mech593 introduction to finite element methods eigenvalue problems and time-dependent problems

34
MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Upload: maude-carroll

Post on 04-Jan-2016

224 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

MECH593 Introduction to Finite Element Methods

Eigenvalue Problems and Time-dependent Problems

Page 2: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Eigenvalue Problems

A Bu uDefinition:

Examples:

Eigenvalue problems refer to the problems with the following type:

where A, B are operators.

1 2 1 1

3 4 2 2

a a u u

a a u u

2

2

d uu

dx

,G x y u x dx u y2 2 2

2 2 20

d d w d wEI N

dx dx dx

Page 3: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Eigenvalue Problems – Engineering Applications

Example: Vibration of an axial bar

2

2,

u uA EA f x tt x x

General solution scheme: h pu u u

, i tu x t U x e let

2 0d dU

EA AUdx dx

Page 4: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Eigenvalue Problems – A Model Problem

Model problem: 0

d dUa x c x U x c x U x

dx dx

Weak form: 0 1

1 ,

b

a

a b

x e ea n bx

e en

x x

dw dUa cwU c wU dx Q w x Q w xdx dx

dU dUQ a Q a

dx dx

1eQ

enQ

ax bx

Assume: 1

ne e e

j jj

U x u x

e e e e eK u M u Q

0 b b

a a

eex xje e e e e eiij i j ij i jx x

ddK a c dx M c dx

dx dx

Assembling: K M u Q

Page 5: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Eigenvalue Problems – Heat Conduction2

02

T Tc

x t

Non-dimensional variables/parameters:

20 0

T Tx t

x t uc L L T T

0 L

x

Initial condition: 00,T x T

Boundary conditions: 0,T t T

0x L

TT T

x

2

20

u u

x t

1

0, 1 0, 0 0 x

u Lu x u t Hu H

x

Page 6: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Eigenvalue Problems – Heat Conduction

Let ,u x t U x T t

0 L

x

Initial and boundary conditions:

2

21

0 0 0 0x

d U dUU U HU

dx dx

U T

U T

Element equation for linear element:

1 1

2 2

1 1 2 11

1 1 1 26

U Qh

U Qh

2

20

u u

x t

1

0, 1 0, 0 0 x

u Lu x u t Hu H

x

Page 7: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Eigenvalue Problems – Heat Conduction

2

21

0 0 0 0x

d U dUU U HU

dx dx

Element equation for linear element:

1 1

2 2

1 1 2 11

1 1 1 26

U Qh

U Qh

1 2

h h

Assembled system: 1 1

2 2

3 3

1 1 0 2 1 01

1 2 1 1 4 16

0 1 1 0 1 2

U Qh

U Qh

U Q

Boundary conditions:1

2 2

3 3

1 1 0 2 1 0 01

1 2 1 1 4 1 06

0 1 1 0 1 2

Qh

U Qh

U HU

Page 8: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Eigenvalue Problems – Heat Conduction

2

21

0 0 0 0x

d U dUU U HU

dx dx

1 2

h h

Condensed system:

2

3

4 2 4 1 0

2 2 1 2 012

U

UH

Eigenvalues:

Eigenvectors:

Mode shapes:

Page 9: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Time-Dependent Problems

In general,

Key question: How to choose approximate functions?

Two approaches:

txutxu jj ,,

txu ,

xtutxu jj ,

Page 10: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Model Problem I – Transient Heat Conduction

Weak form:

txfx

ua

xt

uc ,

)()(0 2211

2

1

xwQxwQdxwft

ucw

x

u

x

wa

x

x

;21

21xx dx

duaQ

dx

duaQ

Page 11: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Transient Heat Conduction

let:

)()(0 2211

2

1

xwQxwQdxwft

ucw

x

u

x

wa

x

x

n

jjj xtutxu

1

, and xw i

FuMuK

2

1

x

x

jiij dx

xxaK

2

1

x

x

jiij dxcM

i

x

x

ii QfdxF 2

1

ODE!

Page 12: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Time Approximation – First Order ODE

tfbudt

dua Tt 0 00 uu

Forward difference approximation - explicit

Backward difference approximation - implicit

1k k k k

tu u f bu

a

1 1k k k k

tu u f bu

a b t

𝑑𝑢𝑑𝑡 |𝑡=𝑡 𝑘≈

𝑢𝑘+1−𝑢𝑘

∆ 𝑡

𝑑𝑢𝑑𝑡 |𝑡=𝑡 𝑘+1

≈𝑢𝑘+1−𝑢𝑘

∆ 𝑡

Page 13: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Time Approximation – First Order ODE

tfbudt

dua Tt 0 00 uu

a - family formula:

1 11k k k ku u t u u

Equation

𝑢𝑘+1=[𝑎− (1−𝛼 )∆ 𝑡𝑏 ]𝑢𝑘+∆ 𝑡 [𝛼 𝑓 𝑘+1+(1−𝛼 ) 𝑓 𝑘 ]

