , b โ‰  0 ๏ฟฝ 827

3 = โˆš83

โˆš273 =๏ฟฝ233

๏ฟฝ333 = 23

โ€ข Simplifying radical expressionsA radical expression is in simplest form when: Simplest Form Not Simplest FormThe exponent (m) of the radical is less than the index (n).

m < n โˆš๐‘Ž๐‘Ž๐‘›๐‘› ๐‘š๐‘š ๏ฟฝ๐‘ฅ๐‘ฅ3 5 or โˆš๐‘Ž๐‘Ž5 3

3 < 5

๏ฟฝ๐‘ฅ๐‘ฅ87

8 > 7

No fractions appear within a radical sign. ๏ฟฝ2๐‘ฆ๐‘ฆ3 ๏ฟฝ2

3๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ4

No radicals appear in the denominator of a fraction. โˆš35

โˆš3โˆš8

โ€ข To add and subtract radical expressions by combining the like radicals (or like terms) .

โ€ข Like radicals are radicals with exactly the same index (n) and radicand (a) . โˆš๐‘Ž๐‘Ž๐‘›๐‘›

โ€ข Conjugates are two binomials (2 terms) whose only difference is the sign of one term . (Switch the middle sign of a pair of binomials, then conjugate to (a + b) is (a โ€“ b) .)

โ€ข Rationalize the denominator by getting rid of the radicals in the denominator to satisfy the

simplest condition โ€” no radical appears in the denominator .

โ€ข A square root equation is an equation containing a square root . Example โˆš๐‘ฅ๐‘ฅ โˆ’ 5 = 3

โ€ข The squaring, cubing, etc. process can sometimes create extraneous solutions that do not

satisfy the original equation . So always check solutions . Checking is necessary, not optional .

โ€ข A radical equation contains radical expressions. Example (Expressions containing radical signs โˆš๐‘›๐‘› ) โˆš๐‘ฅ๐‘ฅ3 โˆ’ 2๐‘ฅ๐‘ฅ = 7

โ€ข Solve a radical equation by generalizing the squaring property to other powers .

Radical Equation Do Example Solutionsquare root equation squaring โˆš๐‘ฅ๐‘ฅ = 2, โˆš๐‘ฅ๐‘ฅ

2= 22 x = 4

cube root equation cubing โˆš๐‘ฅ๐‘ฅ3 = 2, โˆš๐‘ฅ๐‘ฅ3 3= 23 x = 8

4th root equation raising to the 4th power โˆš๐‘ฅ๐‘ฅ4 = 2, โˆš๐‘ฅ๐‘ฅ4 4= 24 x = 16

5th root equation raising to the 5th power โˆš๐‘ฅ๐‘ฅ5 = 2, โˆš๐‘ฅ๐‘ฅ5 5= 25 x = 32

nth root equation raising to the nth power โˆš๐‘ฅ๐‘ฅ๐‘›๐‘› = 2, โˆš๐‘ฅ๐‘ฅ๐‘›๐‘› ๐‘›๐‘›= 2๐‘›๐‘› ๐‘ฅ๐‘ฅ = 2๐‘›๐‘›

Page 7-24

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

166 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 7 โ€“ Radicals

โ€ข The complex number system is an expanded number system that is larger than the real

number system and includes an even root of a negative number such as ๏ฟฝ-1 .

Complex Number Example A โ€“ real part

A + iB iB โ€“ imaginary part A and B are real numbers

3 + 7i 3 โ€“ real part

7i โ€“ imaginary part

โ€ข Imaginary unit (i): the square root of negative one . Imaginary Unit

๐‘–๐‘– = ๏ฟฝ-1 , i2 = -1 (๐‘–๐‘–2 = ๏ฟฝ-12

= -1)

โ€ข Extended number system

Complex Numbers (A + Bi) ๐‘–๐‘– = ๏ฟฝ-1

3 + 5i, 4i, 7- โ€ฆReal Numbers

3, 0, -7, 4/9, ฯ€, 5 โ€ฆRational Numbers Irrational Numbers6, 4/5 , -4 .5 โ€ฆ 5 , ฯ€ โ€ฆ .

โ€ข Shortcut for powers of imaginary unit iPower of i Example

i n = i R

R = the remainder of n รท 4

5i 23 = i 3 = -i 4 23

203

โ€ข Adding and subtracting complex numbers Adding/Subtracting Complex Numbers Example

(A + Bi) + (C + Di) = (A + C) + (B + D) i (2 + 5i) + (1 โ€“ 3i) = (2 + 1) + (5 โ€“ 3) i = 3 + 2i (A + Bi) โ€“ (C + Di) = (A โ€“ C) + (B โ€“ D) i

Or remove parentheses and combine like terms(7 + 6i) โ€“ (2 + 3i) = (7 โ€“ 2) + (6 โ€“ 3) i = 5 + 3ior (7 + 6i) โ€“ (2 + 3i) = 7 + 6i โ€“ 2 โ€“ 3i = 5 + 3i

โ€ข Multiplying complex numbersMultiplying Complex Numbers Example

(A + Bi) (C + Di) = AC + ADi + BCi + BDi2

F O I L = AC + (AD + BC)i + BD(-1)

= (AC โ€“ BD) + (AD + BC) i

(4 + 3i) (3 + 7i) = 12 + 28i + 9i + 21i2

F O I L = 12 + 37i โ€“ 21 (i 2 = -1) = -9 + 37i

โ€ข Complex conjugates: each complex number has a complex conjugate .Complex Conjugates Example

Conjugates

A + Bi and A โ€“ Bi

Conjugates

4 + 3i and 4 โ€“ 3i

โ€ข To divide complex numbers: Rationalize the denominator to get rid of the imaginary number in the denominator .

(i 2 = -1)

Page 7-25

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 167

Algebra I & II Key Concepts, Practice, and Quizzes Unit 7 โ€“ Radicals

PRACTICE QUIZ

Unit 7 Radicals

1. Given the function f (x) = โˆš5๐‘ฅ๐‘ฅ + 2 ,

a. determine the function values f (3) and f (0) .

b. identify the domain .

2. Find each root .

a. ๏ฟฝ 181

4

b . โˆš8๐‘ข๐‘ข33

3. Given the function f (x) = - โˆš7๐‘ฅ๐‘ฅ โˆ’ 1 3 ,

determine the function value f (4) .

4. Express each of the following in positive exponential form .

a . -3๐‘ฅ๐‘ฅ-2/3 ๐‘ฆ๐‘ฆ3/4 ๐‘ง๐‘ง-1/5

b . (u -3 โˆ™ ๐‘ฃ๐‘ฃ 2)3/4

c . ๏ฟฝ๐‘ฅ๐‘ฅ3

๐‘ฆ๐‘ฆ-4๏ฟฝ3

d . ๏ฟฝ๐‘Ž๐‘Ž๐‘๐‘๏ฟฝ

-4

e . (-37.56891)0

5. Express in simplest radical form .

a . ๏ฟฝ16๐‘ฅ๐‘ฅ8๐‘ฆ๐‘ฆ34

b . ๏ฟฝโˆš๐‘๐‘45

c . ๐‘ข๐‘ข23 ๐‘ฃ๐‘ฃ

12 ๐‘ค๐‘ค

34

d . ๏ฟฝ ๐‘Ž๐‘Ž1/4๐‘๐‘1/4

๐‘๐‘1/12๐‘‘๐‘‘1/12๏ฟฝ3

Page 11

PRACTICE QUIZ

Unit 7 Radicals

1. Given the function f (x) = โˆš5๐‘ฅ๐‘ฅ + 2 ,

a. determine the function values f (3) and f (0) .

b. identify the domain .

2. Find each root .

a. ๏ฟฝ 181

4

b . โˆš8๐‘ข๐‘ข33

3. Given the function f (x) = - โˆš7๐‘ฅ๐‘ฅ โˆ’ 1 3 ,

determine the function value f (4) .

4. Express each of the following in positive exponential form .

a . -3๐‘ฅ๐‘ฅ-2/3 ๐‘ฆ๐‘ฆ3/4 ๐‘ง๐‘ง-1/5

b . (u -3 โˆ™ ๐‘ฃ๐‘ฃ 2)3/4

c . ๏ฟฝ๐‘ฅ๐‘ฅ3

๐‘ฆ๐‘ฆ-4๏ฟฝ3

d . ๏ฟฝ๐‘Ž๐‘Ž๐‘๐‘๏ฟฝ

-4

e . (-37.56891)0

5. Express in simplest radical form .

a . ๏ฟฝ16๐‘ฅ๐‘ฅ8๐‘ฆ๐‘ฆ34

b . ๏ฟฝโˆš๐‘๐‘45

c . ๐‘ข๐‘ข23 ๐‘ฃ๐‘ฃ

12 ๐‘ค๐‘ค

34

d . ๏ฟฝ ๐‘Ž๐‘Ž1/4๐‘๐‘1/4

๐‘๐‘1/12๐‘‘๐‘‘1/12๏ฟฝ3

Page 11

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

168 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 7 โ€“ Radicals

6. Simplify the following .

a . ๏ฟฝ56๐‘ฅ๐‘ฅ4๐‘ฆ๐‘ฆ 3

b . โˆš32๐‘Ž๐‘Ž7๐‘๐‘94

โˆš2๐‘Ž๐‘Ž3๐‘๐‘44

7. Perform the indicated operations and simplify .

a . 4๏ฟฝ15๐‘ฆ๐‘ฆ3 โˆ’ 3๏ฟฝ5๐‘ฆ๐‘ฆ3

b . 3 โˆš๐‘Ž๐‘Ž 3 ๏ฟฝโˆš๐‘Ž๐‘Ž23 + โˆš๐‘Ž๐‘Ž2๐‘๐‘3 3 โˆ’ 5โˆš๐‘Ž๐‘Ž23 ๏ฟฝ

c . ๏ฟฝ5๐‘ฆ๐‘ฆ 3

โˆš๐‘ฅ๐‘ฅ 3

8. Solve the following equations:

a . 2 + โˆš7๐‘ฅ๐‘ฅ+ 13 4 = 4

b . โˆš๐‘ฅ๐‘ฅ โˆ’ 6 โˆ’ โˆš๐‘ฅ๐‘ฅ + 9 + 3 = 0

9. Simplify and write the answer in the form A + Bi . 3 โˆ’ 4๐‘–๐‘–5 โˆ’ 2๐‘–๐‘–

Page 12

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 169

Algebra I & II Key Concepts, Practice, and Quizzes Unit 8 โ€“ Quadratic Equations and Inequalities

UNIT 8 QUADRATIC EQUATIONS AND INEQUALITIES

8-1 SOLVING QUADRATIC EQUATIONS

Incomplete Quadratic Equations

โ€ข A quadratic equation: an equation that has a squared term, such as 2x2 + 7x โ€“ 3 = 0 .

Quadratic Equations in Standard Formax2 + bx + c = 0 a โ‰  0

โ€ข Incomplete quadratic equation

Incomplete Quadratic Equation Example a b cax2 + bx = 0 (c = 0) 7x2 โ€“ 4x = 0 7 -4 0

ax2 + c = 0 (b = 0) 3x2 + 16 = 0 3 0 16

โ€ข Zero-product propertyZero-Product Property

If A ยท B = 0, then either A = 0 or B = 0 (or both)(A and B are algebraic expressions .)

Note: โ€œorโ€ means possibility of both .

โ€ข Solving incomplete quadratic equationsIncomplete

Quadratic Equation Steps Example

Use the zero-product

property to solve

ax2 + bx = 0.

- Express in ax2 + bx = 0 - Factor: x (ax + b) = 0 - Apply the zero-product property:

x = 0 ax + b = 0

- Solve for x : x = 0 abx -=

Solve 9x2 = -5x 9x2 + 5x = 0

x (9x + 5) = 0

x = 0 9x + 5 = 0

x = 0 95-=x

Use the square root

method to solve

ax2 โ€“ c = 0(or ax2 = c).

- Express in ax2 = c

- Divide both sides by a: acx =2

- Take the square root of both sides:acx ยฑ=

Solve 7x2 โ€“ 4 = 0 7x2 = 4

742 =x

76 .074

ยฑโ‰ˆยฑ=x

Exact solutions Approximate solutions

Add 5x

Page 8-1

UNIT 8 QUADRATIC EQUATIONS AND INEQUALITIES

8-1 SOLVING QUADRATIC EQUATIONS

Incomplete Quadratic Equations

โ€ข A quadratic equation: an equation that has a squared term, such as 2x2 + 7x โ€“ 3 = 0 .

Quadratic Equations in Standard Formax2 + bx + c = 0 a โ‰  0

โ€ข Incomplete quadratic equation

Incomplete Quadratic Equation Example a b cax2 + bx = 0 (c = 0) 7x2 โ€“ 4x = 0 7 -4 0

ax2 + c = 0 (b = 0) 3x2 + 16 = 0 3 0 16

โ€ข Zero-product propertyZero-Product Property

If A ยท B = 0, then either A = 0 or B = 0 (or both)(A and B are algebraic expressions .)

Note: โ€œorโ€ means possibility of both .

โ€ข Solving incomplete quadratic equationsIncomplete

Quadratic Equation Steps Example

Use the zero-product

property to solve

ax2 + bx = 0.

- Express in ax2 + bx = 0 - Factor: x (ax + b) = 0 - Apply the zero-product property:

x = 0 ax + b = 0

- Solve for x : x = 0 abx -=

Solve 9x2 = -5x 9x2 + 5x = 0

x (9x + 5) = 0

x = 0 9x + 5 = 0

x = 0 95-=x

Use the square root

method to solve

ax2 โ€“ c = 0(or ax2 = c).

- Express in ax2 = c

- Divide both sides by a: acx =2

- Take the square root of both sides:acx ยฑ=

Solve 7x2 โ€“ 4 = 0 7x2 = 4

742 =x

76 .074

ยฑโ‰ˆยฑ=x

Exact solutions Approximate solutions

Add 5x

Page 8-1

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

170 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 8 โ€“ Quadratic Equations and Inequalities

Quadratic Equations

โ€ข Solve a quadratic equation: a quadratic equation can be written as:

(x + a)(x + b) = 0 Factor .

Set each term equal to zero: x + a = 0 x + b = 0 Zero-product property

Solutions๏ผš x = -a x = -b Solve for a and b.

Example: Solve for x. (x + 5)(x โ€“7) = 0

x + 5 = 0 x โ€“ 7 = 0 Zero-product property

x = -5 x = 7 Solve for x.

The solution set is {-5, 7} .

โ€ข The x-intercepts of a quadratic equation: the solutions of a quadratic equation .Recall: The x-intercept is the point at which the graph crosses the x-axis .

โ€ข To find the x-intercept (x, 0): solve for x in the quadratic equation x2 + bx + c = 0 โˆต All points on the x-axis (the x-intercepts) have a y-coordinate that is zero, x2 + bx + c = 0 is x2 + bx + c = y with y = 0 .

Example: 1. Solve the quadratic equation x2 โ€“ 2x โ€“ 8 = 0.

2. Identify the x-intercepts of f (x) = x2 โ€“ 2x โ€“ 8 .

Solution: 1. x2 โ€“ 2 x โ€“ 8 = 0

(x + 2)(x โ€“ 4) = 0 Factor .

x + 2 = 0 x โ€“ 4 = 0 Zero-product property

x = -2 x = 4

2. f (x) = x2 โ€“ 2x โ€“ 8

x y = x2 โ€“ 2x โ€“ 8 (x, y) 0 02 โ€“ 2 ยท 0 โ€“ 8 = -8 (0, -8)1 12 โ€“ 2 ยท 1 โ€“ 8 = -9 (1, -9)

-1 (-1)2 โ€“ 2 (-1) โ€“ 8 = -5 (-1, -5)2 22 โ€“ 2 โˆ™ 2 โ€“ 8 = -8 (2, -8)

-2 (-2)2 โ€“ 2(-2) โ€“ 8 = 0 (-2, 0) 4 42 โ€“ 2 ยท 4 โ€“ 8 = 0 (4, 0)

x-intercepts: (-2, 0) , (4, 0)Example: Solve (y + 3)2 = 2

๏ฟฝ(๐‘ฆ๐‘ฆ + 3)2 = ยฑโˆš2 y + 3 = โˆš2 y + 3 = -โˆš2

y = โˆš2 โ€“ 3 โ‰ˆ -1 .586 y = -โˆš2 โˆ’ 3 โ‰ˆ -4 .414 Subtract 3 .

Solutions: y = - ๐Ÿ‘๐Ÿ‘ ยฑ โˆš๐Ÿ๐Ÿ or y โ‰ˆ ๏ฟฝ-๐Ÿ๐Ÿ. ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“-๐Ÿ’๐Ÿ’. ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’

Exact solutions Approximate solutions

x-intercepts

Tips: - Choose points on both sides of the axis .- The solutions of f (x) = x2 โ€“ 2x โ€“ 8 are the first coordinates of the x-intercepts .

โˆ™ (4, 0)(-2, 0) โˆ™

(-1, -5) โˆ™

โˆ™ (2, -8)

x

โˆ™ (1, -9) (0, -8) โˆ™

0

Take the square root of both sides .

Page 8-2

Quadratic Equations

โ€ข Solve a quadratic equation: a quadratic equation can be written as:

(x + a)(x + b) = 0 Factor .

Set each term equal to zero: x + a = 0 x + b = 0 Zero-product property

Solutions๏ผš x = -a x = -b Solve for a and b.

Example: Solve for x. (x + 5)(x โ€“7) = 0

x + 5 = 0 x โ€“ 7 = 0 Zero-product property

x = -5 x = 7 Solve for x.

The solution set is {-5, 7} .

โ€ข The x-intercepts of a quadratic equation: the solutions of a quadratic equation .Recall: The x-intercept is the point at which the graph crosses the x-axis .

โ€ข To find the x-intercept (x, 0): solve for x in the quadratic equation x2 + bx + c = 0 โˆต All points on the x-axis (the x-intercepts) have a y-coordinate that is zero, x2 + bx + c = 0 is x2 + bx + c = y with y = 0 .

Example: 1. Solve the quadratic equation x2 โ€“ 2x โ€“ 8 = 0.

2. Identify the x-intercepts of f (x) = x2 โ€“ 2x โ€“ 8 .

Solution: 1. x2 โ€“ 2 x โ€“ 8 = 0

(x + 2)(x โ€“ 4) = 0 Factor .

x + 2 = 0 x โ€“ 4 = 0 Zero-product property

x = -2 x = 4

2. f (x) = x2 โ€“ 2x โ€“ 8

x y = x2 โ€“ 2x โ€“ 8 (x, y) 0 02 โ€“ 2 ยท 0 โ€“ 8 = -8 (0, -8)1 12 โ€“ 2 ยท 1 โ€“ 8 = -9 (1, -9)

-1 (-1)2 โ€“ 2 (-1) โ€“ 8 = -5 (-1, -5)2 22 โ€“ 2 โˆ™ 2 โ€“ 8 = -8 (2, -8)

-2 (-2)2 โ€“ 2(-2) โ€“ 8 = 0 (-2, 0) 4 42 โ€“ 2 ยท 4 โ€“ 8 = 0 (4, 0)

x-intercepts: (-2, 0) , (4, 0)Example: Solve (y + 3)2 = 2

๏ฟฝ(๐‘ฆ๐‘ฆ + 3)2 = ยฑโˆš2 y + 3 = โˆš2 y + 3 = -โˆš2

y = โˆš2 โ€“ 3 โ‰ˆ -1 .586 y = -โˆš2 โˆ’ 3 โ‰ˆ -4 .414 Subtract 3 .

Solutions: y = - ๐Ÿ‘๐Ÿ‘ ยฑ โˆš๐Ÿ๐Ÿ or y โ‰ˆ ๏ฟฝ-๐Ÿ๐Ÿ. ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“-๐Ÿ’๐Ÿ’. ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’

Exact solutions Approximate solutions

x-intercepts

Tips: - Choose points on both sides of the axis .- The solutions of f (x) = x2 โ€“ 2x โ€“ 8 are the first coordinates of the x-intercepts .

โˆ™ (4, 0)(-2, 0) โˆ™

(-1, -5) โˆ™

โˆ™ (2, -8)

x

โˆ™ (1, -9) (0, -8) โˆ™

0

Take the square root of both sides .

Page 8-2

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 171

Algebra I & II Key Concepts, Practice, and Quizzes Unit 8 โ€“ Quadratic Equations and Inequalities

8-2 COMPLETING THE SQUARE

Completing the Square

โ€ข Completing the square can be used to solve quadratic equations that are not factorable .

โ€ข Completing the square: the process of finding a number to add to a quadratic equation and to form a perfect square, such as: x2 + 10x + ? = (x + 5)2

โ€ข Procedure to complete the square โ€“ Case I: x2 + bx + c = 0 Steps Example: Solve x2 + 10 x โ€“ 1 = 0 .

- Express in the form x2 + b x = -c . x2 + 10 x = 1 Add 1 .

- Add to both sides of the equation . x2 + 10 x + = 1 +

- Determine ๏ฟฝ๐‘๐‘2๏ฟฝ2

(Take half of the coefficient of x and square it .) ๏ฟฝ๐‘๐‘2๏ฟฝ2

= ๏ฟฝ102๏ฟฝ2

= 25

- Add ๏ฟฝ๐‘๐‘2๏ฟฝ2to both sides of the equation .

๐‘ฅ๐‘ฅ2+bx + ๏ฟฝ๐‘๐‘2๏ฟฝ

2= โˆ’๐‘๐‘ + ๏ฟฝ๐‘๐‘

2๏ฟฝ

2x2 + 10x + 25 = 1 + 25

- Factor the left side . (x + 5)2 = 26- Take the square root of both sides . x 26)5( 2 ยฑ=+

- Solve for x . ๐‘ฅ๐‘ฅ + 5 = ยฑโˆš26 ๐‘ฅ๐‘ฅ + 5 = โˆš26 ๐‘ฅ๐‘ฅ + 5 = -โˆš26 x = -5 + โˆš26 x = -5 โ€“ โˆš26

Solutions: x = -5 ยฑ โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ

โ€ข Procedure to complete the square โ€“ Case II: Ax2 + Bx + C = 0

Steps Example: Solve 2x2 + 4x โ€“ 70 = 0 .

Method 1 Method 2

- Express in the form Ax2 + Bx= - C . 2x2 + 4x = 70 2x2 + 4x = 70 Add 70 .

- Make the coefficient of x2 equal to 1 . 2

702

42

2 2

=+xx Divide by 2 . 2(x2 + 2x) = 70 Factor out 2 .

- Add to both sides of the equation . x2 + 2x + = 35 + 2(x2 + 2x + ) = 70 + 2 โˆ™

- Determine ๏ฟฝ๐‘๐‘2๏ฟฝ2 . ๏ฟฝ๐‘๐‘

2๏ฟฝ2

= ๏ฟฝ22๏ฟฝ2

= ๐Ÿ๐Ÿ ๏ฟฝ๐‘๐‘2๏ฟฝ2

= ๏ฟฝ22๏ฟฝ2

= ๐Ÿ๐Ÿ

- Add ๏ฟฝ๐‘๐‘2๏ฟฝ2

to both sides of the equation . x2 + 2x + 1 = 35 + 1 2(x2 + 2x + 1 )= 70 + 2 โˆ™ 1

- Factor the left side . (x + 1)2 = 36 2(x + 1)2 = 72 Divide by 2 .

- Take the square root of both sides . x 36)1( 2 ยฑ=+ x 36)1( 2 ยฑ=+ - Solve for x . x 61 ยฑ=+

x 61=+ x 6-1=+ Solutions: x = 5 x = -7

Add 2 โˆ™ to the right side .

Page 8-3

8-2 COMPLETING THE SQUARE

Completing the Square

โ€ข Completing the square can be used to solve quadratic equations that are not factorable .

โ€ข Completing the square: the process of finding a number to add to a quadratic equation and to form a perfect square, such as: x2 + 10x + ? = (x + 5)2

โ€ข Procedure to complete the square โ€“ Case I: x2 + bx + c = 0 Steps Example: Solve x2 + 10 x โ€“ 1 = 0 .

- Express in the form x2 + b x = -c . x2 + 10 x = 1 Add 1 .

- Add to both sides of the equation . x2 + 10 x + = 1 +

- Determine ๏ฟฝ๐‘๐‘2๏ฟฝ2

(Take half of the coefficient of x and square it .) ๏ฟฝ๐‘๐‘2๏ฟฝ2

= ๏ฟฝ102๏ฟฝ2

= 25

- Add ๏ฟฝ๐‘๐‘2๏ฟฝ2to both sides of the equation .

๐‘ฅ๐‘ฅ2+bx + ๏ฟฝ๐‘๐‘2๏ฟฝ

2= โˆ’๐‘๐‘ + ๏ฟฝ๐‘๐‘

2๏ฟฝ

2x2 + 10x + 25 = 1 + 25

- Factor the left side . (x + 5)2 = 26- Take the square root of both sides . x 26)5( 2 ยฑ=+

- Solve for x . ๐‘ฅ๐‘ฅ + 5 = ยฑโˆš26 ๐‘ฅ๐‘ฅ + 5 = โˆš26 ๐‘ฅ๐‘ฅ + 5 = -โˆš26 x = -5 + โˆš26 x = -5 โ€“ โˆš26

Solutions: x = -5 ยฑ โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ

โ€ข Procedure to complete the square โ€“ Case II: Ax2 + Bx + C = 0

Steps Example: Solve 2x2 + 4x โ€“ 70 = 0 .

Method 1 Method 2

- Express in the form Ax2 + Bx= - C . 2x2 + 4x = 70 2x2 + 4x = 70 Add 70 .

- Make the coefficient of x2 equal to 1 . 2

702

42

2 2

=+xx Divide by 2 . 2(x2 + 2x) = 70 Factor out 2 .

- Add to both sides of the equation . x2 + 2x + = 35 + 2(x2 + 2x + ) = 70 + 2 โˆ™

- Determine ๏ฟฝ๐‘๐‘2๏ฟฝ2 . ๏ฟฝ๐‘๐‘

2๏ฟฝ2

= ๏ฟฝ22๏ฟฝ2

= ๐Ÿ๐Ÿ ๏ฟฝ๐‘๐‘2๏ฟฝ2

= ๏ฟฝ22๏ฟฝ2

= ๐Ÿ๐Ÿ

- Add ๏ฟฝ๐‘๐‘2๏ฟฝ2

to both sides of the equation . x2 + 2x + 1 = 35 + 1 2(x2 + 2x + 1 )= 70 + 2 โˆ™ 1

- Factor the left side . (x + 1)2 = 36 2(x + 1)2 = 72 Divide by 2 .

- Take the square root of both sides . x 36)1( 2 ยฑ=+ x 36)1( 2 ยฑ=+ - Solve for x . x 61 ยฑ=+

x 61=+ x 6-1=+ Solutions: x = 5 x = -7

Add 2 โˆ™ to the right side .

Page 8-3

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

172 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 8 โ€“ Quadratic Equations and Inequalities

Example: 1. Solve x2 โ€“ 4x + 9 = 0 by completing the square .

2. Identify the x-intercepts of f (x) = x2 โ€“ 4x + 9 .

Steps Solution

1. x2 โ€“ 4x + 9 = 0

- Express in the form x2 + bx= - c . x2 โ€“ 4x = -9 Subtract 9 .

- Determine ๏ฟฝ๐‘๐‘2๏ฟฝ

2 . ๏ฟฝ-4

2๏ฟฝ2

= 4 b = -4

- Add ๏ฟฝ๐‘๐‘2๏ฟฝ2

to both sides of the equation . (x2 โ€“ 4x + 4) = -9 + 4- Factor the left side . (x โ€“ 2)2 = -5

- Take the square root of both sides . x 5-)2( 2 ยฑ=โˆ’

- Solve for x . x 5-2 ยฑ=โˆ’

52

5)1-(2

5-2

i

x

ยฑ=

โ‹…ยฑ=

ยฑ=

๏ฟฝ-1 = ๐‘–๐‘–๐‘–๐‘–

Solutions: i x 52 += or i x 52 โˆ’=x = ๐Ÿ๐Ÿ ยฑ ๐’Š๐’Šโˆš๐Ÿ“๐Ÿ“

2. f (x) = x2 โ€“ 4x + 9 . f (x) = x2 โ€“ 4x + 9

x y = x2 โ€“ 4x + 9 (x, y)0 02 โ€“ 4 ยท 0 + 9 = 9 (0, 9) 1 12 โ€“ 4 ยท 1 + 9 = 6 (1, 6)

-1 (-1)2 โ€“ 4 (-1) + 9 = 14 (-1, 14) 2 22 โ€“ 4 โˆ™ 2 + 9 = 5 (2, 5) 3 32 โ€“ 4 โˆ™ 3 + 9 = 6 (3, 6) 4 42 โ€“ 4 ยท 4 + 9 = 9 (4, 9)5 52 โ€“ 4 ยท 5 + 9 = 14 (5, 14)

Tip: Choose points on both sides of the y-axis .

No x-intercepts (x are non-real complex numbers) .

(-1, 14) โˆ™ (5, 14) โˆ™

y

Add 2 .

โˆ™ (4, 9)

โˆ™ (3, 6)

x

(1, 6) โˆ™

(0 9) โˆ™

โˆ™ (2, 5)

0

The graph does not cross the x-axis anywhere .

Page 8-4

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 173

Algebra I & II Key Concepts, Practice, and Quizzes Unit 8 โ€“ Quadratic Equations and Inequalities

Applications

โ€ข Simple interest: interest computed on the original principal .

โ€ข Compound interest: interest computed on both the principal and the past interest earned .

โ€ข Compound interest formulaFormula Component

A = P(1 + r) tA โ€“ new valueP โ€“ starting principalr โ€“ interest ratet โ€“ time (years)

Example: $100 grows to $121 in 2 years . Calculate interest rate r .

A = P(1 + r) t ๏ฟฝ A = $121

P = $100

๐‘ก๐‘ก = 2 years121= 100(1 + r) 2

121100

= (1 + r) 2Divide by 100 .

ยฑ๏ฟฝ121100

= ๏ฟฝ(1 + ๐‘Ÿ๐‘Ÿ)2 Take the square root of both sides .

ยฑ๏ฟฝ121100

= 1 + ๐‘Ÿ๐‘Ÿ

-1 ยฑ๏ฟฝ121100

= ๐‘Ÿ๐‘Ÿ Subtract 1

r = -1 +๏ฟฝ121100

r = -1 โ€“๏ฟฝ121100

Solve for r.

= -1 +๏ฟฝ112

102= -1 โ€“๏ฟฝ112

102

= -1 + 1110

= -1 โ€“1110

= - 1010

+ 1110

= - 1010โˆ’ 11

10

= 110

= 0.1 โˆš = - 2110

ร—

r = 0.1 or 10 % Interest rate is 10% .

Interest rate cannot be negative, eliminate it .

Page 8-5

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

174 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 8 โ€“ Quadratic Equations and Inequalities

8-3 THE QUADRATIC FORMULA

Methods to Solve Quadratic Equations

โ€ข Methods for solving quadratic equations

Quadratic Equation Methodax2 + c = 0 (no x term) Square root method

ax2 + bx = 0 (c = 0) Zero-product property

ax2 + bx + c = 0 Try factoring first .ax2 + bx + c = 0

Not factorable (or does not factor easily)Completing the square or quadratic formula

Factoring: fast and easy to use, but is limited in scope . (Some quadratic equations are not factorable .)

Completing the square: can be used to solve all quadratic equations, but is tedious .

The quadratic formula: a general formula that can be used to solve any quadratic equation .

The Quadratic Formula

quadratic equation: ax2 + bx + c = 0

solutions: a

acb-bx2

42 โˆ’ยฑ= (a โ‰  0)

Note: The plus or minus sign (ยฑ) shows that the quadratic formula gives two solutions .

aacb-bx

242 โˆ’+

= anda

acb-bx2

42 โˆ’โˆ’=

Page 8-6

8-3 THE QUADRATIC FORMULA

Methods to Solve Quadratic Equations

โ€ข Methods for solving quadratic equations

Quadratic Equation Methodax2 + c = 0 (no x term) Square root method

ax2 + bx = 0 (c = 0) Zero-product property

ax2 + bx + c = 0 Try factoring first .ax2 + bx + c = 0

Not factorable (or does not factor easily)Completing the square or quadratic formula

Factoring: fast and easy to use, but is limited in scope . (Some quadratic equations are not factorable .)

Completing the square: can be used to solve all quadratic equations, but is tedious .

The quadratic formula: a general formula that can be used to solve any quadratic equation .

The Quadratic Formula

quadratic equation: ax2 + bx + c = 0

solutions: a

acb-bx2

42 โˆ’ยฑ= (a โ‰  0)

Note: The plus or minus sign (ยฑ) shows that the quadratic formula gives two solutions .

aacb-bx

242 โˆ’+

= anda

acb-bx2

42 โˆ’โˆ’=

Page 8-6

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 175

Algebra I & II Key Concepts, Practice, and Quizzes Unit 8 โ€“ Quadratic Equations and Inequalities

The Quadratic Formula

Solving quadratic equations using the quadratic formula

Example: Use the quadratic formula to solve x2 + 5x = - 4 .

Steps Solution

x2 + 5x = - 4

- Write in standard form (ax2 + bx + c = 0) . 1x2 + 5x + 4 = 0 Add 4 .

- Identify a, b, and c . a = 1, b = 5, c = 4

- Substitute the values of a, b, and c into 12

41455-2

4 22

โ‹…โ‹…โ‹…โˆ’ยฑ

=โˆ’ยฑ

=a

acb-bx

the formula and calculate . 2

35-2

95-2

16255- ยฑ=

ยฑ=

โˆ’ยฑ=x

๐‘ฅ๐‘ฅ = -5ยฑ32

- Solve for x . x 1-2

35-=

+= x 4-

235-=

โˆ’=

Solutions: x = -4 or -1

Example: Use the quadratic formula to solve - 6x = 3 โ€“ 4x2 .

Steps Solution

- 6x = 3 โ€“ 4x2

- Write in standard form . 4x2 โ€“ 6x โ€“ 3 = 0 Add 4x2; subtract 3 .

- Identify a, b and c . a = 4, b = -6, c = -3

- Substitute a, b, and c into the formula .

42)3-(44)6-()6-(-

24

2

2

โ‹…โ‹…โ‹…โˆ’ยฑ

=

โˆ’ยฑ=

aacb-bx

- Solve for x . = 6 ยฑ โˆš36 + 488

= 6 ยฑ โˆš848

= 6 ยฑ โˆš21 โˆ™ 48

= 6 ยฑ 2โˆš218

Divide by 2 .

Solutions: ๐’™๐’™ = ๐Ÿ‘๐Ÿ‘ ยฑ โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’

Page 8-7

The Quadratic Formula

Solving quadratic equations using the quadratic formula

Example: Use the quadratic formula to solve x2 + 5x = - 4 .

Steps Solution

x2 + 5x = - 4

- Write in standard form (ax2 + bx + c = 0) . 1x2 + 5x + 4 = 0 Add 4 .

- Identify a, b, and c . a = 1, b = 5, c = 4

- Substitute the values of a, b, and c into 12

41455-2

4 22

โ‹…โ‹…โ‹…โˆ’ยฑ

=โˆ’ยฑ

=a

acb-bx

the formula and calculate . 2

35-2

95-2

16255- ยฑ=

ยฑ=

โˆ’ยฑ=x

๐‘ฅ๐‘ฅ = -5ยฑ32

- Solve for x . x 1-2

35-=

+= x 4-

235-=

โˆ’=

Solutions: x = -4 or -1

Example: Use the quadratic formula to solve - 6x = 3 โ€“ 4x2 .

Steps Solution

- 6x = 3 โ€“ 4x2

- Write in standard form . 4x2 โ€“ 6x โ€“ 3 = 0 Add 4x2; subtract 3 .

- Identify a, b and c . a = 4, b = -6, c = -3

- Substitute a, b, and c into the formula .

42)3-(44)6-()6-(-

24

2

2

โ‹…โ‹…โ‹…โˆ’ยฑ

=

โˆ’ยฑ=

aacb-bx

- Solve for x . = 6 ยฑ โˆš36 + 488

= 6 ยฑ โˆš848

= 6 ยฑ โˆš21 โˆ™ 48

= 6 ยฑ 2โˆš218

Divide by 2 .

Solutions: ๐’™๐’™ = ๐Ÿ‘๐Ÿ‘ ยฑ โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’

Page 8-7

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

176 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 8 โ€“ Quadratic Equations and Inequalities

Example: 1. Use the quadratic formula to solve (x โ€“ 3)(x โ€“ 4) โ€“ 8 = 0 .

2. Identify the x-intercepts of f (x) = (x โ€“ 3)(x โ€“ 4) โ€“ 8 .

Solution: 1. x2 โ€“ 4x โ€“ 3x + 12 โ€“ 8 = 0 FOIL

x2 โ€“ 7x + 4 = 0 Standard form

12414)7-()7-(-

24

2

2

โ‹…โ‹…โ‹…โˆ’ยฑ

=

โˆ’ยฑ=

aacb-bx

a = 1, b = -7, c = 4

= ๐Ÿ•๐Ÿ• ยฑ โˆš๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

= ๐Ÿ•๐Ÿ• ยฑ โˆš๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ

2. The x-intercepts: ๏ฟฝ๐Ÿ•๐Ÿ•+ โˆš๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ

, ๐ŸŽ๐ŸŽ๏ฟฝ or ๏ฟฝ๐Ÿ•๐Ÿ•โˆ’ โˆš๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ

, ๐ŸŽ๐ŸŽ๏ฟฝExample: Use the quadratic formula to solve the following .

1. 2x (x โ€“ 1) + (x + 3) = x2 + x Remove parentheses .

2x2 โ€“ 2x + x + 3 = x2 + x Write in standard form .

x2 โ€“ 2x + 3 = 0 Subtract x2 and x.

12314)2-()2-(-

24 22

โ‹…โ‹…โ‹…โˆ’ยฑ

=โˆ’ยฑ

=a

acb-bx a = 1, b = -2, c = 3

21242 โˆ’ยฑ

=2

8-2 ยฑ=

242)1-(2 โ‹…โ‹…ยฑ

=2

222 iยฑ= ๏ฟฝ-๐Ÿ๐Ÿ = ๐’Š๐’Š ; divide by 2 .

๐’™๐’™ = ๐Ÿ๐Ÿ ยฑ ๐’Š๐’Šโˆš๐Ÿ๐Ÿ

2. ๐Ÿ๐Ÿ๐’•๐’•

+ ๐Ÿ๐Ÿ๐’•๐’•โˆ’๐Ÿ๐Ÿ

= ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

LCD = 5t (t - 1)

๐Ÿ๐Ÿ๐’•๐’•๐Ÿ“๐Ÿ“๐’•๐’•(๐’•๐’• โˆ’ ๐Ÿ๐Ÿ) + ๐Ÿ๐Ÿ

๐’•๐’•โˆ’๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐’•๐’•(๐’•๐’• โˆ’ ๐Ÿ๐Ÿ) = ๐Ÿ๐Ÿ

๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“๐’•๐’•(๐’•๐’• โˆ’ ๐Ÿ๐Ÿ) Multiply by the LCD .

๐Ÿ“๐Ÿ“(๐’•๐’• โˆ’ ๐Ÿ๐Ÿ) + ๐Ÿ“๐Ÿ“๐’•๐’• = ๐’•๐’•(๐’•๐’• โˆ’ ๐Ÿ๐Ÿ) Distribute

๐Ÿ“๐Ÿ“๐’•๐’• โˆ’ ๐Ÿ“๐Ÿ“ + ๐Ÿ“๐Ÿ“๐’•๐’• = ๐’•๐’•๐Ÿ๐Ÿ โˆ’ ๐’•๐’•

๐’•๐’•๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’•๐’• + ๐Ÿ“๐Ÿ“ = ๐ŸŽ๐ŸŽ Write in standard form .

12514)11-()11-(-

24 22

โ‹…โ‹…โ‹…โˆ’ยฑ

=โˆ’ยฑ

=a

acb-bt a = 1, b = -11, c = 5

22012111 โˆ’ยฑ

=

๐’•๐’• = ๐Ÿ๐Ÿ๐Ÿ๐Ÿยฑโˆš๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Exact solutions . t โ‰ˆ ๏ฟฝ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ.๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐ŸŽ๐ŸŽ.๐Ÿ’๐Ÿ’๐Ÿ•๐Ÿ•๐Ÿ“๐Ÿ“ Approximate solutions .

Page 8-8

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 177

Algebra I & II Key Concepts, Practice, and Quizzes Unit 8 โ€“ Quadratic Equations and Inequalities

8-4 APPLICATIONS OF QUADRATIC EQUATIONS

Quadratic Applications

Recall steps for solving word problems

Procedure for Solving Word Problemsโ€ข Organize the facts given from the problem .โ€ข Identify and label the unknown quantity (let x = unknown) .โ€ข Draw a diagram if it will make the problem clearer . โ€ข Convert the wording into a mathematical equation . โ€ข Solve the equation .โ€ข Check and answer the question.

Example: Evan is going to replace old carpet in his bedroom, which is a rectangle and has a

length 2 meters greater than its width . If the area of his bedroom is 48 square meters,

what will be the dimensions (length and width) of the carpet?

Steps Solution

- List the facts and label the unknown .

FactsArea A = 48m2

Length = Width + 2mUnknowns Width = x , Length = x + 2m

- Draw a diagram .Width = x

Length = x + 2

- Write an equation . x (x + 2) = 48 (Area: A = lw )

- Solve the equation . x2 + 2x = 48 Distribute

- Standard form: x2 + 2x โ€“ 48 = 0

- Factor: (x + 8)(x โ€“ 6) = 0

- Zero-product property: x + 8 = 0 x โ€“ 6 = 0

- Solutions: x = -8 x = 6 (Since the width of a rectangle cannot be negative, eliminate x = -8 .)

? โˆš- Check . 6 (6 + 2) = 48 , 48 = 48

- Answer (the size of the carpet): Width = x = 6mLength = x + 2 = 6 + 2 = 8m

Page 8-9

8-4 APPLICATIONS OF QUADRATIC EQUATIONS

Quadratic Applications

Recall steps for solving word problems

Procedure for Solving Word Problemsโ€ข Organize the facts given from the problem .โ€ข Identify and label the unknown quantity (let x = unknown) .โ€ข Draw a diagram if it will make the problem clearer . โ€ข Convert the wording into a mathematical equation . โ€ข Solve the equation .โ€ข Check and answer the question.

Example: Evan is going to replace old carpet in his bedroom, which is a rectangle and has a

length 2 meters greater than its width . If the area of his bedroom is 48 square meters,

what will be the dimensions (length and width) of the carpet?

Steps Solution

- List the facts and label the unknown .

FactsArea A = 48m2

Length = Width + 2mUnknowns Width = x , Length = x + 2m

- Draw a diagram .Width = x

Length = x + 2

- Write an equation . x (x + 2) = 48 (Area: A = lw )

- Solve the equation . x2 + 2x = 48 Distribute

- Standard form: x2 + 2x โ€“ 48 = 0

- Factor: (x + 8)(x โ€“ 6) = 0

- Zero-product property: x + 8 = 0 x โ€“ 6 = 0

- Solutions: x = -8 x = 6 (Since the width of a rectangle cannot be negative, eliminate x = -8 .)

? โˆš- Check . 6 (6 + 2) = 48 , 48 = 48

- Answer (the size of the carpet): Width = x = 6mLength = x + 2 = 6 + 2 = 8m

Page 8-9

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

178 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 8 โ€“ Quadratic Equations and Inequalities

More Examples

Example: Alice plans to make a circular flower garden in her yard . If the area is 36 square

meters and she is going to put a statue in the middle of the circle, what will be the

distance from the edge of the circle to the statue (radius r)?

Steps Solution

- List the facts and label the unknown .Fact Area A = 36m2

Unknown Radius r = ?- Diagram .

โ—

- Equation: A = ฯ€ r2 The area of a circle: A = ฯ€r2

- Solve for r.ฯ€Ar =2 Divide both sides by ฯ€ .

๐‘Ÿ๐‘Ÿ = ยฑ๏ฟฝ๐ด๐ด๐œ‹๐œ‹

Take the square root of both sides .

= ยฑ๏ฟฝ36๐œ‹๐œ‹

โ‰ˆ ยฑ3.385 m Area A = 36 m 2

- Solution: r โ‰ˆ 3.385 m The radius cannot be negative, eliminate - 3 .385m .

- Answer: the distance from the edge of the circle to the statue is 3 .385 m .

Example: Tom is going to make a small square table for his kids . If the diagonal of the square

is 3 inches, what is the side of this square table?

Steps Solution

- List the facts and label the unknown .Fact The diagonal of a square = 3โ€ณ.

Unknown The side x = ?- Diagram .

3โ€ณ x

- Equation: x2 + x2 = 32 Pythagorean theorem

r

x

Page 8-10

More Examples

Example: Alice plans to make a circular flower garden in her yard . If the area is 36 square

meters and she is going to put a statue in the middle of the circle, what will be the

distance from the edge of the circle to the statue (radius r)?

Steps Solution

- List the facts and label the unknown .Fact Area A = 36m2

Unknown Radius r = ?- Diagram .

โ—

- Equation: A = ฯ€ r2 The area of a circle: A = ฯ€r2

- Solve for r.ฯ€Ar =2 Divide both sides by ฯ€ .

๐‘Ÿ๐‘Ÿ = ยฑ๏ฟฝ๐ด๐ด๐œ‹๐œ‹

Take the square root of both sides .

= ยฑ๏ฟฝ36๐œ‹๐œ‹

โ‰ˆ ยฑ3.385 m Area A = 36 m 2

- Solution: r โ‰ˆ 3.385 m The radius cannot be negative, eliminate - 3 .385m .

- Answer: the distance from the edge of the circle to the statue is 3 .385 m .

Example: Tom is going to make a small square table for his kids . If the diagonal of the square

is 3 inches, what is the side of this square table?

Steps Solution

- List the facts and label the unknown .Fact The diagonal of a square = 3โ€ณ.

Unknown The side x = ?- Diagram .

3โ€ณ x

- Equation: x2 + x2 = 32 Pythagorean theorem

r

x

Page 8-10

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 179

Algebra I & II Key Concepts, Practice, and Quizzes Unit 8 โ€“ Quadratic Equations and Inequalities

- Solve for x: x2 + x2 = 32 , 2x2 = 9

292 =x

12 .25 .429

ยฑโ‰ˆยฑ=ยฑ=x

Take the square root of both sides .

- Solution: x = 2.12โ€ณ

- Answer: the side of the table is about 2 .12 inches .

Example: The product of two consecutive integers is 156 . Find the two integers .

Steps Solution

- List the facts and label the unknown .

Unknowns Let 1st integer = x , 2nd integer = x + 1

Organize Facts x โˆ™ (x + 1) = 156 product is

- Equation: x (x + 1) = 156

- Solve for x . x2 + x = 156

x2 + x โ€“ 156 = 0

aacbbx

2251-2

6251-12

)156-(1411-2

4-

2

2

ยฑ=

ยฑ=

โ‹…โ‹…โ‹…โˆ’ยฑ

=

โˆ’ยฑ=

a = 1, b = 1, c = -156

122

251-=

+=x 13-

2251-

=โˆ’

=x

Solutions: x = 12 or -13

Answer: the first integer x is 12 or -13 .

Tips: - If the first integer is x = 12, the second consecutive integer is x + 1 = 12 + 1 = 13 .

- If the first integer is x = -13, the second consecutive integer is x + 1 = -13 + 1 = -12 .

The side of the table cannot be negative, eliminate -2.12โ€ณ.

Does not factor easily .

Standard form: ax2 + bx + c = 0

Quadratic formula

Page 8-11

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

180 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 8 โ€“ Quadratic Equations and Inequalities

8-5 DISCRIMINANT OF QUADRATIC EQUATIONS

The Discriminant & Solutions

โ€ข Discriminant: The expression that appears under the square root sign in the quadratic

formula . It can predict the type of quadratic solution without solving it .

Quadratic Formula Discriminant

๐‘ฅ๐‘ฅ =- ๐‘๐‘ ยฑ โˆš๐’ƒ๐’ƒ๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’

2๐‘Ž๐‘Žb2โˆ’ 4ac

โ€ข Three cases: A quadratic equation may have one or two real solutions, or two complex

solutions .

Recall the number system

Complex Numbers (a + i b) 3 + 5i, 4i, 7- โ€ฆ

Real Numbers

Rational Numbers Irrational Numbers6, 4/5 , -4 .5 5 , ฯ€ โ€ฆ .

If (b2 โ€“ 4ac) = 0, there is one real solution

In general Example: x2 โˆ’ 4x + 4 = 0

ab

ab

aacbbx

2-

20-

24- 2

=ยฑ

=โˆ’ยฑ

=12

414)4-()4-(- 2

โ‹…โ‹…โ‹…โˆ’ยฑ

=x ax2 + bx + c = 0

224

204

==ยฑ

=One real solution

If (b2 โ€“ 4ac) > 0, there are two unequal real solutions

In general Example: x2 + 5x + 4 = 0

aacbbx

24- 2 โˆ’ยฑ

=

235-

295-

1241455- 2

ยฑ=

ยฑ=

โ‹…โ‹…โ‹…โˆ’ยฑ

=x

aacb-bx

242 โˆ’+

=a

acb-bx2

42 โˆ’โˆ’=

๐‘ฅ๐‘ฅ = -5+3

2 = -1 ๐‘ฅ๐‘ฅ = -5โˆ’3

2= -4

Two real solutionsTwo real solutions

b2โˆ’4ac = 0One real solution

b2โˆ’4ac = 9 > 0

โˆšโˆ’1 = ๐‘–๐‘–๐‘–๐‘–

Page 8-12

8-5 DISCRIMINANT OF QUADRATIC EQUATIONS

The Discriminant & Solutions

โ€ข Discriminant: The expression that appears under the square root sign in the quadratic

formula . It can predict the type of quadratic solution without solving it .

Quadratic Formula Discriminant

๐‘ฅ๐‘ฅ =- ๐‘๐‘ ยฑ โˆš๐’ƒ๐’ƒ๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’

2๐‘Ž๐‘Žb2โˆ’ 4ac

โ€ข Three cases: A quadratic equation may have one or two real solutions, or two complex

solutions .

Recall the number system

Complex Numbers (a + i b) 3 + 5i, 4i, 7- โ€ฆ

Real Numbers

Rational Numbers Irrational Numbers6, 4/5 , -4 .5 5 , ฯ€ โ€ฆ .

If (b2 โ€“ 4ac) = 0, there is one real solution

In general Example: x2 โˆ’ 4x + 4 = 0

ab

ab

aacbbx

2-

20-

24- 2

=ยฑ

=โˆ’ยฑ

=12

414)4-()4-(- 2

โ‹…โ‹…โ‹…โˆ’ยฑ

=x ax2 + bx + c = 0

224

204

==ยฑ

=One real solution

If (b2 โ€“ 4ac) > 0, there are two unequal real solutions

In general Example: x2 + 5x + 4 = 0

aacbbx

24- 2 โˆ’ยฑ

=

235-

295-

1241455- 2

ยฑ=

ยฑ=

โ‹…โ‹…โ‹…โˆ’ยฑ

=x

aacb-bx

242 โˆ’+

=a

acb-bx2

42 โˆ’โˆ’=

๐‘ฅ๐‘ฅ = -5+3

2 = -1 ๐‘ฅ๐‘ฅ = -5โˆ’3

2= -4

Two real solutionsTwo real solutions

b2โˆ’4ac = 0One real solution

b2โˆ’4ac = 9 > 0

โˆšโˆ’1 = ๐‘–๐‘–๐‘–๐‘–

Page 8-12

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 181

Algebra I & II Key Concepts, Practice, and Quizzes Unit 8 โ€“ Quadratic Equations and Inequalities

Page 8-13

If (b2 โ€“ 4ac) < 0, there are two unequal complex solutions

In general Example: x2 โˆ’ 4x + 9 = 0

aacbib

aacbb

aacbbx

24-

241--

2)4(--

2

2

2

-ยฑ=

-ยฑ=

-ยฑ=

ii

x

522

544

2201-4

220-4

12914)4-((-4)-

2

ยฑ=โ‹…ยฑ

=

ยฑ=

ยฑ=

โ‹…โ‹…โ‹…-ยฑ

=

Two non-real

Two non-real

โ€ข Discriminant and solutions

Discriminant: b2 โ€“ 4ac Solution Example b2 โ€“ 4ac

(b2 โ€“ 4ac ) = 0 one real solution x2 โˆ’ 4x + 4 = 0

x = 2 (-4)2โˆ’ 4(1)(4) = 0

(b2 โ€“ 4ac) > 0 two real solutions x2 + 5x + 4 = 0 x = -4 or -1 52โˆ’ 4(1)(4) = 9 > 0

(b2 โ€“ 4ac ) < 0 two non-real (complex solutions)

x2 โ€“ 4x + 9 = 0 x = 2 ยฑ i โˆš5 (-4)2โˆ’ 4(1)(9) = -20 < 0

Example: Use the discriminant to determine the nature of the solutions to the equations.

1. 2y2 = 5

- Write in standard form. 2y2 + 0y โˆ’ 5 = 0 ax2 + bx + c = 0

- Identify a, b, and c. a = 2, b = 0, c = -5

- Calculate the discriminant. b2 โ€“ 4ac = 02 โˆ’ 4โˆ™2โˆ™(-5) = 40

- It has two real solutions. b2 โ€“ 4ac = 40 > 0

2. n2 โˆ’ 3โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’๐’๐’๐’ + 7 = 0

- Identify a, b, and c. a = 1, b = - 3โˆš2, c = 7

- Calculate the discriminant. b2 โ€“ 4ac = (-3โˆš2)2 โˆ’ 4โˆ™1โˆ™7

= (-3)2โˆš22 4โˆ™1โˆ™7 โˆ’

= 18 28 โˆ’

= -10

- It has two non-real solutions. b2 โ€“ 4ac = -10 < 0

b2 โ€“ 4ac < 0

b2โˆ’ 4ac = -20 < 0

โˆš-1 = ๐‘–๐‘–๐‘–๐‘–

Divide by 2.

b2 โˆ’ 4ac

(Complex solutions)

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

182 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 8 โ€“ Quadratic Equations and Inequalities

Writing Equation From Solutions

โ€ข Writing equation from solutions: applying the zero-product property in reverse .

โ€ข Recall zero-product property: If A โˆ™ B = 0, then either A = 0 or B = 0

โ€ข Zero-product property in reverse: If A = 0 or B = 0 , then A โˆ™ B = 0

โ€ข Steps for writing equation from solutions

Steps Example: -5 or 7 are solutions - Let x = two solutions . x = -5 x = 7

- Make one side zero . x + 5 = 0 (Add 5 .) x โ€“ 7 = 0 Subtract 7 .

- Apply the zero-product property in reverse . (x + 5)(x โ€“ 7) = 0

- Use FOIL . x2 โˆ’ 7x + 5x โˆ’ 35 = 0 FOIL

Equation: x2 โ€“ 2x โ€“ 35 = 0

Example: Write a quadratic equation having the given numbers as solutions .1. - โˆš๐Ÿ๐Ÿ and 3โˆš๐Ÿ๐Ÿ

x = - โˆš2 x = 3โˆš2 Let x = two solutions .

x + โˆš2 = 0 x โ€“ 3โˆš2 = 0 Make one side zero .

(x + โˆš2)(x โ€“ 3โˆš2) = 0 Apply the zero-product property in reverse .

x2 โˆ’ 3โˆš2 x +โˆš2 x โˆ’ 3โˆš2 โˆš2 = 0 FOIL

Equation: x2 โˆ’ ๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ x โˆ’ 6 = 02. 5 - only solution (A double solution)

x = 5 x = 5 Let x = 5 .

x โ€“ 5 = 0 x โ€“ 5 = 0 Make one side zero .

(x - 5)(x โ€“ 5) = 0 Apply the zero-product property in reverse .

x2 โ€“ 5x โ€“ 5x + 25 = 0 FOIL

Equation: x2 โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿx + 25 = 0

3. - ๐’‚๐’‚๐Ÿ๐Ÿ

and ๐’ƒ๐’ƒ๐Ÿ‘๐Ÿ‘

x = - ๐‘Ž๐‘Ž2

x = ๐‘๐‘3

Let x = two solutions .

x + ๐‘Ž๐‘Ž2

= 0 x โ€“ ๐‘๐‘3

= 0 Make one side zero .

2x + a = 0 3x โ€“ b = 0 Multiply 2 or 3 .

(2x + a)(3x โ€“ b) = 0 Apply the zero-product property in reverse .

6x2 โ€“ 2bx + 3ax โ€“ ab = 0 FOIL

Equation: 6x2 + (3a โ€“ 2b)x โ€“ ab = 0

(A and B are algebraic expressions .)

Page 8-14

Writing Equation From Solutions

โ€ข Writing equation from solutions: applying the zero-product property in reverse .

โ€ข Recall zero-product property: If A โˆ™ B = 0, then either A = 0 or B = 0

โ€ข Zero-product property in reverse: If A = 0 or B = 0 , then A โˆ™ B = 0

โ€ข Steps for writing equation from solutions

Steps Example: -5 or 7 are solutions - Let x = two solutions . x = -5 x = 7

- Make one side zero . x + 5 = 0 (Add 5 .) x โ€“ 7 = 0 Subtract 7 .

- Apply the zero-product property in reverse . (x + 5)(x โ€“ 7) = 0

- Use FOIL . x2 โˆ’ 7x + 5x โˆ’ 35 = 0 FOIL

Equation: x2 โ€“ 2x โ€“ 35 = 0

Example: Write a quadratic equation having the given numbers as solutions .1. - โˆš๐Ÿ๐Ÿ and 3โˆš๐Ÿ๐Ÿ

x = - โˆš2 x = 3โˆš2 Let x = two solutions .

x + โˆš2 = 0 x โ€“ 3โˆš2 = 0 Make one side zero .

(x + โˆš2)(x โ€“ 3โˆš2) = 0 Apply the zero-product property in reverse .

x2 โˆ’ 3โˆš2 x +โˆš2 x โˆ’ 3โˆš2 โˆš2 = 0 FOIL

Equation: x2 โˆ’ ๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ x โˆ’ 6 = 02. 5 - only solution (A double solution)

x = 5 x = 5 Let x = 5 .

x โ€“ 5 = 0 x โ€“ 5 = 0 Make one side zero .

(x - 5)(x โ€“ 5) = 0 Apply the zero-product property in reverse .

x2 โ€“ 5x โ€“ 5x + 25 = 0 FOIL

Equation: x2 โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿx + 25 = 0

3. - ๐’‚๐’‚๐Ÿ๐Ÿ

and ๐’ƒ๐’ƒ๐Ÿ‘๐Ÿ‘

x = - ๐‘Ž๐‘Ž2

x = ๐‘๐‘3

Let x = two solutions .

x + ๐‘Ž๐‘Ž2

= 0 x โ€“ ๐‘๐‘3

= 0 Make one side zero .

2x + a = 0 3x โ€“ b = 0 Multiply 2 or 3 .

(2x + a)(3x โ€“ b) = 0 Apply the zero-product property in reverse .

6x2 โ€“ 2bx + 3ax โ€“ ab = 0 FOIL

Equation: 6x2 + (3a โ€“ 2b)x โ€“ ab = 0

(A and B are algebraic expressions .)

Page 8-14

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 183

Algebra I & II Key Concepts, Practice, and Quizzes Unit 8 โ€“ Quadratic Equations and Inequalities

8-6 SOLVING EQUATIONS IN QUADRATIC FORM

Equations in Quadratic Form

โ€ข Recall quadratic equation: ax2 + bx + c = 0

โ€ข Equations in quadratic form are equations that are not really quadratic but can be reduced

to the quadratic form by using proper substitution .

Example: Although x4 + bx2 + c = 0 is a fourth-degree equation (in one variable), it has

a form similar to a quadratic equation .

โ€ข Substitution: x4 + bx2 + c = 0(x2)2 + bx2 + c = 0 Replace x4 with (x2)2 .

Equation in quadratic form: u2 + bu + c = 0 Let u = x2 (let u = middle termโ€™s variable) .

โ€ข Solving equations in quadratic form Steps Example: Solve x4 โ€“ 5x2 + 6 = 0 .

- Rewrite: x4 = (x2)2 . (x2)2 โ€“ 5x2 + 6 = 0

- Let u = x2. (Let u = middle termโ€™s variable .) u2 โ€“ 5u + 6 = 0

- Factor . (u โ€“2)(u โ€“ 3) = 0

- Apply the zero-product property: u โ€“ 2 = 0 u โ€“ 3 = 0u = 2 u = 3

- Substitute x2 back for u (to find x) . x2 = 2 x2 = 3- Solve for x . ๐’™๐’™ = ยฑโˆš๐Ÿ๐Ÿ ๐’™๐’™ = ยฑโˆš๐Ÿ‘๐Ÿ‘

Steps Example: Solve y + 2๏ฟฝ๐’š๐’š โ€“ 3 = 0 .- Let u =๏ฟฝ๐’š๐’š . (Let u = middle termโ€™s variable .) u2 + 2u โ€“ 3 = 0 u =๏ฟฝ๐‘ฆ๐‘ฆ , u2 =๏ฟฝ๐‘ฆ๐‘ฆ 2 = y

- Factor . (u โ€“1)(u + 3) = 0

- Apply the zero-product property . u โ€“ 1 = 0 u + 3 = 0u = 1 u = -3

- Substitute ๏ฟฝ๐’š๐’š back for u (to find y). ๏ฟฝ๐’š๐’š = 1 ๏ฟฝ๐’š๐’š = -3 u =๏ฟฝ๐‘ฆ๐‘ฆ

- Solve for y . y = 1 y = 9 Square both sides .

- Check . y + 2๏ฟฝ๐’š๐’š โ€“ 3 = 0 Original equation . .

1 + 2โˆš1 โ€“ 3 = 0 9 + 2โˆš9 โ€“ 3 = 0

1 + 2 โ€“ 3 = 0 9 + 2 โˆ™ 3 โ€“ 3 = 0

0 = 0 12 โ‰  0 An extraneous solution .

Solution: y = 1

Equation in quadratic form . (Solve it like normal .)

?

?

?

?

โˆš

Take the square root of both sides .

Page 8-15

8-6 SOLVING EQUATIONS IN QUADRATIC FORM

Equations in Quadratic Form

โ€ข Recall quadratic equation: ax2 + bx + c = 0

โ€ข Equations in quadratic form are equations that are not really quadratic but can be reduced

to the quadratic form by using proper substitution .

Example: Although x4 + bx2 + c = 0 is a fourth-degree equation (in one variable), it has

a form similar to a quadratic equation .

โ€ข Substitution: x4 + bx2 + c = 0(x2)2 + bx2 + c = 0 Replace x4 with (x2)2 .

Equation in quadratic form: u2 + bu + c = 0 Let u = x2 (let u = middle termโ€™s variable) .

โ€ข Solving equations in quadratic form Steps Example: Solve x4 โ€“ 5x2 + 6 = 0 .

- Rewrite: x4 = (x2)2 . (x2)2 โ€“ 5x2 + 6 = 0

- Let u = x2. (Let u = middle termโ€™s variable .) u2 โ€“ 5u + 6 = 0

- Factor . (u โ€“2)(u โ€“ 3) = 0

- Apply the zero-product property: u โ€“ 2 = 0 u โ€“ 3 = 0u = 2 u = 3

- Substitute x2 back for u (to find x) . x2 = 2 x2 = 3- Solve for x . ๐’™๐’™ = ยฑโˆš๐Ÿ๐Ÿ ๐’™๐’™ = ยฑโˆš๐Ÿ‘๐Ÿ‘

Steps Example: Solve y + 2๏ฟฝ๐’š๐’š โ€“ 3 = 0 .- Let u =๏ฟฝ๐’š๐’š . (Let u = middle termโ€™s variable .) u2 + 2u โ€“ 3 = 0 u =๏ฟฝ๐‘ฆ๐‘ฆ , u2 =๏ฟฝ๐‘ฆ๐‘ฆ 2 = y

- Factor . (u โ€“1)(u + 3) = 0

- Apply the zero-product property . u โ€“ 1 = 0 u + 3 = 0u = 1 u = -3

- Substitute ๏ฟฝ๐’š๐’š back for u (to find y). ๏ฟฝ๐’š๐’š = 1 ๏ฟฝ๐’š๐’š = -3 u =๏ฟฝ๐‘ฆ๐‘ฆ

- Solve for y . y = 1 y = 9 Square both sides .

- Check . y + 2๏ฟฝ๐’š๐’š โ€“ 3 = 0 Original equation . .

1 + 2โˆš1 โ€“ 3 = 0 9 + 2โˆš9 โ€“ 3 = 0

1 + 2 โ€“ 3 = 0 9 + 2 โˆ™ 3 โ€“ 3 = 0

0 = 0 12 โ‰  0 An extraneous solution .

Solution: y = 1

Equation in quadratic form . (Solve it like normal .)

?

?

?

?

โˆš

Take the square root of both sides .

Page 8-15

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

184 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 8 โ€“ Quadratic Equations and Inequalities

Solving Equations in Quadratic Form

Example: Solve t -2 โ€“ 7 t -1 โ€“ 8 = 0 by factoring .

- Let u = t -1 . (Let u = middle termโ€™s variable .) u2 โ€“ 7u โ€“ 8 = 0 u = t -1, u2 = (t -1) 2 = t -2

- Factor . (u + 1)(u โ€“ 8) = 0

- Apply the zero-product property . (u + 1) = 0 (u โ€“ 8) = 0

u = -1 u = 8

- Substitute t -1 =๐Ÿ๐Ÿ๐’•๐’• back for u . ๐Ÿ๐Ÿ

๐’•๐’• = -1 ๐Ÿ๐Ÿ

๐’•๐’•= 8

- Solve for t. t = -๐Ÿ๐Ÿ ๐’•๐’• = ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ–

Example: Determine the x-intercepts of the function .

f (x) = (x2 โ€“ 2)2 โ€“ (x2 โ€“ 2) โ€“ 6

- Let f (x) = 0 . (x2 โ€“ 2)2 โ€“ (x2 โ€“ 2) โ€“ 6 = 0

- Let u = x2 โ€“ 2 . (Let u = middle termโ€™s variable .) u2 โ€“ u โ€“ 6 = 0

- Factor . (u + 2)(u โ€“ 3) = 0

- Apply the zero-product property . (u + 2) = 0 (u โ€“ 3) = 0

u = -2 u = 3

- Substitute x2 โ€“ 2 back for u . x2 โ€“ 2 = -2 x2 โ€“ 2 = 3 u = x2 โ€“ 2

- Solve for x . x2 = 0 x2 = 5

x = 0 x = ยฑโˆš5 Take the square root .

- The x-intercepts of the function: (0, 0), (-โˆš๐Ÿ“๐Ÿ“, 0), (โˆš๐Ÿ“๐Ÿ“, 0)

Summary: Substitution for variable

Equation in Quadratic Form Substitution Quadratic Form5t 4 โ€“ 2 t 2 + 7 = 0 Let u = t 2 5u 2 โ€“ 2 u + 7 = 0a 6 โ€“ 5 a 3 + 4 = 0 Let u = a3 u2 โ€“ 5 u + 4 = 02w-2 โ€“ 7 w -1 + 5 = 0 Let u = w-1

u2= w-2 2u2 โ€“ 7u + 5 = 07x + 4 โˆš๐’™๐’™ = 3 Let u = โˆš๐‘ฅ๐‘ฅ u2= x 7u 2 + 4 u โ€“ 3 = 0(x 2 + 3x) 2 โ€“ 5(x 2 + 3x) + 4 = 0 Let u = x2 + 3x u 2 โ€“ 5 u + 4 = 03bยฝ โ€“ b ยผ = 2 Let u = bยผ

u2= (b1/4)2 = b1/2 3u 2 โ€“ u = 22t 2/3 + 3t 1/3 โ€“ 5 = 0 Let u = t 1/3 u2= (t1/3)2 = t2/3 2u 2 + 3u โ€“ 5 = 0

t -2 โ€“ 7 t -1 โ€“ 8 = 0

(Let u = middle termโ€™s variable .)

Page 8-16

Solving Equations in Quadratic Form

Example: Solve t -2 โ€“ 7 t -1 โ€“ 8 = 0 by factoring .

- Let u = t -1 . (Let u = middle termโ€™s variable .) u2 โ€“ 7u โ€“ 8 = 0 u = t -1, u2 = (t -1) 2 = t -2

- Factor . (u + 1)(u โ€“ 8) = 0

- Apply the zero-product property . (u + 1) = 0 (u โ€“ 8) = 0

u = -1 u = 8

- Substitute t -1 =๐Ÿ๐Ÿ๐’•๐’• back for u . ๐Ÿ๐Ÿ

๐’•๐’• = -1 ๐Ÿ๐Ÿ

๐’•๐’•= 8

- Solve for t. t = -๐Ÿ๐Ÿ ๐’•๐’• = ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ–

Example: Determine the x-intercepts of the function .

f (x) = (x2 โ€“ 2)2 โ€“ (x2 โ€“ 2) โ€“ 6

- Let f (x) = 0 . (x2 โ€“ 2)2 โ€“ (x2 โ€“ 2) โ€“ 6 = 0

- Let u = x2 โ€“ 2 . (Let u = middle termโ€™s variable .) u2 โ€“ u โ€“ 6 = 0

- Factor . (u + 2)(u โ€“ 3) = 0

- Apply the zero-product property . (u + 2) = 0 (u โ€“ 3) = 0

u = -2 u = 3

- Substitute x2 โ€“ 2 back for u . x2 โ€“ 2 = -2 x2 โ€“ 2 = 3 u = x2 โ€“ 2

- Solve for x . x2 = 0 x2 = 5

x = 0 x = ยฑโˆš5 Take the square root .

