medical photonics lecture 1.2 optical engineeringengineering... · medical photonics lecture 1.2...

41
www.iap.uni-jena.de Medical Photonics Lecture 1.2 Optical Engineering Lecture 8: Instruments I 2019-06-05 Michael Kempe Winter term 2017

Upload: others

Post on 25-Oct-2019

27 views

Category:

Documents


2 download

TRANSCRIPT

  • www.iap.uni-jena.de

    Medical Photonics Lecture 1.2Optical Engineering

    Lecture 8: Instruments I

    2019-06-05

    Michael Kempe

    Winter term 2017

  • 2

    Contents

    No Subject Ref Date Detailed Content

    1 Introduction Zhong 10.04. Materials, dispersion, ray picture, geometrical approach, paraxial approximation

    2 Geometrical optics Zhong 17.04. Ray tracing, matrix approach, aberrations, imaging, Lagrange invariant

    3 Diffraction Zhong 24.04. Basic phenomena, wave optics, interference, diffraction calculation, point spread function, transfer function4 Components Kempe 08.05. Lenses, micro-optics, mirrors, prisms, gratings

    5 Optical systems Zhong 15.05. Field, aperture, pupil, magnification, infinity cases, lens makers formula, etendue, vignetting6 Aberrations Zhong 22.05. Introduction, primary aberrations, miscellaneous7 Image quality Zhong 29.05. Spot, ray aberration curves, PSF and MTF, criteria

    8 Instruments I Kempe 05.06. Human eye, loupe, eyepieces, photographic lenses, zoom lenses, telescopes

    9 Instruments II Kempe 12.06. Microscopic systems, micro objectives, illumination, scanning microscopes, contrasts

    10 Instruments III Kempe 19.06. Medical optical systems, endoscopes, ophthalmic devices, surgical microscopes

    11 Photometry Zhong 26.06. Notations, fundamental laws, Lambert source, radiative transfer, photometry of optical systems, color theory

    12 Illumination systems Gross 03.07. Light sources, basic systems, quality criteria, nonsequential raytrace13 Metrology Gross 10.07. Measurement of basic parameters, quality measurements

  • The Human Eye

    Ref: Wikipedia

  • The Eye of Owl, Cat, Gecko, Insects

    Ref: Wikipedia

  • The Human Eye

    cornea

    pupil

    iris

    tear liquid

    front chamber

    conjunctiva

    conjunctiva

    lens vitreous body

    macula(yellow)

    retina

    blind spot

    rear chamber

    muscle

    muscle

    nerve

    fibres

    fibres

    outer skin

    choroidmembrane

  • The Human Field of View

    Ref: Wikipedia

    < 10°: central< 30°: near-peripheral< 60°: mid-peripheral

  • The Human Vision

  • Optical Data of the Eye

    Property relaxed accomodatedRefractive power 58.63 dptr 70.57 dptrFocal length in air 17.1 mm 14.2 mmPower of the crystalline lens 19 dptr 33 dptrPupil diameter, smallest value for high brightness 1.5 mmPupil diameter, largest value for night vision 8.0 mmAbbe number (approx.) 50.23Petzval radius -17.58 mmLocation of entrance pupil -3.047 mmField of view maximum (vertical) 108°Field of view maximum (horizontal) 200°Field of foveated seeing 5°Diameter eye ball 24 mmDistance rotation point from cornea vertex 13.5 mmNodal point location 7.33 mmPrincipal plane location 1.6 mm

  • Eye Data - Overview

    Terms Sizes and lengths

    retina

    fovea

    cornea

    iris

    optical discblind spotcrystalline lens

    lens capsule

    anteriorchamber

    posteriorchamber

    vitreoushumor

    temporal

    nasal

    0.5 mm3.6 mm

    3.6 mm

    F'

    F

    24.4 mm15.7 mm

    NN'PP'

    1.6 mm

    7.33 mm

    C

    13.5 mm

    1.8 mm

    4 mm

    1.8 mm

    2.5 mm

  • Refractive Index

    Distribution of the indexalong z

    Smooth index variationof crystalline lens

    z[mm]

    n

    0 5 10 15 20 251

    1.05

    1.1

    1.15

    1.2

    1.25

    1.3

    1.35

    1.4

    1.45

    1.5

    cornea crystallinelens

    lenscapsule retina

    vitreous humoranterior

    chamber

    n

    z[mm]0 0.5 1 1.5 2 2.5 3 3.5 4 4.51.3

    1.32

    1.34

    1.36

    1.38

    1.4

    1.42

  • Gullstrand Model Eye

    Six media Crystalline lens with shell Data for relaxed and accomodated eye Simple version : single crystalline lens

