mechanical and structural characterization of biological materials marc a. meyers, university of...

3
nical and Structural Characterization of Biological Materials rc A. Meyers, University of California, San Diego, DMR 0510138 Research Highlights: Abalone, Bone, and Antler Hierarchical structure of abalone pedal foot Untreated Deproteinat ed Demineralize d SEM images showing identical microstructure of untreated, deproteinated (mineral only) and demineralized (protein only) cancellous bones Abalone nacre Hierarchical structure Mesolayers, aragonite tiles, mineral bridges Enhanced mechanical properties compared to its building blocks Toughing mechanisms Mineral bridges, asperities, organic glue Underwater adhesion of abalone foot Hierarchical structure similar to gecko foot Adhesion mechanism van der Walls & capillary interactions Mineral and protein phases in bone Study of structure & mechanical properties of the mineral & protein phases in bone by demineralization (DM) or deproteinization (DP) Identical structural features of DM and DP bone Strong synergistic effect - interpenetrating composite Exceptional fracture toughness of

Upload: merry-preston

Post on 17-Dec-2015

215 views

Category:

Documents


1 download

TRANSCRIPT

Mechanical and Structural Characterization of Biological MaterialsMarc A. Meyers, University of California, San Diego, DMR 0510138

Research Highlights: Abalone, Bone, and Antler

Hierarchical structure of abalone pedal foot

Untreated Deproteinated Demineralized

SEM images showing identical microstructure of untreated, deproteinated (mineral only) and demineralized (protein only) cancellous bones

• Abalone nacre– Hierarchical structure

• Mesolayers, aragonite tiles, mineral bridges

– Enhanced mechanical properties compared to its building blocks

• Toughing mechanisms– Mineral bridges, asperities, organic glue

• Underwater adhesion of abalone foot– Hierarchical structure similar to gecko foot– Adhesion mechanism

• van der Walls & capillary interactions

• Mineral and protein phases in bone– Study of structure & mechanical properties of the

mineral & protein phases in bone by demineralization (DM) or deproteinization (DP)

• Identical structural features of DM and DP bone

– Strong synergistic effect - interpenetrating composite

• Exceptional fracture toughness of antler bone– Antler bone similar to skeletal bone but less

mineralized– Highest R-curve fracture toughness of any biological

material (~ 60 kJ.m2)

Mechanical and Structural Characterization of Biological MaterialsMarc A. Meyers, University of California, San Diego, DMR 0510138

Beak and Feather: light weight and strength optimization

• Sandwich-structured composites observed in nature.

• Exterior rhamphotheca for beak and cortex of feather shaft are thin shells composed of overlapping tiles. •Cellular structures in interior of both beak and feather.

• Three-dimensional closed-cell trabecular foam composed of mineralized collagen within beaks of hornbill and toucan

• Keratinous honeycomb structure in feathers

•Avian appendages exhibit signature themes of cellular solids and hierarchical structures

Research Highlights: Avian Appendages

Arrows indicate intermediate filaments in TEM tomograms

Intermediate filaments isualized by TEM tomogram of keratin tiles of Toucan rhamphotheca. Polygonal keratin tiles measure 50 μm in approximate diameter.

On the cortex of feather shaft, villous polygonal keratin tiles of similar scale

Optical micrograph depicts depth of the foam structure in Toco toucan.

Buckling of fibrous membranes in feather shaft medulla after tension test.

Nanoscale fibers comprise microscale membranes of cells in feather medulla.

Mechanical and Structural Characterization of Biological MaterialsMarc A. Meyers, University of California, San Diego, DMR 0510138

Undergraduates at UCSD enjoyed first-hand experience with Scanning Electron Microscopy while imaging fibrous keratin of bird feather.

“Show and Tell,” for third graders at Torrey Pines Elementary learned of the design and materials

Mechanics of biological materials is at the intersection of physics, engineering, biology, and chemistry. Future scientists must be prepared for the interdisciplinary approach.From the primary classroom .. .to high school …. to the research laboratory

Shark teeth, Shells, Alligator teeth, Armadillo armor, Toucan beak, and more!

High school students on UCSD summer program