- The x-intercepts of the function: (0, 0), (-โˆš๐Ÿ“๐Ÿ“, 0), (โˆš๐Ÿ“๐Ÿ“, 0)

Summary: Substitution for variable

Equation in Quadratic Form Substitution Quadratic Form5t 4 โ€“ 2 t 2 + 7 = 0 Let u = t 2 5u 2 โ€“ 2 u + 7 = 0a 6 โ€“ 5 a 3 + 4 = 0 Let u = a3 u2 โ€“ 5 u + 4 = 02w-2 โ€“ 7 w -1 + 5 = 0 Let u = w-1

u2= w-2 2u2 โ€“ 7u + 5 = 07x + 4 โˆš๐’™๐’™ = 3 Let u = โˆš๐‘ฅ๐‘ฅ u2= x 7u 2 + 4 u โ€“ 3 = 0(x 2 + 3x) 2 โ€“ 5(x 2 + 3x) + 4 = 0 Let u = x2 + 3x u 2 โ€“ 5 u + 4 = 03bยฝ โ€“ b ยผ = 2 Let u = bยผ

u2= (b1/4)2 = b1/2 3u 2 โ€“ u = 22t 2/3 + 3t 1/3 โ€“ 5 = 0 Let u = t 1/3 u2= (t1/3)2 = t2/3 2u 2 + 3u โ€“ 5 = 0

t -2 โ€“ 7 t -1 โ€“ 8 = 0

(Let u = middle termโ€™s variable .)

Page 8-16

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 185

Algebra I & II Key Concepts, Practice, and Quizzes Unit 8 โ€“ Quadratic Equations and Inequalities

8-7 QUADRATIC AND RATIONAL INEQUALITIES

Quadratic Inequalities

โ€ข Review inequality symbols

Symbol Meaning> is greater than< is less thanโ‰ฅ is greater than or equal toโ‰ค is less than or equal to

โ€ข Quadratic inequality: an inequality written in one of the following forms .

Standard Quadratic Inequality ExampleAx2 + Bx + C > 0 3x2 + 5x + 7 > 0Ax2 + Bx + C < 0 7x2 โ€“ 4x + 3 < 0Ax2 + Bx + C โ‰ฅ 0 4x2 + 11x - 6 โ‰ฅ 0Ax2 + Bx + C โ‰ค 0 2x2 โ€“ 3x โ€“ 2 โ‰ค 0

Procedure for Solving Quadratic Inequalities

Convert the given inequality to standard form .

Solve the related quadratic equation (Ax2 + Bx + C = 0) and find the cut

points (x-intercepts) .

Use cut points to divide the number line into intervals (create a sign chart) .

Test each interval and determine the solution set (pick test values within

each interval) .

Graph and write the solution(s) .

โ€ข Graphing real-number inequalities (review)

The empty circle โ—‹ or open interval ( ) : the endpoints are excluded .

The filled in circle โ— or closed interval [ ]: the endpoints are included .

Use a heavy line (shade) and open or closed interval, or use an empty circle versus

filled-in circle to graph the intervals .

Page 8-17

8-7 QUADRATIC AND RATIONAL INEQUALITIES

Quadratic Inequalities

โ€ข Review inequality symbols

Symbol Meaning> is greater than< is less thanโ‰ฅ is greater than or equal toโ‰ค is less than or equal to

โ€ข Quadratic inequality: an inequality written in one of the following forms .

Standard Quadratic Inequality ExampleAx2 + Bx + C > 0 3x2 + 5x + 7 > 0Ax2 + Bx + C < 0 7x2 โ€“ 4x + 3 < 0Ax2 + Bx + C โ‰ฅ 0 4x2 + 11x - 6 โ‰ฅ 0Ax2 + Bx + C โ‰ค 0 2x2 โ€“ 3x โ€“ 2 โ‰ค 0

Procedure for Solving Quadratic Inequalities

Convert the given inequality to standard form .

Solve the related quadratic equation (Ax2 + Bx + C = 0) and find the cut

points (x-intercepts) .

Use cut points to divide the number line into intervals (create a sign chart) .

Test each interval and determine the solution set (pick test values within

each interval) .

Graph and write the solution(s) .

โ€ข Graphing real-number inequalities (review)

The empty circle โ—‹ or open interval ( ) : the endpoints are excluded .

The filled in circle โ— or closed interval [ ]: the endpoints are included .

Use a heavy line (shade) and open or closed interval, or use an empty circle versus

filled-in circle to graph the intervals .

Page 8-17

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

186 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 8 โ€“ Quadratic Equations and Inequalities

Page 8-18

Solving Quadratic Inequalities

Example: Solve x2 โ€“ 3x < 4 and graph the solution set.

Steps Solution

x2 โ€“ 3x < 4

- Convert to standard form. (Ax2 + Bx + C < 0) x2 โ€“ 3x โ€“ 4 < 0 Subtract 4.

- Solve the related equation and find the x2 โ€“ 3x โ€“ 4 = 0

cut points (x-intercepts). (x โ€“ 4)(x + 1) = 0 Factor.

x โ€“ 4 = 0 x + 1 = 0 Zero-product property

Cut points: x = 4 x = -1

- Use cut points to divide the number line into three distinct intervals (create a sign chart).

x < -1 -1 < x < 4 x > 4 x = 4 and -1 are where the graph crosses the x-axis.

-1 4 Note: The open circles โ—‹ are used because the sign of the inequality is โ€œless thanโ€ (< ).

- Test each interval and determine the solution sets (pick a number within each interval).

Test x < -1: pick any value Test x > 4: pick any value Test -1 < x < 4: pick any value less than -1, say x = -2. great than 4, say x = 5. between -1 and 4, say x = 1.

x2 โ€“ 3x < 4 x2 โ€“ 3x < 4 x2 โ€“ 3x < 4 ? ? ?

(-2)2 โ€“ 3(-2) < 4 52 โ€“ 3 โˆ™ ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ < 4 12 โ€“ 3 โˆ™ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ < 4 ? ? ? 4 + 6 < 4 25 โ€“ 15 < 4 1 โ€“ 3 < 4

ร— ร— โˆš 10 < 4, false 10 < 4 , false -2 < 4 , true

- Graph (shade) the solution set on the number line (on the sign chart).

ร— โˆš ร— -1 < x < 4

-1 4

- Solution set: { x | -1 < x < 4 } or (-1, 4)

x

x

Page 8-18

Solving Quadratic Inequalities

Example: Solve x2 โ€“ 3x < 4 and graph the solution set.

Steps Solution

x2 โ€“ 3x < 4

- Convert to standard form. (Ax2 + Bx + C < 0) x2 โ€“ 3x โ€“ 4 < 0 Subtract 4.

- Solve the related equation and find the x2 โ€“ 3x โ€“ 4 = 0

cut points (x-intercepts). (x โ€“ 4)(x + 1) = 0 Factor.

x โ€“ 4 = 0 x + 1 = 0 Zero-product property

Cut points: x = 4 x = -1

- Use cut points to divide the number line into three distinct intervals (create a sign chart).

x < -1 -1 < x < 4 x > 4 x = 4 and -1 are where the graph crosses the x-axis.

-1 4 Note: The open circles โ—‹ are used because the sign of the inequality is โ€œless thanโ€ (< ).

- Test each interval and determine the solution sets (pick a number within each interval).

Test x < -1: pick any value Test x > 4: pick any value Test -1 < x < 4: pick any value less than -1, say x = -2. great than 4, say x = 5. between -1 and 4, say x = 1.

x2 โ€“ 3x < 4 x2 โ€“ 3x < 4 x2 โ€“ 3x < 4 ? ? ?

(-2)2 โ€“ 3(-2) < 4 52 โ€“ 3 โˆ™ ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ < 4 12 โ€“ 3 โˆ™ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ < 4 ? ? ? 4 + 6 < 4 25 โ€“ 15 < 4 1 โ€“ 3 < 4

ร— ร— โˆš 10 < 4, false 10 < 4 , false -2 < 4 , true

- Graph (shade) the solution set on the number line (on the sign chart).

ร— โˆš ร— -1 < x < 4

-1 4

- Solution set: { x | -1 < x < 4 } or (-1, 4)

x

x

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 187

Algebra I & II Key Concepts, Practice, and Quizzes Unit 8 โ€“ Quadratic Equations and Inequalities

Example: Solve 2x2 โ€“ 7x โ‰ฅ -3 and graph the solution set .

Steps Solution

2x2 โ€“ 7x โ‰ฅ -3

- Convert to standard form . 2x2 โ€“ 7x + 3 โ‰ฅ 0 Add 3 to both sides .

- Solve the related equation . 2x2 โ€“ 7x + 3 = 0

(2x โ€“ 1)(x โ€“ 3) = 0 Factor .

2x โ€“ 1 = 0 x โ€“ 3 = 0 Zero-product property

- Cut points: x =21 x = 3

- Intervals: x โ‰ค

21

21 โ‰ค x โ‰ค 3 x โ‰ฅ 3

21 3

Note: The closed circles โ— are used because the sign of the inequality is โ€œgreat than or equal toโ€ (โ‰ฅ ) .

- Test .

Test x โ‰ค 21 : pick any value Test x โ‰ฅ 3: pick any value Test

21 โ‰ค x โ‰ค 3: pick any value

less than21 , say x = 0. great than 3, say x = 4. between

21 and 3, say x = 1.

2x2 โ€“ 7x โ‰ฅ -3 2x2 โ€“ 7x โ‰ฅ -3 2x2 โ€“ 7x โ‰ฅ -3 ? ? ?

2 โˆ™ 02 โ€“ 7 โˆ™ 0 โ‰ฅ -3 2 โˆ™ 42 โ€“ 7 โˆ™ 4 โ‰ฅ -3 2 โˆ™ 12 โ€“ 7 โˆ™ 1 โ‰ฅ -3

? ? ?

0 โ€“ 0 โ‰ฅ -3 32 โ€“ 28 โ‰ฅ -3 2 โ€“ 7 โ‰ฅ -3

โˆš โˆš ร— 0 > -3 , true 4 > -3 , true -5 > -3 , false

- Graph .โˆš ร— โˆš

x โ‰ค21

21 3 x โ‰ฅ 3

Solution set: { x | x โ‰ค ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

or x โ‰ฅ 3 } or (-โˆž, ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ โˆช [3, โˆž)

x

Page 8-19

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

188 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 8 โ€“ Quadratic Equations and Inequalities

Rational Inequalities

โ€ข Rational inequality: an inequality involving fractional expression(s) .

Examples: 02โ‰ฅ

โˆ’xx , 0

45โ‰ฅ

โˆ’+

xx

โ€ข Analyzing and graphing a rational inequality/function

Example: ๐’™๐’™๐’™๐’™โˆ’๐Ÿ๐Ÿ

โ‰ฅ ๐ŸŽ๐ŸŽ

๐’‡๐’‡(๐’™๐’™) = ๐’™๐’™๐’™๐’™โˆ’๐Ÿ๐Ÿ

x y = f (x) = ๐’™๐’™๐’™๐’™โˆ’๐Ÿ๐Ÿ

0 01 -1-1 0 .332 โˆž3 34 25 1 .67

Vertical asymptote

- Where is this ๏ฟฝ ๐’™๐’™๐’™๐’™โˆ’๐Ÿ๐Ÿ

โ‰ฅ ๐ŸŽ๐ŸŽ๏ฟฝ true?

- Or when is ๐’™๐’™๐’™๐’™โˆ’๐Ÿ๐Ÿ

positive? (โ‰ฅ ๐ŸŽ๐ŸŽ)

- Or, graphically, for what x is ๐’‡๐’‡(๐’™๐’™) = ๐’™๐’™๐’™๐’™โˆ’๐Ÿ๐Ÿ

above the xโ€“axis?

- Or where can ๐’‡๐’‡(๐’™๐’™) = ๐’™๐’™๐’™๐’™โˆ’๐Ÿ๐Ÿ

change its sign (from negative to positive, or vice versa)?

- ๐’‡๐’‡(๐’™๐’™) = ๐’™๐’™๐’™๐’™โˆ’๐Ÿ๐Ÿ

changes sign (crosses the x-axis) when x = 0 (the numerator = 0) and when

x = 2 (the denominator = 0, or f (x) = โˆž or undefined) .

- ๐“๐“๐“๐“๐“๐“ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐“๐“ ๐จ๐จ๐จ๐จ ๐’‡๐’‡(๐’™๐’™) = ๐’™๐’™๐’™๐’™โˆ’๐Ÿ๐Ÿ

has a vertical asymptote at points where the denominator is

0 . The sign of ๐’‡๐’‡(๐’™๐’™) might change from -โˆž to +โˆž (it is undefined for ๐’‡๐’‡(๐’™๐’™) = ๐’™๐’™๐’™๐’™โˆ’๐Ÿ๐Ÿ

) .

โ€ข Cut points (or critical points) of rational inequalities: the points where the rational

inequality changes sign or is 0 (the numerator) and undefined (the denominator) .

Example: The cut points for ๐’™๐’™๐’™๐’™โˆ’๐Ÿ๐Ÿ

โ‰ฅ ๐ŸŽ๐ŸŽ are x = 0 and x = 2 .

y

x0 2โˆ™ โˆ™

โˆ™ โˆ™ โˆ™

โˆ™

-โˆž

+โˆž

โˆ™

Page 8-20

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 189

Algebra I & II Key Concepts, Practice, and Quizzes Unit 8 โ€“ Quadratic Equations and Inequalities

Solving Rational Inequalities

Example: Solve 045โ‰ฅ

โˆ’+

xx and graph the solution set .

Steps Solution

- Find the cut points: 045โ‰ฅ

โˆ’+

xx

Set the numerator = 0 x + 5 = 0, x = -5 Subtract 5 .

Set the denominator = 0 x โ€“ 4 = 0, x = 4 Add 4 .

- Use cut points to divide the number line into intervals (create a sign chart) .

x โ‰ค -5 -5 โ‰ค x < 4 x > 4

-5 4 Note: -5 is included . 4 is not included (since x = 4 is undefined) .

- Test each interval and determine the solution sets .

Test x โ‰ค -5: pick x = -6 Test x > 4: pick x = 5 Test -5 โ‰ค x < 4: pick x = 1

45

โˆ’+

xx โ‰ฅ 0

45

โˆ’+

xx โ‰ฅ 0

45

โˆ’+

xx โ‰ฅ 0

? ? ?

46-56-

โˆ’+ โ‰ฅ 0

4555

โˆ’+ โ‰ฅ 0

4151

โˆ’+ โ‰ฅ 0

โˆš โˆš ร—

101

10-1-= > 0, true 10

110

= > 0, true 2-3-

6= > 0, false

- Graph: โˆš ร— โˆš

x โ‰ค -5 -5 4 x > 4

- Solution sets: { x | x โ‰ค -5 or x > 4 } or (-โˆž, -5 ] โˆช (4, โˆž)

Page 8-21

Solving Rational Inequalities

Example: Solve 045โ‰ฅ

โˆ’+

xx and graph the solution set .

Steps Solution

- Find the cut points: 045โ‰ฅ

โˆ’+

xx

Set the numerator = 0 x + 5 = 0, x = -5 Subtract 5 .

Set the denominator = 0 x โ€“ 4 = 0, x = 4 Add 4 .

- Use cut points to divide the number line into intervals (create a sign chart) .

x โ‰ค -5 -5 โ‰ค x < 4 x > 4

-5 4 Note: -5 is included . 4 is not included (since x = 4 is undefined) .

- Test each interval and determine the solution sets .

Test x โ‰ค -5: pick x = -6 Test x > 4: pick x = 5 Test -5 โ‰ค x < 4: pick x = 1

45

โˆ’+

xx โ‰ฅ 0

45

โˆ’+

xx โ‰ฅ 0

45

โˆ’+

xx โ‰ฅ 0

? ? ?

46-56-

โˆ’+ โ‰ฅ 0

4555

โˆ’+ โ‰ฅ 0

4151

โˆ’+ โ‰ฅ 0

โˆš โˆš ร—

101

10-1-= > 0, true 10

110

= > 0, true 2-3-

6= > 0, false

- Graph: โˆš ร— โˆš

x โ‰ค -5 -5 4 x > 4

- Solution sets: { x | x โ‰ค -5 or x > 4 } or (-โˆž, -5 ] โˆช (4, โˆž)

Page 8-21

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

190 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 8 โ€“ Quadratic Equations and Inequalities

Unit 8 Summary

โ€ข A quadratic equation: an equation that has a squared term .

Quadratic Equations in Standard Formax2 + bx + c = 0 a โ‰  0

โ€ข Zero-product propertyZero-Product Property

If A ยท B = 0, then either A = 0 or B = 0 (or both)(A and B are algebraic expressions .)

โ€ข Solving incomplete quadratic equationsIncomplete

Quadratic Equation Steps Example

Use the zero-product

property to solve

ax2 + bx = 0.

- Express in ax2 + bx = 0 - Factor: x (ax + b) = 0 - Apply the zero-product property:

x = 0 ax + b = 0

- Solve for x : x = 0 abx -=

Solve 9x2 = -5x 9x2 + 5x = 0

x (9x + 5) = 0

x = 0 9x + 5 = 0

x = 0 95-=x

Use the square root

method to solve

ax2 โ€“ c = 0(or ax2 = c).

- Express in ax2 = c

- Divide both sides by a: acx =2

- Take the square root of both sides:acx ยฑ=

Solve 7x2 โ€“ 4 = 0 7x2 = 4

742 =x

76 .074

ยฑโ‰ˆยฑ=x

Exact solutions Approximate solutions

โ€ข The x-intercepts of a quadratic equation are the solutions of a quadratic equation .

โ€ข Completing the square is the process of finding a number to add to a quadratic equation and

to form a perfect square, such as: x2 + 10x + ? = (x + 5)2

โ€ข Procedure to complete the square โ€“ Case I: x2 + bx + c = 0 - Express in the form x2 + b x = -c .- Add to both sides of the equation .

- Determine ๏ฟฝb2๏ฟฝ

2 (Take half of the coefficient of x and square it .)

- Add ๏ฟฝb2๏ฟฝ

2to both sides of the equation . ๐‘ฅ๐‘ฅ2 + bx + ๏ฟฝb

2๏ฟฝ

2= -๐‘๐‘ + ๏ฟฝb

2๏ฟฝ

2

- Factor the left side . - Take the square root of both sides . - Solve for x .

Add 5x.

Page 8-22

Unit 8 Summary

โ€ข A quadratic equation: an equation that has a squared term .

Quadratic Equations in Standard Formax2 + bx + c = 0 a โ‰  0

โ€ข Zero-product propertyZero-Product Property

If A ยท B = 0, then either A = 0 or B = 0 (or both)(A and B are algebraic expressions .)

โ€ข Solving incomplete quadratic equationsIncomplete

Quadratic Equation Steps Example

Use the zero-product

property to solve

ax2 + bx = 0.

- Express in ax2 + bx = 0 - Factor: x (ax + b) = 0 - Apply the zero-product property:

x = 0 ax + b = 0

- Solve for x : x = 0 abx -=

Solve 9x2 = -5x 9x2 + 5x = 0

x (9x + 5) = 0

x = 0 9x + 5 = 0

x = 0 95-=x

Use the square root

method to solve

ax2 โ€“ c = 0(or ax2 = c).

- Express in ax2 = c

- Divide both sides by a: acx =2

- Take the square root of both sides:acx ยฑ=

Solve 7x2 โ€“ 4 = 0 7x2 = 4

742 =x

76 .074

ยฑโ‰ˆยฑ=x

Exact solutions Approximate solutions

โ€ข The x-intercepts of a quadratic equation are the solutions of a quadratic equation .

โ€ข Completing the square is the process of finding a number to add to a quadratic equation and

to form a perfect square, such as: x2 + 10x + ? = (x + 5)2

โ€ข Procedure to complete the square โ€“ Case I: x2 + bx + c = 0 - Express in the form x2 + b x = -c .- Add to both sides of the equation .

- Determine ๏ฟฝb2๏ฟฝ

2 (Take half of the coefficient of x and square it .)

- Add ๏ฟฝb2๏ฟฝ

2to both sides of the equation . ๐‘ฅ๐‘ฅ2 + bx + ๏ฟฝb

2๏ฟฝ

2= -๐‘๐‘ + ๏ฟฝb

2๏ฟฝ

2

- Factor the left side . - Take the square root of both sides . - Solve for x .

Add 5x.

Page 8-22

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 191

Algebra I & II Key Concepts, Practice, and Quizzes Unit 8 โ€“ Quadratic Equations and Inequalities

โ€ข Procedure to complete the square - Case II: Ax2 + Bx + C = 0 - Express in the form Ax2 + Bx = - C . - Make the coefficient of x2 equal to 1 . - Add to both sides of the equation .

- Determine ๏ฟฝb2๏ฟฝ

2 .

- Add ๏ฟฝb2๏ฟฝ

2to both sides of the equation .

- Factor the left side . - Take the square root of both sides . - Solve for x .

โ€ข Simple interest: interest computed on the original principal .

โ€ข Compound interest: interest computed on both the principal and the past interest earned .

โ€ข Compound interest formula Formula Component

A = P(1 + r) tA โ€“ new valueP โ€“ starting principalr โ€“ interest ratet โ€“ time (year)

โ€ข Methods for solving quadratic equations

Quadratic Equation Methodax2 + c = 0 (no x term) square root methodax2 + bx = 0 (c = 0) zero-product propertyax2 + bx + c = 0 try factoring first

ax2 + bx + c = 0Not factorable (or does not factor easily)

completing the squareor quadratic formula

โ€ข The quadratic formula: a general formula that can be used to solve any quadratic equation .

The Quadratic Formula Quadratic equation: ax2 + bx + c = 0

The solutions:a

acb-bx2

42 โˆ’ยฑ= (a โ‰  0)

โ€ข DiscriminantQuadratic Formula Discriminant

๐’™๐’™ = - ๐’ƒ๐’ƒ ยฑ ๏ฟฝ๐’ƒ๐’ƒ๐Ÿ๐Ÿโˆ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ๐’‚๐’‚

โ€ข Discriminant and solutionsDiscriminant: b2 โ€“ 4ac Nature of Solution Example b2 โ€“ 4ac

(b2 โ€“ 4ac ) = 0 One real solution x2 โ€“ 4x + 4 = 0 x = 2 (-4)2โˆ’ 4(1)(4) = 0

(b2 โ€“ 4ac) > 0 Two real solutions x2 + 5x + 4 = 0 x = -4 or -1 52โˆ’ 4(1)(4) = 9 > 0

(b2 โ€“ 4ac ) < 0 Two non-real(complex solutions)

x2 โ€“ 4x + 9 = 0x = 2 ยฑ i โˆš5

(-4)2โˆ’ 4(1)(9) = -20 < 0

b2 โ€“ 4ac

Page 8-23

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

192 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 8 โ€“ Quadratic Equations and Inequalities

โ€ข Writing equation from solutions: applying the zero-product property in reverse .

โ€ข Zero-product property in reverse: If A = 0 or B = 0 , then A โˆ™ B = 0

โ€ข Equations in quadratic form: equations that are not really quadratic but can be reduced to

the quadratic form by using proper substitution .

โ€ข Substitution for variableEquation in Quadratic Form Substitution Quadratic Form

5t 4 โ€“ 2 t 2 + 7 = 0 Let u = t 2 5u 2 โ€“ 2 u + 7 = 0a 6 โ€“ 5 a 3 + 4 = 0 Let u = a3 u2 โ€“ 5 u + 4 = 02w-2 โ€“ 7 w -1 + 5 = 0 Let u = w-1

u2= w-2 2u2 โ€“ 7u + 5 = 07x + 4 โˆš๐’™๐’™ = 3 Let u = โˆš๐‘ฅ๐‘ฅ u2= x 7u 2 + 4 u โ€“ 3 = 0(x 2 + 3x) 2 โ€“ 5(x 2 + 3x) + 4 = 0 Let u = x2 + 3x u 2 โ€“ 5 u + 4 = 03bยฝ โ€“ b ยผ = 2 Let u = bยผ

u2= (b1/4)2 = b1/2 3u 2 โ€“ u = 22t 2/3 + 3t 1/3 โ€“ 5 = 0 Let u = t 1/3 u2= (t1/3)2 = t2/3 2u 2 + 3u โ€“ 5 = 0

โ€ข Quadratic inequality: an inequality written in one of the following forms .Standard Quadratic Inequality Example

Ax2 + Bx + C > 0 3x2 + 5x + 7 > 0Ax2 + Bx + C < 0 7x2 โ€“ 4x + 3 < 0Ax2 + Bx + C โ‰ฅ 0 4x2 + 11x - 6 โ‰ฅ 0Ax2 + Bx + C โ‰ค 0 2x2 โ€“ 3x โ€“ 2 โ‰ค 0

Procedure for Solving Quadratic Inequalities

Convert the given inequality to standard form . Solve the related quadratic equation (Ax2 + Bx + C = 0) and find the cut

points (x-intercepts) . Use cut points to divide the number line into intervals (create a sign chart) . Test each interval and determine the solution set (pick test values within

each interval) . Graph and write the solution(s) .

โ€ข Rational inequality: an inequality involving fractional expression(s) .

โ€ข Cut points (or critical points) of rational inequalities: the points where the rational

inequality is 0 (the numerator) or undefined (the denominator) .

(A and B are algebraic expressions .)

(Let u = middle termโ€™s variable)

Page 8-24

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 193

Algebra I & II Key Concepts, Practice, and Quizzes Unit 8 โ€“ Quadratic Equations and Inequalities

PRACTICE QUIZ

Unit 8 Quadratic Equations and Inequalities

1. Solve the following equation: (x + 5)2 = 3

2. Solve the following by completing the square. x2 + 4 x โ€“ 3 = 0

3. 5,000 grows to $5,500 in 2 years . Calculate interest rate r .

4. Use the quadratic formula to solve the following .

a . x2 โ€“ 4x + 1 = 0

b . 3x (x + 2) โ€“ (x โ€“ 5) = x2 โ€“ x

5. How much fencing would be required for a rectangular field of area

4,000 m2 if the length is 30m more than the width?

6. Find the length of the side of a square with diagonal equal to 10m .

7. The product of two consecutive integers is 132 . Find the two integers .

8. Use the discriminant to determine the nature of the solutions of x2 + 5โˆš3๐‘ฅ๐‘ฅ โ€“ 4 = 0

9. Solve m -2 โ€“ 6m -1 โ€“ 7 = 0 .

10 . Solve x2 + 2x โ€“ 8 โ‰ฅ 0 and graph the solution set .

Page 13

PRACTICE QUIZ

Unit 8 Quadratic Equations and Inequalities

1. Solve the following equation: (x + 5)2 = 3

2. Solve the following by completing the square. x2 + 4 x โ€“ 3 = 0

3. 5,000 grows to $5,500 in 2 years . Calculate interest rate r .

4. Use the quadratic formula to solve the following .

a . x2 โ€“ 4x + 1 = 0

b . 3x (x + 2) โ€“ (x โ€“ 5) = x2 โ€“ x

5. How much fencing would be required for a rectangular field of area

4,000 m2 if the length is 30m more than the width?

6. Find the length of the side of a square with diagonal equal to 10m .

7. The product of two consecutive integers is 132 . Find the two integers .

8. Use the discriminant to determine the nature of the solutions of x2 + 5โˆš3๐‘ฅ๐‘ฅ โ€“ 4 = 0

9. Solve m -2 โ€“ 6m -1 โ€“ 7 = 0 .

10 . Solve x2 + 2x โ€“ 8 โ‰ฅ 0 and graph the solution set .

Page 13

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

194 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

UNIT 9 CONICS

โ€ข A conic section: a curve obtained as the intersection of a plane with a cone .

โ€ข Slicing a cone (or a double cone) can generate a circle, a parabola, an ellipse or a hyperbola .

Cone Circle Ellipse Parabola Hyperbola

9-1 CIRCLES

The Distance Formula

โ€ข Distance formula can determine the distance between any two points on a coordinate plane .

โ€ข The distance (d) between two points (x1, y1) and (x2, y2)Distance Formula Example

๐‘‘๐‘‘ = ๏ฟฝ(๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ1)2+(๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2 โˆ’ ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ1)2(x1, y1) = (1, 4) , (x2, y2) = (5, 1)๐‘‘๐‘‘ = ๏ฟฝ(5 โˆ’ 1)2+(1 โˆ’ 4)2 = โˆš16 + 9 = 5

Note: It does not matter which point is (x1, y1) and which is (x2, y2) .Tip: The Pythagorean theorem is the basis for calculating distance between two points .

The hypotenuse is the distance between the two points . a2 + b2 = c2

Example: Find the distance between the points (-3, 2) and (4, -3) .

- Let: (x1, y1) = (-3, 2) , (x2, y2) = (4, -3)

๐‘‘๐‘‘ = ๏ฟฝ(4 โˆ’ (๐‘ก๐‘ก3))2+(๐‘ก๐‘ก3 โˆ’ 2)2 = โˆš49 + 25 = โˆš๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ• ๐‘‘๐‘‘ = ๏ฟฝ(๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ1)2+(๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2 โˆ’ ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ1)2

- Let: (x1, y1) = (4, -3) , (x2, y2) = (-3, 2)

๐‘‘๐‘‘ = ๏ฟฝ(๐‘ก๐‘ก3 โˆ’ 4)2+(2 โˆ’ (๐‘ก๐‘ก3))2 = โˆš49 + 25 = โˆš๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ•

โ€ข The midpoint formula for a segment determines the midpoint of a line segment .Midpoint Formula Example

๏ฟฝ๐‘ฅ๐‘ฅ1 + ๐‘ฅ๐‘ฅ2

2 , ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ1 + ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2

2๏ฟฝ

(x1, y1) = (4, 3) , (x2, y2) = (-4, 1)

midpoint = ๏ฟฝ4+๏ฟฝ-4๏ฟฝ2

, 3+12๏ฟฝ = (๐ŸŽ๐ŸŽ,๐Ÿ๐Ÿ๐Ÿ๐Ÿ)

xโˆ™ (x2, y2)

d

0

โˆ™ (x1, y1)

y

A midpoint divides a line segment into two equal parts.

โˆ™ (4, 3) (-4, 1) โˆ™

0

y

xโˆ™

Midpoint

The intersection of a plane with a double cone.

c b a

UNIT 9 CONICS

โ€ข A conic section: a curve obtained as the intersection of a plane with a cone .

โ€ข Slicing a cone (or a double cone) can generate a circle, a parabola, an ellipse or a hyperbola .

Cone Circle Ellipse Parabola Hyperbola

9-1 CIRCLES

The Distance Formula

โ€ข Distance formula can determine the distance between any two points on a coordinate plane .

โ€ข The distance (d) between two points (x1, y1) and (x2, y2)Distance Formula Example

๐‘‘๐‘‘ = ๏ฟฝ(๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ1)2+(๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2 โˆ’ ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ1)2(x1, y1) = (1, 4) , (x2, y2) = (5, 1)๐‘‘๐‘‘ = ๏ฟฝ(5 โˆ’ 1)2+(1 โˆ’ 4)2 = โˆš16 + 9 = 5

Note: It does not matter which point is (x1, y1) and which is (x2, y2) .Tip: The Pythagorean theorem is the basis for calculating distance between two points .

The hypotenuse is the distance between the two points . a2 + b2 = c2

Example: Find the distance between the points (-3, 2) and (4, -3) .

- Let: (x1, y1) = (-3, 2) , (x2, y2) = (4, -3)

๐‘‘๐‘‘ = ๏ฟฝ(4 โˆ’ (๐‘ก๐‘ก3))2+(๐‘ก๐‘ก3 โˆ’ 2)2 = โˆš49 + 25 = โˆš๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ• ๐‘‘๐‘‘ = ๏ฟฝ(๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ1)2+(๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2 โˆ’ ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ1)2

- Let: (x1, y1) = (4, -3) , (x2, y2) = (-3, 2)

๐‘‘๐‘‘ = ๏ฟฝ(๐‘ก๐‘ก3 โˆ’ 4)2+(2 โˆ’ (๐‘ก๐‘ก3))2 = โˆš49 + 25 = โˆš๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ•

โ€ข The midpoint formula for a segment determines the midpoint of a line segment .Midpoint Formula Example

๏ฟฝ๐‘ฅ๐‘ฅ1 + ๐‘ฅ๐‘ฅ2

2 , ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ1 + ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2

2๏ฟฝ

(x1, y1) = (4, 3) , (x2, y2) = (-4, 1)

midpoint = ๏ฟฝ4+๏ฟฝ-4๏ฟฝ2

, 3+12๏ฟฝ = (๐ŸŽ๐ŸŽ,๐Ÿ๐Ÿ๐Ÿ๐Ÿ)

xโˆ™ (x2, y2)

d

0

โˆ™ (x1, y1)

y

A midpoint divides a line segment into two equal parts.

โˆ™ (4, 3) (-4, 1) โˆ™

0

y

xโˆ™

Midpoint

The intersection of a plane with a double cone.

c b a

UNIT 9 CONICS

โ€ข A conic section: a curve obtained as the intersection of a plane with a cone .

โ€ข Slicing a cone (or a double cone) can generate a circle, a parabola, an ellipse or a hyperbola .

Cone Circle Ellipse Parabola Hyperbola

9-1 CIRCLES

The Distance Formula

โ€ข Distance formula can determine the distance between any two points on a coordinate plane .

โ€ข The distance (d) between two points (x1, y1) and (x2, y2)Distance Formula Example

๐‘‘๐‘‘ = ๏ฟฝ(๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ1)2+(๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2 โˆ’ ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ1)2(x1, y1) = (1, 4) , (x2, y2) = (5, 1)๐‘‘๐‘‘ = ๏ฟฝ(5 โˆ’ 1)2+(1 โˆ’ 4)2 = โˆš16 + 9 = 5

Note: It does not matter which point is (x1, y1) and which is (x2, y2) .Tip: The Pythagorean theorem is the basis for calculating distance between two points .

The hypotenuse is the distance between the two points . a2 + b2 = c2

Example: Find the distance between the points (-3, 2) and (4, -3) .

- Let: (x1, y1) = (-3, 2) , (x2, y2) = (4, -3)

๐‘‘๐‘‘ = ๏ฟฝ(4 โˆ’ (๐‘ก๐‘ก3))2+(๐‘ก๐‘ก3 โˆ’ 2)2 = โˆš49 + 25 = โˆš๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ• ๐‘‘๐‘‘ = ๏ฟฝ(๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ1)2+(๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2 โˆ’ ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ1)2

- Let: (x1, y1) = (4, -3) , (x2, y2) = (-3, 2)

๐‘‘๐‘‘ = ๏ฟฝ(๐‘ก๐‘ก3 โˆ’ 4)2+(2 โˆ’ (๐‘ก๐‘ก3))2 = โˆš49 + 25 = โˆš๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ•

โ€ข The midpoint formula for a segment determines the midpoint of a line segment .Midpoint Formula Example

๏ฟฝ๐‘ฅ๐‘ฅ1 + ๐‘ฅ๐‘ฅ2

2 , ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ1 + ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2

2๏ฟฝ

(x1, y1) = (4, 3) , (x2, y2) = (-4, 1)

midpoint = ๏ฟฝ4+๏ฟฝ-4๏ฟฝ2

, 3+12๏ฟฝ = (๐ŸŽ๐ŸŽ,๐Ÿ๐Ÿ๐Ÿ๐Ÿ)

xโˆ™ (x2, y2)

d

0

โˆ™ (x1, y1)

y

A midpoint divides a line segment into two equal parts.

โˆ™ (4, 3) (-4, 1) โˆ™

0

y

xโˆ™

Midpoint

The intersection of a plane with a double cone.

c b a

UNIT 9 CONICS

โ€ข A conic section: a curve obtained as the intersection of a plane with a cone .

โ€ข Slicing a cone (or a double cone) can generate a circle, a parabola, an ellipse or a hyperbola .

Cone Circle Ellipse Parabola Hyperbola

9-1 CIRCLES

The Distance Formula

โ€ข Distance formula can determine the distance between any two points on a coordinate plane .

โ€ข The distance (d) between two points (x1, y1) and (x2, y2)Distance Formula Example

๐‘‘๐‘‘ = ๏ฟฝ(๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ1)2+(๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2 โˆ’ ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ1)2(x1, y1) = (1, 4) , (x2, y2) = (5, 1)๐‘‘๐‘‘ = ๏ฟฝ(5 โˆ’ 1)2+(1 โˆ’ 4)2 = โˆš16 + 9 = 5

Note: It does not matter which point is (x1, y1) and which is (x2, y2) .Tip: The Pythagorean theorem is the basis for calculating distance between two points .

The hypotenuse is the distance between the two points . a2 + b2 = c2

Example: Find the distance between the points (-3, 2) and (4, -3) .

- Let: (x1, y1) = (-3, 2) , (x2, y2) = (4, -3)

๐‘‘๐‘‘ = ๏ฟฝ(4 โˆ’ (๐‘ก๐‘ก3))2+(๐‘ก๐‘ก3 โˆ’ 2)2 = โˆš49 + 25 = โˆš๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ• ๐‘‘๐‘‘ = ๏ฟฝ(๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ1)2+(๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2 โˆ’ ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ1)2

- Let: (x1, y1) = (4, -3) , (x2, y2) = (-3, 2)

๐‘‘๐‘‘ = ๏ฟฝ(๐‘ก๐‘ก3 โˆ’ 4)2+(2 โˆ’ (๐‘ก๐‘ก3))2 = โˆš49 + 25 = โˆš๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ•

โ€ข The midpoint formula for a segment determines the midpoint of a line segment .Midpoint Formula Example

๏ฟฝ๐‘ฅ๐‘ฅ1 + ๐‘ฅ๐‘ฅ2

2 , ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ1 + ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2

2๏ฟฝ

(x1, y1) = (4, 3) , (x2, y2) = (-4, 1)

midpoint = ๏ฟฝ4+๏ฟฝ-4๏ฟฝ2

, 3+12๏ฟฝ = (๐ŸŽ๐ŸŽ,๐Ÿ๐Ÿ๐Ÿ๐Ÿ)

xโˆ™ (x2, y2)

d

0

โˆ™ (x1, y1)

y

A midpoint divides a line segment into two equal parts.

โˆ™ (4, 3) (-4, 1) โˆ™

0

y

xโˆ™

Midpoint

The intersection of a plane with a double cone.

c b a

(4 โ€“ (-3))2 + (-3โ€‰โ€“โ€‰2)2

(-3โ€‰โ€“โ€‰4)2 + (2 โ€“ (-3))2

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 195

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

The Circle

โ€ข Circle: every point on the curve is equally distant from the center .

โ€ข Circles in the real worldRing Pizza Clock Smiley face

โ€ข Equation of circles

Center of a Circle The Standard Form Equation Examplecenter at origin (0, 0) x2 + y2 = r2 x2 + y2 = 32 r = 3

center at (h, k) (x โ€“ h)2 + (y โ€“ k)2 = r2 (x โ€“2)2 + (y โ€“1)2 = 22

(h, k) = (2, 1) , r = 2 r โ€“ radius

Example: Identify the center and radius of the following circles .

Equation Center Radius Graphx2 + y2 = 1

x2 + y2 = 12 (0, 0) 1

x2 + y2 = 4x2 + y2 = 22 (0, 0) 2

(x โ€“3)2 + (y + 2)2 = 9(x - 3)2 + [y โ€“ (-2)]2 = 32

(3, -2) 3

โ€ข General form equation for a circle

The General Form Examplex2 + y2 + Cx + Dy + E = 0 x2 + y2 โ€“ 2x + 4y โ€“ 20 = 0

Example: Identify the center and the radius of the following circle .x2 + y2 โ€“ 2x + 4y โ€“ 20 = 0 Add 20 to both sides .

x2 + y2 โ€“ 2x + 4y = 20 Regroup x and y terms together .

(x2 โ€“ 2x ) + (y2 + 4y ) = 20 Complete the square .

๏ฟฝ-22๏ฟฝ2

= 1 ๏ฟฝ42๏ฟฝ2

= 4 x 2 + bx + c = 0 ; ๏ฟฝ-๐‘๐‘๐‘๐‘2๏ฟฝ2

(x2 โ€“ 2x + 1) + (y2 + 4y + 4) = 20 + 1 + 4 Add 1 and 4 to both sides .

(x โ€“ 1)2 + (y + 2)2 = 52Factor .

Center: (1, -2) , radius r = 5 (x โ€“ h)2 + (y โ€“ k)2 = r2 ; center: (h, k) .

(x โ€“ 1)2 + [y โ€“ (-2)]2 = 52

0 โˆ™ rC

C โ€“ centerr โ€“ radius

r = 1

r = 2

โˆ™ r = 3(3, -2)

โˆ™ (1, -2) 5

x

y

0

The Circle

โ€ข Circle: every point on the curve is equally distant from the center .

โ€ข Circles in the real worldRing Pizza Clock Smiley face

โ€ข Equation of circles

Center of a Circle The Standard Form Equation Examplecenter at origin (0, 0) x2 + y2 = r2 x2 + y2 = 32 r = 3

center at (h, k) (x โ€“ h)2 + (y โ€“ k)2 = r2 (x โ€“2)2 + (y โ€“1)2 = 22

(h, k) = (2, 1) , r = 2 r โ€“ radius

Example: Identify the center and radius of the following circles .

Equation Center Radius Graphx2 + y2 = 1

x2 + y2 = 12 (0, 0) 1

x2 + y2 = 4x2 + y2 = 22 (0, 0) 2

(x โ€“3)2 + (y + 2)2 = 9(x - 3)2 + [y โ€“ (-2)]2 = 32

(3, -2) 3

โ€ข General form equation for a circle

The General Form Examplex2 + y2 + Cx + Dy + E = 0 x2 + y2 โ€“ 2x + 4y โ€“ 20 = 0

Example: Identify the center and the radius of the following circle .x2 + y2 โ€“ 2x + 4y โ€“ 20 = 0 Add 20 to both sides .

x2 + y2 โ€“ 2x + 4y = 20 Regroup x and y terms together .

(x2 โ€“ 2x ) + (y2 + 4y ) = 20 Complete the square .

๏ฟฝ-22๏ฟฝ2

= 1 ๏ฟฝ42๏ฟฝ2

= 4 x 2 + bx + c = 0 ; ๏ฟฝ-๐‘๐‘๐‘๐‘2๏ฟฝ2

(x2 โ€“ 2x + 1) + (y2 + 4y + 4) = 20 + 1 + 4 Add 1 and 4 to both sides .

(x โ€“ 1)2 + (y + 2)2 = 52Factor .

Center: (1, -2) , radius r = 5 (x โ€“ h)2 + (y โ€“ k)2 = r2 ; center: (h, k) .

(x โ€“ 1)2 + [y โ€“ (-2)]2 = 52

0 โˆ™ rC

C โ€“ centerr โ€“ radius

r = 1

r = 2

โˆ™ r = 3(3, -2)

โˆ™ (1, -2) 5

x

y

0

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

196 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

9-2 PARABOLAS

Introduction to Parabolas

โ€ข Parabola: a curve (โ€˜Uโ€™ shaped curve) where every point is the same distance from a fixed

point (the focus F) and a fixed line (the directrix) .

โ€ข Parabolas in the real worldDome Rainbow Suspension Bridge Arch

โ€ข Parabola terminology

Term Definition Diagramfocus A fixed point whose relationship with a directrix

defines a parabola .

directrix A fixed straight line perpendicular to the axis of symmetry .

axis of symmetryA line segment that is perpendicular to the directrix and passes through the vertex and focus of a parabola .

vertexThe point where a parabola makes its sharpest turnas it crosses its axis of symmetry . It is where thedistance from the focus and directrix is shortest .

โ€ข Recall: equations of parabolasEquations of Parabolas

y = Ax2 + Bx + C x = Ay2 + By + Cy = Ax2 x = Ay2

y = Ax2 + C x = Ay2 + Cy = A(x โ€“ h)2 x= A(y โ€“ k)2

y = A(x โ€“ h)2 + k x= A(y โ€“ k)2 + h

Function: f (x) = Ax2 + Bx2 + C f (y) = Ay2 + By2 + C

โ€ข The graph of a quadratic function or equation is a parabola .

โˆ™d2

d1 d1= d2

Directrix

โˆ™ F (focus)

Directrix

Axis of symmetry

โˆ™ Vertex

0

(Focus) F โˆ™

9-2 PARABOLAS

Introduction to Parabolas

โ€ข Parabola: a curve (โ€˜Uโ€™ shaped curve) where every point is the same distance from a fixed

point (the focus F) and a fixed line (the directrix) .

โ€ข Parabolas in the real worldDome Rainbow Suspension Bridge Arch

โ€ข Parabola terminology

Term Definition Diagramfocus A fixed point whose relationship with a directrix

defines a parabola .

directrix A fixed straight line perpendicular to the axis of symmetry .

axis of symmetryA line segment that is perpendicular to the directrix and passes through the vertex and focus of a parabola .

vertexThe point where a parabola makes its sharpest turnas it crosses its axis of symmetry . It is where thedistance from the focus and directrix is shortest .

โ€ข Recall: equations of parabolasEquations of Parabolas

y = Ax2 + Bx + C x = Ay2 + By + Cy = Ax2 x = Ay2

y = Ax2 + C x = Ay2 + Cy = A(x โ€“ h)2 x= A(y โ€“ k)2

y = A(x โ€“ h)2 + k x= A(y โ€“ k)2 + h

Function: f (x) = Ax2 + Bx2 + C f (y) = Ay2 + By2 + C

โ€ข The graph of a quadratic function or equation is a parabola .

โˆ™d2

d1 d1= d2

Directrix

โˆ™ F (focus)

Directrix

Axis of symmetry

โˆ™ Vertex

0

(Focus) F โˆ™

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 197

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

Graphing a Parabola

An easy method for graphing parabolas: make a table of x and y values for the equation and

plot the points .

Example: Sketch the graph of y = 3x2 .

- Make a table of x values for the equation .

- Pick some values of x and solve for each corresponding y to get the ordered pairs (points) Tip: Pick points on both sides of the axis .

- Plot the points and connect them with a smooth curve .

x y = 3x2 (x, y)0 y = 3 โˆ™ 02 = 0 (0, 0)1 y = 3 โˆ™ 12 = 3 (1, 3)

-1 y = 3 โˆ™ (-1)2 = 3 (-1, 3)2 y = 3 โˆ™ 22 = 12 (2, 12)

-2 y = 3 โˆ™ (-2)2 = 12 (-2, 12)

Choose . Calculate .

โˆ™ (0, 0)

โˆ™ (1, 3) (-1, 3) โˆ™

โˆ™ (2,12) (-2, 12) โˆ™

x

y

Graphing a Parabola

An easy method for graphing parabolas: make a table of x and y values for the equation and

plot the points .

Example: Sketch the graph of y = 3x2 .

- Make a table of x values for the equation .

- Pick some values of x and solve for each corresponding y to get the ordered pairs (points) Tip: Pick points on both sides of the axis .

- Plot the points and connect them with a smooth curve .

x y = 3x2 (x, y)0 y = 3 โˆ™ 02 = 0 (0, 0)1 y = 3 โˆ™ 12 = 3 (1, 3)

-1 y = 3 โˆ™ (-1)2 = 3 (-1, 3)2 y = 3 โˆ™ 22 = 12 (2, 12)

-2 y = 3 โˆ™ (-2)2 = 12 (-2, 12)

Choose . Calculate .

โˆ™ (0, 0)

โˆ™ (1, 3) (-1, 3) โˆ™

โˆ™ (2,12) (-2, 12) โˆ™

x

y

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

198 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

Parabola in the Form f(x) = Ax2 and f(y) = Ay2

โ€ข General information for a parabola of the form f(x) = Ax2 and f(y) = Ay2

Equation Vertex Axis of Symmetry Equation for the Axis of Symmetryf(x) = Ax2 (0, 0) symmetry about the y โ€“ axis x = 0f(y) = Ay2 (0, 0) symmetry about the x โ€“ axis y = 0

Equation General Shape Example Table Graph

f(x)= Ax2

A > 0Opens up

y = 2x2

(A = 2 > 0)

x 0 1 -1 2 -2y 0 2 2 8 8

A < 0Opens down

y = -2x2

(A = -2 < 0)

x 0 1 -1 2 -2y 0 -2 -2 -8 - 8

f(y)= Ay2

A > 0Opens to the right

x = 2y2

(A = 2 > 0)y 0 1 -1 2 -2x 0 2 2 8 8

A < 0Opens to the left

x = -2y2

(A = -2 < 0 )

y 0 1 -1 2 -2x 0 -2 -2 -8 -8

โ€ข The line of symmetry divides the parabola into two equal halves .

โ€ข The coefficient A in ๐’‡๐’‡(๐’™๐’™) = ๐‘จ๐‘จ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ can shrink or stretch the parabola

The Coefficient A in ๐’š๐’š = ๐‘จ๐‘จ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ & ๐’™๐’™ = ๐‘จ๐‘จ๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ Example

- The larger the |๐ด๐ด|, the narrower the curve .

๐‘“๐‘“(๐‘ฅ๐‘ฅ) = Ax2

A > 0

- The smaller the |๐ด๐ด|, the wider the curve .

A < 0

y = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿx2

y = x2

y = 3x2

y = - 3x2y = -x2

y = - ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿx2

(-1, 2) โˆ™ โˆ™ (1, 2)

(-2, 8) โˆ™ โˆ™ (2, 8)

โˆ™ (1,-2)

โˆ™ (2, -8)

(-1, -2) โˆ™

(-2, -8) โˆ™

โˆ™ (2,-1) โˆ™ (8, 2)

โˆ™ (2, 1)

โˆ™ (8,-2)

โˆ™ (-2, 1) โˆ™ (-2,-1)

โˆ™ (-8,-2)

โˆ™ (-8, 2)

(Pick y values)

(Calculate x values)

Parabola in the Form f(x) = Ax2 and f(y) = Ay2

โ€ข General information for a parabola of the form f(x) = Ax2 and f(y) = Ay2

Equation Vertex Axis of Symmetry Equation for the Axis of Symmetryf(x) = Ax2 (0, 0) symmetry about the y โ€“ axis x = 0f(y) = Ay2 (0, 0) symmetry about the x โ€“ axis y = 0

Equation General Shape Example Table Graph

f(x)= Ax2

A > 0Opens up

y = 2x2

(A = 2 > 0)

x 0 1 -1 2 -2y 0 2 2 8 8

A < 0Opens down

y = -2x2

(A = -2 < 0)

x 0 1 -1 2 -2y 0 -2 -2 -8 - 8

f(y)= Ay2

A > 0Opens to the right

x = 2y2

(A = 2 > 0)y 0 1 -1 2 -2x 0 2 2 8 8

A < 0Opens to the left

x = -2y2

(A = -2 < 0 )

y 0 1 -1 2 -2x 0 -2 -2 -8 -8

โ€ข The line of symmetry divides the parabola into two equal halves .

โ€ข The coefficient A in ๐’‡๐’‡(๐’™๐’™) = ๐‘จ๐‘จ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ can shrink or stretch the parabola

The Coefficient A in ๐’š๐’š = ๐‘จ๐‘จ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ & ๐’™๐’™ = ๐‘จ๐‘จ๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ Example

- The larger the |๐ด๐ด|, the narrower the curve .

๐‘“๐‘“(๐‘ฅ๐‘ฅ) = Ax2

A > 0

- The smaller the |๐ด๐ด|, the wider the curve .

A < 0

y = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿx2

y = x2

y = 3x2

y = - 3x2y = -x2

y = - ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿx2

(-1, 2) โˆ™ โˆ™ (1, 2)

(-2, 8) โˆ™ โˆ™ (2, 8)

โˆ™ (1,-2)

โˆ™ (2, -8)

(-1, -2) โˆ™

(-2, -8) โˆ™

โˆ™ (2,-1) โˆ™ (8, 2)

โˆ™ (2, 1)

โˆ™ (8,-2)

โˆ™ (-2, 1) โˆ™ (-2,-1)

โˆ™ (-8,-2)

โˆ™ (-8, 2)

(Pick y values)

(Calculate x values)

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 199

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

Parabola in the Form y = Ax2 + C & x = Ay2 + C

โ€ข The graph of ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = ๐ด๐ด๐ด๐ด2 + ๐ถ๐ถ or ๐ด๐ด = ๐ด๐ด๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2 + ๐ถ๐ถ is a parabola that has the same shape as

๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = ๐ด๐ด๐ด๐ด2 or ๐ด๐ด = ๐ด๐ด๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2 , but is shifted C units vertically or horizontally .

โ€ข General information for a parabola of the form y = Ax2 + C and x = Ay2 + C

Parabola Equation Vertex Axis of Symmetry Shifting

y = A x2 + C (0, C) symmetry about the y - axisThe same shape as y = Ax2,but is shifted C units vertically .

x = A y2 + C (C, 0) symmetry about the x - axisThe same shape as y = Ax2,but is shifted C units horizontally .

Equation C Shifting Vertex Graph Example Graph

y = Ax2 + C

A > 0: opens upA < 0: opens down

C >0 y = Ax2 is shifted Cunits up .

(0, C)

y = 2x2 + 1(C = 1 > 0)

C < 0 y = Ax2 is shifted Cunits down .

y = 2x2 โ€“ 3(C = -3 < 0)

x = Ay2 + C

A > 0: opens to the rightA < 0: opens to the left

C > 0 x = Ay2 is shifted Cunits to the right .

(C, 0)

x = 2y2 + 4(C = 4 > 0)

C < 0 x = Ay2 is shifted C units to the left .

x = 2y2 โ€“ 13

(C = - 13

< 0 )

Tips: - C indicates how far the parabola has been shifted vertically or horizontally .

- If A > 0, the parabola opens up or to the right . If A < 0, the parabola opens down or to the left .

Example: Sketch the graph of y = -3x2 โ€“ 2 . (A = -3 < 0, opens down)

- Make a table for y = -3x2

x 0 1 -1y = -3x2 0 -3 -3

- Plot y = -3x2 : A = -3 < 0 , opens down .

- Plot ๐ด๐ด = -3๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2 โˆ’ 2 : C = -2 < 0 , shift 2 units down from y = -3x2 .

โˆ™ (0, -2) โˆ™ (0, 0)

y

x

y = -3x2

y = -3x2 โˆ’ 2

โˆ™ (0, C) โˆ™ (0, -3)

โˆ™ (0, 1)

โˆ™ (C, 0)

โˆ™(C, 0)

โˆ™ (4, 0)

โˆ™ ๏ฟฝ-13

, 0)

โˆ™ (0, C)

Parabola in the Form y = Ax2 + C & x = Ay2 + C

โ€ข The graph of ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = ๐ด๐ด๐ด๐ด2 + ๐ถ๐ถ or ๐ด๐ด = ๐ด๐ด๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2 + ๐ถ๐ถ is a parabola that has the same shape as

๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = ๐ด๐ด๐ด๐ด2 or ๐ด๐ด = ๐ด๐ด๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2 , but is shifted C units vertically or horizontally .

โ€ข General information for a parabola of the form y = Ax2 + C and x = Ay2 + C

Parabola Equation Vertex Axis of Symmetry Shifting

y = A x2 + C (0, C) symmetry about the y - axisThe same shape as y = Ax2,but is shifted C units vertically .

x = A y2 + C (C, 0) symmetry about the x - axisThe same shape as y = Ax2,but is shifted C units horizontally .

Equation C Shifting Vertex Graph Example Graph

y = Ax2 + C

A > 0: opens upA < 0: opens down

C >0 y = Ax2 is shifted Cunits up .

(0, C)

y = 2x2 + 1(C = 1 > 0)

C < 0 y = Ax2 is shifted Cunits down .

y = 2x2 โ€“ 3(C = -3 < 0)

x = Ay2 + C

A > 0: opens to the rightA < 0: opens to the left

C > 0 x = Ay2 is shifted Cunits to the right .

(C, 0)

x = 2y2 + 4(C = 4 > 0)

C < 0 x = Ay2 is shifted C units to the left .

x = 2y2 โ€“ 13

(C = - 13

< 0 )

Tips: - C indicates how far the parabola has been shifted vertically or horizontally .

- If A > 0, the parabola opens up or to the right . If A < 0, the parabola opens down or to the left .

Example: Sketch the graph of y = -3x2 โ€“ 2 . (A = -3 < 0, opens down)

- Make a table for y = -3x2

x 0 1 -1y = -3x2 0 -3 -3

- Plot y = -3x2 : A = -3 < 0 , opens down .

- Plot ๐ด๐ด = -3๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2 โˆ’ 2 : C = -2 < 0 , shift 2 units down from y = -3x2 .

โˆ™ (0, -2) โˆ™ (0, 0)

y

x

y = -3x2

y = -3x2 โˆ’ 2

โˆ™ (0, C) โˆ™ (0, -3)

โˆ™ (0, 1)

โˆ™ (C, 0)

โˆ™(C, 0)

โˆ™ (4, 0)

โˆ™ ๏ฟฝ-13

, 0)

โˆ™ (0, C)

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

200 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

Parabola in the Form y = A(x โ€“ h)2 & x = A(y โ€“ h)2

โ€ข The graph of y = A(x โ€“ h)2 or x = A(y โ€“ h)2 is a parabola that has the same shape as

y = Ax2 or x = Ay2 , but is shifted h units horizontally or vertically .

โ€ข General information for a parabola of the form y = A(x โ€“ h)2 and x = A(y โ€“ h)2

Equation Vertex Axis of Symmetry Shifting

y = A(x โ€“ h)2 (h, 0) symmetry about the line x = h

The same shape as y = Ax2, but is shifted h units horizontally .

x = A(y โ€“ h)2 (0, h) symmetry about the line y = h

The same shape as y = Ax2, but is shifted h units vertically .

Equation h Shifting Vertex Graph Example Graph

y = A(x โ€“ h)2

A > 0: opens upA < 0: opens down

h >0 y = Ax2 is shifted hunits to the right .

(h, 0)

y = 2(x โ€“ 3)2

(h = 3 > 0)

h < 0 y = Ax2 is shifted hunits to the left.

y = 2(x + 3)2

(h = -3 < 0)

y = 2[x โ€“ (- 3)]2

x = A(y โ€“ h)2

A > 0: opens to the rightA < 0: opens to the left

h > 0 x = Ay2 is shifted hunits up.

(0, h)

x = 2(y โ€“ 3)2

(h = 3 > 0)

h < 0 x = Ay2 is shifted h units down .

x = 2(y + 3)2

(h = - 3 < 0 )

x = 2[y โ€“ (- 3)]2

Tip: h shows how far the parabola has been shifted vertically or horizontally .

Example: Sketch the graph of x = -3(y โˆ’ 4)2 .

- Make a table for x = -3y2

y 0 1 -1x = -3y2 0 -3 -3

(x, y) (0, 0) (-3, 1) (-3, -1)

- Plot x = -3y2 A = -3 > 0 , opens left .

- Plot ๐‘ฅ๐‘ฅ = -3(๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ โˆ’ 4)2 : h = 4 > 0 ,

x = -3y2 is shifted 4 units up .- Vertex: (0, 4)

- Axis of symmetry: y = 4

โˆ™ (-3, 1) โˆ™ (0, 0)

โˆ™ (-3, -1) x

y

โˆ™

x = -3y2

x = -3(y โˆ’ 4)2

y = 4

โˆ™ (h, 0) โˆ™ (3, 0)

โˆ™ (-3, 0) โˆ™(h, 0)

โˆ™ (0, h)

โˆ™ (0, h)

โˆ™ (0, 3)

โˆ™ (0, -3)

(Pick y values.)

(Calculate x values.)

Vertex (0, 4)

Parabola in the Form y = A(x โ€“ h)2 & x = A(y โ€“ h)2

โ€ข The graph of y = A(x โ€“ h)2 or x = A(y โ€“ h)2 is a parabola that has the same shape as

y = Ax2 or x = Ay2 , but is shifted h units horizontally or vertically .

โ€ข General information for a parabola of the form y = A(x โ€“ h)2 and x = A(y โ€“ h)2

Equation Vertex Axis of Symmetry Shifting

y = A(x โ€“ h)2 (h, 0) symmetry about the line x = h

The same shape as y = Ax2, but is shifted h units horizontally .

x = A(y โ€“ h)2 (0, h) symmetry about the line y = h

The same shape as y = Ax2, but is shifted h units vertically .

Equation h Shifting Vertex Graph Example Graph

y = A(x โ€“ h)2

A > 0: opens upA < 0: opens down

h >0 y = Ax2 is shifted hunits to the right .

(h, 0)

y = 2(x โ€“ 3)2

(h = 3 > 0)

h < 0 y = Ax2 is shifted hunits to the left.

y = 2(x + 3)2

(h = -3 < 0)

y = 2[x โ€“ (- 3)]2

x = A(y โ€“ h)2

A > 0: opens to the rightA < 0: opens to the left

h > 0 x = Ay2 is shifted hunits up.

(0, h)

x = 2(y โ€“ 3)2

(h = 3 > 0)

h < 0 x = Ay2 is shifted h units down .

x = 2(y + 3)2

(h = - 3 < 0 )

x = 2[y โ€“ (- 3)]2

Tip: h shows how far the parabola has been shifted vertically or horizontally .

Example: Sketch the graph of x = -3(y โˆ’ 4)2 .

- Make a table for x = -3y2

y 0 1 -1x = -3y2 0 -3 -3

(x, y) (0, 0) (-3, 1) (-3, -1)

- Plot x = -3y2 A = -3 > 0 , opens left .

- Plot ๐‘ฅ๐‘ฅ = -3(๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ โˆ’ 4)2 : h = 4 > 0 ,

x = -3y2 is shifted 4 units up .- Vertex: (0, 4)

- Axis of symmetry: y = 4

โˆ™ (-3, 1) โˆ™ (0, 0)

โˆ™ (-3, -1) x

y

โˆ™

x = -3y2

x = -3(y โˆ’ 4)2

y = 4

โˆ™ (h, 0) โˆ™ (3, 0)

โˆ™ (-3, 0) โˆ™(h, 0)

โˆ™ (0, h)

โˆ™ (0, h)

โˆ™ (0, 3)

โˆ™ (0, -3)

(Pick y values.)

(Calculate x values.)

Vertex (0, 4)

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 201

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

Parabola in the Form y = A(x โ€“ h)2 + k & x = A(y โ€“ k)2 + h

General information for a parabola of the form y = A(x โ€“ h)2 + k and x = A(y โ€“ k)2 + h

Equation Vertex Axis of Symmetryy = A(x โ€“ h)2 + k (h, k) symmetry about the line x = hx = A(y โ€“ k)2 + h symmetry about the line y = h

Equation Graph Example Graph

y = A(x โ€“ h)2 + kA > 0: opens upA < 0: opens down

y = 2(x โ€“ 3)2 + 4 (h = 3, k = 4)

x = A(y โ€“ k)2 + hA > 0: opens to the right A < 0: opens to the left

x = 2(y โ€“ 3)2 + 4 (h = 4, k = 3)

Example: Sketch the graph of y = -2x2โˆ’ 4x โˆ’ 5 .

- Convert to y = A(x โ€“ h)2 + k y = -2x2 โ€“ 4x โ€“ 5by completing the square . = -2(x2 + 2x ) โ€“ 5 Factor out -2 .

๏ฟฝ๐‘๐‘๐‘๐‘2๏ฟฝ2 = -2(x2 + 2x + 1 โ€“ 1) โ€“ 5 ๏ฟฝ๐‘๐‘๐‘๐‘

2๏ฟฝ2

= ๏ฟฝ22๏ฟฝ2

= 1

= -2(x2 + 2x + 1) + (-2)(-1) โ€“ 5= -2(x2 + 2x + 1) โ€“ 3

y = -2(x + 1)2 โ€“ 3 y = -2[x โ€“ (-1)]2 + (-3)

- Identify the vertex: (h, k) (h, k) = (-1, -3) y = A(x โ€“ h)2 + k

- Determine the axis of symmetry: x = h x = h = -1

- Check A ๏ฟฝ๐ด๐ด > 0: opens up ๐ด๐ด < 0: opens down A = -2 < 0: opens down y = -2(x + 1)2 โ€“ 3

- Plot the vertex and the axis of symmetry .

- Make a table and find a few points .

x y = -2x2 โ€“ 4x โ€“ 5 (x, y)0 y = -2 โˆ™ 02 โ€“ 4 โˆ™ 0 โ€“ 5 = -5 (0, -5)

-2 y = -2 (-2)2 โ€“ 4 (-2) โ€“ 5 = -5 (-2, -5)1 y = -2 โˆ™ 12 โ€“ 4 โˆ™ 1 โ€“ 5 = -11 (1, -11)

-3 y = -2 (-3)2 โ€“ 4 (-3) โ€“ 5 = -11 (-3, -11)

(-1, -3) โˆ™

Axis of symmetry

โˆ™ (0, -5)

Vertex

(-2, -5) โˆ™

โˆ™ (1, -11) (-3, -11) โˆ™

x

x = -1 y

โˆ™ 0

โˆ™ (h, k) 0

0

โˆ™ (3, 4)

โˆ™ (h, k)

0 โˆ™ (4, 3)

0

Parabola in the Form y = A(x โ€“ h)2 + k & x = A(y โ€“ k)2 + h

General information for a parabola of the form y = A(x โ€“ h)2 + k and x = A(y โ€“ k)2 + h

Equation Vertex Axis of Symmetryy = A(x โ€“ h)2 + k (h, k) symmetry about the line x = hx = A(y โ€“ k)2 + h symmetry about the line y = h

Equation Graph Example Graph

y = A(x โ€“ h)2 + kA > 0: opens upA < 0: opens down

y = 2(x โ€“ 3)2 + 4 (h = 3, k = 4)

x = A(y โ€“ k)2 + hA > 0: opens to the right A < 0: opens to the left

x = 2(y โ€“ 3)2 + 4 (h = 4, k = 3)

Example: Sketch the graph of y = -2x2โˆ’ 4x โˆ’ 5 .

- Convert to y = A(x โ€“ h)2 + k y = -2x2 โ€“ 4x โ€“ 5by completing the square . = -2(x2 + 2x ) โ€“ 5 Factor out -2 .

๏ฟฝ๐‘๐‘๐‘๐‘2๏ฟฝ2 = -2(x2 + 2x + 1 โ€“ 1) โ€“ 5 ๏ฟฝ๐‘๐‘๐‘๐‘

2๏ฟฝ2

= ๏ฟฝ22๏ฟฝ2

= 1

= -2(x2 + 2x + 1) + (-2)(-1) โ€“ 5= -2(x2 + 2x + 1) โ€“ 3

y = -2(x + 1)2 โ€“ 3 y = -2[x โ€“ (-1)]2 + (-3)

- Identify the vertex: (h, k) (h, k) = (-1, -3) y = A(x โ€“ h)2 + k

- Determine the axis of symmetry: x = h x = h = -1

- Check A ๏ฟฝ๐ด๐ด > 0: opens up ๐ด๐ด < 0: opens down A = -2 < 0: opens down y = -2(x + 1)2 โ€“ 3

- Plot the vertex and the axis of symmetry .

- Make a table and find a few points .

x y = -2x2 โ€“ 4x โ€“ 5 (x, y)0 y = -2 โˆ™ 02 โ€“ 4 โˆ™ 0 โ€“ 5 = -5 (0, -5)

-2 y = -2 (-2)2 โ€“ 4 (-2) โ€“ 5 = -5 (-2, -5)1 y = -2 โˆ™ 12 โ€“ 4 โˆ™ 1 โ€“ 5 = -11 (1, -11)

-3 y = -2 (-3)2 โ€“ 4 (-3) โ€“ 5 = -11 (-3, -11)

(-1, -3) โˆ™

Axis of symmetry

โˆ™ (0, -5)

Vertex

(-2, -5) โˆ™

โˆ™ (1, -11) (-3, -11) โˆ™

x

x = -1 y

โˆ™ 0

โˆ™ (h, k) 0

0

โˆ™ (3, 4)

โˆ™ (h, k)

0 โˆ™ (4, 3)

0

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

202 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

Parabola in the Form f(x) = Ax2 + Bx + C & f(y) = Ay2 + By + C

Equation General Shape Axis of Symmetry Vertex (h, k)f (x) = Ax2 + Bx + C

or y = Ax2 + Bx + C

A > 0: opens up x = - ๐ต๐ต2๐ด๐ด (h, k) = (- ๐ต๐ต

2๐ด๐ด, ๐‘“๐‘“ ๏ฟฝ -B

2A๏ฟฝ)A < 0: opens down

f (y) = Ay2 + By + C or x = Ay2 + By + C

A > 0: opens to the right y = - ๐ต๐ต2๐ด๐ด (h, k) = (๐‘“๐‘“ ๏ฟฝ -B

2A๏ฟฝ , - ๐ต๐ต

2๐ด๐ด)A < 0: opens to the left

Example: Sketch the graph of f (x) = x2โˆ’ 4x + 6.