    Relaxed Accomodated Parameter Notation Value Value

    Focal length object sided f [mm] 17.055 14.169 Focal length image sided f' [mm] 22.785 18.930 Refractive power F [dpt] 58.636 70.57 Location entrance pupil p [mm] 3.045 2.667 Location exit pupil p' [mm] 3.664 3.211 Principal point object sided P [mm] 1.348 1.772 Principal point image sided P' [mm] 1.602 2.086 Nodal point object sided N [mm] 7.078 6.533 Nodal point image sided N' [mm] 7.332 6.847 Length L [mm] 24.387

    30°

    10°

    486 nm 587 nm 656 nm

    10°

    20°

  • Spectral Transmission of the Eye

    Absorption of the eye media prevents retina damage Special truncation of UV and IR contributions

    3000

    20

    40

    60

    80

    100

    500400 800600 1000 1400 2000λ [nm]

    T [%]visible

    after corneabefore lensafter lensat retina

  • Receptors, rods and cones

    Cones : Fovea, bright light, color Rods : Peripheral, dim light, no color

    Source:http://news.feinberg.northwestern.edu/2012/04/retina_research/

    Property cones rods Location in the fovea outside the fovea Field of view small, 5° large, 108° Resolution and visual acuity large small Brightness sensitivity small, for daylight vision large, vision at night Colour sensitivity yes no Total number of elements 5 million 120 million Limiting brightness 683 lm / W 1699 lm / W Spectral maximum 555 nm 507 nm

  • 14

    Fundus

    Range Diameter [mm]

    Cones Rods

    Foveola 0.35 number :3500

    density 190000/mm2 pitch 2.3 µm

    no rods

    Fovea 1.85 density : 100000/mm2

    pitch : 3.2 µm a few rods

    Prafovea 2.85

    Macula lutea

    Perifovea 5.85 density : 160000/mm2

    pitch : 2.5 µm

    Periphery density : 5000/mm2

    pitch : 14.0 µm density : 50000/mm2

    pitch : 4.5 µm

    Papille, blind spot 4 mm off axis nasal 1.8 no cones no rods

    Source: ZEISS

    Source: ZEISS

  • Spectral Sensitivity of the Eye

    Spectral sensitivity of the eye: depends on brightness

    Daylight / high brightness: cones (blue, green, red), peak sensitivity at 550 nm

    At night/ low brightness: rods, peak sensitivity at 507 nm, no color distinction

    Absolute sensitivity: 5-15 photons (1 photon per rod) corresponds to 50-150 photons at cornea

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    V(λ)

    λ

    nightscotopic

    rods

    dayphotopic

    cones

    cyan green

    400 450 500 550 600 650 700 750

    Source: Wikipedia

  • Accommodation

    Change of accommodation range with age

    age inyears

    ∆D [dpt]

    16

    12

    8

    4

    00 20 40 60

    maximum

    minimum

    mean

    dpt

    0 20 40 8060age

    [years]

    relaxedeye

    strongestaccomodation

    immobilepoint

    4

    0

    -4

    -8

    -12

  • Adaptation

    Aging effect on adaptation range and on adaptation speed

    8

    6

    4

    2

    00 20 40 60 age in

    years

    pupil diameter[mm]

    cones

    rodsLog Ithresh

    [a.u.]

