meiling chensignals & systems1 lecture #06 laplace transform

19
meiling chen signals & systems 1 Lecture #06 Laplace Transform

Upload: laurence-patterson

Post on 19-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Meiling chensignals & systems1 Lecture #06 Laplace Transform

meiling chen signals & systems 1

Lecture #06

Laplace Transform

Page 2: Meiling chensignals & systems1 Lecture #06 Laplace Transform

meiling chen signals & systems 2

Eigenfunction

xAx

Ax x

Page 3: Meiling chensignals & systems1 Lecture #06 Laplace Transform

meiling chen signals & systems 3

Page 4: Meiling chensignals & systems1 Lecture #06 Laplace Transform

meiling chen signals & systems 4

LTI system)()( ttx )()( thty

h(t) is the impulse response of the LTI systemAccording to the convolution:

dtxhtxthtxHty

)()()()()}({)(

stetxlet )(

dehe

dehtxHty

sst

ts

)(

)()}({)( )(

We define that

dehsH s

)()(

Page 5: Meiling chensignals & systems1 Lecture #06 Laplace Transform

meiling chen signals & systems 5

stst esHeHtxHty )(}{)}({)(

We identify as an eigenfunction of the LTI system and H(s) as the corresponding eigenvalue.

ste

js In which s is a complex frequency

deeh

dehdehjH

j

jj

])([

)()()( )()(

)( jH Is the Fourier transform of eh )(

dejHeh tj

)(2

1)(

Page 6: Meiling chensignals & systems1 Lecture #06 Laplace Transform

meiling chen signals & systems 6

dejH

dejHeth

dejHeth

tj

tj

tj

)()(2

1

)(2

1)(

)(2

1)(

dsesHj

thj

j

st

)(

2

1)(j

dsdjslet

j

j

st

st

dsesXj

tx

dtetxsX

)(

2

1)(

)()(Laplace transform

Inverse Laplace transform

Page 7: Meiling chensignals & systems1 Lecture #06 Laplace Transform

meiling chen signals & systems 7

j

j

st

st

dsesXj

sXLtx

dtetxtxLsX

)(

2

1)}({)(

)()}({)(

1

0

Unilateral Laplace transform for causal system

Page 8: Meiling chensignals & systems1 Lecture #06 Laplace Transform

meiling chen signals & systems 8

Laplace transform properties

)()()]()([ sGsFtgtfL

)()]([ asFtfeL at

)()]()([ sfetutfL s

)0()()]([ fssFtfL

)0()0()0()()]([ 121)( nnnnn ffsfssFstfL

s

sFdfL

t )(])([

0

ds

sdFttfL

)()]([

n

nnn

ds

sFdtftL

)()1()]([

Page 9: Meiling chensignals & systems1 Lecture #06 Laplace Transform

meiling chen signals & systems 9

Time convolution )()()}()({ 2121 sFsFtftfL

)()(

])([)(

])([)(

])([)()}()({

,

])([)(

])()([)}()({

)()()()(

21

0

1

0

2

0

1

0

2

)(

0

1

0

221

0

1

0

2

0

21

0

21

0

2121

sFsF

defdef

ddeeff

ddefftftfL

ddtt

ddtetff

dtedftftftfL

dftftftf

ss

ss

s

st

st

Page 10: Meiling chensignals & systems1 Lecture #06 Laplace Transform

meiling chen signals & systems 10

Initial Value TheoremInitial-Value Theorem

If is continuous at and may different and if is not impulse function or derivative of impulse function, then

)(tf 0t )0( f )0( f

)(tf

)(lim)0()(lim0

ssFftfst

Example 1ttf

s

ssF

cos)()(

22

1lim)(limcoslim)(lim22

2

00

s

sssFttf

sstt

Page 11: Meiling chensignals & systems1 Lecture #06 Laplace Transform

meiling chen signals & systems 11

Final Value Theorem

Final-Value Theorem

)(lim)(lim0

ssFtfst

If and are Laplace transformable, if exists and if is analytic on the imaginary axis and in right half of the s-plane, then