Steps Solution

- Determine the axis of symmetry: ๐‘ฅ๐‘ฅ = -๐ต๐ต2๐ด๐ด

๐‘ฅ๐‘ฅ = -๐ต๐ต2๐ด๐ด

= -(-4)2(1)

= 2 y = Ax2 + Bx+ C

- Identify the vertex: (h, k) = (- ๐ต๐ต2๐ด๐ด

, ๐‘“๐‘“ ๏ฟฝ -B2A๏ฟฝ) h = -๐ต๐ต

2๐ด๐ด= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

k = ๐‘“๐‘“ ๏ฟฝ -B2A๏ฟฝ = 22 โˆ’ 4(2) + 6 = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ f(x) = 1โˆ™ x2 โ€“ 4x + 6

(h, k) = (2, 2)

- Check A ๏ฟฝ๐ด๐ด > 0: opens up ๐ด๐ด < 0: opens down A = 1 > 0: opens up A = 1

- Plot the vertex and the axis of symmetry .

- Find a few more points . x y = x2 โˆ’ 4x + 6 (x, y)0 y = 02 โˆ’ 4โˆ™0 + 6 = 6 (0, 6) 1 y = 12 โˆ’ 4โˆ™1 + 6 = 3 (1, 3) 3 y = 32 โˆ’ 4โˆ™3 + 6 = 3 (3, 3)

Example: Sketch the graph of f (y) = y2 โ€“ 2y โ€“ 8 .

- The axis of symmetry: y = -๐ต๐ต2๐ด๐ด

= -(-2)2โˆ™1

= 1 x = Ay2 + By + C

- Vertex: k = -๐ต๐ต2๐ด๐ด

= 1 , h = ๐‘“๐‘“ ๏ฟฝ -B2A๏ฟฝ = 12 โˆ’ 2(1) โˆ’ 8 = โˆ’9 (h, k) = ๏ฟฝ๐‘“๐‘“ ๏ฟฝ -๐ต๐ต

2๐ด๐ด๏ฟฝ , -๐ต๐ต

2๐ด๐ด๏ฟฝ , (h, k) = (-9, 1)

- Check A: A = 1 > 0 , opens to the right .

- Plot the vertex and the axis of symmetry .

- Make a table and find a few points .

y x = y2 โ€“ 2y โ€“ 8 (x, y)0 x = 02โˆ’ 2 โˆ™ 0 โˆ’ 8 = -8 (-8, 0)2 x = 22โˆ’ 2 โˆ™ 2 โˆ’ 8 = -8 (-8, 2)4 x = 42โˆ’ 2 โˆ™ 4 โˆ’ 8 = 0 (0, 4)-2 x = (-2)2โˆ’ 2 (-2) โˆ’ 8 = 0 (0, -2)

x

y x = 2 : Axis of symmetry

(1, 3) โˆ™

(0, 6) โˆ™

โˆ™ (3, 3)

โˆ™ (0, 4)

โˆ™ (0, -2)

โˆ™ (-9, 1) โˆ™(-8, 0)

โˆ™ (2, 2) Vertex0

Axis of symmetryVertexx

y

โˆ™ 0

(-8, 2) โˆ™

Pick y. Calculate x.

Parabola in the Form f(x) = Ax2 + Bx + C & f(y) = Ay2 + By + C

Equation General Shape Axis of Symmetry Vertex (h, k)f (x) = Ax2 + Bx + C

or y = Ax2 + Bx + C

A > 0: opens up x = - ๐ต๐ต2๐ด๐ด (h, k) = (- ๐ต๐ต

2๐ด๐ด, ๐‘“๐‘“ ๏ฟฝ -B

2A๏ฟฝ)A < 0: opens down

f (y) = Ay2 + By + C or x = Ay2 + By + C

A > 0: opens to the right y = - ๐ต๐ต2๐ด๐ด (h, k) = (๐‘“๐‘“ ๏ฟฝ -B

2A๏ฟฝ , - ๐ต๐ต

2๐ด๐ด)A < 0: opens to the left

Example: Sketch the graph of f (x) = x2โˆ’ 4x + 6.

Steps Solution

- Determine the axis of symmetry: ๐‘ฅ๐‘ฅ = -๐ต๐ต2๐ด๐ด

๐‘ฅ๐‘ฅ = -๐ต๐ต2๐ด๐ด

= -(-4)2(1)

= 2 y = Ax2 + Bx+ C

- Identify the vertex: (h, k) = (- ๐ต๐ต2๐ด๐ด

, ๐‘“๐‘“ ๏ฟฝ -B2A๏ฟฝ) h = -๐ต๐ต

2๐ด๐ด= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

k = ๐‘“๐‘“ ๏ฟฝ -B2A๏ฟฝ = 22 โˆ’ 4(2) + 6 = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ f(x) = 1โˆ™ x2 โ€“ 4x + 6

(h, k) = (2, 2)

- Check A ๏ฟฝ๐ด๐ด > 0: opens up ๐ด๐ด < 0: opens down A = 1 > 0: opens up A = 1

- Plot the vertex and the axis of symmetry .

- Find a few more points . x y = x2 โˆ’ 4x + 6 (x, y)0 y = 02 โˆ’ 4โˆ™0 + 6 = 6 (0, 6) 1 y = 12 โˆ’ 4โˆ™1 + 6 = 3 (1, 3) 3 y = 32 โˆ’ 4โˆ™3 + 6 = 3 (3, 3)

Example: Sketch the graph of f (y) = y2 โ€“ 2y โ€“ 8 .

- The axis of symmetry: y = -๐ต๐ต2๐ด๐ด

= -(-2)2โˆ™1

= 1 x = Ay2 + By + C

- Vertex: k = -๐ต๐ต2๐ด๐ด

= 1 , h = ๐‘“๐‘“ ๏ฟฝ -B2A๏ฟฝ = 12 โˆ’ 2(1) โˆ’ 8 = โˆ’9 (h, k) = ๏ฟฝ๐‘“๐‘“ ๏ฟฝ -๐ต๐ต

2๐ด๐ด๏ฟฝ , -๐ต๐ต

2๐ด๐ด๏ฟฝ , (h, k) = (-9, 1)

- Check A: A = 1 > 0 , opens to the right .

- Plot the vertex and the axis of symmetry .

- Make a table and find a few points .

y x = y2 โ€“ 2y โ€“ 8 (x, y)0 x = 02โˆ’ 2 โˆ™ 0 โˆ’ 8 = -8 (-8, 0)2 x = 22โˆ’ 2 โˆ™ 2 โˆ’ 8 = -8 (-8, 2)4 x = 42โˆ’ 2 โˆ™ 4 โˆ’ 8 = 0 (0, 4)-2 x = (-2)2โˆ’ 2 (-2) โˆ’ 8 = 0 (0, -2)

x

y x = 2 : Axis of symmetry

(1, 3) โˆ™

(0, 6) โˆ™

โˆ™ (3, 3)

โˆ™ (0, 4)

โˆ™ (0, -2)

โˆ™ (-9, 1) โˆ™(-8, 0)

โˆ™ (2, 2) Vertex0

Axis of symmetryVertexx

y

โˆ™ 0

(-8, 2) โˆ™

Pick y. Calculate x.

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 203

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

Summary of the Parabola

Equation of Parabolas(Standard Form) Axis of Symmetry Vertex Shape Graph

y = Ax2 y - axis

(0, 0)

A > 0: opens up

A < 0: opens down

x = Ay2 x - axisA > 0, opens right

A < 0, opens left

y = Ax2 + C y - axis (0, C)The same shape as y = Ax2

C > 0, C units up

C < 0, C units down

x = Ay2 + C x - axis (C, 0)The same shape as x = Ay2

C > 0: C units to the right

C < 0: C units to the left

y = A(x โ€“ h)2 x = h (h, 0)The same shape as y = Ax2

h > 0: h units to the righth < 0: h units to the left

x= A(y โ€“ h)2 y = h (0, h)The same shape as x = Ay2

h > 0: h units up

h < 0: h units down

y = A(x โ€“ h)2 + k x = h (h, k) Symmetry about the x = h

x = A(y โ€“ k)2 + h y = k (h, k) Symmetry about the y = h

y = Ax2 + Bx + C ๐‘ฅ๐‘ฅ = -๐ต๐ต2๐ด๐ด

๏ฟฝ-๐ต๐ต2๐ด๐ด , โ€…๐‘“๐‘“ ๏ฟฝ

-B2A๏ฟฝ๏ฟฝ

A > 0: opens up

A < 0: opens down

x = Ay2 + By + C ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ =-๐ต๐ต2๐ด๐ด

๏ฟฝ๐‘“๐‘“ ๏ฟฝ-B2A๏ฟฝ , โ€…

-๐ต๐ต2๐ด๐ด๏ฟฝ

A > 0: opens right

A < 0: opens left

โˆ™ (0, C)

โˆ™ (0, -C)

โˆ™ (C, 0)

โˆ™ (h, 0)

(h, 0) โˆ™

โˆ™ (0, h)

โˆ™ (0, h)

(C, 0) โˆ™

โˆ™ (h, k)

โˆ™ (h, k)

Summary of the Parabola

Equation of Parabolas(Standard Form) Axis of Symmetry Vertex Shape Graph

y = Ax2 y - axis

(0, 0)

A > 0: opens up

A < 0: opens down

x = Ay2 x - axisA > 0, opens right

A < 0, opens left

y = Ax2 + C y - axis (0, C)The same shape as y = Ax2

C > 0, C units up

C < 0, C units down

x = Ay2 + C x - axis (C, 0)The same shape as x = Ay2

C > 0: C units to the right

C < 0: C units to the left

y = A(x โ€“ h)2 x = h (h, 0)The same shape as y = Ax2

h > 0: h units to the righth < 0: h units to the left

x= A(y โ€“ h)2 y = h (0, h)The same shape as x = Ay2

h > 0: h units up

h < 0: h units down

y = A(x โ€“ h)2 + k x = h (h, k) Symmetry about the x = h

x = A(y โ€“ k)2 + h y = k (h, k) Symmetry about the y = h

y = Ax2 + Bx + C ๐‘ฅ๐‘ฅ = -๐ต๐ต2๐ด๐ด

๏ฟฝ-๐ต๐ต2๐ด๐ด , โ€…๐‘“๐‘“ ๏ฟฝ

-B2A๏ฟฝ๏ฟฝ

A > 0: opens up

A < 0: opens down

x = Ay2 + By + C ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ =-๐ต๐ต2๐ด๐ด

๏ฟฝ๐‘“๐‘“ ๏ฟฝ-B2A๏ฟฝ , โ€…

-๐ต๐ต2๐ด๐ด๏ฟฝ

A > 0: opens right

A < 0: opens left

โˆ™ (0, C)

โˆ™ (0, -C)

โˆ™ (C, 0)

โˆ™ (h, 0)

(h, 0) โˆ™

โˆ™ (0, h)

โˆ™ (0, h)

(C, 0) โˆ™

โˆ™ (h, k)

โˆ™ (h, k)

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

204 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

9-3 ELLIPSES

Introduction to Ellipse

โ€ข Ellipse: a curve (oval) where every point on it whose sum of the distances from two fixed

points (foci) is a constant .

Graph Example

x1 + x2 = x3 + x4 = constant 2 + 3 = 1 + 4 = 5

โ€ข Ellipse in the real world

Ellipse Diagram

football

orbits of the planets (Earth, Mars, etc .)

oval mirror

โ€ข Ellipse terminology

Term Definition Diagramfoci Two fixed points (F) inside of an ellipse that define

the curve .major axis The longest diameter of the ellipse .

(The longer axis and passes through both foci)

minor axis The shortest diameter of the ellipse .(The shorter axis)

vertex The point where an ellipse makes its sharpest turn . (On the major axis)

โ€ข Equations of ellipse

Standard Form๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1

(๐‘ฅ๐‘ฅโˆ’โ„Ž)2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ (๐‘ฆ๐‘ฆโˆ’๐‘˜๐‘˜)2

๐‘๐‘๐‘๐‘2= 1

โˆ™ Focus x2

x1

x3 x4

A โˆ™

B โˆ™

- F โˆ™ F

B โˆ™

2

1 4

3

โˆ™ F โˆ™ F

โˆ™-b

-a โˆ™ โˆ™ a

โˆ™ b

Major axis

Minor axis

A โˆ™

โˆ™ Focus

9-3 ELLIPSES

Introduction to Ellipse

โ€ข Ellipse: a curve (oval) where every point on it whose sum of the distances from two fixed

points (foci) is a constant .

Graph Example

x1 + x2 = x3 + x4 = constant 2 + 3 = 1 + 4 = 5

โ€ข Ellipse in the real world

Ellipse Diagram

football

orbits of the planets (Earth, Mars, etc .)

oval mirror

โ€ข Ellipse terminology

Term Definition Diagramfoci Two fixed points (F) inside of an ellipse that define

the curve .major axis The longest diameter of the ellipse .

(The longer axis and passes through both foci)

minor axis The shortest diameter of the ellipse .(The shorter axis)

vertex The point where an ellipse makes its sharpest turn . (On the major axis)

โ€ข Equations of ellipse

Standard Form๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1

(๐‘ฅ๐‘ฅโˆ’โ„Ž)2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ (๐‘ฆ๐‘ฆโˆ’๐‘˜๐‘˜)2

๐‘๐‘๐‘๐‘2= 1

โˆ™ Focus x2

x1

x3 x4

A โˆ™

B โˆ™

- F โˆ™ F

B โˆ™

2

1 4

3

โˆ™ F โˆ™ F

โˆ™-b

-a โˆ™ โˆ™ a

โˆ™ b

Major axis

Minor axis

A โˆ™

โˆ™ Focus

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 205

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

Ellipse in the Form ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿ+ ๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

General information for an ellipse in the form ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿ+ ๐’š๐’š

๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Equation Shape Center Axis of Ellipse Graph Example

๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1

a > b :horizontal ellipse

(0, 0)

major axis: x-axisminor axis: y-axis

๐‘ฅ๐‘ฅ2

22+ ๐‘ฆ๐‘ฆ2

12= 1

b > a :vertical ellipse

major axis: y-axisminor axis: x-axis

๐‘ฅ๐‘ฅ2

22+ ๐‘ฆ๐‘ฆ2

32= 1

Note: If a = b, then the ellipse is a circle .

Equation Vertex Co-Vertex Focus๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1

a > b(-a, 0) , (a, 0) (0, b) , (0, -b)

(F, 0) , (-F, 0)

F = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 โˆ’ ๐‘๐‘๐‘๐‘2

๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1

b > a(0, b), (0, -b) (-a, 0) , (a, 0)

(0, F) , (0, -F)

F = โˆš๐‘๐‘๐‘๐‘2 โˆ’ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž2

.

Example: Sketch the graph of ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ+ ๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ . ๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1, b > a

- Vertices: (0, 3) , (0, -3) (0, b), (0, -b)

Co-vertex: (-2, 0) , (2, 0) (-a, 0), (a, 0)

- Foci: F = โˆš๐‘๐‘๐‘๐‘2 โˆ’ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 = โˆš32 โˆ’ 22 = โˆš5

(0, F) = (0,โˆš5) , (0, -F) = (0, -โˆš5) (0, F), (0, -F)

- The major axis: y-axis

- The minor axis: x-axisโˆ™ (0, 3)

โˆ™ (0, -3)

(-2, 0) โˆ™ โˆ™ (2, 0)

โˆ™ (0, โˆš5)

โˆ™ (0, -โˆš5)

VertexVertex

โˆ™ b -a โˆ™

y

โˆ™ a xโˆ™ -b

โˆ™ -b

โˆ™ -a

โˆ™ b

โˆ™ -a โˆ™ a โˆ™ b

โˆ™ -b

Co-vertex

Vertex

Vertex

Co-vertex

Co-vertex

โˆ™ a Co-vertex

b

aF

ab โˆ™F

F = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 โˆ’ ๐‘๐‘๐‘๐‘2

F = โˆš๐‘๐‘๐‘๐‘2 โˆ’ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž2

โˆ™ b

โˆ™ a -a โˆ™

โˆ™ -b

x

y

Ellipse in the Form ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿ+ ๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

General information for an ellipse in the form ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿ+ ๐’š๐’š

๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Equation Shape Center Axis of Ellipse Graph Example

๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1

a > b :horizontal ellipse

(0, 0)

major axis: x-axisminor axis: y-axis

๐‘ฅ๐‘ฅ2

22+ ๐‘ฆ๐‘ฆ2

12= 1

b > a :vertical ellipse

major axis: y-axisminor axis: x-axis

๐‘ฅ๐‘ฅ2

22+ ๐‘ฆ๐‘ฆ2

32= 1

Note: If a = b, then the ellipse is a circle .

Equation Vertex Co-Vertex Focus๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1

a > b(-a, 0) , (a, 0) (0, b) , (0, -b)

(F, 0) , (-F, 0)

F = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 โˆ’ ๐‘๐‘๐‘๐‘2

๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1

b > a(0, b), (0, -b) (-a, 0) , (a, 0)

(0, F) , (0, -F)

F = โˆš๐‘๐‘๐‘๐‘2 โˆ’ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž2

.

Example: Sketch the graph of ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ+ ๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ . ๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1, b > a

- Vertices: (0, 3) , (0, -3) (0, b), (0, -b)

Co-vertex: (-2, 0) , (2, 0) (-a, 0), (a, 0)

- Foci: F = โˆš๐‘๐‘๐‘๐‘2 โˆ’ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 = โˆš32 โˆ’ 22 = โˆš5

(0, F) = (0,โˆš5) , (0, -F) = (0, -โˆš5) (0, F), (0, -F)

- The major axis: y-axis

- The minor axis: x-axisโˆ™ (0, 3)

โˆ™ (0, -3)

(-2, 0) โˆ™ โˆ™ (2, 0)

โˆ™ (0, โˆš5)

โˆ™ (0, -โˆš5)

VertexVertex

โˆ™ b -a โˆ™

y

โˆ™ a xโˆ™ -b

โˆ™ -b

โˆ™ -a

โˆ™ b

โˆ™ -a โˆ™ a โˆ™ b

โˆ™ -b

Co-vertex

Vertex

Vertex

Co-vertex

Co-vertex

โˆ™ a Co-vertex

b

aF

ab โˆ™F

F = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 โˆ’ ๐‘๐‘๐‘๐‘2

F = โˆš๐‘๐‘๐‘๐‘2 โˆ’ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž2

โˆ™ b

โˆ™ a -a โˆ™

โˆ™ -b

x

y

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

206 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

Graph the Ellipse ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿ+ ๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Procedure to graph the ellipse: ๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1

Steps Example: Graph ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ+ ๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ.

- Rewrite in standard form: ๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1 ๐‘ฅ๐‘ฅ2

42+ ๐‘ฆ๐‘ฆ2

22= 1

and determine a and b. a = 4, b = 2

- Check a and b ๏ฟฝ๐‘Ž๐‘Ž๐‘Ž๐‘Ž > ๐‘๐‘๐‘๐‘: horizontal ellipse๐‘๐‘๐‘๐‘ > ๐‘Ž๐‘Ž๐‘Ž๐‘Ž: vertical ellipse a > b: 4 > 2 Horizontal ellipse

- Find the vertices: (-a, 0) , (a, 0) Vertices: (-4, 0) , (4, 0)

Find the co-vertices: (0, b) , (0, -b) Co-vertices: (0, 2) , (0, -2)

- Sketch the ellipse (passes through the vertices and co-vertices) .

Example: Sketch the graph of 9x2 + y2 = 9 .

- Standard form: ๐‘ฅ๐‘ฅ2

12+ ๐‘ฆ๐‘ฆ2

32= 1 Divide 9 by each term .

- a = 1, b = 3 ๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ ๐‘ฆ๐‘ฆ

2

๐‘๐‘๐‘๐‘2= 1

- 3 > 1 : vertical ellipse b > a

- Vertices: (0, 3) , (0, -3)

(0, ๐‘๐‘๐‘๐‘), (0, -๐‘๐‘๐‘๐‘)

Co-vertices: (-1, 0) , (1, 0) ๏ฟฝ-๐‘Ž๐‘Ž๐‘Ž๐‘Ž, 0๏ฟฝ, (๐‘Ž๐‘Ž๐‘Ž๐‘Ž, 0)

- Sketch .

โˆ™ (0, -2)

โˆ™ (0, 3)

โˆ™ (0, -3)

โˆ™ (1, 0) (-1, 0) โˆ™

โˆ™ (4, 0)

โˆ™ (0, 2)

โˆ™ (-4, 0)

Graph the Ellipse ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿ+ ๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Procedure to graph the ellipse: ๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1

Steps Example: Graph ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ+ ๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ.

- Rewrite in standard form: ๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1 ๐‘ฅ๐‘ฅ2

42+ ๐‘ฆ๐‘ฆ2

22= 1

and determine a and b. a = 4, b = 2

- Check a and b ๏ฟฝ๐‘Ž๐‘Ž๐‘Ž๐‘Ž > ๐‘๐‘๐‘๐‘: horizontal ellipse๐‘๐‘๐‘๐‘ > ๐‘Ž๐‘Ž๐‘Ž๐‘Ž: vertical ellipse a > b: 4 > 2 Horizontal ellipse

- Find the vertices: (-a, 0) , (a, 0) Vertices: (-4, 0) , (4, 0)

Find the co-vertices: (0, b) , (0, -b) Co-vertices: (0, 2) , (0, -2)

- Sketch the ellipse (passes through the vertices and co-vertices) .

Example: Sketch the graph of 9x2 + y2 = 9 .

- Standard form: ๐‘ฅ๐‘ฅ2

12+ ๐‘ฆ๐‘ฆ2

32= 1 Divide 9 by each term .

- a = 1, b = 3 ๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ ๐‘ฆ๐‘ฆ

2

๐‘๐‘๐‘๐‘2= 1

- 3 > 1 : vertical ellipse b > a

- Vertices: (0, 3) , (0, -3)

(0, ๐‘๐‘๐‘๐‘), (0, -๐‘๐‘๐‘๐‘)

Co-vertices: (-1, 0) , (1, 0) ๏ฟฝ-๐‘Ž๐‘Ž๐‘Ž๐‘Ž, 0๏ฟฝ, (๐‘Ž๐‘Ž๐‘Ž๐‘Ž, 0)

- Sketch .

โˆ™ (0, -2)

โˆ™ (0, 3)

โˆ™ (0, -3)

โˆ™ (1, 0) (-1, 0) โˆ™

โˆ™ (4, 0)

โˆ™ (0, 2)

โˆ™ (-4, 0)

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 207

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

Ellipse in the Form (๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿ+ (๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

โ€ข General information for an ellipse of the form (๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿ+ (๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Equation Shape Center Graph Example Graph

(๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿ+ (๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

a > b :horizontal ellipse

(h, k)

(๐‘ฅ๐‘ฅโˆ’3)2

42+ (๐‘ฆ๐‘ฆโˆ’5)2

22= 1

(h, k) = (3, 5) a = 4, b = 2

b > a:vertical ellipse

(๐‘ฅ๐‘ฅโˆ’3)2

22+ (๐‘ฆ๐‘ฆโˆ’5)2

42= 1

(h, k) = (3, 5) a = 2, b = 4

โ€ข Procedure to graph the ellipse (๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿ+ (๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Steps Example: Graph (๐’™๐’™+๐Ÿ๐Ÿ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ+ (๐’š๐’šโˆ’๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

- Write in standard form: (๐‘ฅ๐‘ฅโˆ’โ„Ž)2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 + (๐‘ฆ๐‘ฆโˆ’๐‘˜๐‘˜)2

๐‘๐‘๐‘๐‘2= 1 [๐‘ฅ๐‘ฅโˆ’(โˆ’2)]2

42+ (๐‘ฆ๐‘ฆโˆ’3)2

22= 1

- Determine the center (h, k) . (h, k) = (-2, 3)

- Determine a and b. a = 4, b = 2

- Check a and b ๏ฟฝ๐‘Ž๐‘Ž๐‘Ž๐‘Ž > ๐‘๐‘๐‘๐‘: horizontal ellipse๐‘๐‘๐‘๐‘ > ๐‘Ž๐‘Ž๐‘Ž๐‘Ž: vertical ellipse a > b: 4 > 2 horizontal ellipse

-2 + 4 -2 โ€“ 4

- Determine the vertices: (h + a, k), (h โ€“ a, k) Vertices : (2, 3), (-6, 3)Determine the co-vertices: (h, k + b), (h, k โ€“b) Co-vertices: (-2, 5), (-2, 1)

- Sketch the ellipse .

a and b Vertex Co-Vertex Focus Graph

a > b (h + a, k), (h โˆ’a, k) (h, k+b), (h, kโˆ’b)(h + F, k), (h โˆ’ F, k)

F = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 โˆ’ ๐‘๐‘๐‘๐‘2

b > a (h, k+b), (h, kโˆ’b) (h + a, k), (h โˆ’ a, k)(h + F, k), (h โˆ’ F, k)

F = โˆš๐‘๐‘๐‘๐‘2 โˆ’ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž2

โˆ™ (h, k)

โˆ™ 0

โˆ™ (h, k)

โˆ™ (3, 5)

-2 โˆ™

โˆ™ 2 โˆ™ -4 โˆ™ 4

โˆ™ -2

โˆ™ 4

โˆ™ 2

โˆ™ -4

โˆ™ (3, 5)

โˆ™ (-2, 5)

โˆ™ (-6, 3) โˆ™ (2, 3)

โˆ™ (-2, 1)

โˆ™ (-2, 3)

โˆ™ 0

3 + 2 3 โ€“ 2

โˆ™ (h, k+b)

โˆ™ (h+a, k) (h-a, k) โˆ™ โˆ™ (h, k) โˆ™ (h, k-b)

โˆ™ 0

โˆ™ (h+a, k)

โˆ™ (h, k+b)

โˆ™ (h, k-b)

(h-a, k) โˆ™

โˆ™ 0

โˆ™(h, k)

Ellipse in the Form (๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿ+ (๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

โ€ข General information for an ellipse of the form (๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿ+ (๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Equation Shape Center Graph Example Graph

(๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿ+ (๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

a > b :horizontal ellipse

(h, k)

(๐‘ฅ๐‘ฅโˆ’3)2

42+ (๐‘ฆ๐‘ฆโˆ’5)2

22= 1

(h, k) = (3, 5) a = 4, b = 2

b > a:vertical ellipse

(๐‘ฅ๐‘ฅโˆ’3)2

22+ (๐‘ฆ๐‘ฆโˆ’5)2

42= 1

(h, k) = (3, 5) a = 2, b = 4

โ€ข Procedure to graph the ellipse (๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿ+ (๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Steps Example: Graph (๐’™๐’™+๐Ÿ๐Ÿ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ+ (๐’š๐’šโˆ’๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

- Write in standard form: (๐‘ฅ๐‘ฅโˆ’โ„Ž)2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 + (๐‘ฆ๐‘ฆโˆ’๐‘˜๐‘˜)2

๐‘๐‘๐‘๐‘2= 1 [๐‘ฅ๐‘ฅโˆ’(โˆ’2)]2

42+ (๐‘ฆ๐‘ฆโˆ’3)2

22= 1

- Determine the center (h, k) . (h, k) = (-2, 3)

- Determine a and b. a = 4, b = 2

- Check a and b ๏ฟฝ๐‘Ž๐‘Ž๐‘Ž๐‘Ž > ๐‘๐‘๐‘๐‘: horizontal ellipse๐‘๐‘๐‘๐‘ > ๐‘Ž๐‘Ž๐‘Ž๐‘Ž: vertical ellipse a > b: 4 > 2 horizontal ellipse

-2 + 4 -2 โ€“ 4

- Determine the vertices: (h + a, k), (h โ€“ a, k) Vertices : (2, 3), (-6, 3)Determine the co-vertices: (h, k + b), (h, k โ€“b) Co-vertices: (-2, 5), (-2, 1)

- Sketch the ellipse .

a and b Vertex Co-Vertex Focus Graph

a > b (h + a, k), (h โˆ’a, k) (h, k+b), (h, kโˆ’b)(h + F, k), (h โˆ’ F, k)

F = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 โˆ’ ๐‘๐‘๐‘๐‘2

b > a (h, k+b), (h, kโˆ’b) (h + a, k), (h โˆ’ a, k)(h + F, k), (h โˆ’ F, k)

F = โˆš๐‘๐‘๐‘๐‘2 โˆ’ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž2

โˆ™ (h, k)

โˆ™ 0

โˆ™ (h, k)

โˆ™ (3, 5)

-2 โˆ™

โˆ™ 2 โˆ™ -4 โˆ™ 4

โˆ™ -2

โˆ™ 4

โˆ™ 2

โˆ™ -4

โˆ™ (3, 5)

โˆ™ (-2, 5)

โˆ™ (-6, 3) โˆ™ (2, 3)

โˆ™ (-2, 1)

โˆ™ (-2, 3)

โˆ™ 0

3 + 2 3 โ€“ 2

โˆ™ (h, k+b)

โˆ™ (h+a, k) (h-a, k) โˆ™ โˆ™ (h, k) โˆ™ (h, k-b)

โˆ™ 0

โˆ™ (h+a, k)

โˆ™ (h, k+b)

โˆ™ (h, k-b)

(h-a, k) โˆ™

โˆ™ 0

โˆ™(h, k)

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

208 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

9-4 HYPERBOLAS

Introduction to Hyperbolas

โ€ข Hyperbola: a curve (arch) with two branches in which difference of distances of all the

points from two fixed points (foci) is a constant .A hyperbola has two arches โ€” each one is a mirror image of the other .

Example

|๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ1| = constant = 2a |6 โˆ’ 2| = 4 (2a = 2 โˆ™ 2 = 4)

โ€ข Hyperbola in the real world

Ellipse Diagram

hourglass

nuclear cooling tower

โ€ข Hyperbola terminology

Note: An asymptote is a line segment whose distance to a given curve approaches zero and shows where the curve would go .

โ€ข Equations of hyperbolas

Standard Form๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1 ๐‘ฆ๐‘ฆ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฅ๐‘ฅ2

๐‘๐‘๐‘๐‘2= 1

(๐‘ฅ๐‘ฅโˆ’โ„Ž)2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ (๐‘ฆ๐‘ฆโˆ’๐‘˜๐‘˜)2

๐‘๐‘๐‘๐‘2= 1 (๐‘ฆ๐‘ฆโˆ’๐‘˜๐‘˜)2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ (๐‘ฅ๐‘ฅโˆ’โ„Ž)2

๐‘๐‘๐‘๐‘2= 1

Term Definition Diagramfoci Two fixed points (F) inside each branch of a hyperbola

that define the curve .axis of symmetry The line segment on which a hyperbola is reflected onto itself .

Each hyperbola has two axes of symmetry that intersect at the center .vertex The points (V) where a hyperbola makes its sharpest turns .

asymptote Line segment that is approaching but never touching or crossing the hyperbola . Each hyperbola has two asymptotes .

transverse axis The line segment that passes through the vertices and foci .

โˆ™-F

โˆ™ x2 x1 6 โˆ™

โˆ™ F -F โˆ™

Asymptotes

โˆ™ V V โˆ™

Axis of symmetry

โˆ™-a

โˆ™F

โˆ™a โˆ™

2 โˆ™-2

โˆ™F

โˆ™-F

2

9-4 HYPERBOLAS

Introduction to Hyperbolas

โ€ข Hyperbola: a curve (arch) with two branches in which difference of distances of all the

points from two fixed points (foci) is a constant .A hyperbola has two arches โ€” each one is a mirror image of the other .

Example

|๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ1| = constant = 2a |6 โˆ’ 2| = 4 (2a = 2 โˆ™ 2 = 4)

โ€ข Hyperbola in the real world

Ellipse Diagram

hourglass

nuclear cooling tower

โ€ข Hyperbola terminology

Note: An asymptote is a line segment whose distance to a given curve approaches zero and shows where the curve would go .

โ€ข Equations of hyperbolas

Standard Form๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1 ๐‘ฆ๐‘ฆ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฅ๐‘ฅ2

๐‘๐‘๐‘๐‘2= 1

(๐‘ฅ๐‘ฅโˆ’โ„Ž)2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ (๐‘ฆ๐‘ฆโˆ’๐‘˜๐‘˜)2

๐‘๐‘๐‘๐‘2= 1 (๐‘ฆ๐‘ฆโˆ’๐‘˜๐‘˜)2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ (๐‘ฅ๐‘ฅโˆ’โ„Ž)2

๐‘๐‘๐‘๐‘2= 1

Term Definition Diagramfoci Two fixed points (F) inside each branch of a hyperbola

that define the curve .axis of symmetry The line segment on which a hyperbola is reflected onto itself .

Each hyperbola has two axes of symmetry that intersect at the center .vertex The points (V) where a hyperbola makes its sharpest turns .

asymptote Line segment that is approaching but never touching or crossing the hyperbola . Each hyperbola has two asymptotes .

transverse axis The line segment that passes through the vertices and foci .

โˆ™-F

โˆ™ x2 x1 6 โˆ™

โˆ™ F -F โˆ™

Asymptotes

โˆ™ V V โˆ™

Axis of symmetry

โˆ™-a

โˆ™F

โˆ™a โˆ™

2 โˆ™-2

โˆ™F

โˆ™-F

2

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 209

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

Hyperbolas in the Form ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ ๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ & ๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

โ€ข General information for hyperbolas of the form ๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1 & ๐‘ฆ๐‘ฆ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฅ๐‘ฅ2

๐‘๐‘๐‘๐‘2= 1

Equation Shape Center Axis of Symmetry Graph Example

๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1

Horizontal (x is first)

horizontal transverse axis opens left and right

(0, 0)

y - axis๐‘ฅ๐‘ฅ2

22โˆ’ ๐‘ฆ๐‘ฆ2

32= 1

๐‘ฆ๐‘ฆ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฅ๐‘ฅ2

๐‘๐‘๐‘๐‘2= 1

Vertical (y is first)

vertical transverse axis opens up and down x - axis

๐‘ฆ๐‘ฆ2

22โˆ’ ๐‘ฅ๐‘ฅ2

32= 1

Recall: The transverse axis is the line that passes through the vertices and foci .

Equation Vertices Foci Asymptotes Graph Example Graph

๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1 (-a, 0), (a, 0)

(F, 0) , (-F, 0)

F = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 + ๐‘๐‘๐‘๐‘2y = ยฑ ๐‘๐‘๐‘๐‘

๐‘Ž๐‘Ž๐‘Ž๐‘Žx ๐‘ฅ๐‘ฅ2

22โˆ’ ๐‘ฆ๐‘ฆ2

32= 1

๐‘ฆ๐‘ฆ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฅ๐‘ฅ2

๐‘๐‘๐‘๐‘2= 1 (0, a), (0, -a)

(0, F) , (0, -F)

F = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 + ๐‘๐‘๐‘๐‘2y = ยฑ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

๐‘๐‘๐‘๐‘x ๐‘ฆ๐‘ฆ2

22โˆ’ ๐‘ฅ๐‘ฅ2

32= 1

Tips: - The equation of the ellipse is ๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ ๐‘ฆ๐‘ฆ

2

๐‘๐‘๐‘๐‘2= 1 (sum) .

- The equation of the hyperbola is ๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1 (difference) .

โ€ข Procedure to graph

Steps Example: ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ ๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

- Write in standard form: ๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1 ๐‘ฅ๐‘ฅ2

42โˆ’ ๐‘ฆ๐‘ฆ2

22= 1

- Determine a and b. a = 4, b = 2

- Locate the points (-a, 0) , (a, 0) , (0, b), (0, -b) . (-4, 0) , (4, 0) , (0, 2) , (0, -2)

- Sketch a reference rectangle intersecting at abovefour points .

- Sketch the asymptotes by extending the diagonals of the rectangle .

- Determine the vertices: (-a, 0) , (a, 0) . (-4, 0) , (4, 0)

- Sketch the hyperbola . Using the vertices and asymptotes as guides to sketch . ๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1 โˆถ opens left and right (x is first) .

y = ๐‘๐‘๐‘๐‘ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

x

y = โˆ’๐‘๐‘๐‘๐‘ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

x

y = ๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘๐‘๐‘๐‘

x

y = โˆ’๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘๐‘๐‘๐‘

x โˆ™ (3, 0) (-3, 0) โˆ™

(0, 2) โˆ™ โˆ™ (0, -2)

โˆ™ (0, a) โˆ™ (0, -a)

โˆ™ (a, 0)(-a, 0) โˆ™

โˆ™ (4, 0) โˆ™ (-4, 0) โˆ™ (0, 2)

โˆ™ (0, -2)

โˆ™ (4, 0) (-4, 0) โˆ™ โˆ™ (0, 2)

โˆ™ (0, -2)

(-2, 0) โˆ™ โˆ™ (0, 3) โˆ™ (2, 0)

โˆ™ (0, -3)

Hyperbolas in the Form ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ ๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ & ๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

โ€ข General information for hyperbolas of the form ๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1 & ๐‘ฆ๐‘ฆ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฅ๐‘ฅ2

๐‘๐‘๐‘๐‘2= 1

Equation Shape Center Axis of Symmetry Graph Example

๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1

Horizontal (x is first)

horizontal transverse axis opens left and right

(0, 0)

y - axis๐‘ฅ๐‘ฅ2

22โˆ’ ๐‘ฆ๐‘ฆ2

32= 1

๐‘ฆ๐‘ฆ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฅ๐‘ฅ2

๐‘๐‘๐‘๐‘2= 1

Vertical (y is first)

vertical transverse axis opens up and down x - axis

๐‘ฆ๐‘ฆ2

22โˆ’ ๐‘ฅ๐‘ฅ2

32= 1

Recall: The transverse axis is the line that passes through the vertices and foci .

Equation Vertices Foci Asymptotes Graph Example Graph

๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1 (-a, 0), (a, 0)

(F, 0) , (-F, 0)

F = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 + ๐‘๐‘๐‘๐‘2y = ยฑ ๐‘๐‘๐‘๐‘

๐‘Ž๐‘Ž๐‘Ž๐‘Žx ๐‘ฅ๐‘ฅ2

22โˆ’ ๐‘ฆ๐‘ฆ2

32= 1

๐‘ฆ๐‘ฆ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฅ๐‘ฅ2

๐‘๐‘๐‘๐‘2= 1 (0, a), (0, -a)

(0, F) , (0, -F)

F = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 + ๐‘๐‘๐‘๐‘2y = ยฑ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

๐‘๐‘๐‘๐‘x ๐‘ฆ๐‘ฆ2

22โˆ’ ๐‘ฅ๐‘ฅ2

32= 1

Tips: - The equation of the ellipse is ๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ ๐‘ฆ๐‘ฆ

2

๐‘๐‘๐‘๐‘2= 1 (sum) .

- The equation of the hyperbola is ๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1 (difference) .

โ€ข Procedure to graph

Steps Example: ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ ๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

- Write in standard form: ๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1 ๐‘ฅ๐‘ฅ2

42โˆ’ ๐‘ฆ๐‘ฆ2

22= 1

- Determine a and b. a = 4, b = 2

- Locate the points (-a, 0) , (a, 0) , (0, b), (0, -b) . (-4, 0) , (4, 0) , (0, 2) , (0, -2)

- Sketch a reference rectangle intersecting at abovefour points .

- Sketch the asymptotes by extending the diagonals of the rectangle .

- Determine the vertices: (-a, 0) , (a, 0) . (-4, 0) , (4, 0)

- Sketch the hyperbola . Using the vertices and asymptotes as guides to sketch . ๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1 โˆถ opens left and right (x is first) .

y = ๐‘๐‘๐‘๐‘ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

x

y = โˆ’๐‘๐‘๐‘๐‘ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

x

y = ๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘๐‘๐‘๐‘

x

y = โˆ’๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘๐‘๐‘๐‘

x โˆ™ (3, 0) (-3, 0) โˆ™

(0, 2) โˆ™ โˆ™ (0, -2)

โˆ™ (0, a) โˆ™ (0, -a)

โˆ™ (a, 0)(-a, 0) โˆ™

โˆ™ (4, 0) โˆ™ (-4, 0) โˆ™ (0, 2)

โˆ™ (0, -2)

โˆ™ (4, 0) (-4, 0) โˆ™ โˆ™ (0, 2)

โˆ™ (0, -2)

(-2, 0) โˆ™ โˆ™ (0, 3) โˆ™ (2, 0)

โˆ™ (0, -3)

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

210 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

Graph the Hyperbola: ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ ๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ & ๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Example: Graph ๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ—๐Ÿ—= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ and identify the vertices, foci and the asymptotic lines .

- Write in standard form: ๐‘ฆ๐‘ฆ2

52โˆ’ ๐‘ฅ๐‘ฅ2

32= 1 Standard form: ๐‘ฆ๐‘ฆ

2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฅ๐‘ฅ2

๐‘๐‘๐‘๐‘2= 1

- a = 5, b = 3

- Locate 4 points: (0, 5), (0, -5), (-3, 0), (3, 0) (0, a), (0, -a), (-b, 0), (b, 0)

- Sketch a reference rectangle intersecting at the four points from above .

- Sketch the asymptotes .

- Determine the vertices: (0, 5), (0, -5) (0, a) , (0, -a)

- Sketch the curve:

It opens up and down . ๐‘ฆ๐‘ฆ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฅ๐‘ฅ2

๐‘๐‘๐‘๐‘2= 1 (y is first) .

- Calculate the asymptote: y = ยฑ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘๐‘๐‘๐‘

x = ยฑ 5 3x

- Calculate the foci: F = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 + ๐‘๐‘๐‘๐‘2 = โˆš52 + 32 โ‰ˆ 5.83

(0, 5 .83), (0, -5 .83) (0, F), (0, -F)

Example: Sketch the graph of y2 โ€“ 4x2 = 4 .

- ๐‘ฆ๐‘ฆ2

4โˆ’ 4๐‘ฅ๐‘ฅ2

4= 1 Divide both sides by 4 .

- ๐‘ฆ๐‘ฆ2

22โˆ’ ๐‘ฅ๐‘ฅ2

12= 1 Write in standard form .

- ๐‘Ž๐‘Ž๐‘Ž๐‘Ž = 2, ๐‘๐‘๐‘๐‘ = 1 ๐‘ฆ๐‘ฆ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฅ๐‘ฅ2

๐‘๐‘๐‘๐‘2= 1

- 4 Points: (0, 2) , (0, -2) , (-1, 0) , (1, 0) (0, a) , (0, -a) , (-b, 0) , (b, 0)

- Vertices: (0, 2) (0, -2) (0, a) , (0, -a)

- Sketch: It opens up and down . ๐‘ฆ๐‘ฆ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฅ๐‘ฅ2

๐‘๐‘๐‘๐‘2= 1

โˆ™ (3, 0)

โˆ™ (0, 5)

(-3, 0) โˆ™

โˆ™ (0, -5)

โˆ™ (0, -5)

(-3, 0) โˆ™ โˆ™ (3, 0)

โˆ™ (0, 5)

(-1, 0) โˆ™ โˆ™ (1, 0)

โˆ™ (0, 2)

โˆ™ (0, -2)

๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = 5 3x ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = -5

3x

Graph the Hyperbola: ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ ๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ & ๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Example: Graph ๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ—๐Ÿ—= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ and identify the vertices, foci and the asymptotic lines .

- Write in standard form: ๐‘ฆ๐‘ฆ2

52โˆ’ ๐‘ฅ๐‘ฅ2

32= 1 Standard form: ๐‘ฆ๐‘ฆ

2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฅ๐‘ฅ2

๐‘๐‘๐‘๐‘2= 1

- a = 5, b = 3

- Locate 4 points: (0, 5), (0, -5), (-3, 0), (3, 0) (0, a), (0, -a), (-b, 0), (b, 0)

- Sketch a reference rectangle intersecting at the four points from above .

- Sketch the asymptotes .

- Determine the vertices: (0, 5), (0, -5) (0, a) , (0, -a)

- Sketch the curve:

It opens up and down . ๐‘ฆ๐‘ฆ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฅ๐‘ฅ2

๐‘๐‘๐‘๐‘2= 1 (y is first) .

- Calculate the asymptote: y = ยฑ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘๐‘๐‘๐‘

x = ยฑ 5 3x

- Calculate the foci: F = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 + ๐‘๐‘๐‘๐‘2 = โˆš52 + 32 โ‰ˆ 5.83

(0, 5 .83), (0, -5 .83) (0, F), (0, -F)

Example: Sketch the graph of y2 โ€“ 4x2 = 4 .

- ๐‘ฆ๐‘ฆ2

4โˆ’ 4๐‘ฅ๐‘ฅ2

4= 1 Divide both sides by 4 .

- ๐‘ฆ๐‘ฆ2

22โˆ’ ๐‘ฅ๐‘ฅ2

12= 1 Write in standard form .

- ๐‘Ž๐‘Ž๐‘Ž๐‘Ž = 2, ๐‘๐‘๐‘๐‘ = 1 ๐‘ฆ๐‘ฆ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฅ๐‘ฅ2

๐‘๐‘๐‘๐‘2= 1

- 4 Points: (0, 2) , (0, -2) , (-1, 0) , (1, 0) (0, a) , (0, -a) , (-b, 0) , (b, 0)

- Vertices: (0, 2) (0, -2) (0, a) , (0, -a)

- Sketch: It opens up and down . ๐‘ฆ๐‘ฆ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฅ๐‘ฅ2

๐‘๐‘๐‘๐‘2= 1

โˆ™ (3, 0)

โˆ™ (0, 5)

(-3, 0) โˆ™

โˆ™ (0, -5)

โˆ™ (0, -5)

(-3, 0) โˆ™ โˆ™ (3, 0)

โˆ™ (0, 5)

(-1, 0) โˆ™ โˆ™ (1, 0)

โˆ™ (0, 2)

โˆ™ (0, -2)

๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = 5 3x ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = -5

3x

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 211

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

Hyperbolas in the Form (๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ (๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ & (๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ (๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

โ€ข General information for a hyperbola of the form (๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ (๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ & (๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ (๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Equation Shape Center Axis of Symmetry Graph Example

(๐‘ฅ๐‘ฅโˆ’โ„Ž)2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ (๐‘ฆ๐‘ฆโˆ’๐‘˜๐‘˜)2

๐‘๐‘๐‘๐‘2= 1

horizontal transverse axis opens left and right (x is first)

(h, k)

x = h (๐‘ฅ๐‘ฅโˆ’5)2

32โˆ’ (๐‘ฆ๐‘ฆโˆ’3)2

22= 1

(๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ (๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

vertical transverse axis opens left and right (y is first)

y = k (๐‘ฆ๐‘ฆโˆ’3)2

32โˆ’ (๐‘ฅ๐‘ฅโˆ’5)2

22= 1

The transverse axis: the line that passes through the vertices and foci .

Equation Vertices Foci Asymptotes(๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ (๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ (h โ€“ a, k) (h + a, k)

(h โ€“ F, k) (h + F, k)F = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 + ๐‘๐‘๐‘๐‘2

y โ€“ k = ยฑ ๐‘๐‘๐‘๐‘ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

(x โ€“ h)

(๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ (๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ (h, k โ€“ a) (h, k + a)

(h, k โ€“ F) (h, k + F)F = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 + ๐‘๐‘๐‘๐‘2

y โ€“ k = ยฑ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘๐‘๐‘๐‘

(x โ€“ h)

โ€ข Procedure to graph hyperbola

Steps Example: (๐’™๐’™+๐Ÿ๐Ÿ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ—๐Ÿ—โˆ’ (๐’š๐’šโˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

- Write in standard form: (๐‘ฅ๐‘ฅโˆ’โ„Ž)2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ (๐‘ฆ๐‘ฆโˆ’๐‘˜๐‘˜)2

๐‘๐‘๐‘๐‘2= 1 [(๐‘ฅ๐‘ฅโˆ’(โˆ’1)]2

32โˆ’ (๐‘ฆ๐‘ฆโˆ’2)2

42= 1

- Determine the center (h, k) . (h, k) = (-1, 2)

- Identify a and b. a = 3, b = 4

- Determine and plot the vertices: (h โ€“ a, k), (h + a, k) (-4, 2), (2, 2)-1-3 -1+3

- Determine the up/down midpoints of a reference Move 4 units up and down from (-1, 2) .

rectangle by moving โ€˜bโ€™ units up and down from the center (h, k) .

- Sketch the reference rectangle crossing at the 4points from above .

- Sketch the asymptotes by extending the diagonals of the rectangle .

- Sketch the hyperbola . Opens to the left and right: (๐‘ฅ๐‘ฅโˆ’โ„Ž)2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ (๐‘ฆ๐‘ฆโˆ’๐‘˜๐‘˜)2

๐‘๐‘๐‘๐‘2= 1

Determine if the curve is opening to the left and right (x is first) or up and down (y is first) . x is first

โˆ™ 0

โˆ™ (2, 2) (-1, 2)โˆ™ (-4, 2) โˆ™

(-1, 6) โˆ™

x

y

(-1, -2) โˆ™

โˆ™ h

-a โˆ™โˆ™ -b

โˆ™ aโˆ™ b

k โˆ™

โˆ™ 0

โˆ™ a-a โˆ™โˆ™ -bโˆ™ h

k โˆ™โˆ™ b

Hyperbolas in the Form (๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ (๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ & (๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ (๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

โ€ข General information for a hyperbola of the form (๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ (๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ & (๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ (๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Equation Shape Center Axis of Symmetry Graph Example

(๐‘ฅ๐‘ฅโˆ’โ„Ž)2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ (๐‘ฆ๐‘ฆโˆ’๐‘˜๐‘˜)2

๐‘๐‘๐‘๐‘2= 1

horizontal transverse axis opens left and right (x is first)

(h, k)

x = h (๐‘ฅ๐‘ฅโˆ’5)2

32โˆ’ (๐‘ฆ๐‘ฆโˆ’3)2

22= 1

(๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ (๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

vertical transverse axis opens left and right (y is first)

y = k (๐‘ฆ๐‘ฆโˆ’3)2

32โˆ’ (๐‘ฅ๐‘ฅโˆ’5)2

22= 1

The transverse axis: the line that passes through the vertices and foci .

Equation Vertices Foci Asymptotes(๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ (๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ (h โ€“ a, k) (h + a, k)

(h โ€“ F, k) (h + F, k)F = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 + ๐‘๐‘๐‘๐‘2

y โ€“ k = ยฑ ๐‘๐‘๐‘๐‘ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

(x โ€“ h)

(๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ (๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ (h, k โ€“ a) (h, k + a)

(h, k โ€“ F) (h, k + F)F = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 + ๐‘๐‘๐‘๐‘2

y โ€“ k = ยฑ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘๐‘๐‘๐‘

(x โ€“ h)

โ€ข Procedure to graph hyperbola

Steps Example: (๐’™๐’™+๐Ÿ๐Ÿ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ—๐Ÿ—โˆ’ (๐’š๐’šโˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

- Write in standard form: (๐‘ฅ๐‘ฅโˆ’โ„Ž)2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ (๐‘ฆ๐‘ฆโˆ’๐‘˜๐‘˜)2

๐‘๐‘๐‘๐‘2= 1 [(๐‘ฅ๐‘ฅโˆ’(โˆ’1)]2

32โˆ’ (๐‘ฆ๐‘ฆโˆ’2)2

42= 1

- Determine the center (h, k) . (h, k) = (-1, 2)

- Identify a and b. a = 3, b = 4

- Determine and plot the vertices: (h โ€“ a, k), (h + a, k) (-4, 2), (2, 2)-1-3 -1+3

- Determine the up/down midpoints of a reference Move 4 units up and down from (-1, 2) .

rectangle by moving โ€˜bโ€™ units up and down from the center (h, k) .

- Sketch the reference rectangle crossing at the 4points from above .

- Sketch the asymptotes by extending the diagonals of the rectangle .

- Sketch the hyperbola . Opens to the left and right: (๐‘ฅ๐‘ฅโˆ’โ„Ž)2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ (๐‘ฆ๐‘ฆโˆ’๐‘˜๐‘˜)2

๐‘๐‘๐‘๐‘2= 1

Determine if the curve is opening to the left and right (x is first) or up and down (y is first) . x is first

โˆ™ 0

โˆ™ (2, 2) (-1, 2)โˆ™ (-4, 2) โˆ™

(-1, 6) โˆ™

x

y

(-1, -2) โˆ™

โˆ™ h

-a โˆ™โˆ™ -b

โˆ™ aโˆ™ b

k โˆ™

โˆ™ 0

โˆ™ a-a โˆ™โˆ™ -bโˆ™ h

k โˆ™โˆ™ b

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

212 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

9-5 THE GENERAL CONIC FORM

Function Transformations

โ€ข Conic Sections - summary: center at (0, 0)

Conics Standard Form Shape Graphcircle x2 + y2 = r2

parabolay = Ax2 A > 0: opens up

A < 0: opens down

x = Ay2 A > 0, opens rightA < 0, opens left

ellipse ๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1

a > b : horizontal ellipseb > a : vertical ellipse

hyperbola

๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1 opens left and right

๐‘ฆ๐‘ฆ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฅ๐‘ฅ2

๐‘๐‘๐‘๐‘2= 1 opens up and down

โ€ข Function transformations: change the position of the graph of the function .

It includes shifting, stretching / shrinking, or reflecting graphs .

โ€ข Shifting

Function Shifting Example Diagram

y = f (x) + C

y = f (x) โˆ’ C

Shift the graph of f (x) C units up .

Shift the graph of f (x) C units down .

y = x2 + 2 Shift f (x) = x2 2 units up .y = x2 โˆ’ 2Shift f (x) = x2 2 units down .

y = f (x + C)

y = f (x โˆ’ C)

Shift the graph of f (x) C units to the left .Shift the graph of f (x) C units to the right .

y = (x + 2)2

Shift x2 2 units to the left y = (x โˆ’ 2)2

Shift x2 2 units to the right

โ€ข Reflection

Function Reflection Example Graph

y = -f (x) Reflect the graph of y = f (x) about thex-axis .

y = x2 and y = - (x2)

y = f (-x) Reflect the graph of y = f (x) about the y-axis .

y = 2x+1 andy = 2(-x)+1 = -2x+1

โˆ™ 0 โˆ™ -2

โˆ™ 2

y = x2 + 2

y = x2 โ€“ 2

y = x2

y = (x + 2)2

โˆ™0

โˆ™-2

y = (x โˆ’2)2

โˆ™2

y = x2

y = x2

x

y

y = 2x +1

y = -(x2) y

x y = -2x +1

9-5 THE GENERAL CONIC FORM

Function Transformations

โ€ข Conic Sections - summary: center at (0, 0)

Conics Standard Form Shape Graphcircle x2 + y2 = r2

parabolay = Ax2 A > 0: opens up

A < 0: opens down

x = Ay2 A > 0, opens rightA < 0, opens left

ellipse ๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1

a > b : horizontal ellipseb > a : vertical ellipse

hyperbola

๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1 opens left and right

๐‘ฆ๐‘ฆ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฅ๐‘ฅ2

๐‘๐‘๐‘๐‘2= 1 opens up and down

โ€ข Function transformations: change the position of the graph of the function .

It includes shifting, stretching / shrinking, or reflecting graphs .

โ€ข Shifting

Function Shifting Example Diagram

y = f (x) + C

y = f (x) โˆ’ C

Shift the graph of f (x) C units up .

Shift the graph of f (x) C units down .

y = x2 + 2 Shift f (x) = x2 2 units up .y = x2 โˆ’ 2Shift f (x) = x2 2 units down .

y = f (x + C)

y = f (x โˆ’ C)

Shift the graph of f (x) C units to the left .Shift the graph of f (x) C units to the right .

y = (x + 2)2

Shift x2 2 units to the left y = (x โˆ’ 2)2

Shift x2 2 units to the right

โ€ข Reflection

Function Reflection Example Graph

y = -f (x) Reflect the graph of y = f (x) about thex-axis .

y = x2 and y = - (x2)

y = f (-x) Reflect the graph of y = f (x) about the y-axis .

y = 2x+1 andy = 2(-x)+1 = -2x+1

โˆ™ 0 โˆ™ -2

โˆ™ 2

y = x2 + 2

y = x2 โ€“ 2

y = x2

y = (x + 2)2

โˆ™0

โˆ™-2

y = (x โˆ’2)2

โˆ™2

y = x2

y = x2

x

y

y = 2x +1

y = -(x2) y

x y = -2x +1

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 213

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

General-Form Conic Equation

โ€ข A general-form conic equation (a second-degree equation)

EquationAx2 + Bxy + Cy2 + Dx + Ey + F = 0

โ€ข The type of conic sections can be determined from the discriminant B2 โ€“ 4AC .

โ€ข Identify the type of conic section from the sign of B2 โ€“ 4AC

B2 โ€“ 4AC The Graph is a:B2 โ€“ 4AC = 0 parabolaB2 โ€“ 4AC < 0 ellipseB2 โ€“ 4AC > 0 hyperbola

Example: Sketch the graph of 9y2 โ€“ 4x2 = 36 .

Steps Example

- Write in general conic form . A B C D E F

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 -4x2 + 0xy + 9y2 + 0โˆ™x + 0โˆ™y โˆ’ 36 = 0

- Calculate B2 โ€“ 4AC . 02 โ€“ 4 (-4) โˆ™ 9 = 144 > 0 : Hyperbola

- Convert to standard form . 9y2 โ€“ 4x2 = 36 รท 36 both sides .

The standard equation of a hyperbola: ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 โˆ’๐‘ฅ๐‘ฅ2

๐‘๐‘๐‘๐‘2= 1

๐‘ฆ๐‘ฆ2

4โˆ’ ๐‘ฅ๐‘ฅ2

9= 36

36

- Graph . Opens up and down (y is first)๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Vertices: (0, a), (0, -a) = (0, 2), (0, -2)

Example: Convert x + 3y2 + 6y + 1 = 0 to standard form and graph it .

Steps Example

- Write in general conic form . A B C D E F

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 0x2 + 0xy + 3y2 + 1 โˆ™ x + 6y + 1 = 0

- Calculate B2 โ€“ 4AC . B2 โ€“ 4AC = 02 โ€“ 4 โˆ™ 0 โˆ™ 3 = 0 Parabola

- Convert to standard form . 3y2 + 6y + x + 1= 0

o Collect y terms on the left-hand side; collect 3y2 + 6y = -x โˆ’ 1x terms & constants on the right-hand side . 3(y2 + 2y + ) = -x โ€“ 1 + 3

Factor out 3 Add 3

โˆ™ (3, 0) (-3, 0) โˆ™

โˆ™ (0, -2)

โˆ™ (0, 2)

General-Form Conic Equation

โ€ข A general-form conic equation (a second-degree equation)

EquationAx2 + Bxy + Cy2 + Dx + Ey + F = 0

โ€ข The type of conic sections can be determined from the discriminant B2 โ€“ 4AC .

โ€ข Identify the type of conic section from the sign of B2 โ€“ 4AC

B2 โ€“ 4AC The Graph is a:B2 โ€“ 4AC = 0 parabolaB2 โ€“ 4AC < 0 ellipseB2 โ€“ 4AC > 0 hyperbola

Example: Sketch the graph of 9y2 โ€“ 4x2 = 36 .

Steps Example

- Write in general conic form . A B C D E F

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 -4x2 + 0xy + 9y2 + 0โˆ™x + 0โˆ™y โˆ’ 36 = 0

- Calculate B2 โ€“ 4AC . 02 โ€“ 4 (-4) โˆ™ 9 = 144 > 0 : Hyperbola

- Convert to standard form . 9y2 โ€“ 4x2 = 36 รท 36 both sides .

The standard equation of a hyperbola: ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 โˆ’๐‘ฅ๐‘ฅ2

๐‘๐‘๐‘๐‘2= 1

๐‘ฆ๐‘ฆ2

4โˆ’ ๐‘ฅ๐‘ฅ2

9= 36

36

- Graph . Opens up and down (y is first)๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Vertices: (0, a), (0, -a) = (0, 2), (0, -2)

Example: Convert x + 3y2 + 6y + 1 = 0 to standard form and graph it .

Steps Example

- Write in general conic form . A B C D E F

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 0x2 + 0xy + 3y2 + 1 โˆ™ x + 6y + 1 = 0

- Calculate B2 โ€“ 4AC . B2 โ€“ 4AC = 02 โ€“ 4 โˆ™ 0 โˆ™ 3 = 0 Parabola

- Convert to standard form . 3y2 + 6y + x + 1= 0

o Collect y terms on the left-hand side; collect 3y2 + 6y = -x โˆ’ 1x terms & constants on the right-hand side . 3(y2 + 2y + ) = -x โ€“ 1 + 3

Factor out 3 Add 3

โˆ™ (3, 0) (-3, 0) โˆ™

โˆ™ (0, -2)

โˆ™ (0, 2)

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

214 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

o Completing the square . 3(y2 + 2y + 1) = -x โ€“ 1 + 3 โˆ™ 1 ๏ฟฝ๐‘๐‘๐‘๐‘2๏ฟฝ2

= ๏ฟฝ22๏ฟฝ

2= 1

= ๏ฟฝ๐‘๐‘๐‘๐‘2๏ฟฝ2 1 should be multiplied by 3 on the right-hand side .

3(y + 1)2 = 2 โ€“ x Isolate x.

Standard form of a parabola: x = A(y โ€“ k)2 + h x = -3(y + 1)2 + 2 = -3[y โ€“ (-1)2] + 2

A k h

- Graph . A = -3 < 0: opens leftVertex: (h, k) = (2, -1)Symmetry: y = k = -1

(Find a few more points .) y x = -3(y + 1)2 + 2 (x, y) 0 x = -3(0 + 1)2 + 2 = -1 (-1, 0)

-2 x = -3(-2 + 1)2 + 2 = -1 (-1, -2)

Example: Convert 16x2 + 9y2 โ€“ 64x โ€“ 18y โ€“ 71 = 0 to standard form and graph it .

Steps Example

- Write in general conic form . A B C D E F

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 16x2 + 0xy + 9y2 โ€“ 64x โ€“ 18y โ€“71 = 0

- Calculate B2 โ€“ 4AC. B2 โ€“ 4AC = 02 โ€“ 4 โˆ™ 16 โˆ™ 9= - 576 < 0 Ellipse

- Convert to standard form bycompleting the square . (16x2 โ€“ 64x ) + (9y2 โ€“ 18y ) โ€“71 = 0 Regroup .

= ๏ฟฝ๐‘๐‘๐‘๐‘2๏ฟฝ2

16(x2 โ€“ 4x + ) + 9(y2 โ€“ 2y + ) = 71 + 16 + 9 Factor out 16 and 9 . Add 71 ; add 16 , 9

16(x2 โ€“ 4x + 4) + 9(y2 โ€“ 2y + 1) = 71 + 16 โˆ™ 4 + 9 โˆ™ 1 ๏ฟฝ-4

2๏ฟฝ2

= 4 , ๏ฟฝ-22๏ฟฝ2

= 14 and 1 should be multiplied by 16 and 9 on the right-hand side .

16(x โ€“ 2)2 + 9(y โ€“1)2 = 144 รท 144 both sides .

(๐‘ฅ๐‘ฅโˆ’2)2

9+ (๐‘ฆ๐‘ฆโˆ’1)2

16= 144

14416144

= 19

; 9144

= 116

Standard form of an ellipse: (๐‘ฅ๐‘ฅโˆ’โ„Ž)2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ (๐‘ฆ๐‘ฆโˆ’๐‘˜๐‘˜)2

๐‘๐‘๐‘๐‘2= 1 (๐’™๐’™โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ+ (๐’š๐’šโˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ b > a

- Graph . - Center: (h, k) = (2, 1)

- Vertices: (h, k ยฑ b) = (2, 5) , (2, -3)

- Co-vertices: (h ยฑ a, k) = (5, 1) , (-1, 1)

โˆ™ (2, -1)

y

x(-1, 0) โˆ™

โˆ™ (-1, -2)

โˆ™ (2, 1)

x

y

0

2+3 2-3

1+4 1-4

โˆ™ (2, 5)

โˆ™ (2, -3)

(-1, 1) โˆ™ โˆ™ (5, 1)

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 215

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

9-6 NONLINEAR SYSTEMS OF EQUATIONS

Nonlinear Systems

โ€ข Nonlinear equation: the highest power of the variable is higher than Example

one (an equation whose graph is not a straight line) . 2x2 + y = 3

โ€ข Nonlinear system of equations: a system in which the highest power

of the variable is higher than one .

โ€ข Solutions of the systems of equations: the particular values of the variables in the system

that make the system true .

Example: Solve the system .

x2 + y2 = 25 (1) x โ€“ y + 1 = 0 (2)

Solution: x = y โ€“ 1 (3) Solve for x in (2) .

(y โ€“ 1)2 + y2 = 25 (3) (1) Substitute y โ€“1 for x in (1) .

y2 โ€“ 2y + 1 + y2 = 25 (a โ€“ b)2 = a2 โ€“ 2ab + b2

2y2 โ€“ 2y โ€“ 24 = 0

2(y2 โ€“ y โ€“ 12) = 0 Factor out 2 .

2 (y โ€“ 4) (y + 3) = 0 Factor .

(y โ€“ 4) = 0 (y + 3) = 0 Zero-product property

y = 4 y = -3 x = y โ€“ 1 x = y โ€“ 1 Substitute 4 & -3 for y in (3) .

= 4 โ€“ 1 = 3 = -3 โ€“ 1 = -4Solution sets: (3, 4) (-4, -3)

Check: (x, y) x2 + y2 = 25 x โ€“ y + 1 = 0

(3, 4) 32 + 42 = 25 3 โ€“ 4 + 1 = 0 9 + 16 = 25 โˆš 0 = 0 โˆš

? ?

(-4, -3) (-4)2 + (-3)2 = 25 -4 โ€“ (-3) + 1 = 0 16 + 9 = 25 0 = 0 Correct!

โ€ข Check by graphing: Graph the equations in the system . The point(s) of intersection in the

graph are the solutions to the system .

x

โˆ™ (3, 4)

โˆ™ (-4, -3)

y x โ€“ y + 1= 0

x2 + y2 = 25

? ?

โˆš

โˆš

The graphs intersect at the points (3, 4) and (-4, -3), correct!

9-6 NONLINEAR SYSTEMS OF EQUATIONS

Nonlinear Systems

โ€ข Nonlinear equation: the highest power of the variable is higher than Example

one (an equation whose graph is not a straight line) . 2x2 + y = 3

โ€ข Nonlinear system of equations: a system in which the highest power

of the variable is higher than one .

โ€ข Solutions of the systems of equations: the particular values of the variables in the system

that make the system true .

Example: Solve the system .

x2 + y2 = 25 (1) x โ€“ y + 1 = 0 (2)

Solution: x = y โ€“ 1 (3) Solve for x in (2) .

(y โ€“ 1)2 + y2 = 25 (3) (1) Substitute y โ€“1 for x in (1) .

y2 โ€“ 2y + 1 + y2 = 25 (a โ€“ b)2 = a2 โ€“ 2ab + b2

2y2 โ€“ 2y โ€“ 24 = 0

2(y2 โ€“ y โ€“ 12) = 0 Factor out 2 .

2 (y โ€“ 4) (y + 3) = 0 Factor .

(y โ€“ 4) = 0 (y + 3) = 0 Zero-product property

y = 4 y = -3 x = y โ€“ 1 x = y โ€“ 1 Substitute 4 & -3 for y in (3) .

= 4 โ€“ 1 = 3 = -3 โ€“ 1 = -4Solution sets: (3, 4) (-4, -3)

Check: (x, y) x2 + y2 = 25 x โ€“ y + 1 = 0

(3, 4) 32 + 42 = 25 3 โ€“ 4 + 1 = 0 9 + 16 = 25 โˆš 0 = 0 โˆš

? ?

(-4, -3) (-4)2 + (-3)2 = 25 -4 โ€“ (-3) + 1 = 0 16 + 9 = 25 0 = 0 Correct!

โ€ข Check by graphing: Graph the equations in the system . The point(s) of intersection in the

graph are the solutions to the system .

x

โˆ™ (3, 4)

โˆ™ (-4, -3)

y x โ€“ y + 1= 0

x2 + y2 = 25

? ?

โˆš

โˆš

The graphs intersect at the points (3, 4) and (-4, -3), correct!

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

216 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

Solving Nonlinear Systems

Example: Solve the system .

9x2 + 4y2 = 9 (1) y โ€“ x = 2 (2)

Solution: y = x + 2 (3) Solve for y in (2) .

9x2 + 4(x + 2)2 = 9 (3) (1) Substitute x + 2 for y in (1) .

9x2 + 4(x2 + 4x + 4) = 9 (a + b)2 = a2 + 2ab + b2

9x2 + 4x2 + 16x + 16 = 9

13x2 + 16x + 7 = 0

x = -16 ยฑ ๏ฟฝ162โˆ’4(13)(7)2 โˆ™ 13

๐‘ฅ๐‘ฅ = -๐‘๐‘๐‘๐‘ ยฑ โˆš๐‘๐‘๐‘๐‘2โˆ’4๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž2๐‘Ž๐‘Ž๐‘Ž๐‘Ž

=-16 ยฑ ๏ฟฝ-108

26

=-16 ยฑ ๏ฟฝ๏ฟฝ-1๏ฟฝ27โˆ™ 4

26

= -16 ยฑ 2โˆš27 ๐‘–๐‘–26

x = -๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

ยฑ โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

i i = ๏ฟฝ-1

x = -813

+ โˆš2713

i x = -813

โ€“ โˆš2713

i

y = -813

+ โˆš27 13

๐‘–๐‘– + 2 y = -813

โ€“ โˆš2713

๐‘–๐‘– + 2 Substitute x in (3): y = x + 2 .