    2

    3

    10 20 30 40

    4

    5

    6

    7

    8

    time[min]

    80 years

    50 years

    30 years17 years

    7

    kink ofHelmholtz

    rod mono-chromate

    nightblindness

    Adaptation Range

    Smallest Stimulus Adaptation

  • Resolution of the Eye

    Resolution of the eye dependson the object shape

    The quantitative measure isgiven as angle

    Rough measure :2𝛼𝛼𝑐𝑐 = 0.017° ≈ 1′

    Least distance of (comfortable) distinct vision: 250 mm

    ∆x'c = 75 µm

    so = 250 mm

    L = 22 mm

    αc

    ∆x

    distancecones

    a) letter5'

    b) grating2'

    c) two points1'

    d) nonius10''

    e) binocular 5''

    L=23 mm

    34 µm

  • Visual Acuity

    Subjective recognition of simple geometricalshapes :

    1. Landolt ring with gap2. Letter 'E'

    a)

    5a

    a

    a

    3a

    3a

    a

    3a

    b)

    distance 6.096 m

    blockletter

    E 8.9mmimageheight25 µm eye

    Acuity measures

    a=1’ at 6 m

    𝑉𝑉𝑆𝑆 =𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑𝑡𝑡𝑑𝑑𝑡𝑡 [𝑚𝑚]

    𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑𝑡𝑡𝑑𝑑𝑡𝑡 𝑚𝑚 𝑑𝑑𝑡𝑡 𝑤𝑤𝑤𝑡𝑡𝑑𝑑𝑤 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙 𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑𝑡𝑡 5′

    𝑉𝑉 =1

    𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚𝑠𝑠𝑚𝑚 𝑑𝑑𝑡𝑡𝑡𝑡𝑙𝑙𝑡𝑡 𝑜𝑜𝑜𝑜 𝑙𝑙𝑡𝑡𝑡𝑡𝑜𝑜𝑙𝑙𝑠𝑠𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡 [𝑑𝑑𝑙𝑙𝑑𝑑𝑚𝑚𝑡𝑡𝑡𝑡] V=0.020-2.5 (normal: V=1)

    Normal: 6/6 (20/20 in inch)

  • Snellen Testchart

    Used for subjectivemeasurement ofvisual acuity

    20

    EF P

    T O ZL P E DP E C F DE D F C F D

    F E L O P Z DD E F P O T E C

    L E F O D P C T

    F D P L T C E O

    P E Z O L C F T D

    Group Snellen Acuity

    1 20/200 (6/60)

    2 10/100 (6/30)

    3 20/70 (6/21)

    4 20/50 (6/15)

    5 20/40 (6/12)

    6 20/30 (6/9)

    7 20/25 (6/7)

    8 20/20 (6/6)

    9 20/15 (6/4.5)

    10 20/13 (6/4)

    11 20/10 (6/3)

  • Eye Diseases

    Four major defects

    a) refraction error b) glaucom

    c) retina defects d) cataract

    original

  • Spectacles

    Correction of refraction error by spectacle lenses

    1. Myopia (short-sightedness) : negative lens

    2. Hyperopia (far-sightedness) : positive lens

    eye binocular

    eye binocular

  • Lens close to the eyeReference distance so = 250 mmrelaxed eye Lens at focal distance to eye:

    Nominal magnification

    Angle magnification

    Loupe Magnifier

    s = 250 mmo

    f lens

    y

    y'lens

    eye

    y

    lens

    eye

    object

    so

    wo wm

    fL

    Lmag f

    s0=Γ∞

    L

    o

    o

    L

    o

    mw f

    s

    syfy

    wwm ===

    tantan

    fL

  • General case :Linse at distance d from the eye

    Magnification

    Loupe Magnifier

    yy'

    lens

    eye

    ss' d

    objectvirtualimage𝑚𝑚𝑤𝑤 =

    𝑜𝑜𝐿𝐿(𝑡𝑡′ + 𝑑𝑑)𝑑𝑑(𝑜𝑜𝐿𝐿 + 𝑡𝑡) − 𝑜𝑜𝐿𝐿 � 𝑡𝑡

    d (mm)

    mw

    fL=50mms’=250mm

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    4 0 4 5 5 0 5 5 6 0 6 5 7 0 7 5 8 0 8 5

  • Eyepiece: Basic Setup

    Eyepieces images a finite image of an instrument to infinity Viewing with a relaxed eye Magnification

    Objective exit pupil = entrance pupil of eyepiece Eyepiece exit pupil = eye pupil (size: 2-8 mm) Eye relief : distance between last lens surface and eye cornea

    - required : 15 mm- with eyeglasses : 20 mm- typ.: 22 mm

    Objectiveexit pupil

    intermediatefocus

    Eyepiece

    Eye pupil

    tube length

    eyepiecefmm250

  • Pupil mismatch Eye relief, spherical aberration, eye movement

    26

    Mismatch of Eyepieces

    Ref: Smith, Ceragioli, Berry, Telescopes, Eyepieces, Astrographs, Willman-Bell, 2012