)(tf )(tf )(lim tft

)(ssF

1. No any pole on the imaginary axis or in right half of s-plane.2. System is stable.

Page 12: Meiling chensignals & systems1 Lecture #06 Laplace Transform

meiling chen signals & systems 12

Example 2

Example 3

)2(

5)(

2

ssssF

2

5)(lim)(lim

0

ssFtf

st

ttfs

sF

sin)()(

22

ttfttt

sinlim)(lim

not exist

Page 13: Meiling chensignals & systems1 Lecture #06 Laplace Transform

meiling chen signals & systems 13

Remark 1 )0()(lim

fssF

s

Remark 2 If include impulse function at . )(tf 0t

)0()(lim

fssF

s

1)(lim0)0(

1)()()(

ssFbutf

ssFtutf

s

Example 4

Example 5

)(lim0)0(

1)()()(

ssFbutf

sFttf

s

Page 14: Meiling chensignals & systems1 Lecture #06 Laplace Transform

meiling chen signals & systems 14

Inverse Laplace transformF(s) is a strictly proper rational function

)(deg)(deg)(

)()( sDsN

sD

sNsF

Degree of denominator

Case I simple root as

as

AsF )( atAetf )(

assFasA )]()[(

assD

sNA

)(

)(where

Page 15: Meiling chensignals & systems1 Lecture #06 Laplace Transform

meiling chen signals & systems 15

Example 6

36189

)1(18)(

23

s

C

s

B

s

A

sss

ssF

1)3)(6(

)1(180

sss

sA 1

18183

)1(1802

sss

sAor

5)3(

)1(186

sss

sB 5

18183

)1(1862

sss

sBor

4)6(

)1(183

sss

sC 4

18183

)1(1832

sss

sCor

tt eetf 36 451)(

Page 16: Meiling chensignals & systems1 Lecture #06 Laplace Transform

meiling chen signals & systems 16

Inverse Laplace transform

Case II complex root ))(( *asas

*)(

as

A

as

AsF

assD

sNA

)(

)(

jaja *,

**

)(

)(A

sD

sNA

as

AjAj eAAeAA *,let

taat eAAetf**)(

tjAjtjAj eeAeeAtf )()()(

)()( )()( AtjAtjt eeeAtf

)cos(2)( AteAtf t

Page 17: Meiling chensignals & systems1 Lecture #06 Laplace Transform

meiling chen signals & systems 17

Example 7

js

B

js

B

ssss

ssF

112

2/1

)22)(2(

)3()(

*

2

4

3

4

1

)1)(2(

31 j

jss

sB js

3tan,4

10 1 BB

)3tancos(2

10

2

1)( 12 teetf tt

)cos(2)( BteBtf t

Page 18: Meiling chensignals & systems1 Lecture #06 Laplace Transform

meiling chen signals & systems 18

Inverse Laplace transform

Case III repeated root nas )(

)()()()(

)()( 1

11

as

A

as

A

as

A

sD

sNsF

nn

nn

nksFasds

d

knA

sFasds

dA

sFasds

dA

sFasA

asn

kn

kn

k

asn

n

asn

n

asn

n

,,2,1,)()()!(

1

)()(!2

1

)()(

)()(

2

2

2

1

))!2()!1(

()( 12

2

1

1

AtAn

tA

n

tAetf

n

n

n

nat

Page 19: Meiling chensignals & systems1 Lecture #06 Laplace Transform

meiling chen signals & systems 19

Example 8

13)4()4()4)(3)(1(

)2(48)(

22

s

D

s

C

s

B

s

A

sss

ssF

32)3)(1(

)2(484

sss

sA

3

80]

3)3)(1(

)2(48[ 4

sss

s

ds

dB

3

8,24 DC

tttt eeetetf 3

824

3

8032)( 344