= -813

+ โˆš27 13

๐‘–๐‘– + 2613

= -813

โ€“ โˆš27 13

๐‘–๐‘– + 2613

y = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

+ โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’Š๐’Š y = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

โ€“ โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’Š๐’Š

Solution sets: ๏ฟฝ -๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

+ โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’Š๐’Š , ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

+ โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’Š๐’Š๏ฟฝ

๏ฟฝโˆ’๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

โ€“ โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’Š๐’Š , ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

โ€“ โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’Š๐’Š๏ฟฝThese are imaginary solutions . The two graphs do not intersect .

Solving Nonlinear Systems

Example: Solve the system .

9x2 + 4y2 = 9 (1) y โ€“ x = 2 (2)

Solution: y = x + 2 (3) Solve for y in (2) .

9x2 + 4(x + 2)2 = 9 (3) (1) Substitute x + 2 for y in (1) .

9x2 + 4(x2 + 4x + 4) = 9 (a + b)2 = a2 + 2ab + b2

9x2 + 4x2 + 16x + 16 = 9

13x2 + 16x + 7 = 0

x = -16 ยฑ ๏ฟฝ162โˆ’4(13)(7)2 โˆ™ 13

๐‘ฅ๐‘ฅ = -๐‘๐‘๐‘๐‘ ยฑ โˆš๐‘๐‘๐‘๐‘2โˆ’4๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž2๐‘Ž๐‘Ž๐‘Ž๐‘Ž

=-16 ยฑ ๏ฟฝ-108

26

=-16 ยฑ ๏ฟฝ๏ฟฝ-1๏ฟฝ27โˆ™ 4

26

= -16 ยฑ 2โˆš27 ๐‘–๐‘–26

x = -๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

ยฑ โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

i i = ๏ฟฝ-1

x = -813

+ โˆš2713

i x = -813

โ€“ โˆš2713

i

y = -813

+ โˆš27 13

๐‘–๐‘– + 2 y = -813

โ€“ โˆš2713

๐‘–๐‘– + 2 Substitute x in (3): y = x + 2 .

= -813

+ โˆš27 13

๐‘–๐‘– + 2613

= -813

โ€“ โˆš27 13

๐‘–๐‘– + 2613

y = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

+ โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’Š๐’Š y = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

โ€“ โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’Š๐’Š

Solution sets: ๏ฟฝ -๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

+ โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’Š๐’Š , ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

+ โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’Š๐’Š๏ฟฝ

๏ฟฝโˆ’๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

โ€“ โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’Š๐’Š , ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

โ€“ โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’Š๐’Š๏ฟฝThese are imaginary solutions . The two graphs do not intersect .

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 217

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

Unit 9 Summary

โ€ข Distance and midpoint formulasDistance Formula Example

๐‘‘๐‘‘ = ๏ฟฝ(๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ1)2+(๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2 โˆ’ ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ1)2(x1, y1) = (1, 2) , (x2, y2) = (3, 3)๐‘‘๐‘‘ = ๏ฟฝ(3 โˆ’ 1)2+(3 โˆ’ 2)2 = โˆš4 + 1 = โˆš5

Midpoint Formula Example

๏ฟฝ๐‘ฅ๐‘ฅ1 + ๐‘ฅ๐‘ฅ2

2 ,

๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ1 + ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ22

๏ฟฝ(x1, y1) = (4, 3) , (x2, y2) = (-4, 1)

Midpoint = ๏ฟฝ4+๏ฟฝ-4๏ฟฝ2

, 3+12๏ฟฝ = (๐ŸŽ๐ŸŽ,๐Ÿ๐Ÿ๐Ÿ๐Ÿ)

โ€ข Equation of circlesCenter of a Circle The Standard Form Equation Example

center at origin (0, 0) x2 + y2 = r2 x2 + y2 = 32 r = 3

center at (h, k) (x โ€“ h)2 + (y โ€“ k)2 = r2 (x โ€“2)2 + (y โ€“1)2 = 22

(h, k) = (2, 1) , r = 2 r โ€“ radius

โ€ข The general form equation for a circleThe General Form Example

x2 + y2 + Cx + Dy + E = 0 x2 + y2 โ€“ 2x + 4y โ€“ 20 = 0

โ€ข Parabola terminologyTerm Definition Diagramfocus A fixed point whose relationship with a directrix

defines a parabola .

directrix A fixed straight line perpendicular to the axis of symmetry .

axis of symmetryA line segment that is perpendicular to the directrix and passes through the vertex and focus of a parabola .

vertexThe point where a parabola makes its sharpest turnas it crosses its axis of symmetry . It is where thedistance from the focus and directrix is shortest .

โ€ข The graph of a quadratic function or equation is a parabola .

โ€ข The coefficient A in ๐’‡๐’‡(๐’™๐’™) = ๐‘จ๐‘จ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ can shrink or stretch the parabolaThe Coefficient A in ๐’š๐’š = ๐‘จ๐‘จ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ & ๐’™๐’™ = ๐‘จ๐‘จ๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ Example

The larger the |๐ด๐ด|, the narrower the curve .

๐‘“๐‘“(๐‘ฅ๐‘ฅ) = Ax2

A > 0

The smaller the |๐ด๐ด|, the wider the curve .

A < 0

โˆ™ F (focus)

Directrix

Axis of symmetry

โˆ™ Vertex

y = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿx2

y = x2

y = 3x2

y = - 3x2y = -x2

y = - ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿx2

Unit 9 Summary

โ€ข Distance and midpoint formulasDistance Formula Example

๐‘‘๐‘‘ = ๏ฟฝ(๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ1)2+(๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2 โˆ’ ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ1)2(x1, y1) = (1, 2) , (x2, y2) = (3, 3)๐‘‘๐‘‘ = ๏ฟฝ(3 โˆ’ 1)2+(3 โˆ’ 2)2 = โˆš4 + 1 = โˆš5

Midpoint Formula Example

๏ฟฝ๐‘ฅ๐‘ฅ1 + ๐‘ฅ๐‘ฅ2

2 ,

๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ1 + ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ22

๏ฟฝ(x1, y1) = (4, 3) , (x2, y2) = (-4, 1)

Midpoint = ๏ฟฝ4+๏ฟฝ-4๏ฟฝ2

, 3+12๏ฟฝ = (๐ŸŽ๐ŸŽ,๐Ÿ๐Ÿ๐Ÿ๐Ÿ)

โ€ข Equation of circlesCenter of a Circle The Standard Form Equation Example

center at origin (0, 0) x2 + y2 = r2 x2 + y2 = 32 r = 3

center at (h, k) (x โ€“ h)2 + (y โ€“ k)2 = r2 (x โ€“2)2 + (y โ€“1)2 = 22

(h, k) = (2, 1) , r = 2 r โ€“ radius

โ€ข The general form equation for a circleThe General Form Example

x2 + y2 + Cx + Dy + E = 0 x2 + y2 โ€“ 2x + 4y โ€“ 20 = 0

โ€ข Parabola terminologyTerm Definition Diagramfocus A fixed point whose relationship with a directrix

defines a parabola .

directrix A fixed straight line perpendicular to the axis of symmetry .

axis of symmetryA line segment that is perpendicular to the directrix and passes through the vertex and focus of a parabola .

vertexThe point where a parabola makes its sharpest turnas it crosses its axis of symmetry . It is where thedistance from the focus and directrix is shortest .

โ€ข The graph of a quadratic function or equation is a parabola .

โ€ข The coefficient A in ๐’‡๐’‡(๐’™๐’™) = ๐‘จ๐‘จ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ can shrink or stretch the parabolaThe Coefficient A in ๐’š๐’š = ๐‘จ๐‘จ๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ & ๐’™๐’™ = ๐‘จ๐‘จ๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ Example

The larger the |๐ด๐ด|, the narrower the curve .

๐‘“๐‘“(๐‘ฅ๐‘ฅ) = Ax2

A > 0

The smaller the |๐ด๐ด|, the wider the curve .

A < 0

โˆ™ F (focus)

Directrix

Axis of symmetry

โˆ™ Vertex

y = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿx2

y = x2

y = 3x2

y = - 3x2y = -x2

y = - ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿx2

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

218 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

โ€ข Equations of parabolas

Equation of Parabolas(Standard Form) Axis of Symmetry Vertex Shape Graph

y = Ax2 y - axis

(0, 0)

A > 0: opens up

A < 0: opens down

x = Ay2 x - axisA > 0, opens right

A < 0, opens left

y = Ax2 + C y - axis (0, C)The same shape as y = Ax2

C > 0, C units up

C < 0, C units down

x = Ay2 + C x - axis (C, 0)The same shape as x = Ay2

C > 0: C units to the right

C < 0: C units to the left

y = A(x โ€“ h)2 x = h (h, 0)The same shape as y = Ax2

h > 0: h units to the righth < 0: h units to the left

x= A(y โ€“ h)2 y = h (0, h)The same shape as x = Ay2

h > 0: h units up

h < 0: h units down

y = A(x โ€“ h)2 + k x = h (h, k) Symmetry about the x = h

x = A(y โ€“ k)2 + h y = k (h, k) Symmetry about the y = h

y = Ax2 + Bx + C ๐‘ฅ๐‘ฅ = โˆ’๐ต๐ต2๐ด๐ด

(-B2A , f ๏ฟฝ

-B2A๏ฟฝ )

A > 0: opens up

A < 0: opens down

x = Ay2 + By + C ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ =โˆ’๐ต๐ต2๐ด๐ด

(f ๏ฟฝ-B2A๏ฟฝ ,

-B2A )

A > 0: opens right

A < 0: opens left

โ€ข Ellipse terminology

Term Definition Diagram

foci Two fixed points (F) inside of an ellipse that define the curve .

major axis The longest diameter of the ellipse .(The longer axis and passes through both foci)

minor axis The shortest diameter of the ellipse .(The shorter axis)

vertex The point where an ellipse makes its sharpest turn .(On the major axis)

โˆ™ (0, C)

โˆ™ (0, -C)

โˆ™ (C, 0)

โˆ™ (h, 0)

(h, 0) โˆ™

โˆ™ (0, h)

โˆ™ (0, h)

(C, 0) โˆ™

โˆ™ (h, k)

โˆ™ (h, k)

โˆ™ F โˆ™ F

โˆ™-b

-a โˆ™ โˆ™ a

โˆ™ b

Major axis

Minor axis

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 219

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

โ€ข General information for an ellipse in the form ๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ ๐‘ฆ๐‘ฆ

2

๐‘๐‘๐‘๐‘2= 1

Equation Shape Center Axis of Ellipse Graph Example

๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1

a > b :horizontal ellipse

(0, 0)

major axis: x-axisminor axis: y-axis

๐‘ฅ๐‘ฅ2

22+ ๐‘ฆ๐‘ฆ2

12= 1

b > a :vertical ellipse

major axis: y-axisminor axis: x-axis

๐‘ฅ๐‘ฅ2

22+ ๐‘ฆ๐‘ฆ2

32= 1

Equation Vertex Co-Vertex Focus๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1

a > b(-a, 0) , (a, 0) (0, b) , (0, -b)

(F, 0) , (-F, 0)

F = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 โˆ’ ๐‘๐‘๐‘๐‘2๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1

b > a(0, b), (0, -b) (-a, 0) , (a, 0)

(0, F) , (0, -F)

F = โˆš๐‘๐‘๐‘๐‘2 โˆ’ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž2

โ€ข General information for an ellipse of the form (๐‘ฅ๐‘ฅโˆ’โ„Ž)2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ (๐‘ฆ๐‘ฆโˆ’๐‘˜๐‘˜)2

๐‘๐‘๐‘๐‘2= 1

Equation Shape Center Graph Example Graph

(๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿ+ (๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

a > b :horizontal ellipse

(h, k)

(๐‘ฅ๐‘ฅโˆ’3)2

42+ (๐‘ฆ๐‘ฆโˆ’5)2

22= 1

(h, k) = (3, 5) a = 4, b = 2

b > a:vertical ellipse

(๐‘ฅ๐‘ฅโˆ’3)2

22+ (๐‘ฆ๐‘ฆโˆ’5)2

42= 1

(h, k) = (3, 5) a = 2, b = 4

โ€ข Hyperbola terminology

a and b Vertex Co-Vertex Focus Graph

a > b (h + a, k), (h โˆ’a, k) (h, k+b), (h, kโˆ’b)(h + F, k), (h โˆ’ F, k)

F = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 โˆ’ ๐‘๐‘๐‘๐‘2

b > a (h, k+b), (h, kโˆ’b) (h + a, k), (h โˆ’ a, k)(h, k + F), (h, k โˆ’ F)

F = โˆš๐‘๐‘๐‘๐‘2 โˆ’ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž2

Term Definition Diagramfoci Two fixed points (F) inside each branch of a hyperbola

that define the curve .axis of symmetry The line segment on which a hyperbola is reflected onto itself .

Each hyperbola has two axes of symmetry that intersect at the center .vertex The points (V) where a hyperbola makes its sharpest turns .

asymptote Line segment that is approaching but never touching or crossing the hyperbola . Each hyperbola has two asymptotes .

transverse axis The line segment that passes through the vertices and foci .

Axis of symmetry

โˆ™ (h, k+b)

โˆ™ (h+a, k) (h-a, k) โˆ™ โˆ™ (h, k) โˆ™ (h, k-b)

โˆ™ 0

โˆ™ (h+a, k)

โˆ™ (h, k+b)

โˆ™ (h, k-b)

(h-a, k) โˆ™

โˆ™ 0

โˆ™(h, k)

โˆ™ F -F โˆ™

Asymptotes

โˆ™ V V โˆ™

VertexVertex โˆ™ -a โˆ™ a โˆ™ b

โˆ™ -b

Co-vertex

Co-vertex

Vertexโˆ™ -b

โˆ™ -a

โˆ™ b

Co-vertex

Vertex

โˆ™ a Co-vertex

โˆ™ (h, k)

โˆ™ 0

โˆ™ (h, k)

โˆ™ (3, 5)

-2 โˆ™

โˆ™ 2 โˆ™ -4 โˆ™ 4

โˆ™ -2

โˆ™ 4

โˆ™ 2

โˆ™ -4

โˆ™ (3, 5)

โˆ™ b -a โˆ™

y

โˆ™ a xโˆ™ -b

โˆ™ b

โˆ™ a -a โˆ™

โˆ™ -b

x

y

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

220 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

โ€ข General information for hyperbolas of the form ๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1 & ๐‘ฆ๐‘ฆ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฅ๐‘ฅ2

๐‘๐‘๐‘๐‘2= 1

Equation Shape Center Axis of Symmetry Graph Example

๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1

Horizontal (x is first)

horizontal transverse axis opens left and right

(0, 0)

y - axis๐‘ฅ๐‘ฅ2

22โˆ’ ๐‘ฆ๐‘ฆ2

32= 1

๐‘ฆ๐‘ฆ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฅ๐‘ฅ2

๐‘๐‘๐‘๐‘2= 1

Vertical (y is first)

vertical transverse axis opens up and down x - axis

๐‘ฆ๐‘ฆ2

22โˆ’ ๐‘ฅ๐‘ฅ2

32= 1

Equation Vertices Foci Asymptotes Graph Example Graph

๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1 (-a, 0), (a, 0)

(F, 0) , (-F, 0)

F = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 + ๐‘๐‘๐‘๐‘2y = ยฑ ๐‘๐‘๐‘๐‘

๐‘Ž๐‘Ž๐‘Ž๐‘Žx ๐‘ฅ๐‘ฅ2

22โˆ’ ๐‘ฆ๐‘ฆ2

32= 1

๐‘ฆ๐‘ฆ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฅ๐‘ฅ2

๐‘๐‘๐‘๐‘2= 1 (0, a), (0, -a)

(0, F) , (0, -F)

F = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 + ๐‘๐‘๐‘๐‘2y = ยฑ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

๐‘๐‘๐‘๐‘x ๐‘ฆ๐‘ฆ2

22โˆ’ ๐‘ฅ๐‘ฅ2

32= 1

โ€ข General information for a hyperbola of the form (๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ (๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ & (๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ (๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Equation Shape Center Axis of Symmetry Graph Example

(๐‘ฅ๐‘ฅโˆ’โ„Ž)2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ (๐‘ฆ๐‘ฆโˆ’๐‘˜๐‘˜)2

๐‘๐‘๐‘๐‘2= 1

horizontal transverse axis opens left and right (x is first)

(h, k)

x = h (๐‘ฅ๐‘ฅโˆ’5)2

32โˆ’ (๐‘ฆ๐‘ฆโˆ’3)2

22= 1

(๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ (๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

vertical transverse axis opens left and right

(y is first)y = k (๐‘ฆ๐‘ฆโˆ’3)2

32โˆ’ (๐‘ฅ๐‘ฅโˆ’5)2

22= 1

Equation Vertices Foci Asymptotes(๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ (๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ (h โ€“ a, k) (h + a, k)

(h โ€“ F, k) (h + F, k)F = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 + ๐‘๐‘๐‘๐‘2

y โ€“ k = ยฑ ๐‘๐‘๐‘๐‘ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

(x โ€“ h)

(๐’š๐’šโˆ’๐’Œ๐’Œ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ (๐’™๐’™โˆ’๐’‰๐’‰)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ (h, k โ€“ a) (h, k + a)

(h, k โ€“ F) (h, k + F)F = โˆš๐‘Ž๐‘Ž๐‘Ž๐‘Ž2 + ๐‘๐‘๐‘๐‘2

y โ€“ k = ยฑ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘๐‘๐‘๐‘

(x โ€“ h)

โ€ข Summary of conic sections: center at (0, 0) Conics Standard Form Shape Graphcircle x2 + y2 = r2

parabolay = Ax2 A > 0: opens up

A < 0: opens down

x = Ay2 A > 0, opens rightA < 0, opens left

ellipse ๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2+ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1

a > b : horizontal ellipseb > a : vertical ellipse

hyperbola

๐‘ฅ๐‘ฅ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฆ๐‘ฆ2

๐‘๐‘๐‘๐‘2= 1 opens left and right

๐‘ฆ๐‘ฆ2

๐‘Ž๐‘Ž๐‘Ž๐‘Ž2โˆ’ ๐‘ฅ๐‘ฅ2

๐‘๐‘๐‘๐‘2= 1 opens up and down

y = ๐‘๐‘๐‘๐‘ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

x

y = โˆ’๐‘๐‘๐‘๐‘ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž

x

y = ๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘๐‘๐‘๐‘

x

y = โˆ’๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘๐‘๐‘๐‘

x โˆ™ (3, 0) (-3, 0) โˆ™

(0, 2) โˆ™ โˆ™ (0, -2)

(-2, 0) โˆ™ โˆ™ (0, 3) โˆ™ (2, 0)

โˆ™ (0, -3)

โˆ™ (0, a) โˆ™ (0, -a)

โˆ™ (a, 0)(-a, 0) โˆ™

โˆ™ h

-a โˆ™โˆ™ -b

โˆ™ aโˆ™ b

k โˆ™

โˆ™ 0

โˆ™ a-a โˆ™โˆ™ -bโˆ™ h

k โˆ™โˆ™ b

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 221

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

โ€ข Function transformations: change the position of the graph of the function . It includes shifting, stretching / shrinking, or reflecting graphs .

โ€ข ShiftingFunction Shifting Example Diagram

y = f (x) + C

y = f (x) โˆ’ C

Shift the graph of f (x) C units up .

Shift the graph of f (x) C units down .

y = x2 + 2 Shift f (x) = x2 2 units up .y = x2 โˆ’ 2Shift f (x) = x2 2 units down .

y = f (x + C)

y = f (x โˆ’ C)

Shift the graph of f (x) C units to the left .Shift the graph of f (x) C units to the right .

y = (x + 2)2

Shift x2 2 units to the left y = (x โˆ’ 2)2

Shift x2 2 units to the right

โ€ข ReflectionFunction Reflection Example Graph

y = -f (x) Reflect the graph of y = f (x) about thex โ€“axis .

y = x2 and y = - (x2)

y = f (-x) Reflect the graph of y = f (x) about the y โ€“axis .

y = 2x+1 andy = 2(-x)+1 = -2x+1

โ€ข A general-form conic equation (a second - degree equation)Equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

โ€ข Identify the type of conic section from the sign of B2 โ€“ 4ACB2 โ€“ 4AC The Graph is a:

B2 โ€“ 4AC = 0 parabolaB2 โ€“ 4AC < 0 ellipseB2 โ€“ 4AC > 0 hyperbola

โ€ข Nonlinear system of equations: a system in which the highest power of the variable is

higher than one .

โ€ข Solutions of the systems of equations: the particular values of the variables in the system

that make the system true .

y = x2

x

y

y = 2x +1

y = -(x2) y

x y = -2x +1

โˆ™ 0 โˆ™ -2

โˆ™ 2 y = x2+2

y = x2-2

y = x2

y = (x + 2)2

โˆ™0

โˆ™-2

y = (x โˆ’2)2

โˆ™2

y = x2

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

222 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 9 โ€“ Conics

PRACTICE QUIZ

Unit 9 Conics

1. Identify the center and radius of the following circle .

x2 + y2 โ€“ 4x + 10y + 20 = 0

2. Sketch the graph of f (x) = x2 โ€“ 8x + 12 .

3. Sketch the graph of (๐‘ฅ๐‘ฅ+1)2

25+ (๐‘ฆ๐‘ฆโˆ’2)2

9= 1 .

4. Sketch the graph of y2 โ€“ 9x2 = 9 .

5. Convert 4x2 + 25y2 + 24x โ€“ 50y โ€“ 39 = 0 to standard form and graph it .

6. Solve the system .

x2 + y2 = 10 2x + y = 1

Page 14

PRACTICE QUIZ

Unit 9 Conics

1. Identify the center and radius of the following circle .

x2 + y2 โ€“ 4x + 10y + 20 = 0

2. Sketch the graph of f (x) = x2 โ€“ 8x + 12 .

3. Sketch the graph of (๐‘ฅ๐‘ฅ+1)2

25+ (๐‘ฆ๐‘ฆโˆ’2)2

9= 1 .

4. Sketch the graph of y2 โ€“ 9x2 = 9 .

5. Convert 4x2 + 25y2 + 24x โ€“ 50y โ€“ 39 = 0 to standard form and graph it .

6. Solve the system .

x2 + y2 = 10 2x + y = 1

Page 14

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 223

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

UNIT 10 EXPONENTIAL & LOGARITHMIC FUNCTIONS

10-1 EXPONENTIAL FUNCTIONS

Introduction to Exponential Functions

โ€ข An exponential function: a function in which the independent variable appears as an exponent .

Exponential Function Example

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ ๏ฟฝ ๐‘Ž๐‘Ž โˆ’ base ๐‘Ž๐‘Ž > 0, ๐‘Ž๐‘Ž โ‰  1 ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ independent variable any real number ๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) โˆ’ function

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

Note: - If a = 1: ๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 1๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 1

- If a < 0: example: ๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = (-3)๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = (-3)12 = ๏ฟฝ-3 This is not a real number .

โ€ข Graph ๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐’™๐’™

Steps Example: Graph y = 3x and y = 3-x

- Make a table . x 0 1 2 -1 -2y = 3x 1 3 9 1

319 3-2 = 1

32= 1

9

y = 3-x 1 13 1

93 9 3-(-1) = 3 ; 3-(-2) = 9

- Plot points .

- Connect points with a smooth curve .Tip: The x-axis is the asymptote .

Note: The graph of f (x) = 3-x is a mirror image or reflection of f (x) = 3x about the y-axis .

โ€ข Calculator tip: Use ^ or yx key .

Example: 1. 3ฯ€ โ‰ˆ 31.54 3 yx ฯ€ = or 3 ^ 2nd ฯ€ ENTER

2. (๏ฟฝ5)โˆš2 โ‰ˆ 3.12 โˆš 5 yx โˆš 2 = or 2nd โˆš 5 ^ 2nd โˆš 2 ENTER

y

โˆ™ (2, 9)

โˆ™ (1, 3)

(-1, 13) โˆ™ x

โˆ™ (0, 1)

(-2, 9) โˆ™

(-1, 3) โˆ™

โˆ™(1, 1

3) โˆ™ (2, 1

9)

Page 10-1

UNIT 10 EXPONENTIAL & LOGARITHMIC FUNCTIONS

10-1 EXPONENTIAL FUNCTIONS

Introduction to Exponential Functions

โ€ข An exponential function: a function in which the independent variable appears as an exponent .

Exponential Function Example

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ ๏ฟฝ ๐‘Ž๐‘Ž โˆ’ base ๐‘Ž๐‘Ž > 0, ๐‘Ž๐‘Ž โ‰  1 ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ independent variable any real number ๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) โˆ’ function

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

Note: - If a = 1: ๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 1๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 1

- If a < 0: example: ๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = (-3)๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = (-3)12 = ๏ฟฝ-3 This is not a real number .

โ€ข Graph ๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐’™๐’™

Steps Example: Graph y = 3x and y = 3-x

- Make a table . x 0 1 2 -1 -2y = 3x 1 3 9 1

319 3-2 = 1

32= 1

9

y = 3-x 1 13 1

93 9 3-(-1) = 3 ; 3-(-2) = 9

- Plot points .

- Connect points with a smooth curve .Tip: The x-axis is the asymptote .

Note: The graph of f (x) = 3-x is a mirror image or reflection of f (x) = 3x about the y-axis .

โ€ข Calculator tip: Use ^ or yx key .

Example: 1. 3ฯ€ โ‰ˆ 31.54 3 yx ฯ€ = or 3 ^ 2nd ฯ€ ENTER

2. (๏ฟฝ5)โˆš2 โ‰ˆ 3.12 โˆš 5 yx โˆš 2 = or 2nd โˆš 5 ^ 2nd โˆš 2 ENTER

y

โˆ™ (2, 9)

โˆ™ (1, 3)

(-1, 13) โˆ™ x

โˆ™ (0, 1)

(-2, 9) โˆ™

(-1, 3) โˆ™

โˆ™(1, 1

3) โˆ™ (2, 1

9)

Page 10-1

UNIT 10 EXPONENTIAL & LOGARITHMIC FUNCTIONS

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

224 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

Characteristics of Exponential Functions

โ€ข The graph of a typical exponential function

The graph is asymptotic to the x-axis as x approaches ยฑ โˆž .

โ€ข Characteristics of exponential functions

Characteristic ๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐’™๐’™ ๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚-๐’™๐’™๐’™๐’™

growth / decay The graph increases (grows) from left to right .

The graph falls (decays) from left to right .

example

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

Exponential growth

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 3-๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

Exponential decay

asymptotex-axis (y = 0)

The curve is very close but never touches the x-axis asx approaches -โˆž.

x-axis (y = 0)The curve is very close but never touches the x-axis as x approaches +โˆž .

y - intercept y = 1Curve always passes through (0,1) .

domain x values x = All real numbers or x = (-โˆž, โˆž)

range y values y = (0, โˆž) or { y | y > 0 }All positive real numbers (graph is always above the x โ€“ axis) .

โ€ข Stretching or shifting

Function Stretch or Shrink Example Graph

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐’™๐’™The larger the a, the narrower the curve .The smaller the a, the wider the curve .

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅand

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

โ€ข Reflecting (mirror image)

Function Reflection Example Graph

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚-๐’™๐’™๐’™๐’™ Reflect the graph of ๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ about the y โ€“ axis .

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ and๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2-๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = -๐’‚๐’‚๐’™๐’™๐’™๐’™ Reflect the graph of ๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ about the x โ€“ axis .

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ and

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = -2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

x

y

โˆ™

f (x) = axf (x) = a -x

1

f (x) = 2x

f (x) = - 2-x

1โˆ™

(0, 1) โˆ™ (0, 1) โˆ™

f (x) = 4x

f (x) = 2x

1โˆ™

f (x) = 2-x f (x) = 2x

01โˆ™

Page 10-2

Characteristics of Exponential Functions

โ€ข The graph of a typical exponential function

The graph is asymptotic to the x-axis as x approaches ยฑ โˆž .

โ€ข Characteristics of exponential functions

Characteristic ๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐’™๐’™ ๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚-๐’™๐’™๐’™๐’™

growth / decay The graph increases (grows) from left to right .

The graph falls (decays) from left to right .

example

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

Exponential growth

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 3-๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

Exponential decay

asymptotex-axis (y = 0)

The curve is very close but never touches the x-axis asx approaches -โˆž.

x-axis (y = 0)The curve is very close but never touches the x-axis as x approaches +โˆž .

y - intercept y = 1Curve always passes through (0,1) .

domain x values x = All real numbers or x = (-โˆž, โˆž)

range y values y = (0, โˆž) or { y | y > 0 }All positive real numbers (graph is always above the x โ€“ axis) .

โ€ข Stretching or shifting

Function Stretch or Shrink Example Graph

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐’™๐’™The larger the a, the narrower the curve .The smaller the a, the wider the curve .

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅand

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

โ€ข Reflecting (mirror image)

Function Reflection Example Graph

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚-๐’™๐’™๐’™๐’™ Reflect the graph of ๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ about the y โ€“ axis .

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ and๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2-๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = -๐’‚๐’‚๐’™๐’™๐’™๐’™ Reflect the graph of ๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ about the x โ€“ axis .

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ and

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = -2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

x

y

โˆ™

f (x) = axf (x) = a -x

1

f (x) = 2x

f (x) = - 2-x

1โˆ™

(0, 1) โˆ™ (0, 1) โˆ™

f (x) = 4x

f (x) = 2x

1โˆ™

f (x) = 2-x f (x) = 2x

01โˆ™

Page 10-2

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 225

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

Transformations of Exponential Functions

โ€ข Transformations of exponential functions: change the position of the graph of the

exponential function . It includes shifting, stretching / shrinking, or reflecting for exponential

functions .

โ€ข Shifting

Exponential Function Shifting Example Graph

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐’™๐’™ + ๐‘ช๐‘ช

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐’™๐’™ โˆ’ ๐‘ช๐‘ช

Shift the graph of y = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ C units up .

Shift the graph of y = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ C units down .

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 1

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ 1

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐’™๐’™+๐‘ช๐‘ช

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐’™๐’™โˆ’๐‘ช๐‘ชShift the graph of y = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ C units to the left .

Shift the graph of y = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ C units to the right .

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ+1

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅโˆ’1

Example: Sketch the graph of ๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ .

- Make a table .

x 0 1 2 -1 -2

๐’š๐’š๐’š๐’š = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ 30 + 2 = 3 31 + 2 = 5 32 + 2 = 11 3-1 + 2 =13 + 2

โ‰ˆ 2.333โˆ’2 + 2 =

132 + 2

โ‰ˆ 2.11(๐’™๐’™๐’™๐’™,๐’š๐’š๐’š๐’š) (0, 3) (1, 5) (2, 11) (-1, 2 .33) (-2, 2 .11)

- Plot the points and connect them with a smooth curve .Note: The graph of ๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 2 has the same shape as of ๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ but is shifted 2 units up . The asymptote is y = 2 .

โˆ™ (0, 3)

โˆ™ (1, 5)

โˆ™ (2, 11)

โˆ™ (-1, 2 .33) โˆ™ (-2, 2 .11) y = 2

x

y

0

f(x) = 3xf(x) = 3x+ 2

f(x) = 2x

f(x) = 2x+1

f(x) = 2x-1

0

f(x) = 2x + 1

f(x) = 2x โ€“ 1

f(x) = 2x

0

Page 10-3

Transformations of Exponential Functions

โ€ข Transformations of exponential functions: change the position of the graph of the

exponential function . It includes shifting, stretching / shrinking, or reflecting for exponential

functions .

โ€ข Shifting

Exponential Function Shifting Example Graph

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐’™๐’™ + ๐‘ช๐‘ช

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐’™๐’™ โˆ’ ๐‘ช๐‘ช

Shift the graph of y = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ C units up .

Shift the graph of y = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ C units down .

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 1

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ 1

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐’™๐’™+๐‘ช๐‘ช

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐’™๐’™โˆ’๐‘ช๐‘ชShift the graph of y = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ C units to the left .

Shift the graph of y = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ C units to the right .

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ+1

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅโˆ’1

Example: Sketch the graph of ๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ .

- Make a table .

x 0 1 2 -1 -2

๐’š๐’š๐’š๐’š = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ 30 + 2 = 3 31 + 2 = 5 32 + 2 = 11 3-1 + 2 =13 + 2

โ‰ˆ 2.333โˆ’2 + 2 =

132 + 2

โ‰ˆ 2.11(๐’™๐’™๐’™๐’™,๐’š๐’š๐’š๐’š) (0, 3) (1, 5) (2, 11) (-1, 2 .33) (-2, 2 .11)

- Plot the points and connect them with a smooth curve .Note: The graph of ๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 2 has the same shape as of ๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ but is shifted 2 units up . The asymptote is y = 2 .

โˆ™ (0, 3)

โˆ™ (1, 5)

โˆ™ (2, 11)

โˆ™ (-1, 2 .33) โˆ™ (-2, 2 .11) y = 2

x

y

0

f(x) = 3xf(x) = 3x+ 2

f(x) = 2x

f(x) = 2x+1

f(x) = 2x-1

0

f(x) = 2x + 1

f(x) = 2x โ€“ 1

f(x) = 2x

0

Page 10-3

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

226 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

Graphing Exponential Functions

Example: Sketch the graph of ๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐Ÿ’๐Ÿ’๐’™๐’™๐’™๐’™ amd ๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐Ÿ’๐Ÿ’-๐’™๐’™๐’™๐’™ .

- Make a table .

x 0 1 2 -1 -2

๐’š๐’š๐’š๐’š = ๐Ÿ’๐Ÿ’๐’™๐’™๐’™๐’™ 40 = 1 41 = 4 42 = 16 4-1 = 14 4-2 = 1

42= 1

16

(๐’™๐’™๐’™๐’™,๐’š๐’š๐’š๐’š) (0, 1) (1, 4) (2, 16) (-1, 14๏ฟฝ (-2, 1

16)

- Plot ๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ .

- Reflect the graph of ๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 4x about the y โ€“ axis for ๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 4-๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ .

X and Y interchanging

Function Shape Example Graph

๐’š๐’š๐’š๐’š = ๐’‚๐’‚๐’™๐’™๐’™๐’™ and

๐’™๐’™๐’™๐’™ = ๐’‚๐’‚๐’š๐’š๐’š๐’š

Reflect the graph of ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅabout the line y = x to get

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ and๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 2๐‘ฆ๐‘ฆ

Example: Sketch the graph of ๐’™๐’™๐’™๐’™ = ๐Ÿ’๐Ÿ’๐’š๐’š๐’š๐’š .

- Sketch ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ .

- Plot the line y = x .

- Reflect the graph of ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ about the

line y = x to get the graph of ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 4๐‘ฆ๐‘ฆ .

โˆ™ (0, 1)

โˆ™ (1, 4)

โˆ™ (2, 16)

(-1, 14๏ฟฝ

โˆ™ โˆ™ x

y

(-2, 116๏ฟฝ

f(x) = 4xf(x) = 4-x

y = x

y = 2x

x = 2y

0

x

y y = 4x

x = 4y

y = x

0

Page 10-4

Graphing Exponential Functions

Example: Sketch the graph of ๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐Ÿ’๐Ÿ’๐’™๐’™๐’™๐’™ amd ๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐Ÿ’๐Ÿ’-๐’™๐’™๐’™๐’™ .

- Make a table .

x 0 1 2 -1 -2

๐’š๐’š๐’š๐’š = ๐Ÿ’๐Ÿ’๐’™๐’™๐’™๐’™ 40 = 1 41 = 4 42 = 16 4-1 = 14 4-2 = 1

42= 1

16

(๐’™๐’™๐’™๐’™,๐’š๐’š๐’š๐’š) (0, 1) (1, 4) (2, 16) (-1, 14๏ฟฝ (-2, 1

16)

- Plot ๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ .

- Reflect the graph of ๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 4x about the y โ€“ axis for ๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 4-๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ .

X and Y interchanging

Function Shape Example Graph

๐’š๐’š๐’š๐’š = ๐’‚๐’‚๐’™๐’™๐’™๐’™ and

๐’™๐’™๐’™๐’™ = ๐’‚๐’‚๐’š๐’š๐’š๐’š

Reflect the graph of ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅabout the line y = x to get

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ and๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 2๐‘ฆ๐‘ฆ

Example: Sketch the graph of ๐’™๐’™๐’™๐’™ = ๐Ÿ’๐Ÿ’๐’š๐’š๐’š๐’š .

- Sketch ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ .

- Plot the line y = x .

- Reflect the graph of ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ about the

line y = x to get the graph of ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 4๐‘ฆ๐‘ฆ .

โˆ™ (0, 1)

โˆ™ (1, 4)

โˆ™ (2, 16)

(-1, 14๏ฟฝ

โˆ™ โˆ™ x

y

(-2, 116๏ฟฝ

f(x) = 4xf(x) = 4-x

y = x

y = 2x

x = 2y

0

x

y y = 4x

x = 4y

y = x

0

Page 10-4

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 227

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

10-2 INVERSE AND COMPOSITE FUNCTIONS

Inverse Relation

โ€ข Recall โ€“ relation: a set of ordered pairs (x, y) Domain (x) Range (y) Relation (x, y)

โ€ข Inverse relation: a relation formed when the order of the

elements in a given relation is switched . Relation

Example: - Relation: {(2, -1) , (-3, 1) , (-4, 0)}

- Inverse relation: {(-1, 2) , (1, -3) , (0, -4)}

- Graph:

โ€ข The graph of inverse relation is a reflection (mirror image) of the relation about the line

y = x .

โ€ข Inverse equation: switching x and y in the original equation produces an inverse equation .

Example: - Equation: y = 2x โ€“ 3

- Inverse equation: x = 2y โ€“ 3 Switch x and y.

- Graph:

x y = 2x โ€“ 3 x ๐’š๐’š๐’š๐’š =๐’™๐’™๐’™๐’™ + ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ

0 -3 -3 01 -1 -1 1

y

xโˆ™ (2,-1)

โ–  (-1, 2)

โˆ™ (-3, 1)

โ–  (1,-3) (0,-4) โ– 

โˆ™(-4,0)

y

xโˆ™ (1, -1)

โˆ™ (0, -3)

(-1, 1) โˆ™ โˆ™ (-3, 0)

x = 2y โ€“ 3

y = 2x โ€“ 3

โˆ™ 0

2 -1 (2,-1)

-3 1 (-3, 1)

x y Inverse relation

x = y

x = y

Equation Inverse equation (solve for y from x = 2y -3) .

Page 10-5

10-2 INVERSE AND COMPOSITE FUNCTIONS

Inverse Relation

โ€ข Recall โ€“ relation: a set of ordered pairs (x, y) Domain (x) Range (y) Relation (x, y)

โ€ข Inverse relation: a relation formed when the order of the

elements in a given relation is switched . Relation

Example: - Relation: {(2, -1) , (-3, 1) , (-4, 0)}

- Inverse relation: {(-1, 2) , (1, -3) , (0, -4)}

- Graph:

โ€ข The graph of inverse relation is a reflection (mirror image) of the relation about the line

y = x .

โ€ข Inverse equation: switching x and y in the original equation produces an inverse equation .

Example: - Equation: y = 2x โ€“ 3

- Inverse equation: x = 2y โ€“ 3 Switch x and y.

- Graph:

x y = 2x โ€“ 3 x ๐’š๐’š๐’š๐’š =๐’™๐’™๐’™๐’™ + ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ

0 -3 -3 01 -1 -1 1

y

xโˆ™ (2,-1)

โ–  (-1, 2)

โˆ™ (-3, 1)

โ–  (1,-3) (0,-4) โ– 

โˆ™(-4,0)

y

xโˆ™ (1, -1)

โˆ™ (0, -3)

(-1, 1) โˆ™ โˆ™ (-3, 0)

x = 2y โ€“ 3

y = 2x โ€“ 3

โˆ™ 0

2 -1 (2,-1)

-3 1 (-3, 1)

x y Inverse relation

x = y

x = y

Equation Inverse equation (solve for y from x = 2y -3) .

Page 10-5

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

228 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

One-to-One Function & Its Inverse

โ€ข One-to-one function: a function for which every element of the range (y-value)

corresponds to a unique domain (x-value) .

Example: 1. {(1, 2), (3, -4), (5, 3)} One-to-one function

2. {(1, 2), (3, -4), (5, 2)} Not one-to-one โˆต y = 2 is assigned with two x (1 and 5) .

โ€ข The horizontal-line test: If a horizontal line cuts the graph of a function only once, then

the function is one-to-one and its inverse is a function .

Not one-to-one One-to-one (A horizontal line cuts the graph more than once .) (There is no horizontal line that cut the graph more than once .)

Example: Determine whether each function is one-to-one .

1. f (x) = 3x2 + 2

x f (x) = 3x2 + 20 21 5-1 5

Not one-to-one

2. f (x) = 2x

x f (x) = 2x

0 11 22 4

One-to-one

x

f(x)

x

f(x)

โˆ™ (0, 2)

(-1, 5) โˆ™ โˆ™ (1, 5)

โˆ™ (2, 4)

โˆ™ (1, 2) โˆ™ (0, 1)

f(x)f(x)

x

x

โˆ™

โˆ™ โˆ™

0

0

Page 10-6

One-to-One Function & Its Inverse

โ€ข One-to-one function: a function for which every element of the range (y-value)

corresponds to a unique domain (x-value) .

Example: 1. {(1, 2), (3, -4), (5, 3)} One-to-one function

2. {(1, 2), (3, -4), (5, 2)} Not one-to-one โˆต y = 2 is assigned with two x (1 and 5) .

โ€ข The horizontal-line test: If a horizontal line cuts the graph of a function only once, then

the function is one-to-one and its inverse is a function .

Not one-to-one One-to-one (A horizontal line cuts the graph more than once .) (There is no horizontal line that cut the graph more than once .)

Example: Determine whether each function is one-to-one .

1. f (x) = 3x2 + 2

x f (x) = 3x2 + 20 21 5-1 5

Not one-to-one

2. f (x) = 2x

x f (x) = 2x

0 11 22 4

One-to-one

x

f(x)

x

f(x)

โˆ™ (0, 2)

(-1, 5) โˆ™ โˆ™ (1, 5)

โˆ™ (2, 4)

โˆ™ (1, 2) โˆ™ (0, 1)

f(x)f(x)

x

x

โˆ™

โˆ™ โˆ™

0

0

Page 10-6

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 229

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

Inverse Function

โ€ข Inverse function f -1(x): the function formed when the order of the elements in a given

function is switched .

โ€ข The graph of inverse function f -1 (x) is a reflection the original function f (x) about the

line y = x .

โ€ข If a function f (x) is one-to-one, its inverse function f -1(x) can be found as follows:

Steps Example: f (x) = 2x + 3

- Confirm that the function is 1-to-1 . Graph f (x):

x f (x) = 2x + 30 31 5

- Rewrite f (x) as y . y = 2x + 3

- Switch x and y . x = 2y + 3

- Solve for y. y = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅโˆ’32 Subtract 3; divide by 2 .

- Replace y with f -1(x) . f -1 (x) = ๐’™๐’™๐’™๐’™โˆ’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ

- Graph f -1(x): reflect the graph of f (x) across the line y = x .

Note: A function has an inverse function f -1(x) only if the function is a one-to-one function .

โˆ™

โˆ™

0

Function f(x) x y Inverse function f -1(x)

Yes, 1-to-1

y = xf (x)

f -1(x)

Page 10-7

Inverse Function

โ€ข Inverse function f -1(x): the function formed when the order of the elements in a given

function is switched .

โ€ข The graph of inverse function f -1 (x) is a reflection the original function f (x) about the

line y = x .

โ€ข If a function f (x) is one-to-one, its inverse function f -1(x) can be found as follows:

Steps Example: f (x) = 2x + 3

- Confirm that the function is 1-to-1 . Graph f (x):

x f (x) = 2x + 30 31 5

- Rewrite f (x) as y . y = 2x + 3

- Switch x and y . x = 2y + 3

- Solve for y. y = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅโˆ’32 Subtract 3; divide by 2 .

- Replace y with f -1(x) . f -1 (x) = ๐’™๐’™๐’™๐’™โˆ’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ

- Graph f -1(x): reflect the graph of f (x) across the line y = x .

Note: A function has an inverse function f -1(x) only if the function is a one-to-one function .

โˆ™

โˆ™

0

Function f(x) x y Inverse function f -1(x)

Yes, 1-to-1

y = xf (x)

f -1(x)

Page 10-7

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

230 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

Page 10-8

Graph the Function and Its Inverse

Example: Determine whether the function is one-to-one. If it is, find its inverse function.

f (x) = ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐’™๐’™๐’™๐’™

x y = 4/x 1 4 2 2 4 1 -1 -4 -2 -2 -4 -1

- Let y = f (x). y = ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’

๐’™๐’™๐’™๐’™

- Switch x and y. x = ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐’š๐’š๐’š๐’š

- Solve with y. y = ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐’™๐’™๐’™๐’™ Divide by x; multiply by y.

- Replace y with f -1 (x). f -1(x) = ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐’™๐’™๐’™๐’™

Example: Sketch the graph of the function h(x) = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ and its inverse.

- Graph h(x) = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ.

x h(x) = 23๐’™๐’™๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

0 1 3 3

Yes, 1-to-1

- Replace h(x) with y. y = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ Rewrite h(x) as y.

- Switch x and y. x = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’š๐’š๐’š๐’š + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

- Solve for y. x โ€“ 1 = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’š๐’š๐’š๐’š , 3(x โ€“ 1) = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š๐’š๐’š

y = = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘(๐’™๐’™๐’™๐’™โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

- Replace y with h -1(x). h -1(x) = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘(๐’™๐’™๐’™๐’™โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ)

๐Ÿ๐Ÿ๐Ÿ๐Ÿ

- Graph h -1(x): reflect the graph of h(x) across the line y = x .

h (x)

x

โˆ™

โˆ™

y = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 1

h -1 (x) = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘(๐’™๐’™๐’™๐’™โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

y = x

- Graph f (x) = 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ .

0

Yes, 1-to-1.

x

f (x)

โˆ™

โˆ™ โˆ™

0 f (x) = 4

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

โˆ™ โˆ™

โˆ™

f (x) = 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

Page 10-8

Graph the Function and Its Inverse

Example: Determine whether the function is one-to-one. If it is, find its inverse function.

f (x) = ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐’™๐’™๐’™๐’™

x y = 4/x 1 4 2 2 4 1 -1 -4 -2 -2 -4 -1

- Let y = f (x). y = ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’

๐’™๐’™๐’™๐’™

- Switch x and y. x = ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐’š๐’š๐’š๐’š

- Solve with y. y = ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐’™๐’™๐’™๐’™ Divide by x; multiply by y.

- Replace y with f -1 (x). f -1(x) = ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐’™๐’™๐’™๐’™

Example: Sketch the graph of the function h(x) = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ and its inverse.

- Graph h(x) = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ.

x h(x) = 23๐’™๐’™๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

0 1 3 3

Yes, 1-to-1

- Replace h(x) with y. y = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ Rewrite h(x) as y.

- Switch x and y. x = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’š๐’š๐’š๐’š + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

- Solve for y. x โ€“ 1 = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’š๐’š๐’š๐’š , 3(x โ€“ 1) = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š๐’š๐’š

y = = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘(๐’™๐’™๐’™๐’™โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

- Replace y with h -1(x). h -1(x) = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘(๐’™๐’™๐’™๐’™โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ)

๐Ÿ๐Ÿ๐Ÿ๐Ÿ

- Graph h -1(x): reflect the graph of h(x) across the line y = x .

h (x)

x

โˆ™

โˆ™

y = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 1

h -1 (x) = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘(๐’™๐’™๐’™๐’™โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

y = x

- Graph f (x) = 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ .

0

Yes, 1-to-1.

x

f (x)

โˆ™

โˆ™ โˆ™

0 f (x) = 4

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

โˆ™ โˆ™

โˆ™

f (x) = 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 231

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

Composition of Functions

Composite function f โˆ˜ g(x): a combination of two or more functions in which the result of

one function is applied to another function (substitute a function into another function) .

Composite Function Formula Comments

f โˆ˜ g (x) f โˆ˜ g(x) = f [g(x)]g (x) (inner function)

The result of g ( ) is applying to f ( ) .

f ( ) (outer function)

g โˆ˜ f (x) g โˆ˜ f (x) = g [f(x)]f (x) (inner function)

The result of f ( ) is applying to g ( ) .

g ( ) (outer function)

Tips - Composite function: a function within another function .- Read: f โˆ˜ g(x): โ€œf of g of xโ€ ; g โˆ˜ f (x): โ€œg of f of xโ€

Example: Find f โˆ˜ g(x) and g โˆ˜ f (x) .

If f (x) = 3 โ€“ 2x,

and g (x) = x โ€“ 4

- f โˆ˜ g(x) = f [g(x)] g (x) = x โ€“ 4

= f [x โ€“ 4] f ( ) Replace g(x) with (x โ€“ 4) .

= 3 โ€“ 2 (x โ€“ 4) 3 โ€“ 2( ) Replace (x โ€“ 4) with x in f (x) .

= 3 โ€“ 2x + 8

f โˆ˜ g(x) = 11 โ€“ 2x

- g โˆ˜ f (x) = g [f(x)] f (x) = 3 โ€“ 2x

= g (3 โ€“ 2x) g ( ) Replace f (x) with (3โ€“2x) .

= (3 โ€“ 2x) โ€“ 4 ( ) โ€“ 4 Replace (3 โ€“ 2x) with x in g(x) .

= 3 โ€“ 2x โ€“ 4

g โˆ˜ f (x) = - 2x โ€“ 1

f (x) = 3 โ€“ 2 x

g (x) = x โ€“ 4

Page 10-9

Composition of Functions

Composite function f โˆ˜ g(x): a combination of two or more functions in which the result of

one function is applied to another function (substitute a function into another function) .

Composite Function Formula Comments

f โˆ˜ g (x) f โˆ˜ g(x) = f [g(x)]g (x) (inner function)

The result of g ( ) is applying to f ( ) .

f ( ) (outer function)

g โˆ˜ f (x) g โˆ˜ f (x) = g [f(x)]f (x) (inner function)

The result of f ( ) is applying to g ( ) .

g ( ) (outer function)

Tips - Composite function: a function within another function .- Read: f โˆ˜ g(x): โ€œf of g of xโ€ ; g โˆ˜ f (x): โ€œg of f of xโ€

Example: Find f โˆ˜ g(x) and g โˆ˜ f (x) .

If f (x) = 3 โ€“ 2x,

and g (x) = x โ€“ 4

- f โˆ˜ g(x) = f [g(x)] g (x) = x โ€“ 4

= f [x โ€“ 4] f ( ) Replace g(x) with (x โ€“ 4) .

= 3 โ€“ 2 (x โ€“ 4) 3 โ€“ 2( ) Replace (x โ€“ 4) with x in f (x) .

= 3 โ€“ 2x + 8

f โˆ˜ g(x) = 11 โ€“ 2x

- g โˆ˜ f (x) = g [f(x)] f (x) = 3 โ€“ 2x

= g (3 โ€“ 2x) g ( ) Replace f (x) with (3โ€“2x) .

= (3 โ€“ 2x) โ€“ 4 ( ) โ€“ 4 Replace (3 โ€“ 2x) with x in g(x) .

= 3 โ€“ 2x โ€“ 4

g โˆ˜ f (x) = - 2x โ€“ 1

f (x) = 3 โ€“ 2 x

g (x) = x โ€“ 4

Page 10-9

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

232 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

Example: Find f โˆ˜ g(x) and g โˆ˜ f (x) .

If f (x) = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™

,

and g (x) = 2 โ€“ 3x2

- f โˆ˜ g(x) = f [g (x)] g (x) = 2 โ€“ 3x2

= f [2 โ€“ 3x2] f ( ) Replace g(x) with (2 โ€“ 3x2) .

= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ( )

Replace (2 โ€“ 3x2) with x in f (x) .

f (x) = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™

- g โˆ˜ f (x) = g [f (x)] f (x) =๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™

= g ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™๏ฟฝ g ( ) Replace f (x) with ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’™๐’™๐’™๐’™ .

= 2 โ€“ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™๏ฟฝ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ2 โ€“ 3( )2 Replace ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’™๐’™๐’™๐’™with x in g (x) .

g (x) = 2 โ€“ 3x2

= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Example: Determine f (x) and g (x) such that h (x) = f โˆ˜ g (x), h (x) = (3 โˆ’ 2x)2 .

Solution: โˆต h (x) = f โˆ˜ g(x) = f [g(x)] h (x) = (3 โˆ’ 2x)2

g (x) = 3 โˆ’ 2x

โˆด f (x) = x2 f ( ) = ( )2 h (x) = (3 โˆ’ 2x)2

g (x) = 3 โˆ’ 2x g (x)

Check: h (x) = f โˆ˜ g(x) = f [g(x)] g (x) = 3 โˆ’ 2x

= f (3 โˆ’ 2x) f ( ) Replace g(x) with (3 โˆ’ 2x) .

= (3 โˆ’ 2x)2 ( )2 = h (x) f (x) = x2

โˆš โˆด h (x) = (3 โˆ’ 2x)2

Correct!

Page 10-10

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 233

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

Page 10-11

Inverse Functions and Composition

Inverse Function If a function is one-to-one, then f -1 โˆ˜ f (x) = x and f โˆ˜ f -1 (x) = x.

Example: Use composition to show that the inverse is correct.

f (x) = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐’™๐’™ ,

f -1 (x) = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™

- f -1 โˆ˜ f (x) = f -1 [f (x)] f (x) = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐’™๐’™๐’™๐’™ โˆต f โˆ˜ g (x) = f [g (x)]

= f -1 [๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐’™๐’™] f -1( )

= ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

(๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ ๐’™๐’™๐’™๐’™) ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐Ÿ๐Ÿ ( ) f -1 (x) = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™

= ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”

๐’™๐’™๐’™๐’™

= x

- f โˆ˜ f -1 (x) = f [f -1 (x)] f -1(x) = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™ โˆต f โˆ˜ g (x) = f [g (x)]

= f [ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’™๐’™๐’™๐’™ ] f ( )

= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

(๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’™๐’™๐’™๐’™) ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

( ) f (x) = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐’™๐’™

= ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”

๐’™๐’™๐’™๐’™

= x

f -1 โˆ˜ f (x) = f โˆ˜ f -1(x) = x Correct!

โˆด f -1 โˆ˜ f (x) = f -1 [f (x)]

โˆด f โˆ˜ f -1 (x) = f [f -1 (x)]

Page 10-11

Inverse Functions and Composition

Inverse Function If a function is one-to-one, then f -1 โˆ˜ f (x) = x and f โˆ˜ f -1 (x) = x.

Example: Use composition to show that the inverse is correct.

f (x) = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐’™๐’™ ,

f -1 (x) = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™

- f -1 โˆ˜ f (x) = f -1 [f (x)] f (x) = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐’™๐’™๐’™๐’™ โˆต f โˆ˜ g (x) = f [g (x)]

= f -1 [๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐’™๐’™] f -1( )

= ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

(๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ ๐’™๐’™๐’™๐’™) ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐Ÿ๐Ÿ ( ) f -1 (x) = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™

= ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”

๐’™๐’™๐’™๐’™

= x

- f โˆ˜ f -1 (x) = f [f -1 (x)] f -1(x) = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™ โˆต f โˆ˜ g (x) = f [g (x)]

= f [ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’™๐’™๐’™๐’™ ] f ( )

= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

(๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’™๐’™๐’™๐’™) ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

( ) f (x) = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐’™๐’™

= ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”

๐’™๐’™๐’™๐’™

= x

f -1 โˆ˜ f (x) = f โˆ˜ f -1(x) = x Correct!

โˆด f -1 โˆ˜ f (x) = f -1 [f (x)]

โˆด f โˆ˜ f -1 (x) = f [f -1 (x)]

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

234 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

Example: Determine the inverse of the given function . Then use composition to show

whether the inverse is correct .

f (x) = - 2x

- Find the inverse function f -1 (x) .

- Rewrite f (x) with y . y = -2x f (x) = -2x

- Switch x and y . x = -2y

- Solve for y . y = - ๐’™๐’™๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

- Replace y with f -1 (x) . f -1 (x) = - ๐’™๐’™๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

- Determine f -1 โˆ˜ f (x) and f โˆ˜ f -1 (x)

f -1 (x) โˆ˜ f (x) = f -1 [f (x)] f (x) = -๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™ f โˆ˜ f -1 (x) = f [f -1 (x)] f -1(x) = - ๐’™๐’™๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

= f -1 [-2x] f -1( ) = ๐’‡๐’‡[- ๐’™๐’™๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ] f ( )

= - (-๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™)๐Ÿ๐Ÿ๐Ÿ๐Ÿ

- ( )๐Ÿ๐Ÿ๐Ÿ๐Ÿ

= - ๐Ÿ๐Ÿ๐Ÿ๐Ÿ(- ๐’™๐’™๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ

) -๐Ÿ๐Ÿ๐Ÿ๐Ÿ( )

= x = x

?

- Check: f -1 โˆ˜ f (x) = f โˆ˜ f -1(x) = x Definition

โˆš x = x Correct!

Page 10-12

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 235

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

10-3 LOGARITHMIC FUNCTIONS

Introduction to Logarithms

โ€ข The logarithmic function f(x) = loga x: a function that is the inverse of an exponential

function (y = ax) .

Exponent question: Logarithmic question:

32 = ? 3? = 9 3 to what power gives 9?

32 = 9 Two multiples of 3s are required to get 9 .

log39 = 2

โ€ข Definition of logarithm

Logarithmic Function Definition of Logarithm Example

f(x) = log๐‘Ž๐‘Ž x

(x > 0 , a > 0, a โ‰  1)

if ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ, then log๐‘Ž๐‘Ž ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ .

Or if ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž๐‘ฆ๐‘ฆ, then log๐‘Ž๐‘Ž x = y.

If 9 = 32,

then log3 9 = 2 .Read: โ€œthe log, base 3 of 9, is 2โ€ or โ€œlog of 9, base 3, equals 2 .โ€

โ€ข Logarithm of zero log a (0): the logarithm of 0 is undefined . Exampleโˆต if a x = 0 , x does not exist . 3 x = 0 is undefined .

x does not exist for 3x = 0 .

โ€ข Logarithm of negative number log a (-y): the logarithm of

negative numbers is undefined . Log 3 (-9) is undefined .โˆต base a > 0, y = a x > 0 , y must be positive for any real x . โˆต 3 > 0, 32 > 0

โ€ข Converting between exponential and logarithmic forms Example

Exponential to log form: ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ 32 = 9

log๐‘Ž๐‘Ž y = x log3 9 = 2

Log to exponential form: log๐‘Ž๐‘Ž y = x log3 9 = 2

๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ 32 = 9

Page 10-13

10-3 LOGARITHMIC FUNCTIONS

Introduction to Logarithms

โ€ข The logarithmic function f(x) = loga x: a function that is the inverse of an exponential

function (y = ax) .

Exponent question: Logarithmic question:

32 = ? 3? = 9 3 to what power gives 9?

32 = 9 Two multiples of 3s are required to get 9 .

log39 = 2

โ€ข Definition of logarithm

Logarithmic Function Definition of Logarithm Example

f(x) = log๐‘Ž๐‘Ž x

(x > 0 , a > 0, a โ‰  1)

if ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ, then log๐‘Ž๐‘Ž ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ .

Or if ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž๐‘ฆ๐‘ฆ, then log๐‘Ž๐‘Ž x = y.

If 9 = 32,

then log3 9 = 2 .Read: โ€œthe log, base 3 of 9, is 2โ€ or โ€œlog of 9, base 3, equals 2 .โ€

โ€ข Logarithm of zero log a (0): the logarithm of 0 is undefined . Exampleโˆต if a x = 0 , x does not exist . 3 x = 0 is undefined .

x does not exist for 3x = 0 .

โ€ข Logarithm of negative number log a (-y): the logarithm of

negative numbers is undefined . Log 3 (-9) is undefined .โˆต base a > 0, y = a x > 0 , y must be positive for any real x . โˆต 3 > 0, 32 > 0

โ€ข Converting between exponential and logarithmic forms Example

Exponential to log form: ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ 32 = 9

log๐‘Ž๐‘Ž y = x log3 9 = 2

Log to exponential form: log๐‘Ž๐‘Ž y = x log3 9 = 2

๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ 32 = 9

Page 10-13

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

236 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

Evaluating Logarithms

Example: Write in logarithmic form .

1. 23 = 8

log2 ( 8 ) = ( 3 ) ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐Ÿ๐Ÿ๐Ÿ๐Ÿ8 = 3

2. 105 = 100,000

log10 (100,000) = ( 5 ) log10100,000 = 5

3. ๐‘Ž๐‘Ž๐‘ก๐‘ก = b

log๐‘Ž๐‘Ž (b) = (t) ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐’‚๐’‚ b = t

Example: Write in exponential form .

1. log3 81 = 4

3(4) = ( 81 ) ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’ = 81

2. log 10 0 .0001 = -4

10(-4) = ( 0 .0001) ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ-๐Ÿ’๐Ÿ’ = 0.0001Note: The exponent can be negative, but the base must be positive (๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž๐‘ฆ๐‘ฆ , a > 0) .

3. log5125

= -2

5(-2) = ๏ฟฝ 125๏ฟฝ ๐Ÿ“๐Ÿ“-๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

Evaluating Logarithms

Steps Example: ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐Ÿ’๐Ÿ’ 16 = ?

- Let log๐‘Ž๐‘Ž y = x. Let log416 = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

- Convert to exponential form . 4(x) = (16) 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 16

- Write x in an exponent . 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 42

x = 2 If ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž๐‘ฆ๐‘ฆ , then x = y . The exponents are the same .

Example: Find the value of ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐Ÿ“๐Ÿ“125 .

Let log5 125 = x Let log๐‘Ž๐‘Ž y = x

5 (x) = (125) 5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 125 Convert to exponential form .

5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 53 125 = 53

x = 3 If ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž๐‘ฆ๐‘ฆ, then x = y .

Page 10-14

Evaluating Logarithms

Example: Write in logarithmic form .

1. 23 = 8

log2 ( 8 ) = ( 3 ) ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐Ÿ๐Ÿ๐Ÿ๐Ÿ8 = 3

2. 105 = 100,000

log10 (100,000) = ( 5 ) log10100,000 = 5

3. ๐‘Ž๐‘Ž๐‘ก๐‘ก = b

log๐‘Ž๐‘Ž (b) = (t) ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐’‚๐’‚ b = t

Example: Write in exponential form .

1. log3 81 = 4

3(4) = ( 81 ) ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’ = 81

2. log 10 0 .0001 = -4

10(-4) = ( 0 .0001) ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ-๐Ÿ’๐Ÿ’ = 0.0001Note: The exponent can be negative, but the base must be positive (๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž๐‘ฆ๐‘ฆ , a > 0) .

3. log5125

= -2

5(-2) = ๏ฟฝ 125๏ฟฝ ๐Ÿ“๐Ÿ“-๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

Evaluating Logarithms

Steps Example: ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐Ÿ’๐Ÿ’ 16 = ?

- Let log๐‘Ž๐‘Ž y = x. Let log416 = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

- Convert to exponential form . 4(x) = (16) 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 16

- Write x in an exponent . 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 42

x = 2 If ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž๐‘ฆ๐‘ฆ , then x = y . The exponents are the same .

Example: Find the value of ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐Ÿ“๐Ÿ“125 .

Let log5 125 = x Let log๐‘Ž๐‘Ž y = x

5 (x) = (125) 5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 125 Convert to exponential form .

5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 53 125 = 53

x = 3 If ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž๐‘ฆ๐‘ฆ, then x = y .

Page 10-14

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 237

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

Solving Logarithmic Equations

โ€ข Logarithmic equation: an equation that contains a logarithmic expression .

โ€ข The key to solve a logarithmic equation is to convert log into exponential form .

Steps Example: Solve log x 25 = 2 .log x 25 = 2

- Convert to an exponential equation . x (2) = (25) , ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2 = 25- Take the square root of both sides and solve for x . โˆš๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2 = ยฑโˆš25

x = ยฑ5- Check . x = 5 x = -5

? ?

log5 25 = 2 log(-5)25 = 2

52 = 25 Correct! It is not defined

x = 5 is a solution y = log a x , a > 0Example: Solve each of the following equations .

1. ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐’™๐’™ = -4 : log3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = -4

3-4 = x Log exponent .134

= ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ ๐‘Ž๐‘Ž-๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 1๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ

๐’™๐’™๐’™๐’™ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ๐Ÿ๐Ÿ

34 = 81

?

Check: log3181

= -4 โˆš

3-4 = 181

, 134

= 181

Correct!

2. ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐Ÿ๐Ÿ๐Ÿ๐Ÿ16 = x : log216 = x

2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 16 Log exponent .

2๐’™๐’™๐’™๐’™ = 2๐Ÿ’๐Ÿ’ Write 16 in an exponent: 16 = 2๐Ÿ’๐Ÿ’

x = 4 If ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž๐‘ฆ๐‘ฆ , then x = y.

3. ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’

= x : log1614

= x Log exponent .

16๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 14

(42)๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 4-1 , 42๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ= 4-1 16 = 42

2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = -1 , x = -12

If ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž๐‘ฆ๐‘ฆ, then x = y.

4. ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐’™๐’™๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = 3 : log๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ27 = 3 Log exponent .

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3 = 27โˆš๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ33 = โˆš273

Take the cube root of both sides .

โˆš๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ33 = โˆš333 , x = 3 27 = 33

Page 10-15

Solving Logarithmic Equations

โ€ข Logarithmic equation: an equation that contains a logarithmic expression .

โ€ข The key to solve a logarithmic equation is to convert log into exponential form .

Steps Example: Solve log x 25 = 2 .log x 25 = 2

- Convert to an exponential equation . x (2) = (25) , ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2 = 25- Take the square root of both sides and solve for x . โˆš๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2 = ยฑโˆš25

x = ยฑ5- Check . x = 5 x = -5

? ?

log5 25 = 2 log(-5)25 = 2

52 = 25 Correct! It is not defined

x = 5 is a solution y = log a x , a > 0Example: Solve each of the following equations .

1. ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐’™๐’™ = -4 : log3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = -4

3-4 = x Log exponent .134

= ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ ๐‘Ž๐‘Ž-๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 1๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ

๐’™๐’™๐’™๐’™ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ๐Ÿ๐Ÿ

34 = 81

?

Check: log3181

= -4 โˆš

3-4 = 181

, 134

= 181

Correct!

2. ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐Ÿ๐Ÿ๐Ÿ๐Ÿ16 = x : log216 = x

2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 16 Log exponent .

2๐’™๐’™๐’™๐’™ = 2๐Ÿ’๐Ÿ’ Write 16 in an exponent: 16 = 2๐Ÿ’๐Ÿ’

x = 4 If ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž๐‘ฆ๐‘ฆ , then x = y.

3. ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’

= x : log1614

= x Log exponent .

16๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 14

(42)๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 4-1 , 42๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ= 4-1 16 = 42

2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = -1 , x = -12

If ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž๐‘ฆ๐‘ฆ, then x = y.

4. ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐’™๐’™๐’™๐’™๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = 3 : log๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ27 = 3 Log exponent .

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3 = 27โˆš๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ33 = โˆš273

Take the cube root of both sides .

โˆš๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ33 = โˆš333 , x = 3 27 = 33

Page 10-15

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

238 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

Graphing Logarithmic Functions

โ€ข The graph of a function is the reflection of its inverse about the y = x line .

โ€ข Logarithmic functions and exponential functions are inverse functions.

โ€ข The graph of the logarithmic function is the reflection of the graph of the exponential

function about the y = x line .

โ€ข Graphing a logarithmic function using its inverse

Steps Example: Graph f(x) = ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™ .

- Convert to exponential form . log2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = y

2๐‘ฆ๐‘ฆ = x- Switch x and y . 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = y or y = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

- Make a table for ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ .x 0 1 2 -1 -2

๐’š๐’š๐’š๐’š = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™ 20 = 1 21 = 2 22 = 4 2-1 = 12

2-2 = 14

(x, y) (0, 1) (1, 2) (2, 4) (-1, 12๏ฟฝ (-2, 1

4๏ฟฝ

- Graph ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ . Graph y = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

- Graph f(x) = log๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ by reflecting the curve Graph f(x) = log2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ by reflecting ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

of ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ about the y = x line . about the y = x line .

- Or switch the x and y values in the table, Switch the x and y values in the table,then graph y = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ . then graph y = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ .

๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ (0, 1) (1, 2) (2, 4) (-1, 12๏ฟฝ (-2, 1

4๏ฟฝ

log 2 x = y (1, 0) (2, 1) (4, 2) ๏ฟฝ12, -1) ๏ฟฝ1

4, -2)

Tip: Switch the x and y values to get log2 x = y

โˆ™

โˆ™

โˆ™ โˆ™

y= 2 x

๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™ = y

y = x

y

x0

Choose x .

Calculate y .

โˆ™

Page 10-16

Graphing Logarithmic Functions

โ€ข The graph of a function is the reflection of its inverse about the y = x line .

โ€ข Logarithmic functions and exponential functions are inverse functions.

โ€ข The graph of the logarithmic function is the reflection of the graph of the exponential

function about the y = x line .

โ€ข Graphing a logarithmic function using its inverse

Steps Example: Graph f(x) = ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™ .