  • Evolution of Eyepiece Designs

    Monocentric

    Plössl

    Erfle

    Von-Hofe

    Erfle diffractive

    Wild

    Erfle type(Zeiss)

    BerteleScidmore

    Loupe

    Erfletype

    Bertele

    Kellner

    Ramsden

    Huygens

    Kerber

    König

    Nagler 1

    Nagler 2

    Bertele

    Aspheric

    Dilworth

  • Huygens Eyepiece

    Distance

    Lateral color corrected paraxially Intermediate image between

    lenses, not corrected

    Virtual object(image plane of objective)

    Exit pupil(eye position)

    d

    221 ffd +=

    -1.000 0.000 1.000

    0.250

    0.500

    0.750

    1.000

    LONGITUDINALSPHERICAl ABER.

    DIOPTER-3.000 0.000 3.000

    2.125

    4.250

    6.375

    8.500

    tan sag

    ASTIGMATICFIELD CURVES

    DIOPTER-20.00 0.00 20.00

    2.125

    4.250

    6.375

    8.500

    DISTORTION

    Distortion (%)

    10°

    20°

    20 a

    rcm

    in

  • Kellner Eyepiece

    Corresponds to Ramsden type Intermediate image accessible Eye lens achromatized over larger field

    -1.000 0.000 1.000

    0.250

    0.500

    0.750

    1.000

    LONGITUDINALSPHERICAl ABER.

    DIOPTER-3.000 0.000 3.000

    2.625

    5.250

    7.875

    10.500

    tan sag

    ASTIGMATICFIELD CURVES

    DIOPTER-20.00 0.00 20.00

    2.625

    5.250

    7.875

    10.500

    DISTORTION

    Distortion (%)

    10°

    20°

    24°

    20 a

    rcm

    in

  • Photographic Lenses

    • Photographic lenses image a certain field on a sensor• Most important characteristics:

    - field angle ((for a given image format also characterized by focal length)- aperture (given as f-number)

    • Applications of this lens type:- photographic lenses- video lenses- photogrammetry - projections

    f# =𝑜𝑜𝐷𝐷

    Image sensor (e.g. full frame 24mm x 36mm corresponds to 35-mm film)

  • Typical Photographic Lens Types

    Type focal

    length in mm

    Typical f-number

    Field of view (full diagonal)

    in degrees

    Lens type element number

    Fisheye 6 - 10 4 - 2.8 220 - 180 Fisheye 7 - 12

    quasi-fisheye 10 - 16 3.5 180 - 100 Fisheye 6 - 10

    extreme wide-angle 13 - 18 3.5 120 - 100 retrofocus 9 - 13 very large angle 20 - 24 2.8 - 2 94 - 84 retrofocus 8 - 10

    wide-angle 28 - 35 2 - 1.4 75 - 62 Double Gauss, retrofocus 6 - 9

    standard 40 - 55 1.4 - 1 56 - 43 Triplet, Tessar, Sonnar, Double Gauss 3 - 7 short telephoto 75 - 105 2.8 - 1.4 37 - 23 Double Gauss, telephoto 5

    medium telephoto 120 - 200 4 - 2 21 - 12 Tessar, telephoto 4 - 6

    long telephoto 300 - 500 8 - 2.8 8 - 5 telephoto 4 - 7 extreme telephoto 600 - 1200 11 - 5.6 4 - 2 telephoto 2 - 5

  • Requirements of Photo Objective Lenses

    Large field of view- correction of coma, astigmatism, distortion an field curvature

    Color correction Resolution

    - typically small F-number- usually the sensor is limiting, no diffraction limited correction

    Smart system, small and light weight- short length- plastic components

    Additional functionalities- zoom option- focussing- autofocus function- large field viewer

  • Tessar

    Double Gauss

    Super Angulon

    Photographic Lenses

    Distagon

    Tele system

    Wide angleFish-eye

  • Example lensfisheye

    Fish-Eye-Lens

    50°

    100°

    71°

    486 nm 587 nm 656 nma)

    ν[mm-1]

    tansag

    0 20 40 60 80 1000

    0.2

    0.4

    0.6

    0.8

    1

    ideal0°50°71°100°

    b)