- Convert to exponential form . log2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = y

2๐‘ฆ๐‘ฆ = x- Switch x and y . 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = y or y = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

- Make a table for ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ .x 0 1 2 -1 -2

๐’š๐’š๐’š๐’š = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™ 20 = 1 21 = 2 22 = 4 2-1 = 12

2-2 = 14

(x, y) (0, 1) (1, 2) (2, 4) (-1, 12๏ฟฝ (-2, 1

4๏ฟฝ

- Graph ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ . Graph y = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

- Graph f(x) = log๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ by reflecting the curve Graph f(x) = log2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ by reflecting ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

of ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ about the y = x line . about the y = x line .

- Or switch the x and y values in the table, Switch the x and y values in the table,then graph y = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ . then graph y = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ .

๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ (0, 1) (1, 2) (2, 4) (-1, 12๏ฟฝ (-2, 1

4๏ฟฝ

log 2 x = y (1, 0) (2, 1) (4, 2) ๏ฟฝ12, -1) ๏ฟฝ1

4, -2)

Tip: Switch the x and y values to get log2 x = y

โˆ™

โˆ™

โˆ™ โˆ™

y= 2 x

๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’™๐’™ = y

y = x

y

x0

Choose x .

Calculate y .

โˆ™

Page 10-16

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 239

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

Properties of Logarithms

โ€ข Comparing properties of logarithmic and exponential functions

Exponential Functiony = f (x) = ax

Logarithmic Functionlog๐‘Ž๐‘Ž x

Exampley = 2x log2 x

Domain (x-values) (-โˆž, โˆž)All real numbers .

(0, โˆž) or x > 0 (-โˆž, โˆž) (0, โˆž)

Range (y-values) (0, โˆž) or y > 0 (-โˆž, โˆž)All real numbers .

y > 0 (-โˆž, โˆž)

Intercept y-intercept = 1 x-intercept = 1

Asymptote x - axis y - axis

โ€ข Basic properties of logarithms

Property Example Proof

log๐‘Ž๐‘Ž๐Ÿ๐Ÿ๐Ÿ๐Ÿ = 0 log41 = 0log41 = 0

40 = 1

log๐’‚๐’‚๐’‚๐’‚ = 1 log77 = 1log77 = 1

71 = 7

log๐‘Ž๐‘Ž ๐‘Ž๐‘Ž๐’™๐’™๐’™๐’™ = x log2 23 = 3log2 23 = 3

23 = 23

๐‘Ž๐‘Žlog๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = x 3log34 = 4 3log34 = 4log34 = log34

Example: Evaluate each of the following .

1. log91 log91 = 0 loga1 = 0

2. log2121 log2121 = 1 loga๐‘Ž๐‘Ž = 1

3. log5 57 log5 5๐Ÿ•๐Ÿ• = 7 log๐‘Ž๐‘Ž ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = x

4. 6log65 6log6๐Ÿ“๐Ÿ“ = 5 ๐‘Ž๐‘Žlog๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = x

5. log749 log749 = log7 72 = 2 log๐‘Ž๐‘Ž ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = x

6. log100.001 log10๐ŸŽ๐ŸŽ.๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = log10๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽโˆ’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ = -3 log๐‘Ž๐‘Ž ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = x

โˆ™ 1 โˆ™ 1

Page 10-17

Properties of Logarithms

โ€ข Comparing properties of logarithmic and exponential functions

Exponential Functiony = f (x) = ax

Logarithmic Functionlog๐‘Ž๐‘Ž x

Exampley = 2x log2 x

Domain (x-values) (-โˆž, โˆž)All real numbers .

(0, โˆž) or x > 0 (-โˆž, โˆž) (0, โˆž)

Range (y-values) (0, โˆž) or y > 0 (-โˆž, โˆž)All real numbers .

y > 0 (-โˆž, โˆž)

Intercept y-intercept = 1 x-intercept = 1

Asymptote x - axis y - axis

โ€ข Basic properties of logarithms

Property Example Proof

log๐‘Ž๐‘Ž๐Ÿ๐Ÿ๐Ÿ๐Ÿ = 0 log41 = 0log41 = 0

40 = 1

log๐’‚๐’‚๐’‚๐’‚ = 1 log77 = 1log77 = 1

71 = 7

log๐‘Ž๐‘Ž ๐‘Ž๐‘Ž๐’™๐’™๐’™๐’™ = x log2 23 = 3log2 23 = 3

23 = 23

๐‘Ž๐‘Žlog๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = x 3log34 = 4 3log34 = 4log34 = log34

Example: Evaluate each of the following .

1. log91 log91 = 0 loga1 = 0

2. log2121 log2121 = 1 loga๐‘Ž๐‘Ž = 1

3. log5 57 log5 5๐Ÿ•๐Ÿ• = 7 log๐‘Ž๐‘Ž ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = x

4. 6log65 6log6๐Ÿ“๐Ÿ“ = 5 ๐‘Ž๐‘Žlog๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = x

5. log749 log749 = log7 72 = 2 log๐‘Ž๐‘Ž ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = x

6. log100.001 log10๐ŸŽ๐ŸŽ.๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = log10๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽโˆ’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ = -3 log๐‘Ž๐‘Ž ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = x

โˆ™ 1 โˆ™ 1

Page 10-17

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

240 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

10-4 RULES OF LOGARITHMS

Rules

โ€ข Recall rules of exponents

Name Rule Exampleproduct rule am an = am + n 23 ยท 24 = 23 + 4

quotient rule ๐‘Ž๐‘Ž๐‘š๐‘š

๐‘Ž๐‘Ž๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘š๐‘šโˆ’๐‘›๐‘› 35

32= 35โˆ’2

power of a power (am)n = am n (43)2 = 43โˆ™2

โ€ข The rules of logarithms are very similar to the rules of exponents, because the log

function is the inverse of the exponential function .

โ€ข Rules of logarithms

Name Rule Example

product rule log๐‘Ž๐‘Ž(๐‘จ๐‘จ โˆ™ ๐‘ฉ๐‘ฉ) = log๐‘Ž๐‘Ž๐‘จ๐‘จ + log๐‘Ž๐‘Ž๐‘ฉ๐‘ฉThe log of a product is the sum of the logs .

log5(3 โˆ™ 4) = log53 + log54

quotient rule log๐‘Ž๐‘Ž ๏ฟฝ๐‘จ๐‘จ๐‘ฉ๐‘ฉ๏ฟฝ = log๐‘Ž๐‘Ž๐‘จ๐‘จ โˆ’ log๐‘Ž๐‘Ž๐‘ฉ๐‘ฉ

The log of a quotient is the difference of the logs .log3 ๏ฟฝ

72๏ฟฝ = log37 โˆ’ log32

power rule log๐‘Ž๐‘Ž ๐ด๐ด๐’๐’ = n log๐‘Ž๐‘Ž๐ด๐ดThe log of a power is equal to the product of the exponentof the power and the log of its base .

log2 3๐Ÿ’๐Ÿ’ = 4 log23

Where a > 0, A > 0, B > 0, log a โ‰  1

Example: Write each of the following as simpler logarithms .

1. ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐Ÿ’๐Ÿ’(๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’š๐’š๐’š๐’š๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘) = log43 + log4๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ log๐‘Ž๐‘Ž(๐ด๐ด๐ด๐ด) = log๐‘Ž๐‘Ž๐ด๐ด + log๐‘Ž๐‘Ž๐ด๐ด

= log43 + ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐‘™๐‘™๐‘™๐‘™og4๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ log๐‘Ž๐‘Ž ๐ด๐ด๐‘›๐‘› = n log๐‘Ž๐‘Ž๐ด๐ด

2. ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐Ÿ“๐Ÿ“ ๏ฟฝ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’š๐’š๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ = log53 โˆ™ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ log5๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2 log๐‘Ž๐‘Ž ๏ฟฝ

๐ด๐ด๐ต๐ต๏ฟฝ = loga๐ด๐ด โˆ’ log๐‘Ž๐‘Ž๐ด๐ด

= log53 + log5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ log5๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2 log๐‘Ž๐‘Ž(๐ด๐ด๐ด๐ด) = log๐‘Ž๐‘Ž๐ด๐ด + log๐‘Ž๐‘Ž๐ด๐ด

= log53 + log5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ 2log5๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ log๐‘Ž๐‘Ž ๐ด๐ด๐‘›๐‘› = n log๐‘Ž๐‘Ž๐ด๐ด

3. ๐Ÿ’๐Ÿ’๐’๐’๐’๐’๐ฅ๐ฅ๐ฅ๐ฅ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š๐’š๐’š โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’›๐’›

= log2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ4+ log2๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2 โˆ’ log2๐‘ง๐‘ง3 ๐‘™๐‘™๐‘™๐‘™ log๐‘Ž๐‘Ž๐ด๐ด = log๐‘Ž๐‘Ž ๐ด๐ด๐‘›๐‘›

= log2(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ4 โˆ™ ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2) โˆ’ log2๐‘ง๐‘ง3 log๐‘Ž๐‘Ž๐ด๐ด + log๐‘Ž๐‘Ž๐ด๐ด = log๐‘Ž๐‘Ž(๐ด๐ด๐ด๐ด)

= log2 ๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ4๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2

๐‘ง๐‘ง3 ๏ฟฝ log๐‘Ž๐‘Ž ๏ฟฝ๐ด๐ด๐ต๐ต๏ฟฝ = log๐‘Ž๐‘Ž๐ด๐ด โˆ’ log๐‘Ž๐‘Ž๐ด๐ด

Page 10-18

10-4 RULES OF LOGARITHMS

Rules

โ€ข Recall rules of exponents

Name Rule Exampleproduct rule am an = am + n 23 ยท 24 = 23 + 4

quotient rule ๐‘Ž๐‘Ž๐‘š๐‘š

๐‘Ž๐‘Ž๐‘›๐‘›= ๐‘Ž๐‘Ž๐‘š๐‘šโˆ’๐‘›๐‘› 35

32= 35โˆ’2

power of a power (am)n = am n (43)2 = 43โˆ™2

โ€ข The rules of logarithms are very similar to the rules of exponents, because the log

function is the inverse of the exponential function .

โ€ข Rules of logarithms

Name Rule Example

product rule log๐‘Ž๐‘Ž(๐‘จ๐‘จ โˆ™ ๐‘ฉ๐‘ฉ) = log๐‘Ž๐‘Ž๐‘จ๐‘จ + log๐‘Ž๐‘Ž๐‘ฉ๐‘ฉThe log of a product is the sum of the logs .

log5(3 โˆ™ 4) = log53 + log54

quotient rule log๐‘Ž๐‘Ž ๏ฟฝ๐‘จ๐‘จ๐‘ฉ๐‘ฉ๏ฟฝ = log๐‘Ž๐‘Ž๐‘จ๐‘จ โˆ’ log๐‘Ž๐‘Ž๐‘ฉ๐‘ฉ

The log of a quotient is the difference of the logs .log3 ๏ฟฝ

72๏ฟฝ = log37 โˆ’ log32

power rule log๐‘Ž๐‘Ž ๐ด๐ด๐’๐’ = n log๐‘Ž๐‘Ž๐ด๐ดThe log of a power is equal to the product of the exponentof the power and the log of its base .

log2 3๐Ÿ’๐Ÿ’ = 4 log23

Where a > 0, A > 0, B > 0, log a โ‰  1

Example: Write each of the following as simpler logarithms .

1. ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐Ÿ’๐Ÿ’(๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’š๐’š๐’š๐’š๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘) = log43 + log4๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ log๐‘Ž๐‘Ž(๐ด๐ด๐ด๐ด) = log๐‘Ž๐‘Ž๐ด๐ด + log๐‘Ž๐‘Ž๐ด๐ด

= log43 + ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐‘™๐‘™๐‘™๐‘™og4๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ log๐‘Ž๐‘Ž ๐ด๐ด๐‘›๐‘› = n log๐‘Ž๐‘Ž๐ด๐ด

2. ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐Ÿ“๐Ÿ“ ๏ฟฝ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’š๐’š๐’š๐’š๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ = log53 โˆ™ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ log5๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2 log๐‘Ž๐‘Ž ๏ฟฝ

๐ด๐ด๐ต๐ต๏ฟฝ = loga๐ด๐ด โˆ’ log๐‘Ž๐‘Ž๐ด๐ด

= log53 + log5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ log5๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2 log๐‘Ž๐‘Ž(๐ด๐ด๐ด๐ด) = log๐‘Ž๐‘Ž๐ด๐ด + log๐‘Ž๐‘Ž๐ด๐ด

= log53 + log5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ 2log5๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ log๐‘Ž๐‘Ž ๐ด๐ด๐‘›๐‘› = n log๐‘Ž๐‘Ž๐ด๐ด

3. ๐Ÿ’๐Ÿ’๐’๐’๐’๐’๐ฅ๐ฅ๐ฅ๐ฅ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š๐’š๐’š โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’›๐’›

= log2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ4+ log2๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2 โˆ’ log2๐‘ง๐‘ง3 ๐‘™๐‘™๐‘™๐‘™ log๐‘Ž๐‘Ž๐ด๐ด = log๐‘Ž๐‘Ž ๐ด๐ด๐‘›๐‘›

= log2(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ4 โˆ™ ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2) โˆ’ log2๐‘ง๐‘ง3 log๐‘Ž๐‘Ž๐ด๐ด + log๐‘Ž๐‘Ž๐ด๐ด = log๐‘Ž๐‘Ž(๐ด๐ด๐ด๐ด)

= log2 ๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ4๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2

๐‘ง๐‘ง3 ๏ฟฝ log๐‘Ž๐‘Ž ๏ฟฝ๐ด๐ด๐ต๐ต๏ฟฝ = log๐‘Ž๐‘Ž๐ด๐ด โˆ’ log๐‘Ž๐‘Ž๐ด๐ด

Page 10-18

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 241

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

Proof of the Logarithms Rules

โ€ข Proof: ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚(๐‘จ๐‘จ๐‘จ๐‘จ) = ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐‘จ๐‘จ + ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐‘จ๐‘จ

- Let ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ and ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ต๐ต = ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ .

- Convert to exponential form . ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = A ๐‘Ž๐‘Ž๐‘ฆ๐‘ฆ = B

- Multiply A and B . A ยท B = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ™ ๐‘Ž๐‘Ž๐‘ฆ๐‘ฆ = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ+๐‘ฆ๐‘ฆ

- Convert to logarithmic form . ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ+๐‘ฆ๐‘ฆ = AB

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž(๐ด๐ด๐ต๐ต) = x + y

- Replace x and y by ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด and ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ต๐ต . ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚(๐‘จ๐‘จ๐‘จ๐‘จ) = ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐‘จ๐‘จ + ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐‘จ๐‘จ

โ€ข Proof: ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚ ๏ฟฝ๐‘จ๐‘จ๐‘จ๐‘จ๏ฟฝ = ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐‘จ๐‘จ โˆ’ ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐‘จ๐‘จ

- Let ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ and ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ต๐ต = ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ .

- Convert to exponential form . ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = A ๐‘Ž๐‘Ž๐‘ฆ๐‘ฆ = B

- Divide A and B. ๐ด๐ด๐ต๐ต

= ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ

๐‘Ž๐‘Ž๐‘ฆ๐‘ฆ = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅโˆ’๐‘ฆ๐‘ฆ

- Convert to logarithmic form . ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅโˆ’๐‘ฆ๐‘ฆ = ๐ด๐ด๐ต๐ต

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž ๏ฟฝ๐ด๐ด๐ต๐ต๏ฟฝ = x โˆ’ y

- Replace x and y by ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด and ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ต๐ต . ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚ ๏ฟฝ๐‘จ๐‘จ๐‘จ๐‘จ๏ฟฝ = ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐‘จ๐‘จ โˆ’ ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐‘จ๐‘จ

โ€ข Proof: ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚ ๐‘จ๐‘จ๐’๐’ = n ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐‘จ๐‘จ

- Let ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ .

- Convert to exponential form . ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = A

- Raise both sides to nth power . (๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ)๐‘›๐‘› = ๐ด๐ด๐‘›๐‘› or ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘›๐‘› = ๐ด๐ด๐‘›๐‘›

- Convert to logarithmic form . ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž ๐ด๐ด๐‘›๐‘› = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

- Replace x by ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด . ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž ๐ด๐ด๐‘›๐‘› = (๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด)๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚ ๐‘จ๐‘จ๐’๐’ = n ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐‘จ๐‘จ

Page 10-19

Proof of the Logarithms Rules

โ€ข Proof: ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚(๐‘จ๐‘จ๐‘จ๐‘จ) = ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐‘จ๐‘จ + ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐‘จ๐‘จ

- Let ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ and ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ต๐ต = ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ .

- Convert to exponential form . ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = A ๐‘Ž๐‘Ž๐‘ฆ๐‘ฆ = B

- Multiply A and B . A ยท B = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ™ ๐‘Ž๐‘Ž๐‘ฆ๐‘ฆ = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ+๐‘ฆ๐‘ฆ

- Convert to logarithmic form . ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ+๐‘ฆ๐‘ฆ = AB

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž(๐ด๐ด๐ต๐ต) = x + y

- Replace x and y by ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด and ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ต๐ต . ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚(๐‘จ๐‘จ๐‘จ๐‘จ) = ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐‘จ๐‘จ + ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐‘จ๐‘จ

โ€ข Proof: ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚ ๏ฟฝ๐‘จ๐‘จ๐‘จ๐‘จ๏ฟฝ = ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐‘จ๐‘จ โˆ’ ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐‘จ๐‘จ

- Let ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ and ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ต๐ต = ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ .

- Convert to exponential form . ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = A ๐‘Ž๐‘Ž๐‘ฆ๐‘ฆ = B

- Divide A and B. ๐ด๐ด๐ต๐ต

= ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ

๐‘Ž๐‘Ž๐‘ฆ๐‘ฆ = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅโˆ’๐‘ฆ๐‘ฆ

- Convert to logarithmic form . ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅโˆ’๐‘ฆ๐‘ฆ = ๐ด๐ด๐ต๐ต

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž ๏ฟฝ๐ด๐ด๐ต๐ต๏ฟฝ = x โˆ’ y

- Replace x and y by ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด and ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ต๐ต . ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚ ๏ฟฝ๐‘จ๐‘จ๐‘จ๐‘จ๏ฟฝ = ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐‘จ๐‘จ โˆ’ ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐‘จ๐‘จ

โ€ข Proof: ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚ ๐‘จ๐‘จ๐’๐’ = n ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐‘จ๐‘จ

- Let ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ .

- Convert to exponential form . ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = A

- Raise both sides to nth power . (๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ)๐‘›๐‘› = ๐ด๐ด๐‘›๐‘› or ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘›๐‘› = ๐ด๐ด๐‘›๐‘›

- Convert to logarithmic form . ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž ๐ด๐ด๐‘›๐‘› = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

- Replace x by ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด . ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž ๐ด๐ด๐‘›๐‘› = (๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด)๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚ ๐‘จ๐‘จ๐’๐’ = n ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐‘จ๐‘จ

Page 10-19

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

242 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

Applying Rules of Logarithm

Example: Expand ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐Ÿ’๐Ÿ’๏ฟฝ๐’™๐’™๐’™๐’™๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’š๐’š๐’š๐’š๐’›๐’›

๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘.

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™4๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3๐‘ฆ๐‘ฆ๐‘ง๐‘ง

3= ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™4 ๏ฟฝ

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3๐‘ฆ๐‘ฆ๐‘ง๐‘ง๏ฟฝ13

โˆš๐‘Ž๐‘Ž๐‘›๐‘› = ๐‘Ž๐‘Ž1๐‘›๐‘›

= 13๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™4

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3๐‘ฆ๐‘ฆ๐‘ง๐‘ง

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž ๐ด๐ด๐‘›๐‘› = n ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด

= 13

[๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™4(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3 โˆ™ ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ) โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™4๐‘ง๐‘ง] ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž ๏ฟฝ๐ด๐ด๐ต๐ต๏ฟฝ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ต๐ต

= 13

(๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3 + ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™4๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™4๐‘ง๐‘ง) ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž(๐ด๐ด๐ต๐ต) = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด + ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ต๐ต

= 13

(3๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™4๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™4๐‘ง๐‘ง) ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž ๐ด๐ด๐‘›๐‘› = n ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด

= ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐Ÿ’๐Ÿ’๐’™๐’™๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐Ÿ’๐Ÿ’๐’š๐’š๐’š๐’š โˆ’

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐Ÿ’๐Ÿ’๐’›๐’›

Example: Given ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐Ÿ’๐Ÿ’ = ๐ŸŽ๐ŸŽ.๐Ÿ”๐Ÿ” and ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐Ÿ“๐Ÿ“ = ๐ŸŽ๐ŸŽ.๐Ÿ•๐Ÿ•, find the following .

1. ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž(4 โˆ™ 5)

= ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž4 + ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž5 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž(๐ด๐ด๐ต๐ต) = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด + ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ต๐ต

โ‰ˆ 0 .6 + 0 .7 = 0.13 Given ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž4 = 0.6 , ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž5 = 0.7

2. ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ’๐Ÿ’

= ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž25 โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž4 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž ๏ฟฝ๐ด๐ด๐ต๐ต๏ฟฝ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ต๐ต

= ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž52 โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž4

= 2 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž5 โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž4 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž ๐ด๐ด๐‘›๐‘› = n ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด

= 2(0.7) โˆ’ 0.6 = 0.8 Given ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž4 = 0.6 , ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž5 = 0.7

3. ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚โˆš๐Ÿ“๐Ÿ“ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž512 โˆš๐‘Ž๐‘Ž๐‘›๐‘› = ๐‘Ž๐‘Ž

1๐‘›๐‘›

= 12 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž5 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž ๐ด๐ด๐‘›๐‘› = n ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด

= 12

(0.7) = ๐ŸŽ๐ŸŽ.๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ“๐Ÿ“ Given ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž5 = 0.7

Page 10-20

Applying Rules of Logarithm

Example: Expand ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐Ÿ’๐Ÿ’๏ฟฝ๐’™๐’™๐’™๐’™๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’š๐’š๐’š๐’š๐’›๐’›

๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘.

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™4๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3๐‘ฆ๐‘ฆ๐‘ง๐‘ง

3= ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™4 ๏ฟฝ

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3๐‘ฆ๐‘ฆ๐‘ง๐‘ง๏ฟฝ13

โˆš๐‘Ž๐‘Ž๐‘›๐‘› = ๐‘Ž๐‘Ž1๐‘›๐‘›

= 13๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™4

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3๐‘ฆ๐‘ฆ๐‘ง๐‘ง

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž ๐ด๐ด๐‘›๐‘› = n ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด

= 13

[๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™4(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3 โˆ™ ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ) โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™4๐‘ง๐‘ง] ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž ๏ฟฝ๐ด๐ด๐ต๐ต๏ฟฝ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ต๐ต

= 13

(๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3 + ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™4๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™4๐‘ง๐‘ง) ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž(๐ด๐ด๐ต๐ต) = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด + ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ต๐ต

= 13

(3๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™4๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™4๐‘ง๐‘ง) ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž ๐ด๐ด๐‘›๐‘› = n ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด

= ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐Ÿ’๐Ÿ’๐’™๐’™๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐Ÿ’๐Ÿ’๐’š๐’š๐’š๐’š โˆ’

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐Ÿ’๐Ÿ’๐’›๐’›

Example: Given ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐Ÿ’๐Ÿ’ = ๐ŸŽ๐ŸŽ.๐Ÿ”๐Ÿ” and ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐Ÿ“๐Ÿ“ = ๐ŸŽ๐ŸŽ.๐Ÿ•๐Ÿ•, find the following .

1. ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž(4 โˆ™ 5)

= ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž4 + ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž5 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž(๐ด๐ด๐ต๐ต) = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด + ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ต๐ต

โ‰ˆ 0 .6 + 0 .7 = 0.13 Given ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž4 = 0.6 , ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž5 = 0.7

2. ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ’๐Ÿ’

= ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž25 โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž4 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž ๏ฟฝ๐ด๐ด๐ต๐ต๏ฟฝ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ต๐ต

= ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž52 โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž4

= 2 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž5 โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž4 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž ๐ด๐ด๐‘›๐‘› = n ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด

= 2(0.7) โˆ’ 0.6 = 0.8 Given ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž4 = 0.6 , ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž5 = 0.7

3. ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚โˆš๐Ÿ“๐Ÿ“ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž512 โˆš๐‘Ž๐‘Ž๐‘›๐‘› = ๐‘Ž๐‘Ž

1๐‘›๐‘›

= 12 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž5 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž ๐ด๐ด๐‘›๐‘› = n ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด

= 12

(0.7) = ๐ŸŽ๐ŸŽ.๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ“๐Ÿ“ Given ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž5 = 0.7

Page 10-20

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 243

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

10-5 COMMON AND NATURAL LOGARITHMS

Common Logarithm

โ€ข The common logarithm is a logarithm with base 10, i .e . ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™10๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ . It is usually denoted as

log ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ (without writing the base 10) .

Notation for Common Log Example๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™10๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

Base 10 No base means base 10 .๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™103 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ 3

Example: ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™10000 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™1010000

= ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™10104 = ๐Ÿ’๐Ÿ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ 0.0001 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™100.0001

= ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™1010-4 = -๐Ÿ’๐Ÿ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

โ€ข The log of a negative number has no real number answers.

Example: ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™10๏ฟฝ-3๏ฟฝ = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

10๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = -3

No matter what the value of x may be, 10๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ will never be negative .

โˆด log (-3) is undefined .

โ€ข Calculator tip: for the common logarithm, use the LOG key .

Example: 1. ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ 312 โ‰ˆ 2.494 LOG 312 ENTER ENTER or = x

2. log 0.146 โ‰ˆ -0.836 LOG 0 .146 = = or ENTER

3. 103.1532 โ‰ˆ 1423 2nd 10x 3 .1532 ENTER 2nd or INV

Page 10-21

10-5 COMMON AND NATURAL LOGARITHMS

Common Logarithm

โ€ข The common logarithm is a logarithm with base 10, i .e . ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™10๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ . It is usually denoted as

log ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ (without writing the base 10) .

Notation for Common Log Example๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™10๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

Base 10 No base means base 10 .๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™103 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ 3

Example: ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™10000 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™1010000

= ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™10104 = ๐Ÿ’๐Ÿ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ 0.0001 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™100.0001

= ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™1010-4 = -๐Ÿ’๐Ÿ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

โ€ข The log of a negative number has no real number answers.

Example: ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™10๏ฟฝ-3๏ฟฝ = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

10๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = -3

No matter what the value of x may be, 10๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ will never be negative .

โˆด log (-3) is undefined .

โ€ข Calculator tip: for the common logarithm, use the LOG key .

Example: 1. ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ 312 โ‰ˆ 2.494 LOG 312 ENTER ENTER or = x

2. log 0.146 โ‰ˆ -0.836 LOG 0 .146 = = or ENTER

3. 103.1532 โ‰ˆ 1423 2nd 10x 3 .1532 ENTER 2nd or INV

Page 10-21

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

244 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

Natural Logarithm

โ€ข The natural logarithm: the logarithm with base e, i .e . log๐‘’๐‘’๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ . It is usually denoted as ln x .

โ€ข The number e: e is not a whole number (an irrational number) .

e โ‰ˆ 2 .718281828 โ€ฆ The decimal expansion of e never ends nor repeats .

Notation for natural log Example๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘’๐‘’๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

Base e ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘’๐‘’3 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ 3

โ€ข Calculator tip: for the natural logarithm, use the LN key .

Example

1. ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ 3 โ‰ˆ 1 .099 LN 3 = or ENTER

2. ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ 0.03 โ‰ˆ - 3 .51 LN 0 .03 ENTER or = x

3. ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ (-7) is undefined

4. ๐‘’๐‘’2.153 โ‰ˆ 8.61 2nd ex 2 .153 = 2nd or INV

โ€ข Graphing of f (x) = ln x , ex and e-x

The graph of the exponential function (ex) is a reflection of the graph of (e-x ) about

the y-axis .Recall: The graph of ๐‘Ž๐‘Ž-๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ is the reflection of graph of ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ about the y-axis .

The graph of the natural logarithmic function ln x is the reflection of the graph of the

exponential function ex about the y = x line .

Example: Sketch the graphs of y = e x , y = e -x and y = ln x.

- Make a table for y = e x Calculator tip: 2nd e x โ€ฆ

x 0 1 -1 -2y = ex ๐‘’๐‘’0 = 1 ๐‘’๐‘’1 โ‰ˆ 2.72 ๐‘’๐‘’-1 โ‰ˆ 0.37 ๐‘’๐‘’-2 โ‰ˆ 0.14

๐๐๐๐๐๐๐๐ (x, y) (0, 1) (1, 2 .72) (-1, 0 .37) (-2, 0 .14)

- Graph y = ex.

- Graph y = e-x: reflect the curve of y = ex about the y-axis .

- Graph y = ln x: reflect the curve of y = ex about the y = x line .๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

๐’š๐’š๐’š๐’š = ๐’†๐’†๐’†๐’†-๐’™๐’™๐’™๐’™

๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

๐’š๐’š๐’š๐’š = ๐’†๐’†๐’†๐’†๐’™๐’™๐’™๐’™

Page 10-22

Natural Logarithm

โ€ข The natural logarithm: the logarithm with base e, i .e . log๐‘’๐‘’๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ . It is usually denoted as ln x .

โ€ข The number e: e is not a whole number (an irrational number) .

e โ‰ˆ 2 .718281828 โ€ฆ The decimal expansion of e never ends nor repeats .

Notation for natural log Example๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘’๐‘’๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

Base e ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘’๐‘’3 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ 3

โ€ข Calculator tip: for the natural logarithm, use the LN key .

Example

1. ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ 3 โ‰ˆ 1 .099 LN 3 = or ENTER

2. ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ 0.03 โ‰ˆ - 3 .51 LN 0 .03 ENTER or = x

3. ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ (-7) is undefined

4. ๐‘’๐‘’2.153 โ‰ˆ 8.61 2nd ex 2 .153 = 2nd or INV

โ€ข Graphing of f (x) = ln x , ex and e-x

The graph of the exponential function (ex) is a reflection of the graph of (e-x ) about

the y-axis .Recall: The graph of ๐‘Ž๐‘Ž-๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ is the reflection of graph of ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ about the y-axis .

The graph of the natural logarithmic function ln x is the reflection of the graph of the

exponential function ex about the y = x line .

Example: Sketch the graphs of y = e x , y = e -x and y = ln x.

- Make a table for y = e x Calculator tip: 2nd e x โ€ฆ

x 0 1 -1 -2y = ex ๐‘’๐‘’0 = 1 ๐‘’๐‘’1 โ‰ˆ 2.72 ๐‘’๐‘’-1 โ‰ˆ 0.37 ๐‘’๐‘’-2 โ‰ˆ 0.14

๐๐๐๐๐๐๐๐ (x, y) (0, 1) (1, 2 .72) (-1, 0 .37) (-2, 0 .14)

- Graph y = ex.

- Graph y = e-x: reflect the curve of y = ex about the y-axis .

- Graph y = ln x: reflect the curve of y = ex about the y = x line .๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

๐’š๐’š๐’š๐’š = ๐’†๐’†๐’†๐’†-๐’™๐’™๐’™๐’™

๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

๐’š๐’š๐’š๐’š = ๐’†๐’†๐’†๐’†๐’™๐’™๐’™๐’™

Page 10-22

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 245

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

Changing the Base of a Logarithm

โ€ข Most scientific calculators have keys for only base 10 (the common log LOG) and base e

(the natural log LN) .

โ€ข Change of base formula evaluates logarithms with different bases other than 10 or e . Such as ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™23128 = ?

Change of Base Formula ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’ƒ๐’ƒ๐’™๐’™๐’™๐’™ =๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐’™๐’™๐’™๐’™๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐’ƒ๐’ƒ

Example

change to base 10 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐’ƒ๐’ƒ๐’™๐’™๐’™๐’™ =๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ ๐’™๐’™๐’™๐’™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ ๐’ƒ๐’ƒ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™35 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ 5

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3โ‰ˆ 1.465

change to base e ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐’ƒ๐’ƒ๐’™๐’™๐’™๐’™ =๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ ๐’™๐’™๐’™๐’™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ ๐’ƒ๐’ƒ

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™35 = ๐‘™๐‘™๐‘™๐‘™ 5๐‘™๐‘™๐‘™๐‘™ 3

โ‰ˆ 1.465

Note: x, a, and b are positive, a โ‰  1, b โ‰  1.

Tip: The same answer will result regardless of the logarithm (log or ln) that we use in the change of base .

Example: Derivative of ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’ƒ๐’ƒ๐’™๐’™๐’™๐’™ = ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐’™๐’™๐’™๐’™๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐’ƒ๐’ƒ

.

Let ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ ๐‘๐‘๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘ข๐‘ข

๐‘๐‘๐‘ข๐‘ข = x Convert log to exponential form .

๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐‘๐‘๐‘ข๐‘ข = ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ Take log both sides .

u ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐‘๐‘ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž ๐ด๐ด๐‘™๐‘™ = n ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด

๐‘ข๐‘ข = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐‘๐‘

Divide both sides by ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐‘๐‘.

๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’ƒ๐’ƒ๐’™๐’™๐’™๐’™ = ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐’™๐’™๐’™๐’™๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐’ƒ๐’ƒ

Replace u with ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘๐‘๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ .

Example: Evaluate each of the following .

1. ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™617 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™17๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™6

โ‰ˆ 1.581 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘๐‘๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ ๐‘๐‘

2. ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™0.49 = ๐‘™๐‘™๐‘™๐‘™9๐‘™๐‘™๐‘™๐‘™0.4

โ‰ˆ -2.398 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘๐‘๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘™๐‘™๐‘™๐‘™ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘™๐‘™๐‘™๐‘™ ๐‘๐‘

3. ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐œ‹๐œ‹3.2 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3.2๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐œ‹๐œ‹

โ‰ˆ 1.016 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘๐‘๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘™๐‘™๐‘™๐‘™ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘™๐‘™๐‘™๐‘™ ๐‘๐‘

LOG 5 ) รท LOG 3

LN 5 ) รท LN 3

Page 10-23

Changing the Base of a Logarithm

โ€ข Most scientific calculators have keys for only base 10 (the common log LOG) and base e

(the natural log LN) .

โ€ข Change of base formula evaluates logarithms with different bases other than 10 or e . Such as ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™23128 = ?

Change of Base Formula ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’ƒ๐’ƒ๐’™๐’™๐’™๐’™ =๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐’™๐’™๐’™๐’™๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐’ƒ๐’ƒ

Example

change to base 10 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐’ƒ๐’ƒ๐’™๐’™๐’™๐’™ =๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ ๐’™๐’™๐’™๐’™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ ๐’ƒ๐’ƒ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™35 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ 5

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3โ‰ˆ 1.465

change to base e ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐’ƒ๐’ƒ๐’™๐’™๐’™๐’™ =๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ ๐’™๐’™๐’™๐’™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ ๐’ƒ๐’ƒ

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™35 = ๐‘™๐‘™๐‘™๐‘™ 5๐‘™๐‘™๐‘™๐‘™ 3

โ‰ˆ 1.465

Note: x, a, and b are positive, a โ‰  1, b โ‰  1.

Tip: The same answer will result regardless of the logarithm (log or ln) that we use in the change of base .

Example: Derivative of ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’ƒ๐’ƒ๐’™๐’™๐’™๐’™ = ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐’™๐’™๐’™๐’™๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐’ƒ๐’ƒ

.

Let ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ ๐‘๐‘๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘ข๐‘ข

๐‘๐‘๐‘ข๐‘ข = x Convert log to exponential form .

๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐‘๐‘๐‘ข๐‘ข = ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ Take log both sides .

u ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐‘๐‘ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž ๐ด๐ด๐‘™๐‘™ = n ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด

๐‘ข๐‘ข = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐‘๐‘

Divide both sides by ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐‘๐‘.

๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’ƒ๐’ƒ๐’™๐’™๐’™๐’™ = ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐’™๐’™๐’™๐’™๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐’ƒ๐’ƒ

Replace u with ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘๐‘๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ .

Example: Evaluate each of the following .

1. ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™617 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™17๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™6

โ‰ˆ 1.581 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘๐‘๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ ๐‘๐‘

2. ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™0.49 = ๐‘™๐‘™๐‘™๐‘™9๐‘™๐‘™๐‘™๐‘™0.4

โ‰ˆ -2.398 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘๐‘๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘™๐‘™๐‘™๐‘™ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘™๐‘™๐‘™๐‘™ ๐‘๐‘

3. ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐œ‹๐œ‹3.2 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3.2๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐œ‹๐œ‹

โ‰ˆ 1.016 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘๐‘๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘™๐‘™๐‘™๐‘™ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘™๐‘™๐‘™๐‘™ ๐‘๐‘

LOG 5 ) รท LOG 3

LN 5 ) รท LN 3

Page 10-23

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

246 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

10-6 EXPONENTIAL AND LOGARITHMIC EQUATIONS

Exponential Equations

โ€ข Exponential equation: an equation that contains Example

variable(s) in the exponent . 3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 5 , 8๐‘ฆ๐‘ฆ = 54๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ , 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ+5 = 2

โ€ข The key to solve an exponential equation: take the logarithm of both sides .

โ€ข Procedure to solve an exponential equation

Steps Example: Solve ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐’™๐’™ = ๐Ÿ—๐Ÿ—.

Common Log Method Natural Log Method

- Take the log or ln of both sides . log3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = log9 ln3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ln 9

- Use the power rule . (๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด๐‘›๐‘› = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด) ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™9 ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™9

- Isolate the variable. ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3

= ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ9๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘›๐‘›3๐‘ฅ๐‘ฅ๐‘›๐‘›3

= ๐‘ฅ๐‘ฅ๐‘›๐‘›9๐‘ฅ๐‘ฅ๐‘›๐‘›3

Divide both sides by log 3 . Divide both sides by ln 3 .

- Use a calculator to evaluate the log . ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ9๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3

= 2 ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ๐‘›๐‘›9๐‘ฅ๐‘ฅ๐‘›๐‘›3

= 2

- Check . ? โˆš

32 = 9 , 9 = 9 Correct!

Example: Solve the given equation .

๐Ÿ“๐Ÿ“๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐’™๐’™ = ๐Ÿ’๐Ÿ’

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™53๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ 4 Take the log of both sides .

3x ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™5 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™4 log๐‘Ž๐‘Ž ๐ด๐ด๐‘›๐‘› = n log๐‘Ž๐‘Ž๐ด๐ด

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ43๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ5

Divide both sides by 3log 5 .

๐’™๐’™๐’™๐’™ โ‰ˆ ๐ŸŽ๐ŸŽ.๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ LOG 4 ) รท ( 3 ร— LOG 5 ) x

? โˆš

Check: 53(0.287) = 4, 50.861 โ‰ˆ 4 Correct! 5 yx 0 .861 = yx or ^ x

Page 10-24

10-6 EXPONENTIAL AND LOGARITHMIC EQUATIONS

Exponential Equations

โ€ข Exponential equation: an equation that contains Example

variable(s) in the exponent . 3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 5 , 8๐‘ฆ๐‘ฆ = 54๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ , 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ+5 = 2

โ€ข The key to solve an exponential equation: take the logarithm of both sides .

โ€ข Procedure to solve an exponential equation

Steps Example: Solve ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐’™๐’™ = ๐Ÿ—๐Ÿ—.

Common Log Method Natural Log Method

- Take the log or ln of both sides . log3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = log9 ln3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ln 9

- Use the power rule . (๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด๐‘›๐‘› = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด) ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™9 ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™9

- Isolate the variable. ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3

= ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ9๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘›๐‘›3๐‘ฅ๐‘ฅ๐‘›๐‘›3

= ๐‘ฅ๐‘ฅ๐‘›๐‘›9๐‘ฅ๐‘ฅ๐‘›๐‘›3

Divide both sides by log 3 . Divide both sides by ln 3 .

- Use a calculator to evaluate the log . ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ9๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3

= 2 ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ๐‘›๐‘›9๐‘ฅ๐‘ฅ๐‘›๐‘›3

= 2

- Check . ? โˆš

32 = 9 , 9 = 9 Correct!

Example: Solve the given equation .

๐Ÿ“๐Ÿ“๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐’™๐’™ = ๐Ÿ’๐Ÿ’

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™53๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ 4 Take the log of both sides .

3x ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™5 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™4 log๐‘Ž๐‘Ž ๐ด๐ด๐‘›๐‘› = n log๐‘Ž๐‘Ž๐ด๐ด

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ43๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ5

Divide both sides by 3log 5 .

๐’™๐’™๐’™๐’™ โ‰ˆ ๐ŸŽ๐ŸŽ.๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ LOG 4 ) รท ( 3 ร— LOG 5 ) x

? โˆš

Check: 53(0.287) = 4, 50.861 โ‰ˆ 4 Correct! 5 yx 0 .861 = yx or ^ x

Page 10-24

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 247

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

Solving Exponential Equations

Example: Solve each of the following equations .

1. ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ+๐Ÿ“๐Ÿ“ = ๐Ÿ•๐Ÿ•

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™32๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ+5 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™7 Take the ln of both sides .

(2x + 5) ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™7 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž ๐ด๐ด๐‘›๐‘› = n ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด

2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 5 = ๐‘™๐‘™๐‘›๐‘›7๐‘™๐‘™๐‘›๐‘›3

Divide both sides by ln3 .

2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘™๐‘™๐‘›๐‘›7๐‘™๐‘™๐‘›๐‘›3

โ€“ 5 Subtract 5 .

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘™๐‘™๐‘›๐‘›22๐‘™๐‘™๐‘›๐‘›3

โ€“ 2 .5 Divide by 2 .

x โ‰ˆ -2.185

2. ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘(๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ+๐Ÿ๐Ÿ๐Ÿ๐Ÿ) = ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3(2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ+1) = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ Take the log of both sides .

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3 + ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ+1 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž(๐ด๐ด๐ด๐ด) = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด + ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3 + (๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 1)๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2 = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™5 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž ๐ด๐ด๐‘›๐‘› = n ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3 + ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2 + ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2 = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™5 Distribute .

x ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2 โˆ’ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™5 = -๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2 โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3 Isolate x terms .

x (๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2 โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™5) = -๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2 โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3 Factor out x .

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = -๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2โˆ’๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2โˆ’๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™5

Divide by (๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2 โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™5)

x โ‰ˆ -0.778-0.3979

๐Ÿ๐Ÿ๐Ÿ๐Ÿ โ‰ˆ 1.96

Page 10-25

Solving Exponential Equations

Example: Solve each of the following equations .

1. ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ+๐Ÿ“๐Ÿ“ = ๐Ÿ•๐Ÿ•

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™32๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ+5 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™7 Take the ln of both sides .

(2x + 5) ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™7 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž ๐ด๐ด๐‘›๐‘› = n ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด

2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 5 = ๐‘™๐‘™๐‘›๐‘›7๐‘™๐‘™๐‘›๐‘›3

Divide both sides by ln3 .

2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘™๐‘™๐‘›๐‘›7๐‘™๐‘™๐‘›๐‘›3

โ€“ 5 Subtract 5 .

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘™๐‘™๐‘›๐‘›22๐‘™๐‘™๐‘›๐‘›3

โ€“ 2 .5 Divide by 2 .

x โ‰ˆ -2.185

2. ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘(๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ+๐Ÿ๐Ÿ๐Ÿ๐Ÿ) = ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3(2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ+1) = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ Take the log of both sides .

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3 + ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ+1 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž(๐ด๐ด๐ด๐ด) = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด + ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3 + (๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 1)๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2 = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™5 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž ๐ด๐ด๐‘›๐‘› = n ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3 + ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2 + ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2 = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™5 Distribute .

x ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2 โˆ’ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™5 = -๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2 โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3 Isolate x terms .

x (๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2 โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™5) = -๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2 โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3 Factor out x .

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = -๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2โˆ’๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2โˆ’๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™5

Divide by (๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2 โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™5)

x โ‰ˆ -0.778-0.3979

๐Ÿ๐Ÿ๐Ÿ๐Ÿ โ‰ˆ 1.96

Page 10-25

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

248 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

Logarithmic Equations

โ€ข Logarithmic equation: an equation that contains Examplelogarithms of the expression (s) . ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 5) = 7

โ€ข The key to solve a log equation: convert the logarithmic ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ

form into exponential form . ๐‘Ž๐‘Ž๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

โ€ข Procedure to solve a logarithmic equation

Steps Example: Solve ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘(๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ + ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’) = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3(3 + 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2

- Convert the log equation to an exponential equation . 32 = 3 + 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

- Isolate x term . 32 โˆ’ 3 = 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

- Solve for x . 6 = 4x , x = 1.5 ?

- Check . ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3[3 + 4(1.5)] = 2 ?๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™39 = 2

? ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™9๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3

= 2 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘๐‘๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘๐‘

โˆš2 = 2 Correct!

Example: Solve the given equation .

๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ = ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐Ÿ๐Ÿ๐Ÿ๐Ÿ(๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ) + ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2(3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ 2) = 3 Collect log terms on one side .

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2๐‘™๐‘™๐‘™๐‘™

3๐‘™๐‘™๐‘™๐‘™โˆ’2= 3 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž ๏ฟฝ

๐ด๐ด๐ต๐ต๏ฟฝ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ต๐ต

23 = ๐‘™๐‘™๐‘™๐‘™3๐‘™๐‘™๐‘™๐‘™โˆ’2

log equation exponential equation

8 = ๐‘™๐‘™๐‘™๐‘™3๐‘™๐‘™๐‘™๐‘™โˆ’2

8(3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ 2) = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ Solve for x.

24x โ€“ 16 = x

x โ‰ˆ 0.7

Page 10-26

Logarithmic Equations

โ€ข Logarithmic equation: an equation that contains Examplelogarithms of the expression (s) . ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 5) = 7

โ€ข The key to solve a log equation: convert the logarithmic ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ

form into exponential form . ๐‘Ž๐‘Ž๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

โ€ข Procedure to solve a logarithmic equation

Steps Example: Solve ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘(๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ + ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’) = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3(3 + 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2

- Convert the log equation to an exponential equation . 32 = 3 + 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

- Isolate x term . 32 โˆ’ 3 = 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

- Solve for x . 6 = 4x , x = 1.5 ?

- Check . ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3[3 + 4(1.5)] = 2 ?๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™39 = 2

? ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™9๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3

= 2 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘๐‘๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘๐‘

โˆš2 = 2 Correct!

Example: Solve the given equation .

๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ = ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐Ÿ๐Ÿ๐Ÿ๐Ÿ(๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ) + ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2(3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ 2) = 3 Collect log terms on one side .

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™2๐‘™๐‘™๐‘™๐‘™

3๐‘™๐‘™๐‘™๐‘™โˆ’2= 3 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž ๏ฟฝ

๐ด๐ด๐ต๐ต๏ฟฝ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ต๐ต

23 = ๐‘™๐‘™๐‘™๐‘™3๐‘™๐‘™๐‘™๐‘™โˆ’2

log equation exponential equation

8 = ๐‘™๐‘™๐‘™๐‘™3๐‘™๐‘™๐‘™๐‘™โˆ’2

8(3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ 2) = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ Solve for x.

24x โ€“ 16 = x

x โ‰ˆ 0.7

Page 10-26

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 249

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

Example: Solve the given equation .

๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ (๐’™๐’™๐’™๐’™ + ๐Ÿ—๐Ÿ—) = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’™๐’™๐’™๐’™ Collect log terms on one side .

log (๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 9) + ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 1 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ด๐ด + ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž๐ต๐ต = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘Ž๐‘Ž(๐ด๐ด๐ต๐ต)

log [(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 9) โˆ™ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ] = 1 log equation exponential equation

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™10๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ (๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 9) = 1 log (๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 9)๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™10๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ (๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 9)

101 = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 9) Distributive property .

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2 + 9๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ 10 = 0 Solve for x.

(x โˆ’ 1)(x + 10) = 0 Factor .

x โˆ’ 1 = 0 x + 10 = 0 Zero-product property

x = 1 x = -10

Check: log (๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 9) = 1 โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

x = 1 x = -10 ? ?

log (1 + 9) = 1 โˆ’ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™1 log ๏ฟฝ-10 + 9๏ฟฝ = 1 โˆ’ log (-10) ? ?

log 10 = 1 โˆ’ 0 log ( -1) = 1 โˆ’ log (-10)

โˆš Undefined

1 = 1 Correct! x = -10 is not a solution .

Solution: x = 1

Page 10-27

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

250 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

Unit 10 Summary

โ€ข Characteristics of exponential functions

Characteristic ๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐’™๐’™ ๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚-๐’™๐’™๐’™๐’™

growth / decay The graph increases (grows) from left to right .

The graph falls (decays) from left to right .

example

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

Exponential growth

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 3-๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

Exponential decay

asymptote x-axis (y = 0) x-axis (y = 0)

y - intercept y = 1domain x values x = all real numbers or x = (-โˆž, โˆž)range y values y = (0, โˆž) or { y | y > 0 }

โ€ข Stretching or shiftingFunction Stretch or Shrink Example Graph

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐’™๐’™The larger the a, the narrower the curve .The smaller the a, the wider the curve .

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅand

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

โ€ข Reflecting (mirror image)Function Reflection Example Graph

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚-๐’™๐’™๐’™๐’™ Reflect the graph of ๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ about the y-axis .

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ and๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2-๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = -๐’‚๐’‚๐’™๐’™๐’™๐’™ Reflect the graph of ๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ about the x-axis .

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ and

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = -2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

โ€ข ShiftingExponential

Function Shifting Example Graph

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐’™๐’™ + ๐‘ช๐‘ช

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐’™๐’™ โˆ’ ๐‘ช๐‘ช

Shift the graph of y = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ C units up .

Shift the graph of y = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ C units down .

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 1

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ 1

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐’™๐’™+๐‘ช๐‘ช

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐’™๐’™โˆ’๐‘ช๐‘ชShift the graph of y = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ C units to the left .

Shift the graph of y = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ C units to the right .

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ+1

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅโˆ’1

(0, 1) โˆ™ (0, 1) โˆ™

f (x) = 4x

f (x) = 2x

1โˆ™

f(x) = 2x

f(x) = 2x+1

f(x) = 2x-1

0

f(x) = 2x + 1

f(x) = 2x - 1

f(x) = 2x

0

f (x) = 2x

f (x) = - 2-x

1โˆ™

f (x) = 2-x f (x) = 2x

01โˆ™

Page 10-28

Unit 10 Summary

โ€ข Characteristics of exponential functions

Characteristic ๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐’™๐’™ ๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚-๐’™๐’™๐’™๐’™

growth / decay The graph increases (grows) from left to right .

The graph falls (decays) from left to right .

example

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

Exponential growth

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 3-๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

Exponential decay

asymptote x-axis (y = 0) x-axis (y = 0)

y - intercept y = 1domain x values x = all real numbers or x = (-โˆž, โˆž)range y values y = (0, โˆž) or { y | y > 0 }

โ€ข Stretching or shiftingFunction Stretch or Shrink Example Graph

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐’™๐’™The larger the a, the narrower the curve .The smaller the a, the wider the curve .

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅand

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

โ€ข Reflecting (mirror image)Function Reflection Example Graph

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚-๐’™๐’™๐’™๐’™ Reflect the graph of ๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ about the y-axis .

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ and๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2-๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = -๐’‚๐’‚๐’™๐’™๐’™๐’™ Reflect the graph of ๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ about the x-axis .

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ and

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = -2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

โ€ข ShiftingExponential

Function Shifting Example Graph

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐’™๐’™ + ๐‘ช๐‘ช

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐’™๐’™ โˆ’ ๐‘ช๐‘ช

Shift the graph of y = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ C units up .

Shift the graph of y = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ C units down .

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 1

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ 1

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐’™๐’™+๐‘ช๐‘ช

๐’‡๐’‡(๐’™๐’™๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐’™๐’™โˆ’๐‘ช๐‘ชShift the graph of y = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ C units to the left .

Shift the graph of y = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ C units to the right .

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ+1

๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅโˆ’1

(0, 1) โˆ™ (0, 1) โˆ™

f (x) = 4x

f (x) = 2x

1โˆ™

f(x) = 2x

f(x) = 2x+1

f(x) = 2x-1

0

f(x) = 2x + 1

f(x) = 2x - 1

f(x) = 2x

0

f (x) = 2x

f (x) = - 2-x

1โˆ™

f (x) = 2-x f (x) = 2x

01โˆ™

Page 10-28

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 251

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

โ€ข X and Y interchanging Function Shape Example Graph

๐’š๐’š๐’š๐’š = ๐’‚๐’‚๐’™๐’™๐’™๐’™ and

๐’™๐’™๐’™๐’™ = ๐’‚๐’‚๐’š๐’š๐’š๐’š

Reflect the graph of ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅabout the line y = x to get

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ and๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 2๐‘ฆ๐‘ฆ

โ€ข One-to-one function: a function for which every element of the range (y-value) corresponds to a unique domain (x-value) .

โ€ข The horizontal-line test: if a horizontal line cuts the graph of a function only once, then the function is one-to-one and its inverse is a function .

โ€ข Inverse function f -1(x): the function formed when the order of the elements in a given function is switched .

โ€ข The graph of inverse function f -1(x) is a reflection the original function f (x) about the line y = x .

โ€ข If a function f (x) is one-to-one, its inverse function f -1(x) can be found as follows:

- Confirm that the function is 1-to-1 .- Rewrite f (x) as y .- Switch x and y .- Solve for y.- Replace y with f -1 (x) . - Graph f -1 (x): reflect the graph of f (x) across the line y = x.

โ€ข Composite function f โˆ˜ g(x): a combination of two or more functions in which the result of

one function is applied to another function (substitute a function into another function) .

Composite Function Formula Comments

f โˆ˜ g (x) f โˆ˜ g(x) = f [g(x)]g (x) (inner function)

The result of g ( ) is applying to f ( ) .

f ( ) (outer function)

g โˆ˜ f (x) g โˆ˜ f (x) = g [f(x)]f (x) (inner function)

The result of f ( ) is applying to g ( ) .

g ( ) (outer function)

Inverse FunctionIf a function is one-to-one, then f -1 โˆ˜ f (x) = x and f โˆ˜ f -1 (x) = x.

โ€ข The logarithmic function f (x) = loga x: a function that is the inverse of an exponential function (y = ax) .

y = x

y = 2x

x = 2y

0

Page 10-29

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

252 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

โ€ข Definition of logarithm

Logarithmic Function Definition of Logarithm Example

f(x) = log๐‘Ž๐‘Ž x(x > 0 , a > 0, a โ‰  1)

if ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ, then log๐‘Ž๐‘Ž ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ .Or if ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž๐‘ฆ๐‘ฆ, then log๐‘Ž๐‘Ž x = y.

If 9 = 32, then 2 = log3 9 .Read: โ€œthe log base 3 of 9 is 2โ€ or โ€œlog of 9, base 3, equals 2โ€ .

โ€ข Logarithm of zero log a (0): the logarithm of 0 is undefined .

โ€ข Logarithm of negative number log a (-x): the logarithm of negative numbers is undefined .

โ€ข Converting between exponential and logarithmic forms

Exponential to log form: ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆlog๐‘Ž๐‘Ž y = x

Log to exponential form: log๐‘Ž๐‘Ž y = x๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ

โ€ข Logarithmic equation: an equation that contains a logarithmic expression .

โ€ข The key to solve a logarithmic equation: convert log into exponential form .

โ€ข Logarithmic functions and exponential functions are inverse functions .

โ€ข The graph of the logarithmic function is the reflection of the graph of the exponential

function about the y = x line .

โ€ข Comparing properties of logarithmic and exponential functions

Exponential Functiony = f (x) = ax

Logarithmic Functionlog๐‘Ž๐‘Ž x

Exampley = 2x log2 x

Domain (x-values) (-โˆž, โˆž)All real numbers .

(0, โˆž) or x > 0 (-โˆž, โˆž) (0, โˆž)

Range (y-values) (0, โˆž) or y > 0 (-โˆž, โˆž)All real numbers .

y > 0 (-โˆž, โˆž)

Intercept y-intercept = 1 x-intercept = 1

Asymptote x - axis y - axis

โ€ข Basic properties of logarithms

Property Examplelog๐‘Ž๐‘Ž๐Ÿ๐Ÿ๐Ÿ๐Ÿ = 0 log41 = 0log๐’‚๐’‚๐’‚๐’‚ = 1 log77 = 1log๐‘Ž๐‘Ž ๐‘Ž๐‘Ž๐’™๐’™๐’™๐’™ = x log2 23 = 3๐‘Ž๐‘Žlog๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = x 3log34 = 4

โˆ™ 1 โˆ™ 1

Page 10-30

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 253

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

โ€ข Rules of logarithms

Name Rule Exampleproduct rule log๐‘Ž๐‘Ž(๐‘จ๐‘จ โˆ™ ๐‘ฉ๐‘ฉ) = log๐‘Ž๐‘Ž๐‘จ๐‘จ + log๐‘Ž๐‘Ž๐‘ฉ๐‘ฉ log5(3 โˆ™ 4) = log53 + log54

quotient rule log๐‘Ž๐‘Ž ๏ฟฝ๐‘จ๐‘จ๐‘ฉ๐‘ฉ๏ฟฝ = log๐‘Ž๐‘Ž๐‘จ๐‘จ โˆ’ log๐‘Ž๐‘Ž๐‘ฉ๐‘ฉ log3 ๏ฟฝ

72๏ฟฝ = log37 โˆ’ log32

power rule log๐‘Ž๐‘Ž ๐ด๐ด๐’๐’ = n log๐‘Ž๐‘Ž๐ด๐ด log2 3๐Ÿ’๐Ÿ’ = 4 log23

โ€ข The common logarithm

Notation for Common Log Example๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™10๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

Base 10 No base means base 10๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™103 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ 3

โ€ข The natural logarithm

Notation for Natural Log Example๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘’๐‘’๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ

Base e ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘’๐‘’3 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ 3

โ€ข Graphing of f (x) = ln x , ex and e-x

The graph of the exponential function (ex) is a reflection of the graph of (e-x ) about

the y-axis .

The graph of the natural logarithmic function ln x is the reflection of the graph of

the exponential function ex about the y = x line .

โ€ข Change of base formula

Change of Base Formula ๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’ƒ๐’ƒ๐’™๐’™๐’™๐’™ =๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐’™๐’™๐’™๐’™๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’‚๐’‚๐’ƒ๐’ƒ

Example

change to base 10 ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐’ƒ๐’ƒ๐’™๐’™๐’™๐’™ =๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ ๐’™๐’™๐’™๐’™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ ๐’ƒ๐’ƒ ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™35 = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ 5

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3โ‰ˆ 1.465

change to base e ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐’ƒ๐’ƒ๐’™๐’™๐’™๐’™ =๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ ๐’™๐’™๐’™๐’™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ ๐’ƒ๐’ƒ

๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™35 = ๐‘™๐‘™๐‘™๐‘™ 5๐‘™๐‘™๐‘™๐‘™ 3

โ‰ˆ 1.465

โ€ข Exponential equation: an equation that contains variable(s) in the exponent .

โ€ข The key to solve an exponential equation: take the logarithm of both sides .

LOG 5 ) รท LOG 3

LN 5 ) รท LN 3

Page 10-31

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

254 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 10 โ€“ Exponential and Logarithmic Functions

PRACTICE QUIZ

Unit 10 Exponential & Logarithmic Functions

1. Sketch the graph of ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ amd ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = 2-๐‘ฅ๐‘ฅ .

2. Determine f (x) and g (x) such that h (x) = f โ—‹ g (x), h (x) = (4 โ€“ 3x)3

3. Determine the inverse of the given function f (x) = -5x .

4. Solve each of the following equations .

a . log381 = x

b . log2713

= x

5. Find the value of 8log83 .

6. Write each of the following as simpler logarithms .

a . log4 ๏ฟฝ6๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ5๏ฟฝ

b . log5๏ฟฝ๐‘Ž๐‘Ž2๐‘๐‘๐‘๐‘

4

7. Evaluate each of the following .

a . log0.312

b . log๐œ‹๐œ‹4.7

8. Solve each of the following equations .

a . 4(2๐‘ฅ๐‘ฅ+1) = 6๐‘ฅ๐‘ฅ

b . ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3๐‘ฅ๐‘ฅ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3(4๐‘ฅ๐‘ฅ โˆ’ 1) + 2

Page 15

PRACTICE QUIZ

Unit 10 Exponential & Logarithmic Functions

1. Sketch the graph of ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ amd ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = 2-๐‘ฅ๐‘ฅ .

2. Determine f (x) and g (x) such that h (x) = f โ—‹ g (x), h (x) = (4 โ€“ 3x)3

3. Determine the inverse of the given function f (x) = -5x .

4. Solve each of the following equations .

a . log381 = x

b . log2713

= x

5. Find the value of 8log83 .

6. Write each of the following as simpler logarithms .

a . log4 ๏ฟฝ6๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ5๏ฟฝ

b . log5๏ฟฝ๐‘Ž๐‘Ž2๐‘๐‘๐‘๐‘

4

7. Evaluate each of the following .

a . log0.312

b . log๐œ‹๐œ‹4.7

8. Solve each of the following equations .

a . 4(2๐‘ฅ๐‘ฅ+1) = 6๐‘ฅ๐‘ฅ

b . ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3๐‘ฅ๐‘ฅ = ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™3(4๐‘ฅ๐‘ฅ โˆ’ 1) + 2

Page 15

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 255

Algebra I & II Key Concepts, Practice, and Quizzes Unit 11 โ€“ Determinants and Matrices

UNIT 11 DETERMINANTS AND MATRICES

11-1 DETERMINANTS

Second-Order Determinants

โ€ข Determinant : a square set of numbers (called elements) enclosed in two lines that

represents the sum of the products of numbers, and is useful for solving systems of linear

equations .

โ€ข Dimensions of a determinant: a determinant has m rows and n columns (m ร— n) Rows Columns

โ€ข A second-order determinant (2 ร— 2): ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

๏ฟฝ

2 rows 2 columns Column 1 Column 2

โ€ข Evaluate a 2 ร— 2 determinant

Determinant Evaluation Example

๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

๏ฟฝ ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

๏ฟฝ+

= ๐‘Ž๐‘Ž1๐‘๐‘2 โˆ’ ๐‘๐‘1๐‘Ž๐‘Ž2 ๏ฟฝ2 13 4๏ฟฝ+

= 2 โˆ™ 4 โˆ’ 1 โˆ™ 3 = 5

- Draw a diagonal from the first element of the top row downward to the right .

- Draw a diagonal from the second element of the top row downward to the left .

- Multiply the elements on the diagonals, and subtract the products .

๏ฟฝdescending from left to right is positive

descending from right to left is negative

Example: Evaluate the following determinants .

1. ๏ฟฝ2 4-2 -3๏ฟฝ = 2 ๏ฟฝ-3๏ฟฝ โˆ’ 4 ๏ฟฝ-2๏ฟฝ = -6 + 8 = ๐Ÿ๐Ÿ

2. ๏ฟฝ2 ๐‘ฅ๐‘ฅ-3 5๏ฟฝ = 2 โˆ™ 5 โˆ’ ๐‘ฅ๐‘ฅ ๏ฟฝ-3๏ฟฝ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

Row 1

Row 2

is +

is โˆ’

Page 11-1

UNIT 11 DETERMINANTS AND MATRICES

11-1 DETERMINANTS

Second-Order Determinants

โ€ข Determinant : a square set of numbers (called elements) enclosed in two lines that

represents the sum of the products of numbers, and is useful for solving systems of linear

equations .

โ€ข Dimensions of a determinant: a determinant has m rows and n columns (m ร— n) Rows Columns

โ€ข A second-order determinant (2 ร— 2): ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

๏ฟฝ

2 rows 2 columns Column 1 Column 2

โ€ข Evaluate a 2 ร— 2 determinant

Determinant Evaluation Example

๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

๏ฟฝ ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

๏ฟฝ+

= ๐‘Ž๐‘Ž1๐‘๐‘2 โˆ’ ๐‘๐‘1๐‘Ž๐‘Ž2 ๏ฟฝ2 13 4๏ฟฝ+

= 2 โˆ™ 4 โˆ’ 1 โˆ™ 3 = 5

- Draw a diagonal from the first element of the top row downward to the right .

- Draw a diagonal from the second element of the top row downward to the left .

- Multiply the elements on the diagonals, and subtract the products .

๏ฟฝdescending from left to right is positive

descending from right to left is negative

Example: Evaluate the following determinants .

1. ๏ฟฝ2 4-2 -3๏ฟฝ = 2 ๏ฟฝ-3๏ฟฝ โˆ’ 4 ๏ฟฝ-2๏ฟฝ = -6 + 8 = ๐Ÿ๐Ÿ

2. ๏ฟฝ2 ๐‘ฅ๐‘ฅ-3 5๏ฟฝ = 2 โˆ™ 5 โˆ’ ๐‘ฅ๐‘ฅ ๏ฟฝ-3๏ฟฝ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

Row 1

Row 2

is +

is โˆ’

Page 11-1

UNIT 11 DETERMINANTS AND MATRICES

11-1 DETERMINANTS

Second-Order Determinants

โ€ข Determinant : a square set of numbers (called elements) enclosed in two lines that

represents the sum of the products of numbers, and is useful for solving systems of linear

equations .

โ€ข Dimensions of a determinant: a determinant has m rows and n columns (m ร— n) Rows Columns

โ€ข A second-order determinant (2 ร— 2): ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

๏ฟฝ

2 rows 2 columns Column 1 Column 2

โ€ข Evaluate a 2 ร— 2 determinant

Determinant Evaluation Example

๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

๏ฟฝ ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

๏ฟฝ+

= ๐‘Ž๐‘Ž1๐‘๐‘2 โˆ’ ๐‘๐‘1๐‘Ž๐‘Ž2 ๏ฟฝ2 13 4๏ฟฝ+

= 2 โˆ™ 4 โˆ’ 1 โˆ™ 3 = 5

- Draw a diagonal from the first element of the top row downward to the right .

- Draw a diagonal from the second element of the top row downward to the left .

- Multiply the elements on the diagonals, and subtract the products .

๏ฟฝdescending from left to right is positive

descending from right to left is negative

Example: Evaluate the following determinants .

1. ๏ฟฝ2 4-2 -3๏ฟฝ = 2 ๏ฟฝ-3๏ฟฝ โˆ’ 4 ๏ฟฝ-2๏ฟฝ = -6 + 8 = ๐Ÿ๐Ÿ

2. ๏ฟฝ2 ๐‘ฅ๐‘ฅ-3 5๏ฟฝ = 2 โˆ™ 5 โˆ’ ๐‘ฅ๐‘ฅ ๏ฟฝ-3๏ฟฝ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

Row 1

Row 2

is +

is โˆ’

Page 11-1

UNIT 11 DETERMINANTS AND MATRICES

11-1 DETERMINANTS

Second-Order Determinants

โ€ข Determinant : a square set of numbers (called elements) enclosed in two lines that

represents the sum of the products of numbers, and is useful for solving systems of linear

equations .

โ€ข Dimensions of a determinant: a determinant has m rows and n columns (m ร— n) Rows Columns

โ€ข A second-order determinant (2 ร— 2): ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

๏ฟฝ

2 rows 2 columns Column 1 Column 2

โ€ข Evaluate a 2 ร— 2 determinant

Determinant Evaluation Example

๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

๏ฟฝ ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

๏ฟฝ+

= ๐‘Ž๐‘Ž1๐‘๐‘2 โˆ’ ๐‘๐‘1๐‘Ž๐‘Ž2 ๏ฟฝ2 13 4๏ฟฝ+

= 2 โˆ™ 4 โˆ’ 1 โˆ™ 3 = 5

- Draw a diagonal from the first element of the top row downward to the right .

- Draw a diagonal from the second element of the top row downward to the left .

- Multiply the elements on the diagonals, and subtract the products .

๏ฟฝdescending from left to right is positive

descending from right to left is negative

Example: Evaluate the following determinants .

1. ๏ฟฝ2 4-2 -3๏ฟฝ = 2 ๏ฟฝ-3๏ฟฝ โˆ’ 4 ๏ฟฝ-2๏ฟฝ = -6 + 8 = ๐Ÿ๐Ÿ

2. ๏ฟฝ2 ๐‘ฅ๐‘ฅ-3 5๏ฟฝ = 2 โˆ™ 5 โˆ’ ๐‘ฅ๐‘ฅ ๏ฟฝ-3๏ฟฝ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

Row 1

Row 2

is +

is โˆ’

Page 11-1

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

256 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 11 โ€“ Determinants and Matrices

Third-Order DeterminantsExpansion by Diagonals

โ€ข A third-order determinant (3 ร— 3): ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๏ฟฝ

Column 1 Column 2 Column 3

โ€ข Evaluate a 3 ร— 3 Determinant โ€“ Method I: Using Diagonals

Steps

- Copy the first two columns of the determinant to ๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐’‚๐’‚๐Ÿ๐Ÿ ๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐’‚๐’‚๐Ÿ๐Ÿ ๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ ๐’ƒ๐’ƒ๐Ÿ‘๐Ÿ‘

its right .

- Draw three diagonals from each element of the top ๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3

row downward to the right .

- Draw three diagonals from each element of the top๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3

row downward to the left .

- Multiply the elements on the diagonals, and sum the products .

๏ฟฝdescending from left to right is positive. descending from right to left is negative. ๐‘Ž๐‘Ž1๐‘๐‘2๐‘๐‘3+๐‘๐‘1๐‘๐‘2๐‘Ž๐‘Ž3 + ๐‘๐‘1๐‘Ž๐‘Ž2๐‘๐‘3

-๐‘๐‘1๐‘๐‘2๐‘Ž๐‘Ž3 โˆ’ ๐‘Ž๐‘Ž1๐‘๐‘2๐‘๐‘3 โˆ’ ๐‘๐‘1๐‘Ž๐‘Ž2๐‘๐‘3

3 ร— 3 Determinant Expansion by Diagonals Example

๐’‚๐’‚๐Ÿ๐Ÿ ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐’„๐’„๐Ÿ๐Ÿ ๐’‚๐’‚๐Ÿ๐Ÿ ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐’„๐’„๐Ÿ๐Ÿ ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ ๐’ƒ๐’ƒ๐Ÿ‘๐Ÿ‘ ๐’„๐’„๐Ÿ‘๐Ÿ‘

๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3

= ๐‘Ž๐‘Ž1๐‘๐‘2๐‘๐‘3+๐‘๐‘1๐‘๐‘2๐‘Ž๐‘Ž3 + ๐‘๐‘1๐‘Ž๐‘Ž2๐‘๐‘3 โˆ’๐‘๐‘1๐‘๐‘2๐‘Ž๐‘Ž3 โˆ’ ๐‘Ž๐‘Ž1๐‘๐‘2๐‘๐‘3 โˆ’ ๐‘๐‘1๐‘Ž๐‘Ž2๐‘๐‘3

1 1 3 4 3 2 3 1 2

1 14 33 1

= 1โˆ™3โˆ™2 + 1โˆ™2โˆ™3 + 3โˆ™4โˆ™1โˆ’3โˆ™3โˆ™3 โˆ’ 1โˆ™2โˆ™1 โˆ’ 1โˆ™4โˆ™2

= 6 + 6 + 12 โ€“ 27 โ€“ 2 โ€“ 8 = -13

Note: โ€˜Expansion by diagonalsโ€™ does not work with 4 ร— 4 or higher-order determinants .

Example: Evaluate the determinant . ๐Ÿ‘๐Ÿ‘ ๐Ÿ๐Ÿ ๐ŸŽ๐ŸŽ -๐Ÿ๐Ÿ ๐ŸŽ๐ŸŽ ๐Ÿ๐Ÿ ๐Ÿ’๐Ÿ’ ๐Ÿ๐Ÿ ๐Ÿ“๐Ÿ“

3 2 0 -1 0 1 4 1 5

3 2-1 04 1

= 3โˆ™0โˆ™5 + 2โˆ™1โˆ™4 + 0โˆ™(-1)โˆ™1 โ€“ 0โˆ™0โˆ™4 โ€“3โˆ™1โˆ™1 โ€“ 2โˆ™(-1)โˆ™5

= 0 + 8 + 0 โ€“ 0 โ€“ 3 + 10 = 15

Row 1

Row 3 Row 2

is +

is โˆ’

Page 11-2

Third-Order DeterminantsExpansion by Diagonals

โ€ข A third-order determinant (3 ร— 3): ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๏ฟฝ

Column 1 Column 2 Column 3

โ€ข Evaluate a 3 ร— 3 Determinant โ€“ Method I: Using Diagonals

Steps

- Copy the first two columns of the determinant to ๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐’‚๐’‚๐Ÿ๐Ÿ ๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐’‚๐’‚๐Ÿ๐Ÿ ๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ ๐’ƒ๐’ƒ๐Ÿ‘๐Ÿ‘

its right .

- Draw three diagonals from each element of the top ๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3

row downward to the right .

- Draw three diagonals from each element of the top๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3

row downward to the left .

- Multiply the elements on the diagonals, and sum the products .

๏ฟฝdescending from left to right is positive. descending from right to left is negative. ๐‘Ž๐‘Ž1๐‘๐‘2๐‘๐‘3+๐‘๐‘1๐‘๐‘2๐‘Ž๐‘Ž3 + ๐‘๐‘1๐‘Ž๐‘Ž2๐‘๐‘3

-๐‘๐‘1๐‘๐‘2๐‘Ž๐‘Ž3 โˆ’ ๐‘Ž๐‘Ž1๐‘๐‘2๐‘๐‘3 โˆ’ ๐‘๐‘1๐‘Ž๐‘Ž2๐‘๐‘3

3 ร— 3 Determinant Expansion by Diagonals Example

๐’‚๐’‚๐Ÿ๐Ÿ ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐’„๐’„๐Ÿ๐Ÿ ๐’‚๐’‚๐Ÿ๐Ÿ ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐’„๐’„๐Ÿ๐Ÿ ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ ๐’ƒ๐’ƒ๐Ÿ‘๐Ÿ‘ ๐’„๐’„๐Ÿ‘๐Ÿ‘

๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3

= ๐‘Ž๐‘Ž1๐‘๐‘2๐‘๐‘3+๐‘๐‘1๐‘๐‘2๐‘Ž๐‘Ž3 + ๐‘๐‘1๐‘Ž๐‘Ž2๐‘๐‘3 โˆ’๐‘๐‘1๐‘๐‘2๐‘Ž๐‘Ž3 โˆ’ ๐‘Ž๐‘Ž1๐‘๐‘2๐‘๐‘3 โˆ’ ๐‘๐‘1๐‘Ž๐‘Ž2๐‘๐‘3

1 1 3 4 3 2 3 1 2

1 14 33 1

= 1โˆ™3โˆ™2 + 1โˆ™2โˆ™3 + 3โˆ™4โˆ™1โˆ’3โˆ™3โˆ™3 โˆ’ 1โˆ™2โˆ™1 โˆ’ 1โˆ™4โˆ™2

= 6 + 6 + 12 โ€“ 27 โ€“ 2 โ€“ 8 = -13

Note: โ€˜Expansion by diagonalsโ€™ does not work with 4 ร— 4 or higher-order determinants .

Example: Evaluate the determinant . ๐Ÿ‘๐Ÿ‘ ๐Ÿ๐Ÿ ๐ŸŽ๐ŸŽ -๐Ÿ๐Ÿ ๐ŸŽ๐ŸŽ ๐Ÿ๐Ÿ ๐Ÿ’๐Ÿ’ ๐Ÿ๐Ÿ ๐Ÿ“๐Ÿ“

3 2 0 -1 0 1 4 1 5

3 2-1 04 1

= 3โˆ™0โˆ™5 + 2โˆ™1โˆ™4 + 0โˆ™(-1)โˆ™1 โ€“ 0โˆ™0โˆ™4 โ€“3โˆ™1โˆ™1 โ€“ 2โˆ™(-1)โˆ™5

= 0 + 8 + 0 โ€“ 0 โ€“ 3 + 10 = 15

Row 1

Row 3 Row 2

is +

is โˆ’

Page 11-2

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 257

Algebra I & II Key Concepts, Practice, and Quizzes Unit 11 โ€“ Determinants and Matrices

Third-Order DeterminantsExpansion by Minors

โ€ข The minor of an element in a determinant is a determinant of the next lower order . It is

the determinant that results from crossing out the row and the column that contain

that element.

Example: Find the minor of element a1 and b2 .Cross out this column .

๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

A1 = ๏ฟฝ๐‘๐‘2 ๐‘๐‘2๐‘๐‘3 ๐‘๐‘3

๏ฟฝ ,๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

B2 = ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž3 ๐‘๐‘3๏ฟฝ

Cross out this column The minor in a 3ร—3 determinant is a 2ร—2 determinant .

โ€ข Placing signs for minor: the sign of a minor is determined by its position in the determinant .

- A 3ร—3 determinant: + โˆ’ +โˆ’ + โˆ’+ โˆ’ +

- A 4ร—4 determinant: + โˆ’ + โˆ’โˆ’ + โˆ’ ++โˆ’

โˆ’+

+ โˆ’โˆ’ +

โ€ข Cofactors: minors + place signs = cofactors

๐ด๐ด1 ๐ต๐ต1 ๐ถ๐ถ1๐ด๐ด2 ๐ต๐ต2 ๐ถ๐ถ2๐ด๐ด3 ๐ต๐ต3 ๐ถ๐ถ3

+ + โˆ’ +โˆ’ + โˆ’+ โˆ’ +

๐ด๐ด1 -๐ต๐ต1 ๐ถ๐ถ1 -๐ด๐ด2 ๐ต๐ต2 -๐ถ๐ถ2 ๐ด๐ด3 -๐ต๐ต3 ๐ถ๐ถ3

minors place signs cofactors

โ€ข Evaluate a 3 ร— 3 determinant โ€“ Method II: expansion by minorsSteps

- Choose any row or column in the determinant . Choose this column .

๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘๐‘1๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘2 ๐‘๐‘2๐’‚๐’‚๐Ÿ‘๐Ÿ‘ ๐‘๐‘3 ๐‘๐‘3

- Multiply each element in the chosen row/column by its cofactor .๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘๐‘1 ๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘2 ๐‘๐‘2 =๐’‚๐’‚๐Ÿ‘๐Ÿ‘ ๐‘๐‘3 ๐‘๐‘3

๐’‚๐’‚๐Ÿ๐Ÿ ๏ฟฝ๐‘๐‘2 ๐‘๐‘2๐‘๐‘3 ๐‘๐‘3

๏ฟฝ โˆ’ ๐’‚๐’‚๐Ÿ๐Ÿ ๏ฟฝ๐‘๐‘1 ๐‘๐‘1๐‘๐‘3 ๐‘๐‘3

๏ฟฝ + ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ ๏ฟฝ๐‘๐‘1 ๐‘๐‘1๐‘๐‘2 ๐‘๐‘2

๏ฟฝ

+ โˆ’ + โˆ’ + โˆ’ + โˆ’ +

a1 a2 a3

๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ ๐‘๐‘3 ๐‘๐‘3

Tip: Multiply a1, a2, and a3 by a minor that is not in its row or column .

Cross out this row .

Cross out this row .

Page 11-3

Third-Order DeterminantsExpansion by Minors

โ€ข The minor of an element in a determinant is a determinant of the next lower order . It is

the determinant that results from crossing out the row and the column that contain

that element.

Example: Find the minor of element a1 and b2 .Cross out this column .

๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

A1 = ๏ฟฝ๐‘๐‘2 ๐‘๐‘2๐‘๐‘3 ๐‘๐‘3

๏ฟฝ ,๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

B2 = ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž3 ๐‘๐‘3๏ฟฝ

Cross out this column The minor in a 3ร—3 determinant is a 2ร—2 determinant .

โ€ข Placing signs for minor: the sign of a minor is determined by its position in the determinant .

- A 3ร—3 determinant: + โˆ’ +โˆ’ + โˆ’+ โˆ’ +

- A 4ร—4 determinant: + โˆ’ + โˆ’โˆ’ + โˆ’ ++โˆ’

โˆ’+

+ โˆ’โˆ’ +

โ€ข Cofactors: minors + place signs = cofactors

๐ด๐ด1 ๐ต๐ต1 ๐ถ๐ถ1๐ด๐ด2 ๐ต๐ต2 ๐ถ๐ถ2๐ด๐ด3 ๐ต๐ต3 ๐ถ๐ถ3

+ + โˆ’ +โˆ’ + โˆ’+ โˆ’ +

๐ด๐ด1 -๐ต๐ต1 ๐ถ๐ถ1 -๐ด๐ด2 ๐ต๐ต2 -๐ถ๐ถ2 ๐ด๐ด3 -๐ต๐ต3 ๐ถ๐ถ3

minors place signs cofactors

โ€ข Evaluate a 3 ร— 3 determinant โ€“ Method II: expansion by minorsSteps

- Choose any row or column in the determinant . Choose this column .

๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘๐‘1๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘2 ๐‘๐‘2๐’‚๐’‚๐Ÿ‘๐Ÿ‘ ๐‘๐‘3 ๐‘๐‘3

- Multiply each element in the chosen row/column by its cofactor .๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘๐‘1 ๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘2 ๐‘๐‘2 =๐’‚๐’‚๐Ÿ‘๐Ÿ‘ ๐‘๐‘3 ๐‘๐‘3

๐’‚๐’‚๐Ÿ๐Ÿ ๏ฟฝ๐‘๐‘2 ๐‘๐‘2๐‘๐‘3 ๐‘๐‘3

๏ฟฝ โˆ’ ๐’‚๐’‚๐Ÿ๐Ÿ ๏ฟฝ๐‘๐‘1 ๐‘๐‘1๐‘๐‘3 ๐‘๐‘3

๏ฟฝ + ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ ๏ฟฝ๐‘๐‘1 ๐‘๐‘1๐‘๐‘2 ๐‘๐‘2

๏ฟฝ

+ โˆ’ + โˆ’ + โˆ’ + โˆ’ +

a1 a2 a3

๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ ๐‘๐‘3 ๐‘๐‘3

Tip: Multiply a1, a2, and a3 by a minor that is not in its row or column .

Cross out this row .

Cross out this row .

Page 11-3

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

258 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 11 โ€“ Determinants and Matrices

Expansion by MinorsExpansion by any Row / Column

Evaluate a determinant that can be expanded by any row or columnโ€ข Expanding along column 1

Expansion by Minors (choose column 1) Example

๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘๐‘1 ๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘2 ๐‘๐‘2 =๐’‚๐’‚๐Ÿ‘๐Ÿ‘ ๐‘๐‘3 ๐‘๐‘3

๐’‚๐’‚๐Ÿ๐Ÿ ๏ฟฝ๐‘๐‘2 ๐‘๐‘2๐‘๐‘3 ๐‘๐‘3

๏ฟฝ โˆ’ ๐’‚๐’‚๐Ÿ๐Ÿ ๏ฟฝ๐‘๐‘1 ๐‘๐‘1๐‘๐‘3 ๐‘๐‘3

๏ฟฝ + ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ ๏ฟฝ๐‘๐‘1 ๐‘๐‘1๐‘๐‘2 ๐‘๐‘2

๏ฟฝ

๐Ÿ๐Ÿ 0 3 ๐ŸŽ๐ŸŽ -2 1 =๐Ÿ๐Ÿ 1 4

๐Ÿ๐Ÿ ๏ฟฝ-2 11 4

๏ฟฝ โˆ’ ๐ŸŽ๐ŸŽ ๏ฟฝ0 31 4๏ฟฝ + ๐Ÿ๐Ÿ ๏ฟฝ

0 3-2 1๏ฟฝ

= 2(-2โˆ™4โˆ’1โˆ™1) โˆ’ 0(0โˆ™4โˆ’3โˆ™1) + 2[0โˆ™1โˆ’ 3(-2)] = 2(-9) โˆ’ 0 + 2โˆ™ 6 = -6

+ โˆ’ + โˆ’ + โˆ’ + โˆ’ +

a1 a2 a3

๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ ๐‘๐‘3 ๐‘๐‘3

โ€ข Expanding along row 1Expansion by Minors (choose row 1) Example

๐’‚๐’‚๐Ÿ๐Ÿ ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐’„๐’„๐Ÿ๐Ÿ ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 =๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐’‚๐’‚๐Ÿ๐Ÿ ๏ฟฝ๐‘๐‘2 ๐‘๐‘2๐‘๐‘3 ๐‘๐‘3

๏ฟฝ โˆ’ ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๏ฟฝ๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3๏ฟฝ + ๐’„๐’„๐Ÿ๐Ÿ ๏ฟฝ

๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3

๏ฟฝ ๐Ÿ๐Ÿ 0 ๐Ÿ‘๐Ÿ‘ 0 -2 1 =2 1 4

๐Ÿ๐Ÿ ๏ฟฝ-2 11 4

๏ฟฝ โˆ’ ๐ŸŽ๐ŸŽ ๏ฟฝ0 12 4๏ฟฝ + ๐Ÿ‘๐Ÿ‘ ๏ฟฝ0 -2

2 1๏ฟฝ

= 2[(-2)โˆ™4 - 1โˆ™1] โ€“ 0(0โˆ™4 โ€“1โˆ™2)+3[0โˆ™1โ€“ (-2) โˆ™2] = 2(-9) + 0 + 3โˆ™4 = -6

(The same result as choosing column 1 .)

+ โˆ’ + โˆ’ + โˆ’ + โˆ’ +

a1 b2 c1

๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐’„๐’„๐Ÿ๐Ÿ ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

โ€ข Expanding along column 2Expansion by Minors (choose column 2) Example

๐‘Ž๐‘Ž1 ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐‘๐‘2 =๐‘Ž๐‘Ž3 ๐’ƒ๐’ƒ๐Ÿ‘๐Ÿ‘ ๐‘๐‘3

-๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๏ฟฝ๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3๏ฟฝ + ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๏ฟฝ

๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž3 ๐‘๐‘3๏ฟฝ โˆ’ ๐’ƒ๐’ƒ๐Ÿ‘๐Ÿ‘ ๏ฟฝ

๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2๏ฟฝ

2 0 3 0 -๐Ÿ๐Ÿ 1 =2 ๐Ÿ๐Ÿ 4

-๐ŸŽ๐ŸŽ ๏ฟฝ0 12 4๏ฟฝ + ๏ฟฝ-๐Ÿ๐Ÿ๏ฟฝ ๏ฟฝ2 3

2 4๏ฟฝ โˆ’ ๐Ÿ๐Ÿ ๏ฟฝ2 30 1๏ฟฝ

= -0(0โˆ™4 โ€“ 1โˆ™2) โ€“ 2(2โˆ™4 โ€“ 2โˆ™3) โ€“ 1(2โˆ™1โ€“ 3โˆ™0) = 0 โ€“ 4 โ€“ 2 = -6

(The same result as choosing column 1 or row 1 .)

+ โˆ’ + โˆ’ + โˆ’ + โˆ’ +

b1 b2 b3

๐‘Ž๐‘Ž1 ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐’ƒ๐’ƒ๐Ÿ‘๐Ÿ‘ ๐‘๐‘3

Page 11-4

Expansion by MinorsExpansion by any Row / Column

Evaluate a determinant that can be expanded by any row or columnโ€ข Expanding along column 1

Expansion by Minors (choose column 1) Example

๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘๐‘1 ๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘2 ๐‘๐‘2 =๐’‚๐’‚๐Ÿ‘๐Ÿ‘ ๐‘๐‘3 ๐‘๐‘3

๐’‚๐’‚๐Ÿ๐Ÿ ๏ฟฝ๐‘๐‘2 ๐‘๐‘2๐‘๐‘3 ๐‘๐‘3

๏ฟฝ โˆ’ ๐’‚๐’‚๐Ÿ๐Ÿ ๏ฟฝ๐‘๐‘1 ๐‘๐‘1๐‘๐‘3 ๐‘๐‘3

๏ฟฝ + ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ ๏ฟฝ๐‘๐‘1 ๐‘๐‘1๐‘๐‘2 ๐‘๐‘2

๏ฟฝ

๐Ÿ๐Ÿ 0 3 ๐ŸŽ๐ŸŽ -2 1 =๐Ÿ๐Ÿ 1 4

๐Ÿ๐Ÿ ๏ฟฝ-2 11 4

๏ฟฝ โˆ’ ๐ŸŽ๐ŸŽ ๏ฟฝ0 31 4๏ฟฝ + ๐Ÿ๐Ÿ ๏ฟฝ

0 3-2 1๏ฟฝ

= 2(-2โˆ™4โˆ’1โˆ™1) โˆ’ 0(0โˆ™4โˆ’3โˆ™1) + 2[0โˆ™1โˆ’ 3(-2)] = 2(-9) โˆ’ 0 + 2โˆ™ 6 = -6

+ โˆ’ + โˆ’ + โˆ’ + โˆ’ +

a1 a2 a3

๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ ๐‘๐‘3 ๐‘๐‘3

โ€ข Expanding along row 1Expansion by Minors (choose row 1) Example

๐’‚๐’‚๐Ÿ๐Ÿ ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐’„๐’„๐Ÿ๐Ÿ ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 =๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐’‚๐’‚๐Ÿ๐Ÿ ๏ฟฝ๐‘๐‘2 ๐‘๐‘2๐‘๐‘3 ๐‘๐‘3

๏ฟฝ โˆ’ ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๏ฟฝ๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3๏ฟฝ + ๐’„๐’„๐Ÿ๐Ÿ ๏ฟฝ

๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3

๏ฟฝ ๐Ÿ๐Ÿ 0 ๐Ÿ‘๐Ÿ‘ 0 -2 1 =2 1 4

๐Ÿ๐Ÿ ๏ฟฝ-2 11 4

๏ฟฝ โˆ’ ๐ŸŽ๐ŸŽ ๏ฟฝ0 12 4๏ฟฝ + ๐Ÿ‘๐Ÿ‘ ๏ฟฝ0 -2

2 1๏ฟฝ

= 2[(-2)โˆ™4 - 1โˆ™1] โ€“ 0(0โˆ™4 โ€“1โˆ™2)+3[0โˆ™1โ€“ (-2) โˆ™2] = 2(-9) + 0 + 3โˆ™4 = -6

(The same result as choosing column 1 .)

+ โˆ’ + โˆ’ + โˆ’ + โˆ’ +

a1 b2 c1

๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐’„๐’„๐Ÿ๐Ÿ ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

โ€ข Expanding along column 2Expansion by Minors (choose column 2) Example

๐‘Ž๐‘Ž1 ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐‘๐‘2 =๐‘Ž๐‘Ž3 ๐’ƒ๐’ƒ๐Ÿ‘๐Ÿ‘ ๐‘๐‘3

-๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๏ฟฝ๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3๏ฟฝ + ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๏ฟฝ

๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž3 ๐‘๐‘3๏ฟฝ โˆ’ ๐’ƒ๐’ƒ๐Ÿ‘๐Ÿ‘ ๏ฟฝ

๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2๏ฟฝ

2 0 3 0 -๐Ÿ๐Ÿ 1 =2 ๐Ÿ๐Ÿ 4

-๐ŸŽ๐ŸŽ ๏ฟฝ0 12 4๏ฟฝ + ๏ฟฝ-๐Ÿ๐Ÿ๏ฟฝ ๏ฟฝ2 3

2 4๏ฟฝ โˆ’ ๐Ÿ๐Ÿ ๏ฟฝ2 30 1๏ฟฝ

= -0(0โˆ™4 โ€“ 1โˆ™2) โ€“ 2(2โˆ™4 โ€“ 2โˆ™3) โ€“ 1(2โˆ™1โ€“ 3โˆ™0) = 0 โ€“ 4 โ€“ 2 = -6

(The same result as choosing column 1 or row 1 .)

+ โˆ’ + โˆ’ + โˆ’ + โˆ’ +

b1 b2 b3

๐‘Ž๐‘Ž1 ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐’ƒ๐’ƒ๐Ÿ‘๐Ÿ‘ ๐‘๐‘3

Page 11-4

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 259

Algebra I & II Key Concepts, Practice, and Quizzes Unit 11 โ€“ Determinants and Matrices

11-2 CRAMERโ€™S RULE

Cramerโ€™s Rule to Solve a 2 ร— 2 System

โ€ข Cramerโ€™s rule: Use the determinant method to solve the system of linear equations .

โ€ข Using Cramerโ€™s rule to solve a 2ร—2 systemA 2ร—2 System Cramerโ€™s Rule

๏ฟฝ๐‘Ž๐‘Ž1๐‘ฅ๐‘ฅ + ๐‘๐‘1๐‘ฆ๐‘ฆ = ๐‘˜๐‘˜1๐‘Ž๐‘Ž2๐‘ฅ๐‘ฅ + ๐‘๐‘2 ๐‘ฆ๐‘ฆ = ๐‘˜๐‘˜2

The solution of the system: x = ๐ท๐ท๐‘ฅ๐‘ฅ๐ท๐ท

, y = ๐ท๐ท๐‘ฆ๐‘ฆ๐ท๐ท

(D โ‰  0)

๐ท๐ท = ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

๏ฟฝ , ๐ท๐ท๐‘ฅ๐‘ฅ = ๏ฟฝ๐‘˜๐‘˜1 ๐‘๐‘1๐‘˜๐‘˜2 ๐‘๐‘2

๏ฟฝ , ๐ท๐ท๐‘ฆ๐‘ฆ = ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘˜๐‘˜1๐‘Ž๐‘Ž2 ๐‘˜๐‘˜2

๏ฟฝ

coefficients of x Replace the column a in D with k.

coefficients of y Replace the column b in D with k.

constant

Example Using Cramerโ€™s Rule to Solve a 2ร—2 System

๏ฟฝ3๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ = 1 2๐‘ฅ๐‘ฅ โˆ’ 3๐‘ฆ๐‘ฆ = 4

๐‘ซ๐‘ซ = ๏ฟฝ3 12 -3๏ฟฝ = 3(-3) โ€“ 1 โˆ™ 2 = -11 , ๐‘ซ๐‘ซ๐’™๐’™ = ๏ฟฝ

1 14 -3๏ฟฝ = 1 โˆ™ ๏ฟฝ-3๏ฟฝ โˆ’ 1 โˆ™ 4 = -๐Ÿ•๐Ÿ•, ๐‘ซ๐‘ซ๐’š๐’š = ๏ฟฝ3 1

2 4๏ฟฝ = 3 โˆ™ 4 โˆ’ 1 โˆ™ 2 =10

x = ๐ท๐ท๐‘ฅ๐‘ฅ๐ท๐ท

= -7-11

= 711

, y = ๐ท๐ท๐‘ฆ๐‘ฆ๐ท๐ท

= 10-11

= - 1011

, Solution: ๏ฟฝ ๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ๐Ÿ๐Ÿ

, - ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ

Two equations in two unknowns (x & y) .

Steps Example: Solve . ๏ฟฝ2๐‘ฅ๐‘ฅ = 2 โˆ’ 3๐‘ฆ๐‘ฆ ๐‘ฆ๐‘ฆ = -3 โˆ’ 4๐‘ฅ๐‘ฅ

- Write equations in standard form .

๏ฟฝ๐‘Ž๐‘Ž1๐‘ฅ๐‘ฅ + ๐‘๐‘1๐‘ฆ๐‘ฆ = ๐‘˜๐‘˜1๐‘Ž๐‘Ž2๐‘ฅ๐‘ฅ + ๐‘๐‘2 ๐‘ฆ๐‘ฆ = ๐‘˜๐‘˜2

๏ฟฝ2๐‘ฅ๐‘ฅ + 3๐‘ฆ๐‘ฆ = 2 4๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ = -3

- Determine the determinants D, Dx and Dy . (the coefficients of the system)

๐ท๐ท = ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

๏ฟฝ = a1 b2 โ€“ b1a2 ๐ท๐ท = ๏ฟฝ2 34 1๏ฟฝ = 2 โˆ™ 1 โ€“ 3 โˆ™ 4 = -10

๐ท๐ท๐‘ฅ๐‘ฅ = ๏ฟฝ๐‘˜๐‘˜1 ๐‘๐‘1๐‘˜๐‘˜2 ๐‘๐‘2

๏ฟฝ = k1 b2 โ€“ b1k2 ๐ท๐ท๐‘ฅ๐‘ฅ = ๏ฟฝ2 3-3 1๏ฟฝ = 2 โˆ™ 1 โˆ’ 3(-3) = 11

Replace the column a in D with the column k.

๐ท๐ท๐‘ฆ๐‘ฆ = ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘˜๐‘˜1๐‘Ž๐‘Ž2 ๐‘˜๐‘˜2

๏ฟฝ= a1 k2 โ€“ k1a2 ๐ท๐ท๐‘ฆ๐‘ฆ = ๏ฟฝ2 24 -3๏ฟฝ = 2๏ฟฝ-3๏ฟฝ โˆ’ 2 โˆ™ 4 = -14

Replace the column b in D with the column k.

- Solve for x and y. x = ๐ท๐ท๐‘ฅ๐‘ฅ๐ท๐ท

x = ๐ท๐ท๐‘ฅ๐‘ฅ๐ท๐ท

= 11-10

= - ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

y = ๐ท๐ท๐‘ฆ๐‘ฆ๐ท๐ท

y = ๐ท๐ท๐‘ฆ๐‘ฆ๐ท๐ท

= -14-10

= ๐Ÿ•๐Ÿ•๐Ÿ“๐Ÿ“

Page 11-5

11-2 CRAMERโ€™S RULE

Cramerโ€™s Rule to Solve a 2 ร— 2 System

โ€ข Cramerโ€™s rule: Use the determinant method to solve the system of linear equations .

โ€ข Using Cramerโ€™s rule to solve a 2ร—2 systemA 2ร—2 System Cramerโ€™s Rule

๏ฟฝ๐‘Ž๐‘Ž1๐‘ฅ๐‘ฅ + ๐‘๐‘1๐‘ฆ๐‘ฆ = ๐‘˜๐‘˜1๐‘Ž๐‘Ž2๐‘ฅ๐‘ฅ + ๐‘๐‘2 ๐‘ฆ๐‘ฆ = ๐‘˜๐‘˜2

The solution of the system: x = ๐ท๐ท๐‘ฅ๐‘ฅ๐ท๐ท

, y = ๐ท๐ท๐‘ฆ๐‘ฆ๐ท๐ท

(D โ‰  0)

๐ท๐ท = ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

๏ฟฝ , ๐ท๐ท๐‘ฅ๐‘ฅ = ๏ฟฝ๐‘˜๐‘˜1 ๐‘๐‘1๐‘˜๐‘˜2 ๐‘๐‘2

๏ฟฝ , ๐ท๐ท๐‘ฆ๐‘ฆ = ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘˜๐‘˜1๐‘Ž๐‘Ž2 ๐‘˜๐‘˜2

๏ฟฝ

coefficients of x Replace the column a in D with k.

coefficients of y Replace the column b in D with k.

constant

Example Using Cramerโ€™s Rule to Solve a 2ร—2 System

๏ฟฝ3๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ = 1 2๐‘ฅ๐‘ฅ โˆ’ 3๐‘ฆ๐‘ฆ = 4

๐‘ซ๐‘ซ = ๏ฟฝ3 12 -3๏ฟฝ = 3(-3) โ€“ 1 โˆ™ 2 = -11 , ๐‘ซ๐‘ซ๐’™๐’™ = ๏ฟฝ

1 14 -3๏ฟฝ = 1 โˆ™ ๏ฟฝ-3๏ฟฝ โˆ’ 1 โˆ™ 4 = -๐Ÿ•๐Ÿ•, ๐‘ซ๐‘ซ๐’š๐’š = ๏ฟฝ3 1

2 4๏ฟฝ = 3 โˆ™ 4 โˆ’ 1 โˆ™ 2 =10

x = ๐ท๐ท๐‘ฅ๐‘ฅ๐ท๐ท

= -7-11

= 711

, y = ๐ท๐ท๐‘ฆ๐‘ฆ๐ท๐ท

= 10-11

= - 1011

, Solution: ๏ฟฝ ๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ๐Ÿ๐Ÿ

, - ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ

Two equations in two unknowns (x & y) .

Steps Example: Solve . ๏ฟฝ2๐‘ฅ๐‘ฅ = 2 โˆ’ 3๐‘ฆ๐‘ฆ ๐‘ฆ๐‘ฆ = -3 โˆ’ 4๐‘ฅ๐‘ฅ

- Write equations in standard form .

๏ฟฝ๐‘Ž๐‘Ž1๐‘ฅ๐‘ฅ + ๐‘๐‘1๐‘ฆ๐‘ฆ = ๐‘˜๐‘˜1๐‘Ž๐‘Ž2๐‘ฅ๐‘ฅ + ๐‘๐‘2 ๐‘ฆ๐‘ฆ = ๐‘˜๐‘˜2

๏ฟฝ2๐‘ฅ๐‘ฅ + 3๐‘ฆ๐‘ฆ = 2 4๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ = -3

- Determine the determinants D, Dx and Dy . (the coefficients of the system)

๐ท๐ท = ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

๏ฟฝ = a1 b2 โ€“ b1a2 ๐ท๐ท = ๏ฟฝ2 34 1๏ฟฝ = 2 โˆ™ 1 โ€“ 3 โˆ™ 4 = -10

๐ท๐ท๐‘ฅ๐‘ฅ = ๏ฟฝ๐‘˜๐‘˜1 ๐‘๐‘1๐‘˜๐‘˜2 ๐‘๐‘2

๏ฟฝ = k1 b2 โ€“ b1k2 ๐ท๐ท๐‘ฅ๐‘ฅ = ๏ฟฝ2 3-3 1๏ฟฝ = 2 โˆ™ 1 โˆ’ 3(-3) = 11

Replace the column a in D with the column k.

๐ท๐ท๐‘ฆ๐‘ฆ = ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘˜๐‘˜1๐‘Ž๐‘Ž2 ๐‘˜๐‘˜2

๏ฟฝ= a1 k2 โ€“ k1a2 ๐ท๐ท๐‘ฆ๐‘ฆ = ๏ฟฝ2 24 -3๏ฟฝ = 2๏ฟฝ-3๏ฟฝ โˆ’ 2 โˆ™ 4 = -14

Replace the column b in D with the column k.

- Solve for x and y. x = ๐ท๐ท๐‘ฅ๐‘ฅ๐ท๐ท

x = ๐ท๐ท๐‘ฅ๐‘ฅ๐ท๐ท

= 11-10

= - ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

y = ๐ท๐ท๐‘ฆ๐‘ฆ๐ท๐ท

y = ๐ท๐ท๐‘ฆ๐‘ฆ๐ท๐ท

= -14-10

= ๐Ÿ•๐Ÿ•๐Ÿ“๐Ÿ“

Page 11-5

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

260 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 11 โ€“ Determinants and Matrices

Cramerโ€™s Rule to Solve a 3 ร— 3 SystemExpansion by Diagonals

โ€ข Using Cramerโ€™s rule to solve a 3ร—3 systemA 3ร—3 System Cramerโ€™s Rule D Dx , Dy and Dz

๏ฟฝ๐‘Ž๐‘Ž1๐‘ฅ๐‘ฅ + ๐‘๐‘1๐‘ฆ๐‘ฆ + ๐‘๐‘1๐‘ง๐‘ง = ๐‘˜๐‘˜1๐‘Ž๐‘Ž2๐‘ฅ๐‘ฅ + ๐‘๐‘2 ๐‘ฆ๐‘ฆ+ ๐‘๐‘2๐‘ฆ๐‘ฆ = ๐‘˜๐‘˜2๐‘Ž๐‘Ž3๐‘ฅ๐‘ฅ + ๐‘๐‘3 ๐‘ฆ๐‘ฆ+๐‘๐‘3๐‘ฆ๐‘ฆ = ๐‘˜๐‘˜3

x = ๐ท๐ท๐‘ฅ๐‘ฅ๐ท๐ท

y = ๐ท๐ท๐‘ฆ๐‘ฆ๐ท๐ท

z = ๐ท๐ท๐‘ง๐‘ง๐ท๐ท

D = ๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

D โ‰  0

๐ท๐ท๐‘ฅ๐‘ฅ = ๐’Œ๐’Œ๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘๐‘1 ๐’Œ๐’Œ๐Ÿ๐Ÿ ๐‘๐‘2 ๐‘๐‘2 ๐’Œ๐’Œ๐Ÿ๐Ÿ ๐‘๐‘3 ๐‘๐‘3

๐ท๐ท๐‘ฆ๐‘ฆ = ๐‘Ž๐‘Ž1 ๐’Œ๐’Œ๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐’Œ๐’Œ๐Ÿ๐Ÿ ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐’Œ๐’Œ๐Ÿ‘๐Ÿ‘ ๐‘๐‘3

๐ท๐ท๐‘ง๐‘ง = ๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐’Œ๐’Œ๐Ÿ๐Ÿ ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐’Œ๐’Œ๐Ÿ๐Ÿ ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐’Œ๐’Œ๐Ÿ‘๐Ÿ‘

Tip: Use either the โ€˜expansion by minorsโ€™ or โ€˜expansion by diagonalsโ€™ to solve the determinants D, Dx, Dy and Dz .

D The determinant of the coefficient of variables x , y and z .Dx Replacing the coefficients of x in D with the column of constants k .Dy Replacing the coefficients of y in D with the column of constants k .Dz Replacing the coefficients of z in D with the column of constants k .

โ€ข Using Cramerโ€™s rule to solve a 3ร—3 system (use expansion by diagonals)A 3ร—3 System Determinants & Solutions Example

๏ฟฝ๐‘Ž๐‘Ž1๐‘ฅ๐‘ฅ + ๐‘๐‘1๐‘ฆ๐‘ฆ + ๐‘๐‘1๐‘ง๐‘ง = ๐‘˜๐‘˜1๐‘Ž๐‘Ž2๐‘ฅ๐‘ฅ + ๐‘๐‘2 ๐‘ฆ๐‘ฆ+ ๐‘๐‘2๐‘ฆ๐‘ฆ = ๐‘˜๐‘˜2๐‘Ž๐‘Ž3๐‘ฅ๐‘ฅ + ๐‘๐‘3 ๐‘ฆ๐‘ฆ+๐‘๐‘3๐‘ฆ๐‘ฆ = ๐‘˜๐‘˜3

Example:

๏ฟฝ2๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ + 3๐‘ง๐‘ง = 1 3๐‘ฅ๐‘ฅ + 2๐‘ฆ๐‘ฆ + 0๐‘ง๐‘ง = โˆ’4 0๐‘ฅ๐‘ฅ + 2๐‘ฆ๐‘ฆ โˆ’ 3๐‘ง๐‘ง = 2

๐ท๐ท =๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3

๐ท๐ท๐‘ฅ๐‘ฅ = ๐‘˜๐‘˜1 ๐‘๐‘1 ๐‘๐‘1๐‘˜๐‘˜2 ๐‘๐‘2 ๐‘๐‘2๐‘˜๐‘˜3 ๐‘๐‘3 ๐‘๐‘3

๐‘˜๐‘˜1 ๐‘๐‘1๐‘˜๐‘˜2 ๐‘๐‘2๐‘˜๐‘˜3 ๐‘๐‘3

๐ท๐ท๐‘ฆ๐‘ฆ = ๐‘Ž๐‘Ž1 ๐‘˜๐‘˜1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘˜๐‘˜2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘˜๐‘˜3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘˜๐‘˜1๐‘Ž๐‘Ž2 ๐‘˜๐‘˜2๐‘Ž๐‘Ž3 ๐‘˜๐‘˜3

๐ท๐ท๐‘ง๐‘ง =๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘˜๐‘˜1๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘˜๐‘˜2๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘˜๐‘˜3

๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3

Solutions: x = ๐ท๐ท๐‘ฅ๐‘ฅ

๐ท๐ท, y = ๐ท๐ท๐‘ฆ๐‘ฆ

๐ท๐ท, z = ๐ท๐ท๐‘ง๐‘ง

๐ท๐ท

๐ท๐ท = 2 -1 3 3 2 0 0 2 -3

2 -13 20 2

= 2โˆ™2(-3) + (-1)โˆ™0โˆ™0 + 3โˆ™3โˆ™2 โ€“ 3โˆ™2โˆ™0 โ€“ 2โˆ™0โˆ™2 โ€“ (-1)โˆ™3(-3) = -12 + 0 + 18 โ€“ 0 โ€“ 0 โ€“ 9 = -3

๐ท๐ท๐‘ฅ๐‘ฅ = 1 -1 3 -4 2 0 2 2 -3

1 -1-4 22 2

= 1โˆ™2(-3) + (-1)โˆ™0โˆ™2 +3(-4)โˆ™2 โ€“ 3โˆ™2โˆ™2 โ€“1โˆ™0โˆ™2 โ€“ (-1)(-4)(-3) = -6 + 0 โ€“ 24 โ€“ 12 โ€“ 0 + 12 = -30

๐ท๐ท๐‘ฆ๐‘ฆ = 2 1 3 3 -4 0 0 2 -3

2 13 -40 2

= 2(-4)(-3) + 1โˆ™0โˆ™0 + 3โˆ™3โˆ™2 โ€“ 3(-4)โˆ™0 โ€“ 2โˆ™0โˆ™2 โ€“1โˆ™3(-3) = 24 + 0 +18 + 0 โ€“ 0 + 9 = 51

๐ท๐ท๐‘ง๐‘ง = 2 -1 1 3 2 -4 0 2 2

2 -13 20 2

= 2โˆ™2โˆ™2 + (-1)(-4)โˆ™0 + 1โˆ™3โˆ™2 โ€“ 1โˆ™2โˆ™0 โ€“ 2(-4)2 โ€“ (-1)โˆ™3โˆ™2 = 8 + 0 + 6 โ€“ 0 + 16 + 6 = 36

Solutions: x = ๐ท๐ท๐‘ฅ๐‘ฅ๐ท๐ท

= -30-3

= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ , y = ๐ท๐ท๐‘ฆ๐‘ฆ๐ท๐ท

= 51-3

= -๐Ÿ๐Ÿ๐Ÿ๐Ÿ

z = ๐ท๐ท๐‘ง๐‘ง๐ท๐ท

= 36-3

= -๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Page 11-6

Cramerโ€™s Rule to Solve a 3 ร— 3 SystemExpansion by Diagonals

โ€ข Using Cramerโ€™s rule to solve a 3ร—3 systemA 3ร—3 System Cramerโ€™s Rule D Dx , Dy and Dz

๏ฟฝ๐‘Ž๐‘Ž1๐‘ฅ๐‘ฅ + ๐‘๐‘1๐‘ฆ๐‘ฆ + ๐‘๐‘1๐‘ง๐‘ง = ๐‘˜๐‘˜1๐‘Ž๐‘Ž2๐‘ฅ๐‘ฅ + ๐‘๐‘2 ๐‘ฆ๐‘ฆ+ ๐‘๐‘2๐‘ฆ๐‘ฆ = ๐‘˜๐‘˜2๐‘Ž๐‘Ž3๐‘ฅ๐‘ฅ + ๐‘๐‘3 ๐‘ฆ๐‘ฆ+๐‘๐‘3๐‘ฆ๐‘ฆ = ๐‘˜๐‘˜3

x = ๐ท๐ท๐‘ฅ๐‘ฅ๐ท๐ท

y = ๐ท๐ท๐‘ฆ๐‘ฆ๐ท๐ท

z = ๐ท๐ท๐‘ง๐‘ง๐ท๐ท

D = ๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

D โ‰  0

๐ท๐ท๐‘ฅ๐‘ฅ = ๐’Œ๐’Œ๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘๐‘1 ๐’Œ๐’Œ๐Ÿ๐Ÿ ๐‘๐‘2 ๐‘๐‘2 ๐’Œ๐’Œ๐Ÿ๐Ÿ ๐‘๐‘3 ๐‘๐‘3

๐ท๐ท๐‘ฆ๐‘ฆ = ๐‘Ž๐‘Ž1 ๐’Œ๐’Œ๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐’Œ๐’Œ๐Ÿ๐Ÿ ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐’Œ๐’Œ๐Ÿ‘๐Ÿ‘ ๐‘๐‘3

๐ท๐ท๐‘ง๐‘ง = ๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐’Œ๐’Œ๐Ÿ๐Ÿ ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐’Œ๐’Œ๐Ÿ๐Ÿ ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐’Œ๐’Œ๐Ÿ‘๐Ÿ‘

Tip: Use either the โ€˜expansion by minorsโ€™ or โ€˜expansion by diagonalsโ€™ to solve the determinants D, Dx, Dy and Dz .

D The determinant of the coefficient of variables x , y and z .Dx Replacing the coefficients of x in D with the column of constants k .Dy Replacing the coefficients of y in D with the column of constants k .Dz Replacing the coefficients of z in D with the column of constants k .

โ€ข Using Cramerโ€™s rule to solve a 3ร—3 system (use expansion by diagonals)A 3ร—3 System Determinants & Solutions Example

๏ฟฝ๐‘Ž๐‘Ž1๐‘ฅ๐‘ฅ + ๐‘๐‘1๐‘ฆ๐‘ฆ + ๐‘๐‘1๐‘ง๐‘ง = ๐‘˜๐‘˜1๐‘Ž๐‘Ž2๐‘ฅ๐‘ฅ + ๐‘๐‘2 ๐‘ฆ๐‘ฆ+ ๐‘๐‘2๐‘ฆ๐‘ฆ = ๐‘˜๐‘˜2๐‘Ž๐‘Ž3๐‘ฅ๐‘ฅ + ๐‘๐‘3 ๐‘ฆ๐‘ฆ+๐‘๐‘3๐‘ฆ๐‘ฆ = ๐‘˜๐‘˜3

Example:

๏ฟฝ2๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ + 3๐‘ง๐‘ง = 1 3๐‘ฅ๐‘ฅ + 2๐‘ฆ๐‘ฆ + 0๐‘ง๐‘ง = โˆ’4 0๐‘ฅ๐‘ฅ + 2๐‘ฆ๐‘ฆ โˆ’ 3๐‘ง๐‘ง = 2

๐ท๐ท =๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3

๐ท๐ท๐‘ฅ๐‘ฅ = ๐‘˜๐‘˜1 ๐‘๐‘1 ๐‘๐‘1๐‘˜๐‘˜2 ๐‘๐‘2 ๐‘๐‘2๐‘˜๐‘˜3 ๐‘๐‘3 ๐‘๐‘3

๐‘˜๐‘˜1 ๐‘๐‘1๐‘˜๐‘˜2 ๐‘๐‘2๐‘˜๐‘˜3 ๐‘๐‘3

๐ท๐ท๐‘ฆ๐‘ฆ = ๐‘Ž๐‘Ž1 ๐‘˜๐‘˜1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘˜๐‘˜2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘˜๐‘˜3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘˜๐‘˜1๐‘Ž๐‘Ž2 ๐‘˜๐‘˜2๐‘Ž๐‘Ž3 ๐‘˜๐‘˜3

๐ท๐ท๐‘ง๐‘ง =๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘˜๐‘˜1๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘˜๐‘˜2๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘˜๐‘˜3

๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3

Solutions: x = ๐ท๐ท๐‘ฅ๐‘ฅ

๐ท๐ท, y = ๐ท๐ท๐‘ฆ๐‘ฆ

๐ท๐ท, z = ๐ท๐ท๐‘ง๐‘ง

๐ท๐ท

๐ท๐ท = 2 -1 3 3 2 0 0 2 -3

2 -13 20 2

= 2โˆ™2(-3) + (-1)โˆ™0โˆ™0 + 3โˆ™3โˆ™2 โ€“ 3โˆ™2โˆ™0 โ€“ 2โˆ™0โˆ™2 โ€“ (-1)โˆ™3(-3) = -12 + 0 + 18 โ€“ 0 โ€“ 0 โ€“ 9 = -3

๐ท๐ท๐‘ฅ๐‘ฅ = 1 -1 3 -4 2 0 2 2 -3

1 -1-4 22 2

= 1โˆ™2(-3) + (-1)โˆ™0โˆ™2 +3(-4)โˆ™2 โ€“ 3โˆ™2โˆ™2 โ€“1โˆ™0โˆ™2 โ€“ (-1)(-4)(-3) = -6 + 0 โ€“ 24 โ€“ 12 โ€“ 0 + 12 = -30

๐ท๐ท๐‘ฆ๐‘ฆ = 2 1 3 3 -4 0 0 2 -3

2 13 -40 2

= 2(-4)(-3) + 1โˆ™0โˆ™0 + 3โˆ™3โˆ™2 โ€“ 3(-4)โˆ™0 โ€“ 2โˆ™0โˆ™2 โ€“1โˆ™3(-3) = 24 + 0 +18 + 0 โ€“ 0 + 9 = 51

๐ท๐ท๐‘ง๐‘ง = 2 -1 1 3 2 -4 0 2 2

2 -13 20 2

= 2โˆ™2โˆ™2 + (-1)(-4)โˆ™0 + 1โˆ™3โˆ™2 โ€“ 1โˆ™2โˆ™0 โ€“ 2(-4)2 โ€“ (-1)โˆ™3โˆ™2 = 8 + 0 + 6 โ€“ 0 + 16 + 6 = 36

Solutions: x = ๐ท๐ท๐‘ฅ๐‘ฅ๐ท๐ท

= -30-3

= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ , y = ๐ท๐ท๐‘ฆ๐‘ฆ๐ท๐ท

= 51-3

= -๐Ÿ๐Ÿ๐Ÿ๐Ÿ

z = ๐ท๐ท๐‘ง๐‘ง๐ท๐ท

= 36-3

= -๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Page 11-6

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 261

Algebra I & II Key Concepts, Practice, and Quizzes Unit 11 โ€“ Determinants and Matrices

Cramerโ€™s Rule to Solve a 3 ร— 3 SystemExpansion by Minors

Steps Example: Solve . ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐’š๐’š โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’ + ๐Ÿ๐Ÿ๐’š๐’š = ๐ŸŽ๐ŸŽ ๐Ÿ๐Ÿ๐’š๐’š โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ = ๐Ÿ๐Ÿ

- Write equations in standardform .

๏ฟฝ๐‘Ž๐‘Ž1๐‘ฅ๐‘ฅ + ๐‘๐‘1๐‘ฆ๐‘ฆ + ๐‘๐‘1๐‘ง๐‘ง = ๐‘˜๐‘˜1 ๐‘Ž๐‘Ž2๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘ฆ๐‘ฆ + ๐‘๐‘2๐‘ง๐‘ง = ๐‘˜๐‘˜2 ๐‘Ž๐‘Ž3๐‘ฅ๐‘ฅ + ๐‘๐‘3๐‘ฆ๐‘ฆ + ๐‘๐‘3๐‘ง๐‘ง = ๐‘˜๐‘˜3

๏ฟฝ2๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ + 3๐‘ง๐‘ง = 1 3๐‘ฅ๐‘ฅ + 2๐‘ฆ๐‘ฆ + 0๐‘ง๐‘ง = -4 0๐‘ฅ๐‘ฅ + 2๐‘ฆ๐‘ฆ โˆ’ 3๐‘ง๐‘ง = 2

- Determine D, Dx, Dy and Dz . Use โ€˜expansion by minors .โ€™

D = ๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

D = ๐Ÿ๐Ÿ -1 3 ๐Ÿ‘๐Ÿ‘ 2 0 =๐ŸŽ๐ŸŽ 2 -3

๐Ÿ๐Ÿ ๏ฟฝ2 02 -3๏ฟฝ โˆ’ ๐Ÿ‘๐Ÿ‘ ๏ฟฝ-1 3

2 -3๏ฟฝ + ๐ŸŽ๐ŸŽ ๏ฟฝ-1 3

2 0๏ฟฝ

= 2[2(-3) โ€“ 0(2)] โ€“3[(-1)(-3) โ€“ 2โˆ™3] + 0[(-1)โˆ™0โ€“3โˆ™2]

Choose column 1 . = 2(-6) โ€“ 3(3 โ€“ 6) + 0 = -12 + 9 = -3

Dx = ๐‘˜๐‘˜1 ๐‘๐‘1 ๐‘๐‘1 ๐‘˜๐‘˜2 ๐‘๐‘2 ๐‘๐‘2๐‘˜๐‘˜3 ๐‘๐‘3 ๐‘๐‘3

Dx =๐Ÿ๐Ÿ -1 3 -๐Ÿ’๐Ÿ’ 2 0 =๐Ÿ๐Ÿ 2 -3

๐Ÿ๐Ÿ ๏ฟฝ2 02 -3๏ฟฝ โˆ’ (-๐Ÿ’๐Ÿ’) ๏ฟฝ-1 3

2 -3๏ฟฝ + ๐Ÿ๐Ÿ ๏ฟฝ-1 3

2 0๏ฟฝ

= 1[2(-3) โ€“ 0โˆ™2] โ€“ (-4)[(-1)(-3) โ€“ 3โˆ™2] + 2[(-1)โˆ™0 โ€“ 3โˆ™2]

= -6 + 4(3โ€“6) + 2(-6) = -6 โ€“ 12 โ€“ 12 = -30

Dy = ๐‘Ž๐‘Ž1 ๐‘˜๐‘˜1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘˜๐‘˜2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘˜๐‘˜3 ๐‘๐‘3

Dy = 2 1 ๐Ÿ‘๐Ÿ‘ 3 -4 ๐ŸŽ๐ŸŽ =0 2 -๐Ÿ‘๐Ÿ‘

๐Ÿ‘๐Ÿ‘ ๏ฟฝ3 -40 2

๏ฟฝ โˆ’ ๐ŸŽ๐ŸŽ ๏ฟฝ2 10 2๏ฟฝ + (-๐Ÿ‘๐Ÿ‘) ๏ฟฝ

2 13 -4๏ฟฝ

Choose column 3 . = 3[3โˆ™2 โ€“ (-4)โˆ™0] โ€“ 0 + (-3)[2(-4) โ€“ 1โˆ™3]

= 3โˆ™6 โ€“ 3(-8 โ€“ 3) = 18 + 33 = 51

DZ = ๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘˜๐‘˜1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘˜๐‘˜2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘˜๐‘˜3

DZ =2 -1 1 3 2 -4 = ๐ŸŽ๐ŸŽ ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ

๐ŸŽ๐ŸŽ ๏ฟฝ-1 12 -4

๏ฟฝ โˆ’ ๐Ÿ๐Ÿ ๏ฟฝ2 13 -4๏ฟฝ + ๐Ÿ๐Ÿ ๏ฟฝ2 -1

3 2๏ฟฝ

Choose row 3 . = 0 โ€“ 2[2(- 4) โ€“1โˆ™3] + 2[2โˆ™2 โ€“ (-1)3] = -2(-8 โ€“ 3) + 2(4 + 3) = 22 + 14 = 36

- Solve for x , y and z .

x = ๐ท๐ท๐‘ฅ๐‘ฅ๐ท๐ท

x = ๐ท๐ท๐‘ฅ๐‘ฅ๐ท๐ท

= -30-3

= 10

y = ๐ท๐ท๐‘ฆ๐‘ฆ๐ท๐ท

๐’š๐’š = ๐ท๐ท๐‘ฆ๐‘ฆ๐ท๐ท

= 51-3

= -17

z = ๐ท๐ท๐‘ง๐‘ง๐ท๐ท

z = 36 -3

= -12

Note: It gives the same answers as expansion by diagonals .

+ โˆ’ + โˆ’ + โˆ’ + โˆ’ +

Tip: Add a coefficient for the missing variable .

+ โˆ’ + โˆ’ + โˆ’ + โˆ’ +

+ โˆ’ + โˆ’ + โˆ’ + โˆ’ +

Page 11-7

Cramerโ€™s Rule to Solve a 3 ร— 3 SystemExpansion by Minors

Steps Example: Solve . ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐’š๐’š โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’ + ๐Ÿ๐Ÿ๐’š๐’š = ๐ŸŽ๐ŸŽ ๐Ÿ๐Ÿ๐’š๐’š โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ = ๐Ÿ๐Ÿ

- Write equations in standardform .

๏ฟฝ๐‘Ž๐‘Ž1๐‘ฅ๐‘ฅ + ๐‘๐‘1๐‘ฆ๐‘ฆ + ๐‘๐‘1๐‘ง๐‘ง = ๐‘˜๐‘˜1 ๐‘Ž๐‘Ž2๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘ฆ๐‘ฆ + ๐‘๐‘2๐‘ง๐‘ง = ๐‘˜๐‘˜2 ๐‘Ž๐‘Ž3๐‘ฅ๐‘ฅ + ๐‘๐‘3๐‘ฆ๐‘ฆ + ๐‘๐‘3๐‘ง๐‘ง = ๐‘˜๐‘˜3

๏ฟฝ2๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ + 3๐‘ง๐‘ง = 1 3๐‘ฅ๐‘ฅ + 2๐‘ฆ๐‘ฆ + 0๐‘ง๐‘ง = -4 0๐‘ฅ๐‘ฅ + 2๐‘ฆ๐‘ฆ โˆ’ 3๐‘ง๐‘ง = 2

- Determine D, Dx, Dy and Dz . Use โ€˜expansion by minors .โ€™

D = ๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

D = ๐Ÿ๐Ÿ -1 3 ๐Ÿ‘๐Ÿ‘ 2 0 =๐ŸŽ๐ŸŽ 2 -3

๐Ÿ๐Ÿ ๏ฟฝ2 02 -3๏ฟฝ โˆ’ ๐Ÿ‘๐Ÿ‘ ๏ฟฝ-1 3

2 -3๏ฟฝ + ๐ŸŽ๐ŸŽ ๏ฟฝ-1 3

2 0๏ฟฝ

= 2[2(-3) โ€“ 0(2)] โ€“3[(-1)(-3) โ€“ 2โˆ™3] + 0[(-1)โˆ™0โ€“3โˆ™2]

Choose column 1 . = 2(-6) โ€“ 3(3 โ€“ 6) + 0 = -12 + 9 = -3

Dx = ๐‘˜๐‘˜1 ๐‘๐‘1 ๐‘๐‘1 ๐‘˜๐‘˜2 ๐‘๐‘2 ๐‘๐‘2๐‘˜๐‘˜3 ๐‘๐‘3 ๐‘๐‘3

Dx =๐Ÿ๐Ÿ -1 3 -๐Ÿ’๐Ÿ’ 2 0 =๐Ÿ๐Ÿ 2 -3

๐Ÿ๐Ÿ ๏ฟฝ2 02 -3๏ฟฝ โˆ’ (-๐Ÿ’๐Ÿ’) ๏ฟฝ-1 3

2 -3๏ฟฝ + ๐Ÿ๐Ÿ ๏ฟฝ-1 3

2 0๏ฟฝ

= 1[2(-3) โ€“ 0โˆ™2] โ€“ (-4)[(-1)(-3) โ€“ 3โˆ™2] + 2[(-1)โˆ™0 โ€“ 3โˆ™2]

= -6 + 4(3โ€“6) + 2(-6) = -6 โ€“ 12 โ€“ 12 = -30

Dy = ๐‘Ž๐‘Ž1 ๐‘˜๐‘˜1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘˜๐‘˜2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘˜๐‘˜3 ๐‘๐‘3

Dy = 2 1 ๐Ÿ‘๐Ÿ‘ 3 -4 ๐ŸŽ๐ŸŽ =0 2 -๐Ÿ‘๐Ÿ‘

๐Ÿ‘๐Ÿ‘ ๏ฟฝ3 -40 2

๏ฟฝ โˆ’ ๐ŸŽ๐ŸŽ ๏ฟฝ2 10 2๏ฟฝ + (-๐Ÿ‘๐Ÿ‘) ๏ฟฝ

2 13 -4๏ฟฝ

Choose column 3 . = 3[3โˆ™2 โ€“ (-4)โˆ™0] โ€“ 0 + (-3)[2(-4) โ€“ 1โˆ™3]

= 3โˆ™6 โ€“ 3(-8 โ€“ 3) = 18 + 33 = 51

DZ = ๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘˜๐‘˜1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘˜๐‘˜2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘˜๐‘˜3

DZ =2 -1 1 3 2 -4 = ๐ŸŽ๐ŸŽ ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ

๐ŸŽ๐ŸŽ ๏ฟฝ-1 12 -4

๏ฟฝ โˆ’ ๐Ÿ๐Ÿ ๏ฟฝ2 13 -4๏ฟฝ + ๐Ÿ๐Ÿ ๏ฟฝ2 -1

3 2๏ฟฝ

Choose row 3 . = 0 โ€“ 2[2(- 4) โ€“1โˆ™3] + 2[2โˆ™2 โ€“ (-1)3] = -2(-8 โ€“ 3) + 2(4 + 3) = 22 + 14 = 36

- Solve for x , y and z .

x = ๐ท๐ท๐‘ฅ๐‘ฅ๐ท๐ท

x = ๐ท๐ท๐‘ฅ๐‘ฅ๐ท๐ท

= -30-3

= 10

y = ๐ท๐ท๐‘ฆ๐‘ฆ๐ท๐ท

๐’š๐’š = ๐ท๐ท๐‘ฆ๐‘ฆ๐ท๐ท

= 51-3

= -17

z = ๐ท๐ท๐‘ง๐‘ง๐ท๐ท

z = 36 -3

= -12

Note: It gives the same answers as expansion by diagonals .

+ โˆ’ + โˆ’ + โˆ’ + โˆ’ +

Tip: Add a coefficient for the missing variable .

+ โˆ’ + โˆ’ + โˆ’ + โˆ’ +

+ โˆ’ + โˆ’ + โˆ’ + โˆ’ +

Page 11-7

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

262 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 11 โ€“ Determinants and Matrices

11-3 MATRICES

Introduction to Matrices

Example

โ€ข Array: a set of elements arranged in rows and columns . ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3

, 2 34 5

โ€ข Matrix: a rectangular array of elements enclosed in brackets . ๏ฟฝ3 5 12 4 7๏ฟฝ , ๏ฟฝ

๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๏ฟฝ

โ€ข Columns and rows: ๏ฟฝ๐‘Ž๐‘Ž11 ๐‘๐‘12 ๐‘๐‘13 ๐‘Ž๐‘Ž21 ๐‘๐‘22 ๐‘๐‘23๐‘Ž๐‘Ž31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ ๏ฟฝ2 1 54 2 45 3 2

๏ฟฝ

Column 1 Column 2 Column 3

โ€ข Dimensions: A matrix has ๏ฟฝ๐‘š๐‘š rows ๐‘›๐‘› columns m ร— n dimensions ๏ฟฝ2 3

4 5๏ฟฝ , ๏ฟฝ3 5 12 4 7๏ฟฝ

Rows Columns 2ร—2 2ร—3

๏ฟฝ352๏ฟฝ , [2 1 3]

3ร—1 1ร—3

โ€ข A 3ร—3 system: Linear System Example

๏ฟฝ๐‘Ž๐‘Ž1๐‘ฅ๐‘ฅ + ๐‘๐‘1๐‘ฆ๐‘ฆ + ๐‘๐‘1๐‘ง๐‘ง = ๐‘˜๐‘˜1๐‘Ž๐‘Ž2๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘ฆ๐‘ฆ+ ๐‘๐‘2๐‘ง๐‘ง = ๐‘˜๐‘˜2๐‘Ž๐‘Ž3๐‘ฅ๐‘ฅ + ๐‘๐‘3๐‘ฆ๐‘ฆ+ ๐‘๐‘3๐‘ง๐‘ง = ๐‘˜๐‘˜3

๏ฟฝ2๐‘ฅ๐‘ฅ + 3๐‘ฆ๐‘ฆ + 4๐‘ง๐‘ง = 1 ๐‘ฅ๐‘ฅ + 2๐‘ฆ๐‘ฆ + 3๐‘ง๐‘ง = 4

3๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ + 5๐‘ง๐‘ง = 2

โ€ข Coefficient matrix: the matrix obtained from the coefficients in a linear system . Coefficient Matrix Example

๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๏ฟฝ ๏ฟฝ2 3 41 2 33 1 5

๏ฟฝ

โ€ข Augmented matrix: the matrix obtained from the coefficients and constant terms in a

linear system . Augmented Matrix Example

๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘˜๐‘˜1๐‘˜๐‘˜2๐‘˜๐‘˜3๏ฟฝ ๏ฟฝ

2 3 4 1 2 3 3 1 5

142๏ฟฝ

coefficients of ๐‘ฅ๐‘ฅ coefficients of y constants (with a vertical line)

coefficients of ๐‘ง๐‘ง

Tip: augmented matrix = constants & coefficients

Row 2

Row 3

Row 1

Page 11-8

11-3 MATRICES

Introduction to Matrices

Example

โ€ข Array: a set of elements arranged in rows and columns . ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3

, 2 34 5

โ€ข Matrix: a rectangular array of elements enclosed in brackets . ๏ฟฝ3 5 12 4 7๏ฟฝ , ๏ฟฝ

๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๏ฟฝ

โ€ข Columns and rows: ๏ฟฝ๐‘Ž๐‘Ž11 ๐‘๐‘12 ๐‘๐‘13 ๐‘Ž๐‘Ž21 ๐‘๐‘22 ๐‘๐‘23๐‘Ž๐‘Ž31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ ๏ฟฝ2 1 54 2 45 3 2

๏ฟฝ

Column 1 Column 2 Column 3

โ€ข Dimensions: A matrix has ๏ฟฝ๐‘š๐‘š rows ๐‘›๐‘› columns m ร— n dimensions ๏ฟฝ2 3

4 5๏ฟฝ , ๏ฟฝ3 5 12 4 7๏ฟฝ

Rows Columns 2ร—2 2ร—3

๏ฟฝ352๏ฟฝ , [2 1 3]

3ร—1 1ร—3

โ€ข A 3ร—3 system: Linear System Example

๏ฟฝ๐‘Ž๐‘Ž1๐‘ฅ๐‘ฅ + ๐‘๐‘1๐‘ฆ๐‘ฆ + ๐‘๐‘1๐‘ง๐‘ง = ๐‘˜๐‘˜1๐‘Ž๐‘Ž2๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘ฆ๐‘ฆ+ ๐‘๐‘2๐‘ง๐‘ง = ๐‘˜๐‘˜2๐‘Ž๐‘Ž3๐‘ฅ๐‘ฅ + ๐‘๐‘3๐‘ฆ๐‘ฆ+ ๐‘๐‘3๐‘ง๐‘ง = ๐‘˜๐‘˜3

๏ฟฝ2๐‘ฅ๐‘ฅ + 3๐‘ฆ๐‘ฆ + 4๐‘ง๐‘ง = 1 ๐‘ฅ๐‘ฅ + 2๐‘ฆ๐‘ฆ + 3๐‘ง๐‘ง = 4

3๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ + 5๐‘ง๐‘ง = 2

โ€ข Coefficient matrix: the matrix obtained from the coefficients in a linear system . Coefficient Matrix Example

๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๏ฟฝ ๏ฟฝ2 3 41 2 33 1 5

๏ฟฝ

โ€ข Augmented matrix: the matrix obtained from the coefficients and constant terms in a

linear system . Augmented Matrix Example

๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘˜๐‘˜1๐‘˜๐‘˜2๐‘˜๐‘˜3๏ฟฝ ๏ฟฝ

2 3 4 1 2 3 3 1 5

142๏ฟฝ

coefficients of ๐‘ฅ๐‘ฅ coefficients of y constants (with a vertical line)

coefficients of ๐‘ง๐‘ง

Tip: augmented matrix = constants & coefficients

Row 2

Row 3

Row 1

Page 11-8

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 263

Algebra I & II Key Concepts, Practice, and Quizzes Unit 11 โ€“ Determinants and Matrices

Matrix Addition & Subtraction

โ€ข Naming a matrix with a single letter (bold face)

Example: ๐‘จ๐‘จ = ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

๏ฟฝ ๐‘ฉ๐‘ฉ = ๏ฟฝ๐‘Ž๐‘Ž3 ๐‘๐‘3๐‘Ž๐‘Ž4 ๐‘๐‘4

๏ฟฝ 2ร—2

or A = ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3

๏ฟฝ B = ๏ฟฝ๐‘Ž๐‘Ž4 ๐‘๐‘4๐‘Ž๐‘Ž5 ๐‘๐‘5๐‘Ž๐‘Ž6 ๐‘๐‘6

๏ฟฝ 3ร—2

โ€ข Matrix equality: two equal matrices have the same dimensions (or size) and the equal

corresponding elements .

Example

The same dimensions: A = 2ร—2 & B = 2ร—2

or A = 3ร—2 & B = 3ร—2

The equal corresponding elements: A = ๏ฟฝ๐‘ฅ๐‘ฅ 4 ๐‘ฆ๐‘ฆ2 5 3๏ฟฝ , B = ๏ฟฝ6 4 3

2 5 โˆš9๏ฟฝ

2ร—3 2ร—3

A = B only if x = 6 and y = 3

โ€ข Requirements for adding/subtracting matrices: only matrices of the same dimensions

can be added or subtracted .

โ€ข Add/subtract two matrices of the same dimensions: combine the elements in the

corresponding (or matching) positions .

Matrix Operations Example

matrix addition

A + B

๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

๏ฟฝ + ๏ฟฝ๐‘Ž๐‘Ž3 ๐‘๐‘3๐‘Ž๐‘Ž4 ๐‘๐‘4

๏ฟฝ = ๏ฟฝ๐‘Ž๐‘Ž1+ ๐‘Ž๐‘Ž3 ๐‘๐‘1 + ๐‘๐‘3๐‘Ž๐‘Ž2 + ๐‘Ž๐‘Ž4 ๐‘๐‘2 + ๐‘๐‘4

๏ฟฝ2ร—2 2ร—2

The same dimensions

๏ฟฝ1 32 4 ๏ฟฝ + ๏ฟฝ3 5

2 1๏ฟฝ = ๏ฟฝ1 + 3 3 + 52 + 2 4 + 1๏ฟฝ

= ๏ฟฝ4 84 5๏ฟฝ

matrix subtraction

A โ€“ B

๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3

๏ฟฝ โˆ’ ๏ฟฝ๐‘Ž๐‘Ž4 ๐‘๐‘4๐‘Ž๐‘Ž5 ๐‘๐‘5๐‘Ž๐‘Ž6 ๐‘๐‘6

๏ฟฝ = ๏ฟฝ๐‘Ž๐‘Ž1โˆ’๐‘Ž๐‘Ž4 ๐‘๐‘1โˆ’๐‘๐‘4๐‘Ž๐‘Ž2โˆ’๐‘Ž๐‘Ž5 ๐‘๐‘2โˆ’๐‘๐‘5๐‘Ž๐‘Ž3โˆ’๐‘Ž๐‘Ž6 ๐‘๐‘3โˆ’๐‘๐‘6

๏ฟฝ

3ร—2 3ร—2

๏ฟฝ3 85 76 -9

๏ฟฝ โˆ’ ๏ฟฝ2 23 -36 4

๏ฟฝ = ๏ฟฝ3 โˆ’ 2 8 โˆ’ 25 โˆ’ 3 7 โˆ’ (-3)6 โˆ’ 6 -9 โˆ’ 4

๏ฟฝ

= ๏ฟฝ1 62 100 -13

๏ฟฝ

Page 11-9

Matrix Addition & Subtraction

โ€ข Naming a matrix with a single letter (bold face)

Example: ๐‘จ๐‘จ = ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

๏ฟฝ ๐‘ฉ๐‘ฉ = ๏ฟฝ๐‘Ž๐‘Ž3 ๐‘๐‘3๐‘Ž๐‘Ž4 ๐‘๐‘4

๏ฟฝ 2ร—2

or A = ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3

๏ฟฝ B = ๏ฟฝ๐‘Ž๐‘Ž4 ๐‘๐‘4๐‘Ž๐‘Ž5 ๐‘๐‘5๐‘Ž๐‘Ž6 ๐‘๐‘6

๏ฟฝ 3ร—2

โ€ข Matrix equality: two equal matrices have the same dimensions (or size) and the equal

corresponding elements .