    0 50°

    fieldangle

    solid: tandashed: sag

    100°

    40 cyc/mm60 cyc/mm

    10 cyc/mm20 cyc/mm

    0

    0.2

    0.4

    0.6

    0.8

    1c)

    100%

    y

    -100% 0

  • Handy Phone Objective lenses

    Examples

    Ref: T. Steinich

    US 7643225L = 4.2 mm , F'=2.8 , f = 3.67 mm , 2w=2x34°

    US 6844989L = 6.0 mm , F'=2.8 , f = 4.0 mm , 2w=2x31°

    EP 1357414L = 5.37 mm , F'=2.88 , f = 3.32 mm , 2w=2x33.9°

    Olympus 2L = 7.5 mm , F'=2.8 , f = 4.57 mm , 2w=2x33°

  • 1. Sampling of the field pixel by pixelSignal digitized in the time domain

    2. Active: Flying spot scanningPoint wise scanning of illumination, often by laser beamApplications: - bar code reader

    - confocal microscopy- laser radar (e.g. optical coherence tomography)

    3. Passive: Remote sensingDecomposition of object signal into pixelsApplications: - night Vision

    - monitoring, surveying- missile tracking

    Scan Systems

    Source: http://www.zamisel.com/SSpostavka2.html

    Confocal

    Wide Field

    Objectiveexit pupil

    intermediatefocus

    Eyepiece

    Eye pupil

    tube length

    Scan lens

    Beam deflecting element

  • Scan Systems: Introduction

    Scan resolution:Number of resolvable points in the field of view(scan length over diffraction limited spot size)

    Information capacity:1. Resolvable points2. Speed of scanning

    Etendue: product of scan range andscanner area

    λθ⋅⋅

    == max2 ExP

    Airy

    DD

    LN

    log ∆θ

    log v

    angleresolution

    scan speed

    growing scancapacity

    acoustic optical modulator

    polygonmirror

    galvoscanner

    holographicscanner

    electroopticalmodulator

    resonantgalvoscanner

    maxθθ ⋅=⋅ ExPMirMir DD

  • Deflecting Components

    Different types of deflecting elements

    Scanning

    Non-Mechanical Deflection

    Electro-optic EOD

    Acousto-optic AOD

    Mechanical

    Oszillation

    Galvanometric Galvoscanner

    Holographic Holographic Scanner

    Electrostatic MEMS Scanner

    Rotation

    Polygon Polygon-scanner

    Rotating Prisms Dove Prism

    Translation Lenses and lens arrays

  • Galvanometer and Electrostatic Scanner

    Galvo scanner MEMS-Scanner

    Source: scanlab.de Source: researchgate.net

  • Scanner Lenses

    Ideal scanner lens (F-θ lens): h = f θ Flat-field corrected lens: h = f tanθ

    nonlinear displacement: distortion correction needed

    • In addition telecentricityensures minimum beam distortions

    44

    Source: thorlabs.com

  • Example: Scanner Lens

    Scan angle 2x30° Monochromatic

    diffraction limited F-θ-corrected

    0° 5° 10°

    20°

    15°

    24° 28° 30.4°

    USP 4436382:

    45

    Ref: B. Böhme

    Medical Photonics Lecture 1.2�Optical Engineering�Contents�The Human Eye�The Eye of Owl, Cat, Gecko, Insects�The Human Eye�The Human Field of View�The Human Vision �Optical Data of the Eye�Eye Data - Overview�Refractive Index�Gullstrand Model Eye�Spectral Transmission of the Eye�Receptors, rods and conesFoliennummer 14�Spectral Sensitivity of the Eye�Accommodation�Adaptation�Resolution of the Eye�Visual Acuity�Snellen Testchart�Eye Diseases�Spectacles�Loupe Magnifier�Loupe Magnifier�Eyepiece: Basic Setup�Mismatch of Eyepieces�Evolution of Eyepiece Designs�Huygens Eyepiece�Kellner Eyepiece�Photographic Lenses�Typical Photographic Lens Types�Requirements of Photo Objective LensesPhotographic Lenses�Fish-Eye-LensHandy Phone Objective lenses �Scan Systems�Scan Systems: Introduction�Deflecting Components�Galvanometer and Electrostatic Scanner�Scanner Lenses �Example: Scanner Lens