Example

The same dimensions: A = 2ร—2 & B = 2ร—2

or A = 3ร—2 & B = 3ร—2

The equal corresponding elements: A = ๏ฟฝ๐‘ฅ๐‘ฅ 4 ๐‘ฆ๐‘ฆ2 5 3๏ฟฝ , B = ๏ฟฝ6 4 3

2 5 โˆš9๏ฟฝ

2ร—3 2ร—3

A = B only if x = 6 and y = 3

โ€ข Requirements for adding/subtracting matrices: only matrices of the same dimensions

can be added or subtracted .

โ€ข Add/subtract two matrices of the same dimensions: combine the elements in the

corresponding (or matching) positions .

Matrix Operations Example

matrix addition

A + B

๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

๏ฟฝ + ๏ฟฝ๐‘Ž๐‘Ž3 ๐‘๐‘3๐‘Ž๐‘Ž4 ๐‘๐‘4

๏ฟฝ = ๏ฟฝ๐‘Ž๐‘Ž1+ ๐‘Ž๐‘Ž3 ๐‘๐‘1 + ๐‘๐‘3๐‘Ž๐‘Ž2 + ๐‘Ž๐‘Ž4 ๐‘๐‘2 + ๐‘๐‘4

๏ฟฝ2ร—2 2ร—2

The same dimensions

๏ฟฝ1 32 4 ๏ฟฝ + ๏ฟฝ3 5

2 1๏ฟฝ = ๏ฟฝ1 + 3 3 + 52 + 2 4 + 1๏ฟฝ

= ๏ฟฝ4 84 5๏ฟฝ

matrix subtraction

A โ€“ B

๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3

๏ฟฝ โˆ’ ๏ฟฝ๐‘Ž๐‘Ž4 ๐‘๐‘4๐‘Ž๐‘Ž5 ๐‘๐‘5๐‘Ž๐‘Ž6 ๐‘๐‘6

๏ฟฝ = ๏ฟฝ๐‘Ž๐‘Ž1โˆ’๐‘Ž๐‘Ž4 ๐‘๐‘1โˆ’๐‘๐‘4๐‘Ž๐‘Ž2โˆ’๐‘Ž๐‘Ž5 ๐‘๐‘2โˆ’๐‘๐‘5๐‘Ž๐‘Ž3โˆ’๐‘Ž๐‘Ž6 ๐‘๐‘3โˆ’๐‘๐‘6

๏ฟฝ

3ร—2 3ร—2

๏ฟฝ3 85 76 -9

๏ฟฝ โˆ’ ๏ฟฝ2 23 -36 4

๏ฟฝ = ๏ฟฝ3 โˆ’ 2 8 โˆ’ 25 โˆ’ 3 7 โˆ’ (-3)6 โˆ’ 6 -9 โˆ’ 4

๏ฟฝ

= ๏ฟฝ1 62 100 -13

๏ฟฝ

Page 11-9

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

264 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 11 โ€“ Determinants and Matrices

Matrix Multiplication

โ€ข Scalar matrix multiplication: the product of a scalar (a real number) and a matrix .Scalar Matrix Multiplication Example

k ยท Ak โ€“ scalarA โ€“ matrix

k ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3

๏ฟฝ = ๏ฟฝ๐‘˜๐‘˜๐‘Ž๐‘Ž1 ๐‘˜๐‘˜๐‘๐‘1๐‘˜๐‘˜๐‘Ž๐‘Ž2 ๐‘˜๐‘˜๐‘๐‘2๐‘˜๐‘˜๐‘Ž๐‘Ž3 ๐‘˜๐‘˜๐‘๐‘3

๏ฟฝ2๏ฟฝ4 -2 ๐‘ฆ๐‘ฆ

3 5 0๏ฟฝ = ๏ฟฝ2 โˆ™ 4 2(-2) 2 โˆ™ ๐‘ฆ๐‘ฆ

2 โˆ™ 3 2 โˆ™ 5 2 โˆ™ 0๏ฟฝ

= ๏ฟฝ8 -4 2๐‘ฆ๐‘ฆ 6 10 0

๏ฟฝ

Tip: Multiply each element by the scalar .

Example: Find the following .

3๏ฟฝ2 41 03 -2

๏ฟฝ โ€“ 1 2๏ฟฝ8 40 -22 6

๏ฟฝ = ๏ฟฝ3 โˆ™ 2 3 โˆ™ 43 โˆ™ 1 3 โˆ™ 03 โˆ™ 3 3(-2)

๏ฟฝ โ€“

โŽฃโŽขโŽขโŽขโŽก

1 2โˆ™ 8 1

2โˆ™ 4

1 2โˆ™ 0 1

2โˆ™ (-2)

1 2โˆ™ 2 1

2โˆ™ 6 โŽฆ

โŽฅโŽฅโŽฅโŽค = ๏ฟฝ

6 123 09 -6

๏ฟฝ โ€“ ๏ฟฝ4 20 -11 3

๏ฟฝ

= ๏ฟฝ6 โˆ’ 4 12 โˆ’ 23 โˆ’ 0 0 โˆ’ (-1)9 โˆ’ 1 -6 โˆ’ 3

๏ฟฝ = ๏ฟฝ2 103 18 -9

๏ฟฝ

โ€ข Matrix multiplication: the product of two matrices .

โ€ข Requirements for matrix multiplication: the product of two matrices A and B is defined

only when the number of columns of A (1st matrix) is equal to the number of rows of B

(2nd matrix) . Recall: m ร— n xRows Columns

Requirements for Matrix Multiplication

If A = m1ร— n1 , B = m2ร— n2 then Aยท B is defined only when n1 = m2 .

column for A row for B

Example

Matrix A Matrix B A โˆ™ B

A = ๏ฟฝ2 3 -2 11 4 6 4

๏ฟฝ

2ร—4 , n1 = 4B = ๏ฟฝ

1 422-5

534

๏ฟฝ 4ร—2n1 = m2 , 4 = 4

AยทB is defined

A = ๏ฟฝ2416

๏ฟฝ 4ร—1๐‘ฉ๐‘ฉ = [ 3 4 5 7] 1ร—4 , m2 = 1

n1= m2 , 1 = 1

AยทB is defined

๐‘จ๐‘จ = [3 2 1]

1ร—3 , n1 = 3B = ๏ฟฝ

4 31 -5๏ฟฝ

2ร—2 , m2 = 2

n1 โ‰  m2 , 3 โ‰  2

AยทB is not defined

m2 = 4

n1 = 1

Page 11-10

Matrix Multiplication

โ€ข Scalar matrix multiplication: the product of a scalar (a real number) and a matrix .Scalar Matrix Multiplication Example

k ยท Ak โ€“ scalarA โ€“ matrix

k ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3

๏ฟฝ = ๏ฟฝ๐‘˜๐‘˜๐‘Ž๐‘Ž1 ๐‘˜๐‘˜๐‘๐‘1๐‘˜๐‘˜๐‘Ž๐‘Ž2 ๐‘˜๐‘˜๐‘๐‘2๐‘˜๐‘˜๐‘Ž๐‘Ž3 ๐‘˜๐‘˜๐‘๐‘3

๏ฟฝ2๏ฟฝ4 -2 ๐‘ฆ๐‘ฆ

3 5 0๏ฟฝ = ๏ฟฝ2 โˆ™ 4 2(-2) 2 โˆ™ ๐‘ฆ๐‘ฆ

2 โˆ™ 3 2 โˆ™ 5 2 โˆ™ 0๏ฟฝ

= ๏ฟฝ8 -4 2๐‘ฆ๐‘ฆ 6 10 0

๏ฟฝ

Tip: Multiply each element by the scalar .

Example: Find the following .

3๏ฟฝ2 41 03 -2

๏ฟฝ โ€“ 1 2๏ฟฝ8 40 -22 6

๏ฟฝ = ๏ฟฝ3 โˆ™ 2 3 โˆ™ 43 โˆ™ 1 3 โˆ™ 03 โˆ™ 3 3(-2)

๏ฟฝ โ€“

โŽฃโŽขโŽขโŽขโŽก

1 2โˆ™ 8 1

2โˆ™ 4

1 2โˆ™ 0 1

2โˆ™ (-2)

1 2โˆ™ 2 1

2โˆ™ 6 โŽฆ

โŽฅโŽฅโŽฅโŽค = ๏ฟฝ

6 123 09 -6

๏ฟฝ โ€“ ๏ฟฝ4 20 -11 3

๏ฟฝ

= ๏ฟฝ6 โˆ’ 4 12 โˆ’ 23 โˆ’ 0 0 โˆ’ (-1)9 โˆ’ 1 -6 โˆ’ 3

๏ฟฝ = ๏ฟฝ2 103 18 -9

๏ฟฝ

โ€ข Matrix multiplication: the product of two matrices .

โ€ข Requirements for matrix multiplication: the product of two matrices A and B is defined

only when the number of columns of A (1st matrix) is equal to the number of rows of B

(2nd matrix) . Recall: m ร— n xRows Columns

Requirements for Matrix Multiplication

If A = m1ร— n1 , B = m2ร— n2 then Aยท B is defined only when n1 = m2 .

column for A row for B

Example

Matrix A Matrix B A โˆ™ B

A = ๏ฟฝ2 3 -2 11 4 6 4

๏ฟฝ

2ร—4 , n1 = 4B = ๏ฟฝ

1 422-5

534

๏ฟฝ 4ร—2n1 = m2 , 4 = 4

AยทB is defined

A = ๏ฟฝ2416

๏ฟฝ 4ร—1๐‘ฉ๐‘ฉ = [ 3 4 5 7] 1ร—4 , m2 = 1

n1= m2 , 1 = 1

AยทB is defined

๐‘จ๐‘จ = [3 2 1]

1ร—3 , n1 = 3B = ๏ฟฝ

4 31 -5๏ฟฝ

2ร—2 , m2 = 2

n1 โ‰  m2 , 3 โ‰  2

AยทB is not defined

m2 = 4

n1 = 1

Page 11-10

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 265

Algebra I & II Key Concepts, Practice, and Quizzes Unit 11 โ€“ Determinants and Matrices

โ€ข Dimensions of the product for matrix multiplication

Dimensions ofthe Product

If A = (m1ร— n1) and B = (m2 ร— n2), then AยทB = (m1ร— n1) (m2 ร— n2) = (m1 ร— n2) .

Example:If A = (3 ร— 2) and B = (2 ร— 4), Then AยทB = (3 ร— 2) (2 ร— 4) = (3 ร— 4) .

Tip: (Rows of A) ร— (Columns of B)

โ€ข Product of 1ร— n and n ร— 1 matrices

Matrix Multiplication Example Dimension If A = [ ๐‘Ž๐‘Ž1 ๐‘Ž๐‘Ž2 โ€ฆ ๐‘Ž๐‘Ž๐‘›๐‘›]

B = ๏ฟฝ

๐‘๐‘1๐‘๐‘2โ€ฆ๐‘๐‘๐‘›๐‘›

๏ฟฝ

then AB = a1b1 + a2b2 + โ€ฆ anbn

A = [ 2 3 1 ]

B = ๏ฟฝ3-14๏ฟฝ

AB = [ 2 3 1 ] ๏ฟฝ3-14๏ฟฝ

= 2โˆ™3 + 3(-1) + 1โˆ™4 = 7

1ร—3

3ร—1

1ร—1

Tip: Multiply each element of the row of the first matrix by the corresponding elements of the column in the second matrix, and then add the products .

โ€ข Product of 1ร— n and n ร— 2 matrices

Matrix Multiplication Example Dimension If A = [a1, a2, โ€ฆ , an]

B = ๏ฟฝ

๐‘๐‘11 ๐‘๐‘12๐‘๐‘21โ€ฆ๐‘๐‘๐‘›๐‘›1

๐‘๐‘22โ€ฆ๐‘๐‘๐‘›๐‘›2

๏ฟฝ

then AB = [a1, a2, โ€ฆ , an] ๏ฟฝ

๐‘๐‘11 ๐‘๐‘12๐‘๐‘21โ€ฆ๐‘๐‘๐‘›๐‘›1

๐‘๐‘22โ€ฆ๐‘๐‘๐‘›๐‘›2

๏ฟฝ

= [๐‘Ž๐‘Ž1๐‘๐‘11 + ๐‘Ž๐‘Ž2๐‘๐‘21 + โ€ฆ + ๐‘Ž๐‘Ž๐‘›๐‘›๐‘๐‘๐‘›๐‘›1 ๐‘Ž๐‘Ž1๐‘๐‘12 + ๐‘Ž๐‘Ž2๐‘๐‘22 + โ€ฆ + ๐‘Ž๐‘Ž๐‘›๐‘›๐‘๐‘๐‘›๐‘›2]

(row of A) ร— (1st column of B) (row of A) ร— (2nd column of B)

A = ๏ฟฝ 4 -1 2 ๏ฟฝ 1ร—3

B = ๏ฟฝ1 -13 22 0

๏ฟฝ 3ร—2

AB = ๏ฟฝ 4 -1 2 ๏ฟฝ ๏ฟฝ1 -1 3 2 2 0

๏ฟฝ

= [4โˆ™1+(-1)3+2โˆ™2 4(-1)+(-1)2+2โˆ™0]

= [4-3+4 -4โ€“2] = [5 -6] 1ร—2

Tips: - Multiply each element of the row of the first matrix by the corresponding elements of each column in the second matrix, and then add the products .

- Double-digit subscripts: Example: b21 - the element in matrix B that is in row 2 and column 1 . bn2 - the element in matrix B that is in row n and column 2 .

โ€ข The general caseMatrix Multiplication Example

AB = ๏ฟฝ๐‘Ž๐‘Ž11 ๐‘Ž๐‘Ž12 ๐‘Ž๐‘Ž13๐‘Ž๐‘Ž21 ๐‘Ž๐‘Ž22 ๐‘Ž๐‘Ž23๏ฟฝ ๏ฟฝ

๐‘๐‘11 ๐‘๐‘12๐‘๐‘21 ๐‘๐‘22๐‘๐‘31 ๐‘๐‘32

๏ฟฝ A = 2ร—3 , B = 3ร—2

(1st row of A) ร— (1st column of B) (1st row of A) ร— (2nd column of B)

= ๏ฟฝ๐‘Ž๐‘Ž11๐‘๐‘11 + ๐‘Ž๐‘Ž12๐‘๐‘21 + ๐‘Ž๐‘Ž13๐‘๐‘31 ๐‘Ž๐‘Ž11๐‘๐‘12 + ๐‘Ž๐‘Ž12๐‘๐‘22 + ๐‘Ž๐‘Ž13๐‘๐‘32๐‘Ž๐‘Ž21๐‘๐‘11 + ๐‘Ž๐‘Ž22๐‘๐‘21 + ๐‘Ž๐‘Ž23๐‘๐‘31 ๐‘Ž๐‘Ž21๐‘๐‘12 + ๐‘Ž๐‘Ž22๐‘๐‘22 + ๐‘Ž๐‘Ž23๐‘๐‘32

๏ฟฝ

(2nd row of A) ร— (1st column of B) (2nd row of A) ร— (2nd column of B) 2ร—2

๏ฟฝ1 2 32 0 1๏ฟฝ ๏ฟฝ

2 10 23 -1

๏ฟฝ 2ร—3 , 3ร—2

= ๏ฟฝ1 โˆ™ 2 + 2 โˆ™ 0 + 3 โˆ™ 3 1 โˆ™ 1 + 2 โˆ™ 2 + 3(-1)2 โˆ™ 2 + 0 โˆ™ 0 + 1 โˆ™ 3 2 โˆ™ 1 + 0 โˆ™ 2 + 1(-1)

๏ฟฝ

= ๏ฟฝ11 27 1๏ฟฝ 2ร—2

Page 11-11

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

266 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 11 โ€“ Determinants and Matrices

Example: Find the products .

1. ๏ฟฝ2 31 -2๏ฟฝ ๏ฟฝ

3 0-4 4๏ฟฝ = ๏ฟฝ

2 โˆ™ 3 + 3(-4) 2 โˆ™ 0 + 3 โˆ™ 41 โˆ™ 3 + (-2)(-4) 1 โˆ™ 0 + (-2) โˆ™ 4

๏ฟฝ = ๏ฟฝ-6 1211 -8

๏ฟฝ

2 ร— 2 2 ร— 2 2 ร— 2

2. ๏ฟฝ1 -1 2 0 3 0 2 1 2

๏ฟฝ ๏ฟฝ2 0 13 -2 0-2 1 2

๏ฟฝ

3 ร— 3 3 ร— 3

(1st row of A) ร— (1st column of B) (1std row of A) ร— (2nd column of B) 1std row of A) ร— (3rd column of B)

= ๏ฟฝ1 โˆ™ 2 + ๏ฟฝ-1๏ฟฝ3 + 2(-2) 1 โˆ™ 0 + (-1)(-2) + 2 โˆ™ 1 1 โˆ™ 1 + (-1) โˆ™ 0 + 2 โˆ™ 2 0 โˆ™ 2 + 3 โˆ™ 3 + 0(-2) 0 โˆ™ 0 + 3(-2) + 0 โˆ™ 1 0 โˆ™ 1 + 3 โˆ™ 0 + 0 โˆ™ 22 โˆ™ 2 + 1 โˆ™ 3 + 2(-2) 2 โˆ™ 0 + 1(-2) + 2 โˆ™ 1 2 โˆ™ 1 + 1 โˆ™ 0 + 2 โˆ™ 2

๏ฟฝ

(3rd row of A) ร— (1st column of B) (3rd row of A) ร— (2nd column of B) (3rd row of A) ร— (3rd column of B)

= ๏ฟฝ-5 4 59 -6 03 0 -6

๏ฟฝ

3 ร— 3

(2nd row of A) ร— (1st column of B)

(2nd row of A) ร— (3rd column of B)

(2nd row of A) ร— (2nd column of B)

Page 11-12

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 267

Algebra I & II Key Concepts, Practice, and Quizzes Unit 11 โ€“ Determinants and Matrices

Summary โ€“ Matrix Multiplication

โ€ข Multiply the elements of the first row of the first matrix by the corresponding elements of

each column in the second matrix and add the products .

๏ฟฝ๐‘Ž๐‘Ž11 ๐‘Ž๐‘Ž12 ๐‘Ž๐‘Ž13 ๐‘Ž๐‘Ž21 ๐‘Ž๐‘Ž22 ๐‘Ž๐‘Ž23๐‘Ž๐‘Ž31 ๐‘Ž๐‘Ž32 ๐‘Ž๐‘Ž33

๏ฟฝ ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13 ๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ = ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23 ๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ ๐‘๐‘11 = ๐‘Ž๐‘Ž11๐‘๐‘11 + ๐‘Ž๐‘Ž12๐‘๐‘21 + ๐‘Ž๐‘Ž13๐‘๐‘31

๏ฟฝ๐‘Ž๐‘Ž11 ๐‘Ž๐‘Ž12 ๐‘Ž๐‘Ž13๐‘Ž๐‘Ž21 ๐‘Ž๐‘Ž22 ๐‘Ž๐‘Ž23๐‘Ž๐‘Ž31 ๐‘Ž๐‘Ž32 ๐‘Ž๐‘Ž33

๏ฟฝ ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ = ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13 ๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ ๐‘๐‘12 = ๐‘Ž๐‘Ž11๐‘๐‘12 + ๐‘Ž๐‘Ž12๐‘๐‘22 + ๐‘Ž๐‘Ž13๐‘๐‘32

๏ฟฝ๐‘Ž๐‘Ž11 ๐‘Ž๐‘Ž12 ๐‘Ž๐‘Ž13 ๐‘Ž๐‘Ž21 ๐‘Ž๐‘Ž22 ๐‘Ž๐‘Ž23๐‘Ž๐‘Ž31 ๐‘Ž๐‘Ž32 ๐‘Ž๐‘Ž33

๏ฟฝ ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13 ๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23 ๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ= ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ ๐‘๐‘13 = ๐‘Ž๐‘Ž11๐‘๐‘13 + ๐‘Ž๐‘Ž12๐‘๐‘23 + ๐‘Ž๐‘Ž13๐‘๐‘33

โ€ข Multiply the elements of the second row of the first matrix by the corresponding elements

of each column in the second matrix and add the products .

๏ฟฝ๐‘Ž๐‘Ž11 ๐‘Ž๐‘Ž12 ๐‘Ž๐‘Ž13๐‘Ž๐‘Ž21 ๐‘Ž๐‘Ž22 ๐‘Ž๐‘Ž23๐‘Ž๐‘Ž31 ๐‘Ž๐‘Ž32 ๐‘Ž๐‘Ž33

๏ฟฝ ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13 ๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23 ๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ = ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ ๐‘๐‘21 = ๐‘Ž๐‘Ž21๐‘๐‘11 + ๐‘Ž๐‘Ž22๐‘๐‘21 + ๐‘Ž๐‘Ž23๐‘๐‘31

๏ฟฝ๐‘Ž๐‘Ž11 ๐‘Ž๐‘Ž12 ๐‘Ž๐‘Ž13 ๐‘Ž๐‘Ž21 ๐‘Ž๐‘Ž22 ๐‘Ž๐‘Ž23๐‘Ž๐‘Ž31 ๐‘Ž๐‘Ž32 ๐‘Ž๐‘Ž33

๏ฟฝ ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13 ๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23 ๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ = ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13 ๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ ๐‘๐‘22 = ๐‘Ž๐‘Ž21๐‘๐‘12 + ๐‘Ž๐‘Ž22๐‘๐‘22 + ๐‘Ž๐‘Ž23๐‘๐‘32

๏ฟฝ๐‘Ž๐‘Ž11 ๐‘Ž๐‘Ž12 ๐‘Ž๐‘Ž13 ๐‘Ž๐‘Ž21 ๐‘Ž๐‘Ž22 ๐‘Ž๐‘Ž23๐‘Ž๐‘Ž31 ๐‘Ž๐‘Ž32 ๐‘Ž๐‘Ž33

๏ฟฝ ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ = ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ ๐‘๐‘23 = ๐‘Ž๐‘Ž21๐‘๐‘13 + ๐‘Ž๐‘Ž22๐‘๐‘23 + ๐‘Ž๐‘Ž23๐‘๐‘33

โ€ข Multiply the elements of the third row of the first matrix by the corresponding elements of

each column in the second matrix and add the products .

๏ฟฝ๐‘Ž๐‘Ž11 ๐‘Ž๐‘Ž12 ๐‘Ž๐‘Ž13๐‘Ž๐‘Ž21 ๐‘Ž๐‘Ž22 ๐‘Ž๐‘Ž23๐‘Ž๐‘Ž31 ๐‘Ž๐‘Ž32 ๐‘Ž๐‘Ž33

๏ฟฝ ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13 ๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23 ๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ = ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ ๐‘๐‘31 = ๐‘Ž๐‘Ž31๐‘๐‘11 + ๐‘Ž๐‘Ž32๐‘๐‘21 + ๐‘Ž๐‘Ž33๐‘๐‘31

๏ฟฝ๐‘Ž๐‘Ž11 ๐‘Ž๐‘Ž12 ๐‘Ž๐‘Ž13๐‘Ž๐‘Ž21 ๐‘Ž๐‘Ž22 ๐‘Ž๐‘Ž23๐‘Ž๐‘Ž31 ๐‘Ž๐‘Ž32 ๐‘Ž๐‘Ž33

๏ฟฝ ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ = ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ ๐‘๐‘32 = ๐‘Ž๐‘Ž31๐‘๐‘12 + ๐‘Ž๐‘Ž32๐‘๐‘22 + ๐‘Ž๐‘Ž33๐‘๐‘32

๏ฟฝ๐‘Ž๐‘Ž11 ๐‘Ž๐‘Ž12 ๐‘Ž๐‘Ž13๐‘Ž๐‘Ž21 ๐‘Ž๐‘Ž22 ๐‘Ž๐‘Ž23๐‘Ž๐‘Ž31 ๐‘Ž๐‘Ž32 ๐‘Ž๐‘Ž33

๏ฟฝ ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ = ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ ๐‘๐‘33 = ๐‘Ž๐‘Ž31๐‘๐‘13 + ๐‘Ž๐‘Ž32๐‘๐‘23 + ๐‘Ž๐‘Ž33๐‘๐‘33

3 ร— 3 3 ร— 3 3 ร— 3

Page 11-13

Summary โ€“ Matrix Multiplication

โ€ข Multiply the elements of the first row of the first matrix by the corresponding elements of

each column in the second matrix and add the products .

๏ฟฝ๐‘Ž๐‘Ž11 ๐‘Ž๐‘Ž12 ๐‘Ž๐‘Ž13 ๐‘Ž๐‘Ž21 ๐‘Ž๐‘Ž22 ๐‘Ž๐‘Ž23๐‘Ž๐‘Ž31 ๐‘Ž๐‘Ž32 ๐‘Ž๐‘Ž33

๏ฟฝ ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13 ๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ = ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23 ๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ ๐‘๐‘11 = ๐‘Ž๐‘Ž11๐‘๐‘11 + ๐‘Ž๐‘Ž12๐‘๐‘21 + ๐‘Ž๐‘Ž13๐‘๐‘31

๏ฟฝ๐‘Ž๐‘Ž11 ๐‘Ž๐‘Ž12 ๐‘Ž๐‘Ž13๐‘Ž๐‘Ž21 ๐‘Ž๐‘Ž22 ๐‘Ž๐‘Ž23๐‘Ž๐‘Ž31 ๐‘Ž๐‘Ž32 ๐‘Ž๐‘Ž33

๏ฟฝ ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ = ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13 ๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ ๐‘๐‘12 = ๐‘Ž๐‘Ž11๐‘๐‘12 + ๐‘Ž๐‘Ž12๐‘๐‘22 + ๐‘Ž๐‘Ž13๐‘๐‘32

๏ฟฝ๐‘Ž๐‘Ž11 ๐‘Ž๐‘Ž12 ๐‘Ž๐‘Ž13 ๐‘Ž๐‘Ž21 ๐‘Ž๐‘Ž22 ๐‘Ž๐‘Ž23๐‘Ž๐‘Ž31 ๐‘Ž๐‘Ž32 ๐‘Ž๐‘Ž33

๏ฟฝ ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13 ๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23 ๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ= ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ ๐‘๐‘13 = ๐‘Ž๐‘Ž11๐‘๐‘13 + ๐‘Ž๐‘Ž12๐‘๐‘23 + ๐‘Ž๐‘Ž13๐‘๐‘33

โ€ข Multiply the elements of the second row of the first matrix by the corresponding elements

of each column in the second matrix and add the products .

๏ฟฝ๐‘Ž๐‘Ž11 ๐‘Ž๐‘Ž12 ๐‘Ž๐‘Ž13๐‘Ž๐‘Ž21 ๐‘Ž๐‘Ž22 ๐‘Ž๐‘Ž23๐‘Ž๐‘Ž31 ๐‘Ž๐‘Ž32 ๐‘Ž๐‘Ž33

๏ฟฝ ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13 ๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23 ๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ = ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ ๐‘๐‘21 = ๐‘Ž๐‘Ž21๐‘๐‘11 + ๐‘Ž๐‘Ž22๐‘๐‘21 + ๐‘Ž๐‘Ž23๐‘๐‘31

๏ฟฝ๐‘Ž๐‘Ž11 ๐‘Ž๐‘Ž12 ๐‘Ž๐‘Ž13 ๐‘Ž๐‘Ž21 ๐‘Ž๐‘Ž22 ๐‘Ž๐‘Ž23๐‘Ž๐‘Ž31 ๐‘Ž๐‘Ž32 ๐‘Ž๐‘Ž33

๏ฟฝ ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13 ๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23 ๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ = ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13 ๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ ๐‘๐‘22 = ๐‘Ž๐‘Ž21๐‘๐‘12 + ๐‘Ž๐‘Ž22๐‘๐‘22 + ๐‘Ž๐‘Ž23๐‘๐‘32

๏ฟฝ๐‘Ž๐‘Ž11 ๐‘Ž๐‘Ž12 ๐‘Ž๐‘Ž13 ๐‘Ž๐‘Ž21 ๐‘Ž๐‘Ž22 ๐‘Ž๐‘Ž23๐‘Ž๐‘Ž31 ๐‘Ž๐‘Ž32 ๐‘Ž๐‘Ž33

๏ฟฝ ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ = ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ ๐‘๐‘23 = ๐‘Ž๐‘Ž21๐‘๐‘13 + ๐‘Ž๐‘Ž22๐‘๐‘23 + ๐‘Ž๐‘Ž23๐‘๐‘33

โ€ข Multiply the elements of the third row of the first matrix by the corresponding elements of

each column in the second matrix and add the products .

๏ฟฝ๐‘Ž๐‘Ž11 ๐‘Ž๐‘Ž12 ๐‘Ž๐‘Ž13๐‘Ž๐‘Ž21 ๐‘Ž๐‘Ž22 ๐‘Ž๐‘Ž23๐‘Ž๐‘Ž31 ๐‘Ž๐‘Ž32 ๐‘Ž๐‘Ž33

๏ฟฝ ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13 ๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23 ๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ = ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ ๐‘๐‘31 = ๐‘Ž๐‘Ž31๐‘๐‘11 + ๐‘Ž๐‘Ž32๐‘๐‘21 + ๐‘Ž๐‘Ž33๐‘๐‘31

๏ฟฝ๐‘Ž๐‘Ž11 ๐‘Ž๐‘Ž12 ๐‘Ž๐‘Ž13๐‘Ž๐‘Ž21 ๐‘Ž๐‘Ž22 ๐‘Ž๐‘Ž23๐‘Ž๐‘Ž31 ๐‘Ž๐‘Ž32 ๐‘Ž๐‘Ž33

๏ฟฝ ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ = ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ ๐‘๐‘32 = ๐‘Ž๐‘Ž31๐‘๐‘12 + ๐‘Ž๐‘Ž32๐‘๐‘22 + ๐‘Ž๐‘Ž33๐‘๐‘32

๏ฟฝ๐‘Ž๐‘Ž11 ๐‘Ž๐‘Ž12 ๐‘Ž๐‘Ž13๐‘Ž๐‘Ž21 ๐‘Ž๐‘Ž22 ๐‘Ž๐‘Ž23๐‘Ž๐‘Ž31 ๐‘Ž๐‘Ž32 ๐‘Ž๐‘Ž33

๏ฟฝ ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ = ๏ฟฝ๐‘๐‘11 ๐‘๐‘12 ๐‘๐‘13๐‘๐‘21 ๐‘๐‘22 ๐‘๐‘23๐‘๐‘31 ๐‘๐‘32 ๐‘๐‘33

๏ฟฝ ๐‘๐‘33 = ๐‘Ž๐‘Ž31๐‘๐‘13 + ๐‘Ž๐‘Ž32๐‘๐‘23 + ๐‘Ž๐‘Ž33๐‘๐‘33

3 ร— 3 3 ร— 3 3 ร— 3

Page 11-13

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

268 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 11 โ€“ Determinants and Matrices

11-4 MATRIX INVERSE

Identity Matrix

โ€ข Identity matrix I : a square matrix in which all the elements are 0 except the main

diagonal from the top left to the bottom right corner with 1s .

I 2ร—2 3ร—3 nร—n

identity matrix I I = ๏ฟฝ1 0

0 1๏ฟฝ I = ๏ฟฝ1 0 00 1 00 0 1

๏ฟฝ I = ๏ฟฝ1 โ‹ฏ 0โ‹ฎ 1 โ‹ฎ0 โ‹ฏ 1

๏ฟฝ

main diagonal

โ€ข Identity property: When a square matrix A is multiplied by an identity matrix I, the

result is A .

Identity Property for Matrices A I = I A = A

Tip: Identity property for matrices is same as the identity property for real numbers .

a โˆ™1 = 1โˆ™ a = a Example: 3โˆ™1 = 1โˆ™ 3 = 3

Example: A = ๏ฟฝ1 3-2 4๏ฟฝ , I = ๏ฟฝ1 0

0 1๏ฟฝ

AI = ๏ฟฝ1 3-2 4๏ฟฝ ๏ฟฝ

1 00 1๏ฟฝ= ๏ฟฝ

1 โˆ™ 1 + 3 โˆ™ 0 1 โˆ™ 0 + 3 โˆ™ 1-2 โˆ™ 1 + 4 โˆ™ 0 -2 โˆ™ 0 + 4 โˆ™ 1 ๏ฟฝ = ๏ฟฝ

๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘-๐Ÿ๐Ÿ ๐Ÿ’๐Ÿ’๏ฟฝ

IA = ๏ฟฝ1 00 1๏ฟฝ ๏ฟฝ

1 3-2 4๏ฟฝ = ๏ฟฝ

1 โˆ™ 1 + 0(-2) 1 โˆ™ 3 + 0 โˆ™ 40 โˆ™ 1 + 1(-2) 0 โˆ™ 3 + 1 โˆ™ 4

๏ฟฝ = ๏ฟฝ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘-๐Ÿ๐Ÿ ๐Ÿ’๐Ÿ’๏ฟฝ

The same result for A I and I A.

โ€ข Properties of matrix

Property of Multiplication Property of AdditionA, B, and C are matrices

associative property: A(BC) = (AB)C associative property: A + (B + C) = (A + B) + Cdistributive property: A(B + C) = AB + AC (B + C)A = BA + CA commutative property: A + B = B + A

scalar multiplication (k is a constant): k(AB) = (kA)B or A(kB) additive inverse: A + (-A) = 0

multiplicative identity: IA = AI = A additive identity: A + 0 = A

Note: The zero matrix โ€œ0โ€ is a matrix that has the same dimension as matrix A but has a โ€œ0โ€ for each element .

Page 11-14

11-4 MATRIX INVERSE

Identity Matrix

โ€ข Identity matrix I : a square matrix in which all the elements are 0 except the main

diagonal from the top left to the bottom right corner with 1s .

I 2ร—2 3ร—3 nร—n

identity matrix I I = ๏ฟฝ1 0

0 1๏ฟฝ I = ๏ฟฝ1 0 00 1 00 0 1

๏ฟฝ I = ๏ฟฝ1 โ‹ฏ 0โ‹ฎ 1 โ‹ฎ0 โ‹ฏ 1

๏ฟฝ

main diagonal

โ€ข Identity property: When a square matrix A is multiplied by an identity matrix I, the

result is A .

Identity Property for Matrices A I = I A = A

Tip: Identity property for matrices is same as the identity property for real numbers .

a โˆ™1 = 1โˆ™ a = a Example: 3โˆ™1 = 1โˆ™ 3 = 3

Example: A = ๏ฟฝ1 3-2 4๏ฟฝ , I = ๏ฟฝ1 0

0 1๏ฟฝ

AI = ๏ฟฝ1 3-2 4๏ฟฝ ๏ฟฝ

1 00 1๏ฟฝ= ๏ฟฝ

1 โˆ™ 1 + 3 โˆ™ 0 1 โˆ™ 0 + 3 โˆ™ 1-2 โˆ™ 1 + 4 โˆ™ 0 -2 โˆ™ 0 + 4 โˆ™ 1 ๏ฟฝ = ๏ฟฝ

๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘-๐Ÿ๐Ÿ ๐Ÿ’๐Ÿ’๏ฟฝ

IA = ๏ฟฝ1 00 1๏ฟฝ ๏ฟฝ

1 3-2 4๏ฟฝ = ๏ฟฝ

1 โˆ™ 1 + 0(-2) 1 โˆ™ 3 + 0 โˆ™ 40 โˆ™ 1 + 1(-2) 0 โˆ™ 3 + 1 โˆ™ 4

๏ฟฝ = ๏ฟฝ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘-๐Ÿ๐Ÿ ๐Ÿ’๐Ÿ’๏ฟฝ

The same result for A I and I A.

โ€ข Properties of matrix

Property of Multiplication Property of AdditionA, B, and C are matrices

associative property: A(BC) = (AB)C associative property: A + (B + C) = (A + B) + Cdistributive property: A(B + C) = AB + AC (B + C)A = BA + CA commutative property: A + B = B + A

scalar multiplication (k is a constant): k(AB) = (kA)B or A(kB) additive inverse: A + (-A) = 0

multiplicative identity: IA = AI = A additive identity: A + 0 = A

Note: The zero matrix โ€œ0โ€ is a matrix that has the same dimension as matrix A but has a โ€œ0โ€ for each element .

Page 11-14

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 269

Algebra I & II Key Concepts, Practice, and Quizzes Unit 11 โ€“ Determinants and Matrices

Inverse of a Matrix

โ€ข An inverse matrix (A-1): A-1 is the inverse of a matrix A .

A A-1 = A-1 A = I I - identity matrix

Tip: ordinary algebra: ๐‘Ž๐‘Ž โˆ™ 1๐‘Ž๐‘Ž

= ๐‘Ž๐‘Ž๐‘Ž๐‘Ž-1 = 1 ๐‘Ž๐‘Ž-1 = 1๐‘Ž๐‘Ž

matrix algebra: ๐‘จ๐‘จ ๐‘จ๐‘จ-1 = ๐‘ฐ๐‘ฐ ๐‘จ๐‘จ-๐Ÿ๐Ÿ โ‰  ๐Ÿ๐Ÿ๐‘จ๐‘จ

Example: A = ๏ฟฝ2 16 4๏ฟฝ, ๐‘จ๐‘จ

-1 = ๏ฟฝ2โ€“12

-3 1๏ฟฝ

A A-1 = ๏ฟฝ2 16 4๏ฟฝ ๏ฟฝ

2โ€“12

-3 1๏ฟฝ = ๏ฟฝ

2 โˆ™ 2 + 1 โˆ™ (-3) 2 โˆ™โ€“12

+ 1 โˆ™ 1

6 โˆ™ 2 + 4 โˆ™ (-3) 6 โˆ™ ๏ฟฝโ€“12๏ฟฝ + 4 โˆ™ 1

๏ฟฝ

= ๏ฟฝ4 โˆ’ 3 -1 + 1

12 โˆ’ 12 -3 + 4๏ฟฝ = ๏ฟฝ1 0

0 1๏ฟฝ = I , A A-1 = I

โ€ข Finding the inverse of a 2ร—2 matrix A-1

Steps Example: A = ๏ฟฝ2 16 4๏ฟฝ

- Switch the main diagonal elements . A = ๏ฟฝ๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘1๐‘Ž๐‘Ž2 ๐’ƒ๐’ƒ๐Ÿ๐Ÿ

๏ฟฝ ๏ฟฝ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐‘๐‘1๐‘Ž๐‘Ž2 ๐’‚๐’‚๐Ÿ๐Ÿ

๏ฟฝ ๏ฟฝ๐Ÿ’๐Ÿ’ 16 ๐Ÿ๐Ÿ๏ฟฝ

- Change signs for the remaining elements . ๏ฟฝ ๐‘๐‘2 -๐‘๐‘1-๐‘Ž๐‘Ž2 ๐‘Ž๐‘Ž1

๏ฟฝ ๏ฟฝ4 -1-6 2

๏ฟฝ

- Divide the result of the last step by the determinant |๐ด๐ด| . ๐‘จ๐‘จ-๐Ÿ๐Ÿ = ๏ฟฝ4 -1

-6 2๏ฟฝ

๏ฟฝ2 16 4

๏ฟฝ=

๏ฟฝ4 -1-6 2

๏ฟฝ

8โˆ’6

A-1 = ๏ฟฝ๐‘๐‘2 -๐‘๐‘1-๐‘Ž๐‘Ž2 ๐‘Ž๐‘Ž1

๏ฟฝ

๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

= 12๏ฟฝ 4 -1-6 2

๏ฟฝ =๏ฟฝ42

-12

-62

22

๏ฟฝ = ๏ฟฝ ๐Ÿ๐Ÿ-๐Ÿ๐Ÿ๐Ÿ๐Ÿ

-๐Ÿ‘๐Ÿ‘ ๐Ÿ๐Ÿ๏ฟฝ

?- Check: ๐‘จ๐‘จ ๐‘จ๐‘จ-1 = ๐‘ฐ๐‘ฐ

๐‘จ๐‘จ ๐‘จ๐‘จโˆ’1 = ๏ฟฝ2 16 4

๏ฟฝ ๏ฟฝ2โ€“12

-3 1๏ฟฝ = ๏ฟฝ

2 โˆ™ 2 + 1 โˆ™ (-3) 2 โˆ™ โ€“12 + 1 โˆ™ 1

6 โˆ™ 2 + 4 โˆ™ (-3) 6 โˆ™ ๏ฟฝโ€“12๏ฟฝ+ 4 โˆ™ 1

๏ฟฝ

= ๏ฟฝ4 โˆ’ 3 -1 + 1

12 โˆ’ 12 -3 + 4๏ฟฝ = ๏ฟฝ1 0

0 1๏ฟฝ = I Correct!

Note: This method can only be used for finding the inverse of a 2 ร— 2 matrix .

Page 11-15

Inverse of a Matrix

โ€ข An inverse matrix (A-1): A-1 is the inverse of a matrix A .

A A-1 = A-1 A = I I - identity matrix

Tip: ordinary algebra: ๐‘Ž๐‘Ž โˆ™ 1๐‘Ž๐‘Ž

= ๐‘Ž๐‘Ž๐‘Ž๐‘Ž-1 = 1 ๐‘Ž๐‘Ž-1 = 1๐‘Ž๐‘Ž

matrix algebra: ๐‘จ๐‘จ ๐‘จ๐‘จ-1 = ๐‘ฐ๐‘ฐ ๐‘จ๐‘จ-๐Ÿ๐Ÿ โ‰  ๐Ÿ๐Ÿ๐‘จ๐‘จ

Example: A = ๏ฟฝ2 16 4๏ฟฝ, ๐‘จ๐‘จ

-1 = ๏ฟฝ2โ€“12

-3 1๏ฟฝ

A A-1 = ๏ฟฝ2 16 4๏ฟฝ ๏ฟฝ

2โ€“12

-3 1๏ฟฝ = ๏ฟฝ

2 โˆ™ 2 + 1 โˆ™ (-3) 2 โˆ™โ€“12

+ 1 โˆ™ 1

6 โˆ™ 2 + 4 โˆ™ (-3) 6 โˆ™ ๏ฟฝโ€“12๏ฟฝ + 4 โˆ™ 1

๏ฟฝ

= ๏ฟฝ4 โˆ’ 3 -1 + 1

12 โˆ’ 12 -3 + 4๏ฟฝ = ๏ฟฝ1 0

0 1๏ฟฝ = I , A A-1 = I

โ€ข Finding the inverse of a 2ร—2 matrix A-1

Steps Example: A = ๏ฟฝ2 16 4๏ฟฝ

- Switch the main diagonal elements . A = ๏ฟฝ๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘1๐‘Ž๐‘Ž2 ๐’ƒ๐’ƒ๐Ÿ๐Ÿ

๏ฟฝ ๏ฟฝ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐‘๐‘1๐‘Ž๐‘Ž2 ๐’‚๐’‚๐Ÿ๐Ÿ

๏ฟฝ ๏ฟฝ๐Ÿ’๐Ÿ’ 16 ๐Ÿ๐Ÿ๏ฟฝ

- Change signs for the remaining elements . ๏ฟฝ ๐‘๐‘2 -๐‘๐‘1-๐‘Ž๐‘Ž2 ๐‘Ž๐‘Ž1

๏ฟฝ ๏ฟฝ4 -1-6 2

๏ฟฝ

- Divide the result of the last step by the determinant |๐ด๐ด| . ๐‘จ๐‘จ-๐Ÿ๐Ÿ = ๏ฟฝ4 -1

-6 2๏ฟฝ

๏ฟฝ2 16 4

๏ฟฝ=

๏ฟฝ4 -1-6 2

๏ฟฝ

8โˆ’6

A-1 = ๏ฟฝ๐‘๐‘2 -๐‘๐‘1-๐‘Ž๐‘Ž2 ๐‘Ž๐‘Ž1

๏ฟฝ

๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

= 12๏ฟฝ 4 -1-6 2

๏ฟฝ =๏ฟฝ42

-12

-62

22

๏ฟฝ = ๏ฟฝ ๐Ÿ๐Ÿ-๐Ÿ๐Ÿ๐Ÿ๐Ÿ

-๐Ÿ‘๐Ÿ‘ ๐Ÿ๐Ÿ๏ฟฝ

?- Check: ๐‘จ๐‘จ ๐‘จ๐‘จ-1 = ๐‘ฐ๐‘ฐ

๐‘จ๐‘จ ๐‘จ๐‘จโˆ’1 = ๏ฟฝ2 16 4

๏ฟฝ ๏ฟฝ2โ€“12

-3 1๏ฟฝ = ๏ฟฝ

2 โˆ™ 2 + 1 โˆ™ (-3) 2 โˆ™ โ€“12 + 1 โˆ™ 1

6 โˆ™ 2 + 4 โˆ™ (-3) 6 โˆ™ ๏ฟฝโ€“12๏ฟฝ+ 4 โˆ™ 1

๏ฟฝ

= ๏ฟฝ4 โˆ’ 3 -1 + 1

12 โˆ’ 12 -3 + 4๏ฟฝ = ๏ฟฝ1 0

0 1๏ฟฝ = I Correct!

Note: This method can only be used for finding the inverse of a 2 ร— 2 matrix .

Page 11-15

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

270 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 11 โ€“ Determinants and Matrices

Gauss-Jordan Elimination Method to Find A-1

Gauss-JordanMethod to Find A-1

- Transform matrix A into the identity matrix I. A I - Transform the identity matrix I into inverse matrix A-1 . I A-1

Procedure to use Gaussian-elimination method to find A-1

Steps Example: ๐‘จ๐‘จ = ๏ฟฝ1 02 3

๏ฟฝ

A I

- Write the augmented matrix [A | I] by appending ๏ฟฝ1 0 1 02 3 0 1๏ฟฝ

an identity matrix I on the right of matrix A . Column 1 Column 2

- Use row operations to transform [A | I] to [I | A-1] . ๏ฟฝ1 0 1 0๐ŸŽ๐ŸŽ 3 -2 1๏ฟฝ

You can:- Switch any two rows .

- Multiply or divide a row by a constant . ๏ฟฝ1 0 1 0๐ŸŽ๐ŸŽ 1 โ€“2

3 1

3๏ฟฝ

- Add or subtract a row to another row .- Multiply a constant to a row .

Tip: This (row operations) is similar to the elimination method for solving a system of linear equations .

- Determine A-1 . ๐‘จ๐‘จ-1 = ๏ฟฝ๐Ÿ๐Ÿ ๐ŸŽ๐ŸŽโ€“๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๏ฟฝ

- Check . A A-1 = I ๏ฟฝ1 02 3๏ฟฝ ๏ฟฝ

1 0โ€“23

13๏ฟฝ = ๏ฟฝ1 0

0 1๏ฟฝ

๏ฟฝ1 โˆ™ 1 + 0 ๏ฟฝ

โ€“23๏ฟฝ 1 โˆ™ 0 + 0 ๏ฟฝ1

3๏ฟฝ

2 โˆ™ 1 + 3 ๏ฟฝโ€“23๏ฟฝ 2 โˆ™ 0 + 3 ๏ฟฝ1

3๏ฟฝ๏ฟฝ = ๏ฟฝ1 0

0 1๏ฟฝ

โˆš

๏ฟฝ1 00 1๏ฟฝ = ๏ฟฝ1 0

0 1๏ฟฝ Correct!

Note: This method can be used for any n ร— n matrices .

Row 1

Row 2

-2 ร— row 1, add to row 2

Get a โ€œ1โ€ in the row 2 colunm 2 .

13

ร— row 2

๐‘ฐ๐‘ฐ = ๏ฟฝ1 00 1๏ฟฝ

Get a โ€œ0โ€ in the row 2 colunm 1 .

?

?

?

Page 11-16

Gauss-Jordan Elimination Method to Find A-1

Gauss-JordanMethod to Find A-1

- Transform matrix A into the identity matrix I. A I - Transform the identity matrix I into inverse matrix A-1 . I A-1

Procedure to use Gaussian-elimination method to find A-1

Steps Example: ๐‘จ๐‘จ = ๏ฟฝ1 02 3

๏ฟฝ

A I

- Write the augmented matrix [A | I] by appending ๏ฟฝ1 0 1 02 3 0 1๏ฟฝ

an identity matrix I on the right of matrix A . Column 1 Column 2

- Use row operations to transform [A | I] to [I | A-1] . ๏ฟฝ1 0 1 0๐ŸŽ๐ŸŽ 3 -2 1๏ฟฝ

You can:- Switch any two rows .

- Multiply or divide a row by a constant . ๏ฟฝ1 0 1 0๐ŸŽ๐ŸŽ 1 โ€“2

3 1

3๏ฟฝ

- Add or subtract a row to another row .- Multiply a constant to a row .

Tip: This (row operations) is similar to the elimination method for solving a system of linear equations .

- Determine A-1 . ๐‘จ๐‘จ-1 = ๏ฟฝ๐Ÿ๐Ÿ ๐ŸŽ๐ŸŽโ€“๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๏ฟฝ

- Check . A A-1 = I ๏ฟฝ1 02 3๏ฟฝ ๏ฟฝ

1 0โ€“23

13๏ฟฝ = ๏ฟฝ1 0

0 1๏ฟฝ

๏ฟฝ1 โˆ™ 1 + 0 ๏ฟฝ

โ€“23๏ฟฝ 1 โˆ™ 0 + 0 ๏ฟฝ1

3๏ฟฝ

2 โˆ™ 1 + 3 ๏ฟฝโ€“23๏ฟฝ 2 โˆ™ 0 + 3 ๏ฟฝ1

3๏ฟฝ๏ฟฝ = ๏ฟฝ1 0

0 1๏ฟฝ

โˆš

๏ฟฝ1 00 1๏ฟฝ = ๏ฟฝ1 0

0 1๏ฟฝ Correct!

Note: This method can be used for any n ร— n matrices .

Row 1

Row 2

-2 ร— row 1, add to row 2

Get a โ€œ1โ€ in the row 2 colunm 2 .

13

ร— row 2

๐‘ฐ๐‘ฐ = ๏ฟฝ1 00 1๏ฟฝ

Get a โ€œ0โ€ in the row 2 colunm 1 .

?

?

?

Page 11-16

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 271

Algebra I & II Key Concepts, Practice, and Quizzes Unit 11 โ€“ Determinants and Matrices

Example: Using the Gauss-Jordan method to find A-1 of the following 3 ร— 3 matrix .

A = ๏ฟฝ๐Ÿ‘๐Ÿ‘ ๐Ÿ๐Ÿ ๐ŸŽ๐ŸŽ๐Ÿ๐Ÿ -๐Ÿ๐Ÿ ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ ๐Ÿ“๐Ÿ“ ๐Ÿ๐Ÿ

๏ฟฝ , A-1 = ?

- Write [A | I ] . ๏ฟฝ3 2 0 1 -1 0 0 5 1

1 0 0 0 1 0 0 0 1

๏ฟฝ

- Transform [A | I ] into [I | A-1] .

๏ฟฝ3 2 0 1 -1 0 0 5 1

1 0 0 0 1 00 0 1

๏ฟฝ ๏ฟฝ๐Ÿ๐Ÿ -1 0 3 2 0 0 5 1

0 1 01 0 00 0 1

๏ฟฝ ๏ฟฝ1 -1 0 ๐ŸŽ๐ŸŽ 5 0 0 5 1

0 1 01 -3 00 0 1

๏ฟฝ

Switch row 1 & row 2 -3 ร— row 1 add to row 2

๏ฟฝ1 -1 0 0 5 0 5 ๐ŸŽ๐ŸŽ 1

0 1 01 -3 00 5 1

๏ฟฝ ๏ฟฝ1 -1 0 0 ๐Ÿ๐Ÿ 0 5 0 1

0 1 015

-35

00 5 1

๏ฟฝ

5 ร— row 1 add to row 3 Row 2 รท 5

๏ฟฝ1 ๐ŸŽ๐ŸŽ 0 0 1 0 5 0 1

1

5

2

50

1

5

-3

50

0 5 1

๏ฟฝ

โŽฃโŽขโŽขโŽขโŽก1 0 0 0 1 0 ๐ŸŽ๐ŸŽ 0 1

๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

๐ŸŽ๐ŸŽ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

-๐Ÿ‘๐Ÿ‘๐Ÿ“๐Ÿ“

๐ŸŽ๐ŸŽ

-๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘ ๐Ÿ๐ŸโŽฆโŽฅโŽฅโŽฅโŽค

Row 2 add to row 1 -5ร— row 1 add to row 3

- Determine A-1 . A-1 =

โŽฃโŽขโŽขโŽก๐Ÿ๐Ÿ

๐Ÿ“๐Ÿ“

๐Ÿ๐Ÿ

๐Ÿ“๐Ÿ“๐ŸŽ๐ŸŽ

๐Ÿ๐Ÿ

๐Ÿ“๐Ÿ“

-๐Ÿ‘๐Ÿ‘

๐Ÿ“๐Ÿ“๐ŸŽ๐ŸŽ

-๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘ ๐Ÿ๐ŸโŽฆโŽฅโŽฅโŽค

Get a โ€œ1โ€ in the row 1 colunm 1 .

Get a โ€œ0โ€ in the row 1 colunm 2 .

Get a โ€œ1โ€ in the row 2 colunm 2 . Get a โ€œ0โ€ in the row 3 colunm 2 .

Get a โ€œ0โ€ in the row 2 colunm 1 .

Get a โ€œ0โ€ in the row 3 colunm 1 .

Page 11-17

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

272 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 11 โ€“ Determinants and Matrices

Find Inverse Matrix A-1 โ€“ Method II

โ€ข Find the inverse of a 3 ร— 3 matrix โ€“ Method II

Example: Find A-1 of the following 3 ร— 3 matrix .

A = ๏ฟฝ3 2 01 -1 00 5 1

๏ฟฝ A-1 = ?

Steps

โ€ข Find the cofactor matrix: determine the cofactor (minors + place signs) of each element .

๏ฟฝ3 2 0 1 -1 00 5 1

๏ฟฝ

โŽฃโŽขโŽขโŽขโŽก ๏ฟฝ-1 0

5 1๏ฟฝ - ๏ฟฝ1 0

0 1๏ฟฝ ๏ฟฝ1 -1

0 5๏ฟฝ

- ๏ฟฝ2 05 1

๏ฟฝ ๏ฟฝ3 00 1

๏ฟฝ - ๏ฟฝ3 20 5

๏ฟฝ

๏ฟฝ2 0-1 0๏ฟฝ - ๏ฟฝ3 0

1 0๏ฟฝ ๏ฟฝ

3 21 -1๏ฟฝ โŽฆ

โŽฅโŽฅโŽฅโŽค

+ โˆ’ + โˆ’ + โˆ’ + โˆ’ +

cofactor matrix = ๏ฟฝ-1 -1 5-2 3 -150 0 -5

๏ฟฝ

โ€ข Determine the transpose of the cofactor matrix AT: exchange all the rows and columns .

AT =

โŽฃโŽขโŽขโŽขโŽก-1 -2 0-1 3 05 -15 -5โŽฆ

โŽฅโŽฅโŽฅโŽค

โ€ข Calculate the determinant |๐€๐€| of the matrix

|๐‘จ๐‘จ| = ๏ฟฝ๐Ÿ‘๐Ÿ‘ ๐Ÿ๐Ÿ ๐ŸŽ๐ŸŽ1 -1 00 5 1

๏ฟฝ = 3 ๏ฟฝ-1 05 1

๏ฟฝ โˆ’ 2 ๏ฟฝ1 00 1๏ฟฝ + 0 ๏ฟฝ1 -1

0 5๏ฟฝ = -3 โ€“ 2 = -5 Choose row 1 .

โ€ข Determine inverse matrix A-1 A-1 = 1|๐ด๐ด| AT

A-1 = 1|๐ด๐ด|

AT = 1-5

โŽฃโŽขโŽขโŽขโŽก-1 -2 0-1 3 05 -15 -5โŽฆ

โŽฅโŽฅโŽฅโŽค

=

โŽฃโŽขโŽขโŽขโŽก๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

๐ŸŽ๐ŸŽ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

-๐Ÿ‘๐Ÿ‘๐Ÿ“๐Ÿ“

๐ŸŽ๐ŸŽ

-๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘ ๐Ÿ๐ŸโŽฆโŽฅโŽฅโŽฅโŽค

It gives the same result as the Gauss-Jordan method .

Page 11-18

Find Inverse Matrix A-1 โ€“ Method II

โ€ข Find the inverse of a 3 ร— 3 matrix โ€“ Method II

Example: Find A-1 of the following 3 ร— 3 matrix .

A = ๏ฟฝ3 2 01 -1 00 5 1

๏ฟฝ A-1 = ?

Steps

โ€ข Find the cofactor matrix: determine the cofactor (minors + place signs) of each element .

๏ฟฝ3 2 0 1 -1 00 5 1

๏ฟฝ

โŽฃโŽขโŽขโŽขโŽก ๏ฟฝ-1 0

5 1๏ฟฝ - ๏ฟฝ1 0

0 1๏ฟฝ ๏ฟฝ1 -1

0 5๏ฟฝ

- ๏ฟฝ2 05 1

๏ฟฝ ๏ฟฝ3 00 1

๏ฟฝ - ๏ฟฝ3 20 5

๏ฟฝ

๏ฟฝ2 0-1 0๏ฟฝ - ๏ฟฝ3 0

1 0๏ฟฝ ๏ฟฝ

3 21 -1๏ฟฝ โŽฆ

โŽฅโŽฅโŽฅโŽค

+ โˆ’ + โˆ’ + โˆ’ + โˆ’ +

cofactor matrix = ๏ฟฝ-1 -1 5-2 3 -150 0 -5

๏ฟฝ

โ€ข Determine the transpose of the cofactor matrix AT: exchange all the rows and columns .

AT =

โŽฃโŽขโŽขโŽขโŽก-1 -2 0-1 3 05 -15 -5โŽฆ

โŽฅโŽฅโŽฅโŽค

โ€ข Calculate the determinant |๐€๐€| of the matrix

|๐‘จ๐‘จ| = ๏ฟฝ๐Ÿ‘๐Ÿ‘ ๐Ÿ๐Ÿ ๐ŸŽ๐ŸŽ1 -1 00 5 1

๏ฟฝ = 3 ๏ฟฝ-1 05 1

๏ฟฝ โˆ’ 2 ๏ฟฝ1 00 1๏ฟฝ + 0 ๏ฟฝ1 -1

0 5๏ฟฝ = -3 โ€“ 2 = -5 Choose row 1 .

โ€ข Determine inverse matrix A-1 A-1 = 1|๐ด๐ด| AT

A-1 = 1|๐ด๐ด|

AT = 1-5

โŽฃโŽขโŽขโŽขโŽก-1 -2 0-1 3 05 -15 -5โŽฆ

โŽฅโŽฅโŽฅโŽค

=

โŽฃโŽขโŽขโŽขโŽก๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

๐ŸŽ๐ŸŽ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

-๐Ÿ‘๐Ÿ‘๐Ÿ“๐Ÿ“

๐ŸŽ๐ŸŽ

-๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘ ๐Ÿ๐ŸโŽฆโŽฅโŽฅโŽฅโŽค

It gives the same result as the Gauss-Jordan method .

Page 11-18

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 273

Algebra I & II Key Concepts, Practice, and Quizzes Unit 11 โ€“ Determinants and Matrices

Solving a Linear System Using the Inverse Matrix

โ€ข Write systems of linear equations in matrix formLinear System Matrix Form Example

2ร—2 system ๏ฟฝ๐‘Ž๐‘Ž11๐‘ฅ๐‘ฅ + ๐‘๐‘12๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘Ž๐‘Ž21๐‘ฅ๐‘ฅ + ๐‘๐‘22๐‘ฆ๐‘ฆ = ๐‘๐‘2

๏ฟฝ๐‘Ž๐‘Ž11 ๐‘๐‘12๐‘Ž๐‘Ž21 ๐‘๐‘22

๏ฟฝ ๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๏ฟฝ = ๏ฟฝ๐‘๐‘1๐‘๐‘2๏ฟฝ

A ยท X = C

๏ฟฝ2๐‘ฅ๐‘ฅ + 3๐‘ฆ๐‘ฆ = 13๐‘ฅ๐‘ฅ โˆ’ 4๐‘ฆ๐‘ฆ = 2

๏ฟฝ2 33 -4๏ฟฝ ๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๏ฟฝ = ๏ฟฝ12๏ฟฝ

3ร—3 system ๏ฟฝ๐‘Ž๐‘Ž11๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž12๐‘ฆ๐‘ฆ+๐‘Ž๐‘Ž13๐‘ง๐‘ง = ๐‘๐‘1๐‘Ž๐‘Ž21๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž22๐‘ฆ๐‘ฆ+๐‘Ž๐‘Ž23๐‘ง๐‘ง = ๐‘๐‘2๐‘Ž๐‘Ž31๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž32๐‘ฆ๐‘ฆ+๐‘Ž๐‘Ž33๐‘ง๐‘ง = ๐‘๐‘3

๏ฟฝ๐‘Ž๐‘Ž11 ๐‘Ž๐‘Ž12 ๐‘Ž๐‘Ž13 ๐‘Ž๐‘Ž21 ๐‘Ž๐‘Ž22 ๐‘Ž๐‘Ž23๐‘Ž๐‘Ž31 ๐‘Ž๐‘Ž32 ๐‘Ž๐‘Ž33

๏ฟฝ ๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๐‘ง๐‘ง๏ฟฝ = ๏ฟฝ

๐‘๐‘1๐‘๐‘2๐‘๐‘3๏ฟฝ

A ยท X = C

๏ฟฝ3๐‘ฅ๐‘ฅ + 2๐‘ฆ๐‘ฆ + ๐‘ง๐‘ง = 1

2๐‘ฅ๐‘ฅ โˆ’ 3๐‘ฆ๐‘ฆ + 4๐‘ง๐‘ง = 35๐‘ฅ๐‘ฅ + 2๐‘ฆ๐‘ฆ โˆ’ ๐‘ง๐‘ง = 2

๏ฟฝ3 2 1 2 -3 4 5 2 -1

๏ฟฝ ๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๐‘ง๐‘ง๏ฟฝ = ๏ฟฝ

132๏ฟฝ

โ€ข Solving a linear system using the inverse matrix

The Matrix Equation of a Linear System

A X = C ๏ฟฝ ๐‘จ๐‘จ โˆ’ coefficient matrix๐‘ช๐‘ช โˆ’ constant matrix ๐‘ฟ๐‘ฟ โˆ’ variable matrix

Solving Using A-1 X = A-1 C A-1โˆ’ inverse matrix

Note: X = A-1 C , X โ‰  C A-1 โˆต AB โ‰  BA Multiplication of matrices is not commutative .

Example: Use matrices to solve a 2ร—2 system . ๏ฟฝ ๐’™๐’™ โˆ’ ๐’š๐’š = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ‘๐Ÿ‘๐’š๐’š = ๐Ÿ๐Ÿ

Steps Example

- Write the system in matrix form . AX = C ๏ฟฝ1 -12 3

๏ฟฝ ๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๏ฟฝ = ๏ฟฝ12๏ฟฝ- Find A-1 . A X C

- Switch the main diagonal elements .

- Change signs for the remaining elements . A-1 = ๏ฟฝ

3 1-2 1๏ฟฝ

๏ฟฝ1 -12 3

๏ฟฝ=

๏ฟฝ3 1-2 1๏ฟฝ

3โˆ’(-1)2= 1

5 ๏ฟฝ

3 1-2 1๏ฟฝ

- Divide by the determinant . = ๏ฟฝ35

15

-25

15

๏ฟฝ

- Solve for X: X = A-1C X = A-1C = ๏ฟฝ35

15

-25

15

๏ฟฝ ๏ฟฝ12๏ฟฝ = ๏ฟฝ35โˆ™1 + 15โˆ™2-25 โˆ™1 + 15โˆ™2

๏ฟฝ = ๏ฟฝ10๏ฟฝ

i .e . ๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๏ฟฝ=๏ฟฝ10๏ฟฝ or ๏ฟฝ๐’™๐’™ = ๐Ÿ๐Ÿ

๐’š๐’š = ๐ŸŽ๐ŸŽ or (๐Ÿ๐Ÿ,๐ŸŽ๐ŸŽ)

A-1 = ๏ฟฝ ๐‘๐‘2 -๐‘๐‘1-๐‘Ž๐‘Ž2 ๐‘Ž๐‘Ž1

๏ฟฝ

๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

A X = C A-1 A X = A-1 C

I X = A-1 C X = A-1 C

Page 11-19

Solving a Linear System Using the Inverse Matrix

โ€ข Write systems of linear equations in matrix formLinear System Matrix Form Example

2ร—2 system ๏ฟฝ๐‘Ž๐‘Ž11๐‘ฅ๐‘ฅ + ๐‘๐‘12๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘Ž๐‘Ž21๐‘ฅ๐‘ฅ + ๐‘๐‘22๐‘ฆ๐‘ฆ = ๐‘๐‘2

๏ฟฝ๐‘Ž๐‘Ž11 ๐‘๐‘12๐‘Ž๐‘Ž21 ๐‘๐‘22

๏ฟฝ ๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๏ฟฝ = ๏ฟฝ๐‘๐‘1๐‘๐‘2๏ฟฝ

A ยท X = C

๏ฟฝ2๐‘ฅ๐‘ฅ + 3๐‘ฆ๐‘ฆ = 13๐‘ฅ๐‘ฅ โˆ’ 4๐‘ฆ๐‘ฆ = 2

๏ฟฝ2 33 -4๏ฟฝ ๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๏ฟฝ = ๏ฟฝ12๏ฟฝ

3ร—3 system ๏ฟฝ๐‘Ž๐‘Ž11๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž12๐‘ฆ๐‘ฆ+๐‘Ž๐‘Ž13๐‘ง๐‘ง = ๐‘๐‘1๐‘Ž๐‘Ž21๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž22๐‘ฆ๐‘ฆ+๐‘Ž๐‘Ž23๐‘ง๐‘ง = ๐‘๐‘2๐‘Ž๐‘Ž31๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž32๐‘ฆ๐‘ฆ+๐‘Ž๐‘Ž33๐‘ง๐‘ง = ๐‘๐‘3

๏ฟฝ๐‘Ž๐‘Ž11 ๐‘Ž๐‘Ž12 ๐‘Ž๐‘Ž13 ๐‘Ž๐‘Ž21 ๐‘Ž๐‘Ž22 ๐‘Ž๐‘Ž23๐‘Ž๐‘Ž31 ๐‘Ž๐‘Ž32 ๐‘Ž๐‘Ž33

๏ฟฝ ๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๐‘ง๐‘ง๏ฟฝ = ๏ฟฝ

๐‘๐‘1๐‘๐‘2๐‘๐‘3๏ฟฝ

A ยท X = C

๏ฟฝ3๐‘ฅ๐‘ฅ + 2๐‘ฆ๐‘ฆ + ๐‘ง๐‘ง = 1

2๐‘ฅ๐‘ฅ โˆ’ 3๐‘ฆ๐‘ฆ + 4๐‘ง๐‘ง = 35๐‘ฅ๐‘ฅ + 2๐‘ฆ๐‘ฆ โˆ’ ๐‘ง๐‘ง = 2

๏ฟฝ3 2 1 2 -3 4 5 2 -1

๏ฟฝ ๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๐‘ง๐‘ง๏ฟฝ = ๏ฟฝ

132๏ฟฝ

โ€ข Solving a linear system using the inverse matrix

The Matrix Equation of a Linear System

A X = C ๏ฟฝ ๐‘จ๐‘จ โˆ’ coefficient matrix๐‘ช๐‘ช โˆ’ constant matrix ๐‘ฟ๐‘ฟ โˆ’ variable matrix

Solving Using A-1 X = A-1 C A-1โˆ’ inverse matrix

Note: X = A-1 C , X โ‰  C A-1 โˆต AB โ‰  BA Multiplication of matrices is not commutative .

Example: Use matrices to solve a 2ร—2 system . ๏ฟฝ ๐’™๐’™ โˆ’ ๐’š๐’š = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ‘๐Ÿ‘๐’š๐’š = ๐Ÿ๐Ÿ

Steps Example

- Write the system in matrix form . AX = C ๏ฟฝ1 -12 3

๏ฟฝ ๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๏ฟฝ = ๏ฟฝ12๏ฟฝ- Find A-1 . A X C

- Switch the main diagonal elements .

- Change signs for the remaining elements . A-1 = ๏ฟฝ

3 1-2 1๏ฟฝ

๏ฟฝ1 -12 3

๏ฟฝ=

๏ฟฝ3 1-2 1๏ฟฝ

3โˆ’(-1)2= 1

5 ๏ฟฝ

3 1-2 1๏ฟฝ

- Divide by the determinant . = ๏ฟฝ35

15

-25

15

๏ฟฝ

- Solve for X: X = A-1C X = A-1C = ๏ฟฝ35

15

-25

15

๏ฟฝ ๏ฟฝ12๏ฟฝ = ๏ฟฝ35โˆ™1 + 15โˆ™2-25 โˆ™1 + 15โˆ™2

๏ฟฝ = ๏ฟฝ10๏ฟฝ

i .e . ๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๏ฟฝ=๏ฟฝ10๏ฟฝ or ๏ฟฝ๐’™๐’™ = ๐Ÿ๐Ÿ

๐’š๐’š = ๐ŸŽ๐ŸŽ or (๐Ÿ๐Ÿ,๐ŸŽ๐ŸŽ)

A-1 = ๏ฟฝ ๐‘๐‘2 -๐‘๐‘1-๐‘Ž๐‘Ž2 ๐‘Ž๐‘Ž1

๏ฟฝ

๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

A X = C A-1 A X = A-1 C

I X = A-1 C X = A-1 C

Page 11-19

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

274 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 11 โ€“ Determinants and Matrices

Example: Use matrices to solve a 3ร—3 system . ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐’š๐’š โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘+ ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ+ ๐Ÿ’๐Ÿ’+ ๐Ÿ๐Ÿ๐’š๐’š = ๐ŸŽ๐ŸŽ ๐Ÿ๐Ÿ๐’š๐’š โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ = ๐Ÿ๐Ÿ

Steps Example

- Write the system in standard form . ๏ฟฝ2๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ + 3๐‘ง๐‘ง = 1 3๐‘ฅ๐‘ฅ+ 2๐‘ฆ๐‘ฆ+ 0๐‘ง๐‘ง = -4 0๐‘ฅ๐‘ฅ+ 2๐‘ฆ๐‘ฆ โˆ’ 3๐‘ง๐‘ง = 2

- Write the system in matrix form . A X = C ๏ฟฝ2 -1 3 3 2 0 0 2 -3

๏ฟฝ ๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ ๐‘ง๐‘ง๏ฟฝ = ๏ฟฝ

1-42๏ฟฝ

- Find A-1 . - Find the cofactor matrix .

๏ฟฝ2 -1 3 3 2 0 0 2 -3

๏ฟฝ

โŽฃโŽขโŽขโŽขโŽขโŽก ๏ฟฝ

2 02 -3๏ฟฝ - ๏ฟฝ

3 00 -3๏ฟฝ ๏ฟฝ3 2

0 2๏ฟฝ

- ๏ฟฝ-1 32 -3

๏ฟฝ ๏ฟฝ2 30 -3๏ฟฝ - ๏ฟฝ2 -1

0 2๏ฟฝ

๏ฟฝ-1 32 0

๏ฟฝ - ๏ฟฝ2 33 0

๏ฟฝ ๏ฟฝ2 -13 2

๏ฟฝ โŽฆโŽฅโŽฅโŽฅโŽฅโŽค

cofactor matrix = ๏ฟฝ-6 9 6 3 -6 -4 -6 9 7

๏ฟฝ

- Determine the transpose of the cofactor matrix AT . AT = ๏ฟฝ-6 3 -69 -6 96 -4 7

๏ฟฝ Exchange rows & columns .

- Calculate the determinant |๐ด๐ด|. |๐ด๐ด| = ๏ฟฝ2 -1 3 3 2 0 0 2 -3

2 -13 20 2

๏ฟฝ Expansion by diagonals .

= 2โˆ™2(-3) + (-1)โˆ™0โˆ™0 + 3โˆ™3โˆ™2 โˆ’ 3โˆ™2โˆ™0 โˆ’ 2โˆ™0โˆ™2 โ€“ (-1)โˆ™3(-3) = -12 + 18 โˆ’ 9 = -3 a

- Determine the inverse matrix A-1 . A-1 = 1|๐ด๐ด|

AT = 1-3

๏ฟฝ-6 3 -69 -6 96 -4 7

๏ฟฝ = ๏ฟฝ2 -1 2-3 2 -3

-24

3

-7

3

๏ฟฝ

- Solve for X . X = A-1C X = ๏ฟฝ2 -1 2-3 2 -3

-24

3

-7

3 ๏ฟฝ ๏ฟฝ

1-4 2๏ฟฝ =

โŽฃโŽขโŽขโŽขโŽก 2 โˆ™ 1 + (-1)(-4) + 2 โˆ™ 2(-3) โˆ™ 1 + 2(-4) + (-3) โˆ™ 2

(-2) โˆ™ 1 + 43 (-4) + -7

3 โˆ™ 2 โŽฆโŽฅโŽฅโŽฅโŽค

= ๏ฟฝ2 + 4 + 4-3 โˆ’ 8 โˆ’ 6

-2 โˆ’16

3โˆ’

14

3

๏ฟฝ= ๏ฟฝ10

-17 -12

๏ฟฝ

i .e . ๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ ๐‘ง๐‘ง๏ฟฝ = ๏ฟฝ

10-17 -12

๏ฟฝ or ๏ฟฝ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ ๐’š๐’š = -๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘ = -๐Ÿ๐Ÿ๐Ÿ๐Ÿ or (๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ, -๐Ÿ๐Ÿ๐Ÿ๐Ÿ,-๐Ÿ๐Ÿ๐Ÿ๐Ÿ)

It gives the same result as using Cramerโ€™s rule for a 3ร—3 system .

+ โˆ’ + โˆ’ + โˆ’ + โˆ’ +

Page 11-20

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 275

Algebra I & II Key Concepts, Practice, and Quizzes Unit 11 โ€“ Determinants and Matrices

Matrix Inverse on a Graphing Calculator (TI-83 Plus)

โ€ข Creating a matrix on a graphing calculator

Example: A = ๏ฟฝ2 -1 33 2 00 2 -3

๏ฟฝ

2nd MATRX Enter the matrix screen .

โ–บ โ–บ ENTER Select the โ€˜Editโ€™ command .

3 ENTER 3 ENTER Define a 3 ร— 3 matrix .

2 ENTER -1 ENTER 3 ENTER Enter the numbers of the matrix .

3 ENTER 2 ENTER 0 ENTER

0 ENTER 2 ENTER -3 ENTER

โ€ข Finding an inverse matrix on a graphing calculator

Example: A = ๏ฟฝ2 -1 33 2 00 2 -3

๏ฟฝ A-1 = ?

2nd MATRX โ–บ โ–บ ENTER Enter the matrix screen; select the โ€˜Editโ€™ command .

3 ENTER 3 ENTER Define a 3 ร— 3 matrix .

2 ENTER -1 ENTER 3 ENTER Enter the numbers of the matrix .

3 ENTER 2 ENTER 0 ENTER

0 ENTER 2 ENTER -3 ENTER

2nd QUIT Return to the home screen .

2nd MATRX ENTER Re-enter the matrix screen .

x-1 MATH ENTER ENTER Select the โ€˜1: โ–บ Fracโ€™ command .

Display:โŽฃโŽขโŽขโŽขโŽก2 -1 2 -3 2 -3-2 4

3-73 โŽฆโŽฅโŽฅโŽฅโŽค

Display the inverse matrix A-1 .

It gives the same result as manual calculation .

NAMES MATH ๐„๐„๐„๐„๐„๐„๐„๐„1: [A]2: [B]

MATRX[A] ๐Ÿ‘๐Ÿ‘ ๐ฑ๐ฑ ๐Ÿ‘๐Ÿ‘

[๐€๐€]-1 > Frac

Page 11-21

Matrix Inverse on a Graphing Calculator (TI-83 Plus)

โ€ข Creating a matrix on a graphing calculator

Example: A = ๏ฟฝ2 -1 33 2 00 2 -3

๏ฟฝ

2nd MATRX Enter the matrix screen .

โ–บ โ–บ ENTER Select the โ€˜Editโ€™ command .

3 ENTER 3 ENTER Define a 3 ร— 3 matrix .

2 ENTER -1 ENTER 3 ENTER Enter the numbers of the matrix .

3 ENTER 2 ENTER 0 ENTER

0 ENTER 2 ENTER -3 ENTER

โ€ข Finding an inverse matrix on a graphing calculator

Example: A = ๏ฟฝ2 -1 33 2 00 2 -3

๏ฟฝ A-1 = ?

2nd MATRX โ–บ โ–บ ENTER Enter the matrix screen; select the โ€˜Editโ€™ command .

3 ENTER 3 ENTER Define a 3 ร— 3 matrix .

2 ENTER -1 ENTER 3 ENTER Enter the numbers of the matrix .

3 ENTER 2 ENTER 0 ENTER

0 ENTER 2 ENTER -3 ENTER

2nd QUIT Return to the home screen .

2nd MATRX ENTER Re-enter the matrix screen .

x-1 MATH ENTER ENTER Select the โ€˜1: โ–บ Fracโ€™ command .

Display:โŽฃโŽขโŽขโŽขโŽก2 -1 2 -3 2 -3-2 4

3-73 โŽฆโŽฅโŽฅโŽฅโŽค

Display the inverse matrix A-1 .

It gives the same result as manual calculation .

NAMES MATH ๐„๐„๐„๐„๐„๐„๐„๐„1: [A]2: [B]

MATRX[A] ๐Ÿ‘๐Ÿ‘ ๐ฑ๐ฑ ๐Ÿ‘๐Ÿ‘

[๐€๐€]-1 > Frac

Page 11-21

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

276 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 11 โ€“ Determinants and Matrices

Solving a System Using Matrices & Graphing Calculator(TI-83 Plus)

Example: Solve a 3ร—3 system . ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐’š๐’šโˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘+ ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ+ ๐Ÿ’๐Ÿ’+ ๐Ÿ๐Ÿ๐’š๐’š = ๐ŸŽ๐ŸŽ ๐Ÿ๐Ÿ๐’š๐’š โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ = ๐Ÿ๐Ÿ

Write the system in standard form . ๏ฟฝ2๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ+ 3๐‘ง๐‘ง = 1 3๐‘ฅ๐‘ฅ + 2๐‘ฆ๐‘ฆ+ 0๐‘ง๐‘ง = -4 0๐‘ฅ๐‘ฅ+ 2๐‘ฆ๐‘ฆ โˆ’ 3๐‘ง๐‘ง = 2

2nd MATRX Enter the matrix screen .

โ–บ โ–บ ENTER Select the โ€˜Editโ€™ command .

3 ENTER 4 ENTER Define a 3 ร— 4 matrix .

2 ENTER -1 ENTER 3 ENTER 1 ENTER Enter the augmented matrix .

3 ENTER 2 ENTER 0 ENTER -4 ENTER ๏ฟฝ2 -1 3

3 2 0

0 2 -3

1

-4

2

๏ฟฝ

0 ENTER 2 ENTER -3 ENTER 2 ENTER

2nd QUIT Return to the home screen .

2nd MATRX Re-enter the matrix screen .

โ–บ Select the โ€˜MATHโ€™ command .

โ–ฒ โ–ฒ โ–ฒ โ–ฒ โ–ฒ ENTER Select the โ€˜B:rref (โ€™ command .

2nd MATRX ENTER ENTER

Display: ๏ฟฝ1 0 0 0 1 0 0 0 1

10-17 -12

๏ฟฝ

i .e . ๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ ๐‘ง๐‘ง๏ฟฝ = ๏ฟฝ

10-17 -12

๏ฟฝ or ๏ฟฝ๐‘ฅ๐‘ฅ = 10 ๐‘ฆ๐‘ฆ = -17 ๐‘ง๐‘ง = -12

It gives the same result as manual calculation .

NAMES ๐Œ๐Œ๐Œ๐Œ๐Œ๐Œ๐Œ๐Œ EDIT1: det (2: Tโ€ฆ โ€ฆ

MATRX[A] ๐Ÿ‘๐Ÿ‘ ๐ฑ๐ฑ ๐Ÿ’๐Ÿ’

๐ซ๐ซ๐ซ๐ซ๐ซ๐ซ๐ซ๐ซ ( NAMES MATH EDIT0: cumSum (A:ref (B:rref (C:rowSwap (D: row+ (โ€ฆ โ€ฆ

Page 11-22

Solving a System Using Matrices & Graphing Calculator(TI-83 Plus)

Example: Solve a 3ร—3 system . ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐’š๐’šโˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘+ ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ+ ๐Ÿ’๐Ÿ’+ ๐Ÿ๐Ÿ๐’š๐’š = ๐ŸŽ๐ŸŽ ๐Ÿ๐Ÿ๐’š๐’š โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ = ๐Ÿ๐Ÿ

Write the system in standard form . ๏ฟฝ2๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ+ 3๐‘ง๐‘ง = 1 3๐‘ฅ๐‘ฅ + 2๐‘ฆ๐‘ฆ+ 0๐‘ง๐‘ง = -4 0๐‘ฅ๐‘ฅ+ 2๐‘ฆ๐‘ฆ โˆ’ 3๐‘ง๐‘ง = 2

2nd MATRX Enter the matrix screen .

โ–บ โ–บ ENTER Select the โ€˜Editโ€™ command .

3 ENTER 4 ENTER Define a 3 ร— 4 matrix .

2 ENTER -1 ENTER 3 ENTER 1 ENTER Enter the augmented matrix .

3 ENTER 2 ENTER 0 ENTER -4 ENTER ๏ฟฝ2 -1 3

3 2 0

0 2 -3

1

-4

2

๏ฟฝ

0 ENTER 2 ENTER -3 ENTER 2 ENTER

2nd QUIT Return to the home screen .

2nd MATRX Re-enter the matrix screen .

โ–บ Select the โ€˜MATHโ€™ command .

โ–ฒ โ–ฒ โ–ฒ โ–ฒ โ–ฒ ENTER Select the โ€˜B:rref (โ€™ command .

2nd MATRX ENTER ENTER

Display: ๏ฟฝ1 0 0 0 1 0 0 0 1

10-17 -12

๏ฟฝ

i .e . ๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ ๐‘ง๐‘ง๏ฟฝ = ๏ฟฝ

10-17 -12

๏ฟฝ or ๏ฟฝ๐‘ฅ๐‘ฅ = 10 ๐‘ฆ๐‘ฆ = -17 ๐‘ง๐‘ง = -12

It gives the same result as manual calculation .

NAMES ๐Œ๐Œ๐Œ๐Œ๐Œ๐Œ๐Œ๐Œ EDIT1: det (2: Tโ€ฆ โ€ฆ

MATRX[A] ๐Ÿ‘๐Ÿ‘ ๐ฑ๐ฑ ๐Ÿ’๐Ÿ’

๐ซ๐ซ๐ซ๐ซ๐ซ๐ซ๐ซ๐ซ ( NAMES MATH EDIT0: cumSum (A:ref (B:rref (C:rowSwap (D: row+ (โ€ฆ โ€ฆ

Page 11-22

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 277

Algebra I & II Key Concepts, Practice, and Quizzes Unit 11 โ€“ Determinants and Matrices

Unit 11 Summary

โ€ข Evaluate a 2 ร— 2 determinantDeterminant Evaluation Example

๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

๏ฟฝ ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

๏ฟฝ+

= ๐‘Ž๐‘Ž1๐‘๐‘2 โˆ’ ๐‘๐‘1๐‘Ž๐‘Ž2 ๏ฟฝ2 13 4๏ฟฝ+

= 2 โˆ™ 4 โˆ’ 1 โˆ™ 3 = 5

โ€ข Evaluate a 3 ร— 3 Determinant โ€“ Method I: Using Diagonals3 ร— 3 Determinant Expansion by Diagonals Example

๐’‚๐’‚๐Ÿ๐Ÿ ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐’„๐’„๐Ÿ๐Ÿ ๐’‚๐’‚๐Ÿ๐Ÿ ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐’„๐’„๐Ÿ๐Ÿ ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ ๐’ƒ๐’ƒ๐Ÿ‘๐Ÿ‘ ๐’„๐’„๐Ÿ‘๐Ÿ‘

๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3

= ๐‘Ž๐‘Ž1๐‘๐‘2๐‘๐‘3+๐‘๐‘1๐‘๐‘2๐‘Ž๐‘Ž3 + ๐‘๐‘1๐‘Ž๐‘Ž2๐‘๐‘3 โˆ’๐‘๐‘1๐‘๐‘2๐‘Ž๐‘Ž3 โˆ’ ๐‘Ž๐‘Ž1๐‘๐‘2๐‘๐‘3 โˆ’ ๐‘๐‘1๐‘Ž๐‘Ž2๐‘๐‘3

1 1 3 4 3 2 3 1 2

1 14 33 1

= 1โˆ™3โˆ™2 + 1โˆ™2โˆ™3 + 3โˆ™4โˆ™1-3โˆ™3โˆ™3 โˆ’ 1โˆ™2โˆ™1 โˆ’ 1โˆ™4โˆ™2

= 6 + 6 + 12 โ€“ 27 โ€“ 2 โ€“ 8 = -13

Note: โ€˜Expansion by diagonalsโ€™ does not work with 4 ร— 4 or higher-order determinants .

โ€ข Cofactors: minors + place signs = cofactors

๐ด๐ด1 ๐ต๐ต1 ๐ถ๐ถ1๐ด๐ด2 ๐ต๐ต2 ๐ถ๐ถ2๐ด๐ด3 ๐ต๐ต3 ๐ถ๐ถ3

+ + โˆ’ + โˆ’ + โˆ’ + โˆ’ +

๐ด๐ด1 -๐ต๐ต1 ๐ถ๐ถ1 -๐ด๐ด2 ๐ต๐ต2 -๐ถ๐ถ2 ๐ด๐ด3 -๐ต๐ต3 ๐ถ๐ถ3

minors place signs cofactors

โ€ข Evaluate a 3 ร— 3 determinant โ€“ Method II: expansion by minors

- Choose any row or column in the determinant .- Multiply each element in the chosen row/column by its cofactor .

Choose this column .

๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘๐‘1 ๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘2 ๐‘๐‘2 =๐’‚๐’‚๐Ÿ‘๐Ÿ‘ ๐‘๐‘3 ๐‘๐‘3

๐’‚๐’‚๐Ÿ๐Ÿ ๏ฟฝ๐‘๐‘2 ๐‘๐‘2๐‘๐‘3 ๐‘๐‘3

๏ฟฝ โˆ’ ๐’‚๐’‚๐Ÿ๐Ÿ ๏ฟฝ๐‘๐‘1 ๐‘๐‘1๐‘๐‘3 ๐‘๐‘3

๏ฟฝ + ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ ๏ฟฝ๐‘๐‘1 ๐‘๐‘1๐‘๐‘2 ๐‘๐‘2

๏ฟฝ

+ โˆ’ + โˆ’ + โˆ’ + โˆ’ +

โ€ข Evaluate a determinant that can be expanded by any row or column

โ€ข Using Cramerโ€™s rule to solve a 2ร—2 systemA 2ร—2 System Cramerโ€™s Rule

๏ฟฝ๐‘Ž๐‘Ž1๐‘ฅ๐‘ฅ + ๐‘๐‘1๐‘ฆ๐‘ฆ = ๐‘˜๐‘˜1๐‘Ž๐‘Ž2๐‘ฅ๐‘ฅ + ๐‘๐‘2 ๐‘ฆ๐‘ฆ = ๐‘˜๐‘˜2

The solution of the system: x = ๐ท๐ท๐‘ฅ๐‘ฅ๐ท๐ท

, y = ๐ท๐ท๐‘ฆ๐‘ฆ๐ท๐ท

(D โ‰  0)

๐ท๐ท = ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

๏ฟฝ , ๐ท๐ท๐‘ฅ๐‘ฅ = ๏ฟฝ๐‘˜๐‘˜1 ๐‘๐‘1๐‘˜๐‘˜2 ๐‘๐‘2

๏ฟฝ , ๐ท๐ท๐‘ฆ๐‘ฆ = ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘˜๐‘˜1๐‘Ž๐‘Ž2 ๐‘˜๐‘˜2

๏ฟฝ

coefficients of x Replace the column a in D with k.

coefficients of y Replace the column b in D with k.

constant

Page 11-23

Unit 11 Summary

โ€ข Evaluate a 2 ร— 2 determinantDeterminant Evaluation Example

๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

๏ฟฝ ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

๏ฟฝ+

= ๐‘Ž๐‘Ž1๐‘๐‘2 โˆ’ ๐‘๐‘1๐‘Ž๐‘Ž2 ๏ฟฝ2 13 4๏ฟฝ+

= 2 โˆ™ 4 โˆ’ 1 โˆ™ 3 = 5

โ€ข Evaluate a 3 ร— 3 Determinant โ€“ Method I: Using Diagonals3 ร— 3 Determinant Expansion by Diagonals Example

๐’‚๐’‚๐Ÿ๐Ÿ ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐’„๐’„๐Ÿ๐Ÿ ๐’‚๐’‚๐Ÿ๐Ÿ ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐’„๐’„๐Ÿ๐Ÿ ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ ๐’ƒ๐’ƒ๐Ÿ‘๐Ÿ‘ ๐’„๐’„๐Ÿ‘๐Ÿ‘

๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3

= ๐‘Ž๐‘Ž1๐‘๐‘2๐‘๐‘3+๐‘๐‘1๐‘๐‘2๐‘Ž๐‘Ž3 + ๐‘๐‘1๐‘Ž๐‘Ž2๐‘๐‘3 โˆ’๐‘๐‘1๐‘๐‘2๐‘Ž๐‘Ž3 โˆ’ ๐‘Ž๐‘Ž1๐‘๐‘2๐‘๐‘3 โˆ’ ๐‘๐‘1๐‘Ž๐‘Ž2๐‘๐‘3

1 1 3 4 3 2 3 1 2

1 14 33 1

= 1โˆ™3โˆ™2 + 1โˆ™2โˆ™3 + 3โˆ™4โˆ™1-3โˆ™3โˆ™3 โˆ’ 1โˆ™2โˆ™1 โˆ’ 1โˆ™4โˆ™2

= 6 + 6 + 12 โ€“ 27 โ€“ 2 โ€“ 8 = -13

Note: โ€˜Expansion by diagonalsโ€™ does not work with 4 ร— 4 or higher-order determinants .

โ€ข Cofactors: minors + place signs = cofactors

๐ด๐ด1 ๐ต๐ต1 ๐ถ๐ถ1๐ด๐ด2 ๐ต๐ต2 ๐ถ๐ถ2๐ด๐ด3 ๐ต๐ต3 ๐ถ๐ถ3

+ + โˆ’ + โˆ’ + โˆ’ + โˆ’ +

๐ด๐ด1 -๐ต๐ต1 ๐ถ๐ถ1 -๐ด๐ด2 ๐ต๐ต2 -๐ถ๐ถ2 ๐ด๐ด3 -๐ต๐ต3 ๐ถ๐ถ3

minors place signs cofactors

โ€ข Evaluate a 3 ร— 3 determinant โ€“ Method II: expansion by minors

- Choose any row or column in the determinant .- Multiply each element in the chosen row/column by its cofactor .

Choose this column .

๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘๐‘1 ๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘2 ๐‘๐‘2 =๐’‚๐’‚๐Ÿ‘๐Ÿ‘ ๐‘๐‘3 ๐‘๐‘3

๐’‚๐’‚๐Ÿ๐Ÿ ๏ฟฝ๐‘๐‘2 ๐‘๐‘2๐‘๐‘3 ๐‘๐‘3

๏ฟฝ โˆ’ ๐’‚๐’‚๐Ÿ๐Ÿ ๏ฟฝ๐‘๐‘1 ๐‘๐‘1๐‘๐‘3 ๐‘๐‘3

๏ฟฝ + ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ ๏ฟฝ๐‘๐‘1 ๐‘๐‘1๐‘๐‘2 ๐‘๐‘2

๏ฟฝ

+ โˆ’ + โˆ’ + โˆ’ + โˆ’ +

โ€ข Evaluate a determinant that can be expanded by any row or column

โ€ข Using Cramerโ€™s rule to solve a 2ร—2 systemA 2ร—2 System Cramerโ€™s Rule

๏ฟฝ๐‘Ž๐‘Ž1๐‘ฅ๐‘ฅ + ๐‘๐‘1๐‘ฆ๐‘ฆ = ๐‘˜๐‘˜1๐‘Ž๐‘Ž2๐‘ฅ๐‘ฅ + ๐‘๐‘2 ๐‘ฆ๐‘ฆ = ๐‘˜๐‘˜2

The solution of the system: x = ๐ท๐ท๐‘ฅ๐‘ฅ๐ท๐ท

, y = ๐ท๐ท๐‘ฆ๐‘ฆ๐ท๐ท

(D โ‰  0)

๐ท๐ท = ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

๏ฟฝ , ๐ท๐ท๐‘ฅ๐‘ฅ = ๏ฟฝ๐‘˜๐‘˜1 ๐‘๐‘1๐‘˜๐‘˜2 ๐‘๐‘2

๏ฟฝ , ๐ท๐ท๐‘ฆ๐‘ฆ = ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘˜๐‘˜1๐‘Ž๐‘Ž2 ๐‘˜๐‘˜2

๏ฟฝ

coefficients of x Replace the column a in D with k.

coefficients of y Replace the column b in D with k.

constant

Page 11-23

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

278 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 11 โ€“ Determinants and Matrices

โ€ข Using Cramerโ€™s rule to solve a 3ร—3 systemA 3ร—3 System Cramerโ€™s Rule D Dx , Dy and Dz

๏ฟฝ๐‘Ž๐‘Ž1๐‘ฅ๐‘ฅ + ๐‘๐‘1๐‘ฆ๐‘ฆ + ๐‘๐‘1๐‘ง๐‘ง = ๐‘˜๐‘˜1๐‘Ž๐‘Ž2๐‘ฅ๐‘ฅ + ๐‘๐‘2 ๐‘ฆ๐‘ฆ+ ๐‘๐‘2๐‘ฆ๐‘ฆ = ๐‘˜๐‘˜2๐‘Ž๐‘Ž3๐‘ฅ๐‘ฅ + ๐‘๐‘3 ๐‘ฆ๐‘ฆ+๐‘๐‘3๐‘ฆ๐‘ฆ = ๐‘˜๐‘˜3

x = ๐ท๐ท๐‘ฅ๐‘ฅ๐ท๐ท

y = ๐ท๐ท๐‘ฆ๐‘ฆ๐ท๐ท

z = ๐ท๐ท๐‘ง๐‘ง๐ท๐ท

D = ๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

D โ‰  0

๐ท๐ท๐‘ฅ๐‘ฅ = ๐’Œ๐’Œ๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘๐‘1 ๐’Œ๐’Œ๐Ÿ๐Ÿ ๐‘๐‘2 ๐‘๐‘2 ๐’Œ๐’Œ๐Ÿ๐Ÿ ๐‘๐‘3 ๐‘๐‘3

๐ท๐ท๐‘ฆ๐‘ฆ = ๐‘Ž๐‘Ž1 ๐’Œ๐’Œ๐Ÿ๐Ÿ ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐’Œ๐’Œ๐Ÿ๐Ÿ ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐’Œ๐’Œ๐Ÿ‘๐Ÿ‘ ๐‘๐‘3

๐ท๐ท๐‘ง๐‘ง = ๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐’Œ๐’Œ๐Ÿ๐Ÿ ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐’Œ๐’Œ๐Ÿ๐Ÿ ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐’Œ๐’Œ๐Ÿ‘๐Ÿ‘

โ€ข Matrix: a rectangular array of elements enclosed in brackets .

โ€ข Dimensions: A matrix has ๏ฟฝ๐‘š๐‘š rows ๐‘›๐‘› columns m ร— n dimensions

Rows Columns

โ€ข A 3ร—3 system: Linear System Example

๏ฟฝ๐‘Ž๐‘Ž1๐‘ฅ๐‘ฅ + ๐‘๐‘1๐‘ฆ๐‘ฆ + ๐‘๐‘1๐‘ง๐‘ง = ๐‘˜๐‘˜1๐‘Ž๐‘Ž2๐‘ฅ๐‘ฅ + ๐‘๐‘2 ๐‘ฆ๐‘ฆ+ ๐‘๐‘2๐‘ฆ๐‘ฆ = ๐‘˜๐‘˜2๐‘Ž๐‘Ž3๐‘ฅ๐‘ฅ + ๐‘๐‘3 ๐‘ฆ๐‘ฆ+๐‘๐‘3๐‘ฆ๐‘ฆ = ๐‘˜๐‘˜3

๏ฟฝ 2๐‘ฅ๐‘ฅ + 3๐‘ฆ๐‘ฆ + 4๐‘ง๐‘ง = 1 ๐‘ฅ๐‘ฅ + 2๐‘ฆ๐‘ฆ + 3๐‘ง๐‘ง = 4

3๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ + 5๐‘ง๐‘ง = 2

โ€ข Coefficient matrix:

๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๏ฟฝ ๏ฟฝ2 3 41 2 33 1 5

๏ฟฝ

โ€ข Augmented matrix:

๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1 ๐‘๐‘1 ๐‘Ž๐‘Ž2 ๐‘๐‘2 ๐‘๐‘2 ๐‘Ž๐‘Ž3 ๐‘๐‘3 ๐‘๐‘3

๐‘˜๐‘˜1๐‘˜๐‘˜2๐‘˜๐‘˜3

๏ฟฝ ๏ฟฝ2 3 4 1 2 3 3 1 5

142๏ฟฝ

coefficients of ๐‘ฅ๐‘ฅ coefficients of y constants (with a vertical line)

coefficients of ๐‘ง๐‘ง

โ€ข Matrix equality: two equal matrices have the same dimensions (or size) and the equal

corresponding elements .

โ€ข Add/subtract two matrices of the same dimensions Matrix Operations Example

matrix addition

A + B

๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

๏ฟฝ + ๏ฟฝ๐‘Ž๐‘Ž3 ๐‘๐‘3๐‘Ž๐‘Ž4 ๐‘๐‘4

๏ฟฝ = ๏ฟฝ๐‘Ž๐‘Ž1+ ๐‘Ž๐‘Ž3 ๐‘๐‘1 + ๐‘๐‘3๐‘Ž๐‘Ž2 + ๐‘Ž๐‘Ž4 ๐‘๐‘2 + ๐‘๐‘4

๏ฟฝ2ร—2 2ร—2

The same dimensions

๏ฟฝ1 32 4 ๏ฟฝ + ๏ฟฝ3 5

2 1๏ฟฝ = ๏ฟฝ1 + 3 3 + 52 + 2 4 + 1๏ฟฝ

= ๏ฟฝ4 84 5๏ฟฝ

matrix subtraction

A โ€“ B

๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3

๏ฟฝ โˆ’ ๏ฟฝ๐‘Ž๐‘Ž4 ๐‘๐‘4๐‘Ž๐‘Ž5 ๐‘๐‘5๐‘Ž๐‘Ž6 ๐‘๐‘6

๏ฟฝ = ๏ฟฝ๐‘Ž๐‘Ž1โˆ’๐‘Ž๐‘Ž4 ๐‘๐‘1โˆ’๐‘๐‘4๐‘Ž๐‘Ž2โˆ’๐‘Ž๐‘Ž5 ๐‘๐‘2โˆ’๐‘๐‘5๐‘Ž๐‘Ž3โˆ’๐‘Ž๐‘Ž6 ๐‘๐‘3โˆ’๐‘๐‘6

๏ฟฝ

3ร—2 3ร—2

๏ฟฝ3 85 76 -9

๏ฟฝ โˆ’ ๏ฟฝ2 23 -36 4

๏ฟฝ = ๏ฟฝ3 โˆ’ 2 8 โˆ’ 25 โˆ’ 3 7 โˆ’ (-3)6 โˆ’ 6 -9 โˆ’ 4

๏ฟฝ

= ๏ฟฝ1 62 100 -13

๏ฟฝ

Page 11-24

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 279

Algebra I & II Key Concepts, Practice, and Quizzes Unit 11 โ€“ Determinants and Matrices

โ€ข Scalar matrix multiplicationScalar Matrix Multiplication Example

k ยท Ak โ€“ scalarA โ€“ matrix

k ๏ฟฝ๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2๐‘Ž๐‘Ž3 ๐‘๐‘3

๏ฟฝ = ๏ฟฝ๐‘˜๐‘˜๐‘Ž๐‘Ž1 ๐‘˜๐‘˜๐‘๐‘1๐‘˜๐‘˜๐‘Ž๐‘Ž2 ๐‘˜๐‘˜๐‘๐‘2๐‘˜๐‘˜๐‘Ž๐‘Ž3 ๐‘˜๐‘˜๐‘๐‘3

๏ฟฝ2๏ฟฝ4 -2 ๐‘ฆ๐‘ฆ

3 5 0๏ฟฝ = ๏ฟฝ2 โˆ™ 4 2(-2) 2 โˆ™ ๐‘ฆ๐‘ฆ

2 โˆ™ 3 2 โˆ™ 5 2 โˆ™ 0๏ฟฝ

= ๏ฟฝ8 -4 2๐‘ฆ๐‘ฆ 6 10 0

๏ฟฝ

โ€ข Requirements for matrix multiplication

Requirements for Matrix Multiplication

If A = m1ร— n1 , B = m2ร— n2 then Aยท B is defined only when n1 = m2 .

column for A row for B

โ€ข Dimensions of the product for matrix multiplication

Dimensions ofthe Product

If A = (m1ร— n1) and B = (m2 ร— n2), then AยทB = (m1ร— n1) (m2 ร— n2) = (m1 ร— n2) .

Example:If A = (3 ร— 2) and B = (2 ร— 4), Then AยทB = (3 ร— 2) (2 ร— 4) = (3 ร— 4) .

โ€ข Matrix multiplicationMatrix Multiplication Example

AB = ๏ฟฝ๐‘Ž๐‘Ž11 ๐‘Ž๐‘Ž12 ๐‘Ž๐‘Ž13๐‘Ž๐‘Ž21 ๐‘Ž๐‘Ž22 ๐‘Ž๐‘Ž23๏ฟฝ ๏ฟฝ

๐‘๐‘11 ๐‘๐‘12๐‘๐‘21 ๐‘๐‘22๐‘๐‘31 ๐‘๐‘32

๏ฟฝ A = 2ร—3 , B = 3ร—2

(1st row of A) ร— (1st column of B) (1st row of A) ร— (2nd column of B)

= ๏ฟฝ๐‘Ž๐‘Ž11๐‘๐‘11 + ๐‘Ž๐‘Ž12๐‘๐‘21 + ๐‘Ž๐‘Ž13๐‘๐‘31 ๐‘Ž๐‘Ž11๐‘๐‘12 + ๐‘Ž๐‘Ž12๐‘๐‘22 + ๐‘Ž๐‘Ž13๐‘๐‘32๐‘Ž๐‘Ž21๐‘๐‘11 + ๐‘Ž๐‘Ž22๐‘๐‘21 + ๐‘Ž๐‘Ž23๐‘๐‘31 ๐‘Ž๐‘Ž21๐‘๐‘12 + ๐‘Ž๐‘Ž22๐‘๐‘22 + ๐‘Ž๐‘Ž23๐‘๐‘32

๏ฟฝ

(2nd row of A) ร— (1st column of B) (2nd row of A) ร— (2nd column of B) 2ร—2

๏ฟฝ1 2 32 0 1๏ฟฝ ๏ฟฝ

2 10 23 -1

๏ฟฝ 2ร—3 , 3ร—2

= ๏ฟฝ1 โˆ™ 2 + 2 โˆ™ 0 + 3 โˆ™ 3 1 โˆ™ 1 + 2 โˆ™ 2 + 3(-1)2 โˆ™ 2 + 0 โˆ™ 0 + 1 โˆ™ 3 2 โˆ™ 1 + 0 โˆ™ 2 + 1(-1)

๏ฟฝ

= ๏ฟฝ11 27 1๏ฟฝ 2ร—2

โ€ข Identity matrix II 2ร—2 3ร—3 nร—n

identity matrix I I = ๏ฟฝ1 0

0 1๏ฟฝ I = ๏ฟฝ1 0 00 1 00 0 1

๏ฟฝ I = ๏ฟฝ1 โ‹ฏ 0โ‹ฎ 1 โ‹ฎ0 โ‹ฏ 1

๏ฟฝ

main diagonal

โ€ข Identity property Identity Property for Matrices A I = I A = A

โ€ข Properties of matrixProperty of Multiplication Property of Addition

A, B, and C are matricesassociative property: A(BC) = (AB)C associative property: A + (B + C) = (A + B) + Cdistributive property: A(B + C) = AB + AC (B + C)A = BA + CA commutative property: A + B = B + A

scalar multiplication (k is a constant): k(AB) = (kA)B or A(kB) additive inverse: A + (-A) = 0

multiplicative identity: IA = AI = A additive identity: A + 0 = A

Page 11-25

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

280 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Unit 11 โ€“ Determinants and Matrices

โ€ข An inverse matrix (A-1): A-1 is the inverse of a matrix A .

A A-1 = A-1 A = I I - identity matrix

โ€ข Finding the inverse of a 2ร—2 matrix A-1

- Switch the main diagonal elements . A = ๏ฟฝ๐’‚๐’‚๐Ÿ๐Ÿ ๐‘๐‘1๐‘Ž๐‘Ž2 ๐’ƒ๐’ƒ๐Ÿ๐Ÿ

๏ฟฝ ๏ฟฝ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๐‘๐‘1๐‘Ž๐‘Ž2 ๐’‚๐’‚๐Ÿ๐Ÿ

๏ฟฝ

- Change signs for the remaining elements . ๏ฟฝ ๐‘๐‘2 -๐‘๐‘1-๐‘Ž๐‘Ž2 ๐‘Ž๐‘Ž1

๏ฟฝ

- Divide the result of the last step by the determinant |๐ด๐ด| .

A-1 = ๏ฟฝ๐‘๐‘2 -๐‘๐‘1-๐‘Ž๐‘Ž2 ๐‘Ž๐‘Ž1

๏ฟฝ

๐‘Ž๐‘Ž1 ๐‘๐‘1๐‘Ž๐‘Ž2 ๐‘๐‘2

?- Check: A A-1 = I

โ€ข Gauss-Jordan Method to Find A-1

Gauss-JordanMethod to Find A-1

- Transform matrix A into the identity matrix I. A I

- Transform identity matrix I into inverse matrix A-1 . I A-1

โ€ข Find the inverse of a 3 ร— 3 matrix โ€“ Method II

- Find the cofactor matrix (minors + place signs) .

- Determine the transpose of the cofactor matrix AT: exchange all the rows and columns .

- Calculate the determinant |๐ด๐ด| of the matrix.

- Determine inverse matrix A-1 . A-1 = 1|๐ด๐ด| AT

โ€ข Write systems of linear equations in matrix formLinear System Matrix Form Example

2ร—2 system ๏ฟฝ๐‘Ž๐‘Ž11๐‘ฅ๐‘ฅ + ๐‘๐‘12๐‘ฆ๐‘ฆ = ๐‘๐‘1๐‘Ž๐‘Ž21๐‘ฅ๐‘ฅ + ๐‘๐‘22๐‘ฆ๐‘ฆ = ๐‘๐‘2

๏ฟฝ๐‘Ž๐‘Ž11 ๐‘๐‘12๐‘Ž๐‘Ž21 ๐‘๐‘22

๏ฟฝ ๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๏ฟฝ = ๏ฟฝ๐‘๐‘1๐‘๐‘2๏ฟฝ

A ยท X = C

๏ฟฝ2๐‘ฅ๐‘ฅ + 3๐‘ฆ๐‘ฆ = 13๐‘ฅ๐‘ฅ โˆ’ 4๐‘ฆ๐‘ฆ = 2

๏ฟฝ2 33 -4๏ฟฝ ๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๏ฟฝ = ๏ฟฝ12๏ฟฝ

3ร—3 system ๏ฟฝ๐‘Ž๐‘Ž11๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž12๐‘ฆ๐‘ฆ+๐‘Ž๐‘Ž13๐‘ง๐‘ง = ๐‘๐‘1๐‘Ž๐‘Ž21๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž22๐‘ฆ๐‘ฆ+๐‘Ž๐‘Ž23๐‘ง๐‘ง = ๐‘๐‘2๐‘Ž๐‘Ž31๐‘ฅ๐‘ฅ + ๐‘๐‘32๐‘ฆ๐‘ฆ+๐‘Ž๐‘Ž33๐‘ง๐‘ง = ๐‘๐‘3

๏ฟฝ๐‘Ž๐‘Ž11 ๐‘Ž๐‘Ž12 ๐‘Ž๐‘Ž13 ๐‘Ž๐‘Ž21 ๐‘Ž๐‘Ž22 ๐‘Ž๐‘Ž23๐‘Ž๐‘Ž31 ๐‘Ž๐‘Ž32 ๐‘Ž๐‘Ž33

๏ฟฝ ๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๐‘ง๐‘ง๏ฟฝ = ๏ฟฝ

๐‘๐‘1๐‘๐‘2๐‘๐‘3๏ฟฝ

A ยท X = C

๏ฟฝ3๐‘ฅ๐‘ฅ + 2๐‘ฆ๐‘ฆ + ๐‘ง๐‘ง = 1

2๐‘ฅ๐‘ฅ โˆ’ 3๐‘ฆ๐‘ฆ + 4๐‘ง๐‘ง = 35๐‘ฅ๐‘ฅ + 2๐‘ฆ๐‘ฆ โˆ’ ๐‘ง๐‘ง = 2

๏ฟฝ3 2 1 2 -3 4 5 2 -1

๏ฟฝ ๏ฟฝ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๐‘ง๐‘ง๏ฟฝ = ๏ฟฝ

132๏ฟฝ

โ€ข Solving a linear system using the inverse matrix

The Matrix Equation of a Linear System

A X = C ๏ฟฝ ๐‘จ๐‘จ โˆ’ coefficient matrix๐‘ช๐‘ช โˆ’ constant matrix ๐‘ฟ๐‘ฟ โˆ’ variable matrix

Solving Using A-1 X = A-1 C A-1โˆ’ inverse matrix

Page 11-26

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 281

Algebra I & II Key Concepts, Practice, and Quizzes Unit 11 โ€“ Determinants and Matrices

PRACTICE QUIZ

Unit 11 Determinants and Matrices

1. Evaluate the determinant: ๏ฟฝ2 -1 0 0 3 -22 4 -1

๏ฟฝ

2 . Solve the system using Cramerโ€™s rule: ๏ฟฝ3๐‘ฅ๐‘ฅ โˆ’ 2๐‘ฆ๐‘ฆ = -5๐‘ง๐‘ง + 2 4๐‘ฅ๐‘ฅ โˆ’ 7๐‘ฆ๐‘ฆ โˆ’ ๐‘ง๐‘ง = 19 5๐‘ฅ๐‘ฅ = 6๐‘ฆ๐‘ฆ โˆ’ 4๐‘ง๐‘ง + 13

3. Find the products: ๏ฟฝ3 11 -1๏ฟฝ ๏ฟฝ

2 -30 1

๏ฟฝ

4. Solve a 2ร—2 system using matrices: ๏ฟฝ5๐‘ฅ๐‘ฅ + 4๐‘ฆ๐‘ฆ = 1 4๐‘ฅ๐‘ฅ + 3๐‘ฆ๐‘ฆ = -1

5. Solve a 3ร—3 system using matrices: ๏ฟฝ3๐‘ฅ๐‘ฅ โˆ’ 2๐‘ฆ๐‘ฆ+ 5๐‘ง๐‘ง = 2 4๐‘ฅ๐‘ฅ โˆ’ 7๐‘ฆ๐‘ฆ โˆ’ ๐‘ง๐‘ง = 19 5๐‘ฅ๐‘ฅ โˆ’ 6๐‘ฆ๐‘ฆ+ 4๐‘ง๐‘ง = 13

Page 16

PRACTICE QUIZ

Unit 11 Determinants and Matrices

1. Evaluate the determinant: ๏ฟฝ2 -1 0 0 3 -22 4 -1

๏ฟฝ

2 . Solve the system using Cramerโ€™s rule: ๏ฟฝ3๐‘ฅ๐‘ฅ โˆ’ 2๐‘ฆ๐‘ฆ = -5๐‘ง๐‘ง + 2 4๐‘ฅ๐‘ฅ โˆ’ 7๐‘ฆ๐‘ฆ โˆ’ ๐‘ง๐‘ง = 19 5๐‘ฅ๐‘ฅ = 6๐‘ฆ๐‘ฆ โˆ’ 4๐‘ง๐‘ง + 13

3. Find the products: ๏ฟฝ3 11 -1๏ฟฝ ๏ฟฝ

2 -30 1

๏ฟฝ

4. Solve a 2ร—2 system using matrices: ๏ฟฝ5๐‘ฅ๐‘ฅ + 4๐‘ฆ๐‘ฆ = 1 4๐‘ฅ๐‘ฅ + 3๐‘ฆ๐‘ฆ = -1

5. Solve a 3ร—3 system using matrices: ๏ฟฝ3๐‘ฅ๐‘ฅ โˆ’ 2๐‘ฆ๐‘ฆ+ 5๐‘ง๐‘ง = 2 4๐‘ฅ๐‘ฅ โˆ’ 7๐‘ฆ๐‘ฆ โˆ’ ๐‘ง๐‘ง = 19 5๐‘ฅ๐‘ฅ โˆ’ 6๐‘ฆ๐‘ฆ+ 4๐‘ง๐‘ง = 13

Page 16

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

282 ยฉ 2016 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 283

Algebra I & II Key Concepts, Practice, and Quizzes Answers

Answers for Practice Quizzes

Unit 1 Reference Page Number

1. A = { x | x is a number between -5 and 2}A = {-4, -3, -2, -1, 0, 1} (1-1: page 2)

2. a. {-9}b. {7ฯ€, โˆš5} (1-1: page 3)

3. a )-2 -2

b. โˆ™ [ )-1 .5 7 -1 .5 7 (1-1: page 4)

4. a. -3 .3b. 19c. -1 .5d. -3 (1-2: page 6)

5. a. - 0 .008b. m3

c. 1d . -6 (1-3: page 9)

6. 8 (1-4: page 10)

7. a. 7y โ€“ 3b. 2(t + 9) (1-4: page 11)

8. a. Inverse property of additionb. Associative property of multiplication (1-4: page 12)

9. a. 5c (ab โ€“5b + 7)b. -6pq + 3prc. 2xยฒ + yd. -xยฒ + 8x -19 (1-5: page 13)

10. a. โˆ’8๐‘ฅ๐‘ฅ6

๐‘ฆ๐‘ฆ12

b. ๐‘ฆ๐‘ฆ6

8๐‘ฅ๐‘ฅ3(1-6: page 16)

11. a. 1.3975 ร— 105

b. 5.75 ร— 10โ€“8 (1-6: page 17)

Unit 2

1. a. x = 2 .8b. y โ‰ˆ 0 .06c. y โ‰ˆ 3 .67 (2-1: pages 26-27)

2. 4x โ€“ 5 = 9 + ๐‘ฅ๐‘ฅ2

, x = 4 (2-2: page 30)

3. 4x = (x + 2) + (x + 4) โ€“ 2, 1st = 2, 2nd = 4, 3rd = 6 (2-2: page 32)

4. 2r + 2(r โ€“ 10) = 340 , r = 90 km/h , r โ€“ 10 = 80 km/h (2-2: page 36)

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

284 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Answers

5. Downstream: t = ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ

= 426+12

โ‰ˆ 0 .11 hr

Upstream: t = ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ

= 326โˆ’12

โ‰ˆ 0 .21 hr (2-2: page 36)

6. 46x + 66 (3+x) + 86 ๏ฟฝ12๐‘ฅ๐‘ฅ + 2๏ฟฝ = 680 ; 2, 5, 3 (2-2: page 37)

7. a. ] -2

(-โˆž, -2] or {x | x โ‰ค -2}

b. ) 1

(-โˆž, 1) or {x | x < 1}

c. [119

๏ฟฝ119

, โˆž) or {x | x โ‰ฅ 119๏ฟฝ (2-3: page 43)

8. 76 < ๐‘ฅ๐‘ฅ+782

< 80, 74 < x < 82 (2-3: page 44)

9. a. Trueb. False (2-3: page 45)

10. a. A = {11, 13, 17}B = {13, 14, 15}A โˆช B = {11, 13, 14, 15, 17}, A โˆฉ B = {13}

b. A โˆช ๐ต๐ต {1, 2, 3, 4, 5, 7} A โˆฉ B {3, 5}

A โˆฉ ๐ถ๐ถ โˆ… (2-4: page 46)

11. {x | -5 < ๐‘ฅ๐‘ฅ โ‰ค 1 } or (-5 , 1]

( ] -5 1 (2-4: page 46)

12. a. {-8, 2}

b. {-1, 34๏ฟฝ (2-5: pages 49-50)

13. a. {x | -1 โ‰ค ๐‘ฅ๐‘ฅ โ‰ค 113๏ฟฝ or [-1 , 11

3๏ฟฝ

b. {x | ๐‘ฅ๐‘ฅ < โˆ’15

or ๐‘ฅ๐‘ฅ > 75๏ฟฝ

or (-โˆž , โˆ’15๏ฟฝ โˆช ๏ฟฝ7

5, โˆž) (2-5: pages 51-52)

Unit 3 .

1. a.(3-1: page 60)

b.

(3-1: page 61)

2. a. 52b. -1 (3-2: page 63)

3. a. 5a โˆ’ 13b. 18 (3-2: page 63)

4. f (2012) โ‰ˆ 85 (3-2: page 64)

5. a. {3, -1, 6, -4}b. {4, 6, 3} (3-1: page 66)

โˆ™ (-2, 0)

โˆ™ (0, -2)

โˆ™ (1, 1)

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 285

Algebra I & II Key Concepts, Practice, and Quizzes Answers

6. {x | x is a real number and x โ‰  5} or (-โˆž, 5) โˆช (5, โˆž)

{x| x is a real number and x โ‰  57๏ฟฝ or (-โˆž, 5

7๏ฟฝ โˆช ๏ฟฝ5

7 , โˆž) (3-3: page 67)

7. a. m = 6, b = -15 (3-4: page 68)b. m = 1

2(3-4: page 70)

8. -125 (3-4: page 70)

9.

(3-5: page 72)

10 . m1 = m2 = -72

, L1 โˆฅ L2 (3-5: page 74)

11 . y = -7x + 17 (3-5: page 76)

12 . a. y = -13๐‘ฅ๐‘ฅ โˆ’ 7

3, L1 โˆฅ L2

b. y = 3๐‘ฅ๐‘ฅ โˆ’ 9 , L1โ”ด L2 (3-5: page 77)

13 . f (t) = 20,000 โ€“ 1,000t , $15,000

(3-6: page 78)

Unit 4

1. (x, y) = (1, 1)

(4-1: page 84)

2. a. x = 1 , y = 1 (4-1: page 86)b. x = 0 , y = 6 (4-1: pages 87-88)

3. ๏ฟฝ2๐‘™๐‘™ + 2๐‘ค๐‘ค = 140 ๐‘™๐‘™ = 4๐‘ค๐‘ค + 10 w = 12m , l = 58m (4-2: page 89)

4. a.

(4-3: page 91)

b.

(4-3: page 92)

f (x)

x0

t

f (t)20000

0

5

โˆ™ (1, 1)

y

โˆ™ (1, 1)x

โˆ™ 4

โˆ™ (1, 3)

xโˆ™ 0

1500010000

x0

y

y

-5

-7

1

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

286 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Answers

5.

The solution set is the region where the shading overlaps . The vertex is (0, 2) . (4-3: page 93)

Unit 5

1. a . f (40) = 2,960 b.

f (30) โ‰ˆ 2,500 (5-1: page 99)

2. a. 7๐‘ฅ๐‘ฅ3 โˆ’ 2๐‘ฅ๐‘ฅ2 โˆ’ 5๐‘ฅ๐‘ฅ + 6 = 0b. 4๐‘ฅ๐‘ฅ3 + 7๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ โˆ’ 2 = 0 (5-1: page 100)

3. a. 12t 2 โ€“ 16t โ€“ 3b. u3 + 6u2 + 12u + 8 (5-2: page 103)

4. -b(b + 2) (5-2: page 103)

5. a. (2c โ€“ ๐‘‘๐‘‘)(2cd + 1) b. 3xy(3x + ๐‘ฆ๐‘ฆ)(3x โ€“ y) c. (x + 1)(x โ€“ 3) (5-3: pages 105-106)d . (x โ€“ 3)(3x โ€“ 8) = 0 e . (t + 1

3) 2 = 0 (5-4: pages 107-108)

6. a. (2x + 3y)(2x โ€“ 3y)

b. 2๏ฟฝ๏ฟฝ๐‘ข๐‘ข3

+ ๐‘ฃ๐‘ฃ5๏ฟฝ ๏ฟฝ๐‘ข๐‘ข

3โ€“ ๐‘ฃ๐‘ฃ5๏ฟฝ๏ฟฝ

c. (t2 + 4)(t +2)(t โ€“ 2)d. (x2 โ€“ 2y2)(x4 + 2x2y2 + 4y4) (5-5: pages 110-112)

Unit 6

1. a. ๐‘ฅ๐‘ฅ12โˆ’ 1

3

b. b (6-1: page 117)

2. a. (x + 1)(x + 3)

b. 3(๐‘ฆ๐‘ฆโˆ’1)2

(6-1: pages 118-119)

c. 8๐‘ฅ๐‘ฅ

(6-2: page 120)

3 . 12x4y2 (6-2: page 122)

4 . 2๐‘๐‘2+3๐‘๐‘+5(๐‘๐‘+2)(๐‘๐‘โˆ’2)

(6-2: page 123)

5. 9๐‘ฆ๐‘ฆ โˆ’ 3 โˆ’ 12๐‘ฆ๐‘ฆ

(6-3: page 124)

6. a. (2๐‘ฆ๐‘ฆ โˆ’ 1) + 43๐‘ฆ๐‘ฆ

b. (๐‘ฅ๐‘ฅ2 + 3๐‘ฅ๐‘ฅ + 3) + 6๐‘ฅ๐‘ฅโˆ’1

(6-3: pages 125-126)

7. (2๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ + 7) + 7๐‘ฅ๐‘ฅโˆ’2

(6-3: page 127)

8. a. 1+5๐‘ฅ๐‘ฅ 1+๐‘ฅ๐‘ฅ2

b. ๐‘ฆ๐‘ฆโˆ’73๐‘ฆ๐‘ฆ(๐‘ฆ๐‘ฆ+3)(๐‘ฆ๐‘ฆโˆ’2)

(6-4: pages 128-129)

9. a. ๐‘ฆ๐‘ฆ = 5 28

(6-5: page 130)b. x = -2 (6-5: page 131)

10. t โ‰ˆ 1.71 hr (6-6: page 134)

2x โ€“ y โ‰ค โˆ’2

โˆ™ (0, 2)

โˆ™(0, 0)

4x + y > 2

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 287

Algebra I & II Key Concepts, Practice, and Quizzes Answers

11. $42 (6-6: page 135)

12. r = 5 km/hr (6-6: page 136)

Unit 7

1. a. โˆš17 , โˆš2 b. { x | x โ‰ฅ - 2

5๏ฟฝ or ๏ฟฝ- 2

5 , โˆž) (7-1: page 143)

2. a. 13

b. 2u (7-1: page 145)

3. -3 (7-1: page 145)

4. a. -3 ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ3/4

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2/3 ๐‘ง๐‘ง๐‘ง๐‘ง1/5

b. ๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ3/2

๐‘ข๐‘ข๐‘ข๐‘ข9/4

c. x9y12

d. ๐‘๐‘๐‘๐‘4

๐‘Ž๐‘Ž๐‘Ž๐‘Ž4

e. 1 (7-1: page 147)

5. a. 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2 ๏ฟฝ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ3 4 b. โˆš๐‘๐‘๐‘๐‘20

c. โˆš๐‘ข๐‘ข๐‘ข๐‘ข8๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ6๐‘ค๐‘ค๐‘ค๐‘ค912

d. ๏ฟฝ๐‘Ž๐‘Ž๐‘Ž๐‘Ž3๐‘๐‘๐‘๐‘3

๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘

4 (7-2: page 148)

6. a. 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ ๏ฟฝ7๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ 3

b. 2ab โˆš๐‘๐‘๐‘๐‘ 4 (7-3: page 150)

7. a. ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ๏ฟฝ5๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ (4โˆš3โˆ’ 3) (7-4: page 151)

b. 3๐‘Ž๐‘Ž๐‘Ž๐‘Ž (๐‘๐‘๐‘๐‘ โˆ’ 4) (7-4: page 152)

c. ๏ฟฝ5๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2 3

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ (7-5: page 154)

8. a. ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ• (7-6: page 156)

b. ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 7 (7-6: page 158)

9. 2329โˆ’ 14

29๐‘–๐‘–๐‘–๐‘– (7-7: page 163)

Unit 8 1. y = - 5 ยฑ โˆš3 or y โ‰ˆ ๏ฟฝ-3.268

-6.732 (8-1: page 170)

2. x = - 2 ยฑ โˆš7 (8-2: page 171)

3. A =P(1+ r)t , r โ‰ˆ 5% (8-2: page 173)

4. a. x = 2 ยฑ โˆš3

b. -32

ยฑ 12๐‘–๐‘–๐‘–๐‘– (8-3: pages 175-176)

5. w(w + 30) = 4,000 w = 50m, l = 80m (8-4: page 177)

6. x2 + x2 = 102, x = โˆš50 = 5โˆš2 (8-4: page 178)

7. 11 & -12 (8-4: page 179)

8. ๐‘๐‘๐‘๐‘2 โˆ’ 4๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž = 91 > 0: 2 real solutions (8-5: page 181)

9. Let u = m-1, ๐‘š๐‘š๐‘š๐‘š = 17 , m = -1 (8-6: page 184)

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

288 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Answers

10 .

โˆš ร— โˆš

x โ‰ค -4 -4 2 x โ‰ฅ 2 { x | -โˆž < x โ‰ค -4 or 2 โ‰ค x < โˆž } or (-โˆž, -4] โˆช [2, โˆž) (8-6: page 187)

Unit 9

1. Center: (2, -5), radius r = 3 (9-1: page 195)

2.

(9-2: page 202)

3.

(9-3: page 207)

4. ๐‘ฆ๐‘ฆ2

32โˆ’ ๐‘ฅ๐‘ฅ2

12= 1

(9-4: page 210)

5. (๐‘ฅ๐‘ฅ+3)2

52+ (๐‘ฆ๐‘ฆโˆ’1)2

22= 1

(9-5: pages 214, 207)

6. (-1, 3), ๏ฟฝ95

, -135๏ฟฝ (9-6: page 216)

Unit 10

1.

(10-1: page 226)

2. f (x) = x3, g (x) = 4 โˆ’ 3x (10-2: page 232)

3. f -1 (x) = - ๐’™๐’™๐Ÿ“๐Ÿ“

(10-2: page 234)

xโˆ™

(4, -4)

(0, 12) โˆ™

(2, 0)

โˆ™ 0

y

โˆ™ (-6, 2) โˆ™ (4, 2)

โˆ™ (-1, -1)

โˆ™ (-1, 2)

โˆ™ (-1, 5)

(-1, 0) โˆ™ โˆ™ (1, 0)

โˆ™ (0, 3)

โˆ™ (0, -3)

โˆ™ (-3, 1) x

0

(-8, 1) โˆ™ โˆ™ (2, 1)

โˆ™ (-3, 3)

(-3, -1) โˆ™

โˆ™ (0, 1)

f(x) = 2xf(x) = 2-x

y

โˆ™ (6, 0)

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 289

Algebra I & II Key Concepts, Practice, and Quizzes Answers

4. a. x = 4b. x = - 1

3 (10-3: page 237)

5. 3 (10-3: page 239)

6. a. log46 + log4๐‘ฅ๐‘ฅ โˆ’ 5 log4๐‘ฆ๐‘ฆ (10-4: page 240)b. 1

2log5๐‘Ž๐‘Ž + 1

4log5๐‘๐‘ โˆ’

14

log5๐‘๐‘ (10-4: page 242)

7. a. โ‰ˆ -2.06b. โ‰ˆ 1.35 (10-5: page 245)

8. a. ๐‘ฅ๐‘ฅ = log8log3

โ‰ˆ 1.89 (10-5: pages 246-247)

b. ๐‘ฅ๐‘ฅ = 935โ‰ˆ 0.26 (10-6: page 248)

Unit 11

1. 14 (11-1: page 256)

2. D = -5, Dx = -5, Dy = 10, Dz = 5, (1, -2, -1) (11-2: pages 260-261)

3. ๏ฟฝ6 -8

2 -4๏ฟฝ (11-4: page 266)

4. ๏ฟฝ-79๏ฟฝ (11-4: page 273)

5. (1, -2, -1) (11-4: page 274)

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

290 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Index

AAbsolute value 5, 20Absolute value equation 49, 53Absolute value inequalities 51, 55AC method 109, 114Addend 6, 20Adding complex numbers 161, 166Adding like rational expressions 120, 137Adding radical expressions 151, 165Adding signed numbers 6, 19Adding unlike rational expressions 123, 137Algebraic expression 97, 113Algebraic terms 97, 113Ascending order 98, 113Associative property 12, 19Augmented matrix 262, 278

BBasic mathematic symbols 4, 18Binomial 97, 113Business formulas 33, 35, 55

CChange of base formula 245, 253Circle 195, 217Closed(filled)circle 4,18Closure property 12, 19Coefficient 10,19,113Coefficientmatrix 262,278Cofactor 257, 277Combine like terms 14, 20Commission 35, 55Common logarithm 243, 253Commutative property 12, 19Completing the square 171, 190Complex conjugates 162, 166Complex number system 159, 166Complex rational expression 128, 137Composite function 231, 251Composite number 3Compound inequality 39, 53Compound interest 173, 191

Conjugates 162, 165Consistent & dependent 85, 94Consistent & independent 85, 94Constant 10, 19Converting between exponential

and logarithmic forms 252Co-vertex 205, 219Cramerโ€™s rule 259-260, 277-278Cut point 188, 192

DDegree of a term with one variable 98, 113Degree of a term with more variables 98, 113Degree of a polynomial with

more variables 98, 113Descending order 98, 113Determinant 255, 277Difference 6,20Differenceofcubes 112,115Differenceofsquares 103,115Dimensions of a matrix 262, 278Dimensions of the product 265, 279Discriminant 180, 191Distance Formula 194, 217Distributive property 12, 19Dividend 6, 20Dividing complex numbers 162, 166Dividing rational expressions 119, 137Dividing signed numbers 7, 19Divisor 6, 20Domain 62, 66, 79

EElimination method 87, 94Ellipse 204, 218Empty set (or null set) 45, 55Equation 23, 53Equation-solving strategy 26, 54Equations in quadratic form 183, 192Equations involving decimals 27, 54Equations involving fractions 27, 54Equations of circles 195, 217

Index

Page(s) Page(s)

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 291

Algebra I & II Key Concepts, Practice, and Quizzes Index

Equationsofdifferentdegrees 24,53Equations of ellipses 204, 219Equations of hyperbolas 208, 220Equations of parabolas 203, 218Equivalent expressions 13, 20Evaluate a 2 ร— 2 determinant 255, 277Evaluate a 3 ร— 3 determinant 256, 277Expansion by diagonals 256, 277Expansion by minors 257, 277Exponent 8 Exponential equation 246, 253Extended number system 159, 166Extraneous solution 156, 165

FFind the LCD 121, 137First-degree equation 24, 53FOIL method 102, 114Formula 28, 53Four quadrants 59, 79Function 62, 79Function notation 63, 79Function transformations 212, 221Function values 63, 79 GGauss-JordanmethodtofindA-1 270, 280General-form conic equation 213, 221Geometry formulas 28, 56Graph of inverse function 229, 251Graph of the logarithmic function 238, 252Greatest / Highest Common Factor 104, 114

HHigher-degree equation 24, 53Horizontal line 73, 80Horizontal-line test 228, 251Hyperbola 208, 219

IIdentity property 12, 19 Identity property for matrices 268, 279Identity matrix 268, 279Imaginary unit 159-160, 166Incomplete quadratic equations 169, 190Inconsistent 85, 94Index of a radical 146, 164

Inequality 39, 53Integers 3, 18Intersection 45, 55Inverse function 229, 251Inverse matrix 269, 280Inverse property 12, 19Irrational numbers 1, 18

KKey or clue words in word problems 11Key to solve an exponential equation 246, 253Key to solve a logarithmic equation 248, 252

LLeadingcoefficient 98,113Leading term of a polynomial 98, 113Least common denominator (LCD) 121Least common multiple (LCM) 121Like radicals 151, 165Like rational expressions 120, 137Like terms 10, 19Linear equation 24, 53Linear equation in two variables 60, 79Linear inequality 90, 94Logarithmdefinition 235,252Logarithm of negative number 235, 252Logarithm of zero 235, 252Logarithmic equation 248, 252Logarithmic function 235, 251

MMatrix 262, 278Matrix addition 263, 278Matrix equality 263, 278Matrix multiplication 264, 279Matrix subtraction 263, 278Methods for solving quadratic equations 174, 191Midpoint formula 194, 217Minuend 6, 20Minor 257Missing terms in long division 126, 138Monomial 97, 113Motion formulas 136, 139Multiplicand 6, 20Multiplier 6, 20Multiplying complex numbers 161, 166Multiplying rational expressions 118, 137

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

292 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

Algebra I & II Key Concepts, Practice, and Quizzes Index

Multiplying signed numbers 6, 19

NNatural numbers 1, 18Natural logarithm 244, 253Negative of the greatest common factor 104, 114Nonlinear equation 61, 79Nonlinear system of equations 215, 221nth root 144, 164nth root to the nth power 146, 164Number line 1

OOne-to-one function 228, 251Open (empty) circle 4, 18Opposite (additive or negative inverse) 7, 20 Opposite of the polynomial 100, 113Order of operations 9, 18Ordered pair 59, 79

PParabola 196, 217Parallel lines 74, 80Percent decrease 33, 56Percent increase 33, 56Perfect square 149Perpendicular lines 74, 80Place signs 277Point-slope equation 75, 80Polynomial 97, 113Polynomial long division 125, 138Power of i 160, 166Powers of roots 146, 165Principle square root 142, 164Prime number 3Procedure for solving

quadratic inequalities 185, 192Procedure to complete the square 171, 190-191Product rule for radicals 149, 165Properties for solving equations 25, 54Properties of absolute value 48, 55Properties of addition 12, 19Properties of multiplication 12, 19Properties of exponential functions 239, 252Properties of linear equations 85, 94

Properties of logarithmic functions 239, 252Properties of matrices 268, 279Properties of zero 7Proportion 135, 139

QQuadratic equation 169, 190Quadratic formula 174, 191Quadratic inequality 185, 192Quotient rule for radicals 149, 165

RRadical (root) 144, 164Radical equation 157, 165Radical expression 148, 165Radical notation 144, 164 Range 66, 79Rate 135, 139Ratio 135, 139Rational (fractional) equation 130, 138Rational exponent notation 144, 164 Rational expression 130, 137Rational function 117, 137Rational inequality 188, 192Rational numbers 1, 18Rationalize the denominator 153, 165Real number system 1, 18Real numbers 1, 18Reflection 250Relation 66, 79Remove parentheses 15, 20Requirements for matrix multiplication 264, 279Root 144, 164Roster notation 2, 18Rules of exponents 16, 20Rules of logarithms 240, 253

SScalar matrix multiplication 264, 279Scientificnotation 17,20Set 2Set-builder notation 2, 18Shifting 212, 221, 224, 250 Simple interest 173, 191

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849 293

Algebra I & II Key Concepts, Practice, and Quizzes Index

Simplifying a complex rational expression 128, 138

Simplifying radical expressions 148, 165Slope 68-69, 80Slope formula 69, 80Slope-intercept function 68, 80Solve an absolute value equation 49, 55Solving a linear system using the

inverse matrix 273, 280Solving a rational equation 130, 138Solution 23, 53Solution set 23, 53Solutions of the systems of equations 83, 94Squareofdifference 103,115Square of sum 103, 115Square root 142, 164Square root equation 155, 165Steps for solving word problems 30, 54Straight-line equation 76, 80Subset 45, 55Substitution for variable 184, 192Substitution method 86, 94Subtrahend 6, 20Subtracting complex numbers 161, 166Subtracting like rational expressions 120, 137Subtracting radical expressions 151, 165Subtracting signed numbers 6, 19Subtracting unlike rational expressions 123, 137Sum of cubes 112, 115Synthetic division 127, 139System of linear equations 83, 94System of linear inequalities in

two variables 93, 95

T Term 10, 19, 113Test point 91-92, 95Translate words into algebraic expression 11Trinomial 97, 113

UUnion 45, 55Unlike rational expressions 120, 137

VVertical line 73, 80Vertical line test 65, 80

WWork problems 134, 139Writing equation from solutions 182, 192Write systems of linear equations

in matrix form 280Whole numbers 1, 18

Xx-intercept 59, 79x-intercepts of a quadratic equation 170, 190x and y interchanging 226, 251

Yy-intercept 59, 79

ZZero product property 169, 190Zero product property in reverse 182, 192

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.

294 ยฉ 2017 The Critical Thinking Co.โ„ข โ€ข www.CriticalThinking.com โ€ข 800-458-4849

These copyrighted pages are digitally coded with a unique buyer identifier. D

istribution is prohibited.