𝑎+𝛼∆ 𝑡𝑏

,

Page 14: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Time Approximation – First Order ODE

tfbudt

dua Tt 0 00 uu

Finite Element Approximation

11

22

3 3 3 3k k

k k

f ftb tba u a u t

𝑢 (𝑡 )=∑𝑚

𝑢𝑚𝜙𝑚 (𝑡 ) 𝑡𝑘≤ 𝑡≤ 𝑡𝑘+1

𝑚=2 , linear   element ,

Weak form : 𝑡 𝑘

𝑡 𝑘+1

𝑤 (𝑡 ) [𝑎 𝑑𝑢𝑑𝑡 +𝑏𝑢− 𝑓 ]𝑑𝑡=0

{𝑎2 [−1 1−1 1]+𝑏∆ 𝑡6 [2 1

1 2]}{ 𝑢𝑘

𝑢𝑘+1}= ∆𝑡

6 { 𝑓 𝑘

2 𝑓 𝑘+1}

Page 15: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Stability of – Family Approximation

Stability

a

Example

11 1

a tbA

a tb

𝑢𝑘+1=A ∙𝑢𝑘+𝐹 𝑘 ,𝑘+1

𝑢𝑘+1=𝐴𝑘+1 ∙𝑢0+𝐴𝑘∙𝐹 0 ,1+⋯+𝐹 𝑘 ,𝑘+1

Page 16: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

FEA of Transient Heat Conduction

FuMuK

a - family formula for vector:

1 11k k k ku u t u u

1

1 11 1k k k ku M K t M K t u t f t f

Page 17: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Stability Requirement

max21

2

critt

QuMK where

Note: One must use the same discretization for solvingthe eigenvalue problem.

Page 18: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Transient Heat Conduction - Example

02

2

x

u

t

u 10 x 0,0 tu 0,1

tx

u

0.10, xu

0t

Element equation for linear element

1 1 1

2 2 2

2 1 1 11

1 2 1 16

u u Qh

u u Qh

1

1 11 1k k k ku M K t M K t u t Q t Q

a - family formula:

Initial condition: 1 1 2 20 0 1u x u x

Boundary conditions: 1 20 0k k

u Q for 0k

One element mesh:

[ 13h+𝛼 ∆ 𝑡

h16h−𝛼 ∆ 𝑡

h16h−𝛼

∆ 𝑡h

13h+𝛼

∆𝑡h

]{𝑢1

𝑢2}𝑘+1

=[ 13 h− (1−𝛼 ) ∆ 𝑡h

16h+(1−𝛼 ) ∆ 𝑡

h16h+(1−𝛼 ) ∆ 𝑡

h13h− (1−𝛼 ) ∆ 𝑡

h]{𝑢1

𝑢2}𝑘

+∆ 𝑡 {𝑄1

𝑄2}

𝑢1 (0 )=1 ,𝑢2 (0 )=1

and𝜕𝑢𝜕 𝑥|𝑡=0

=0 𝑄2 (0 )=0

Page 19: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Transient Heat Conduction - Example

Element equation:

2 1

322 6

3

h

uh t t

h

2 211

3 3k k

h t h tu u

h h

1k for

Stability requirement: max21

2

critt QuMK

1 1

2 2

1 1 2 11

1 1 1 26

u Qh

u Qh

2

3crit t

Page 20: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Transient Heat Conduction - Example

Page 21: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Transient Heat Conduction - Example

Page 22: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Transient Heat Conduction - Example

Page 23: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Transient Heat Conduction - Example

Page 24: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Transient Heat Conduction - Example

Page 25: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Model Problem II – Transverse Motion of Euler-Bernoulli Beam

Weak form:

txft

uA

x

uEI

x,

2

2

2

2

2

2

21

2

1

423211

2

2

2

2

2

2

)()(

0

xx

x

x

x

wQxwQ

x

wQxwQ

dxwft

uAw

x

u

x

wEI

22

11

2

2

42

2

3

2

2

22

2

1

xx

xx

x

uEIQ

x

uEI

xQ

x

uEIQ

x

uEI

xQ

Where:

Page 26: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Transverse Motion of Euler-Bernoulli Beam

let:

n

jjj xtutxu

1

, and xw i

FuMuK

21

2

1

423211

2

2

2

2

2

2

)()(

0

xx

x

x

x

wQxwQ

x

wQxwQ

dxwft

uAw

x

u

x

wEI

Page 27: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Transverse Motion of Euler-Bernoulli Beam

FuMuK

2

1

2

2

2

2x

x

jiij dx

xxEIK

2

1

x

x

jiij dxAM

i

x

x

ii QfdxF 2

1

Page 28: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

ODE Solver – Newmark’s Scheme

tuuu

ututuu

sss

ssss

1

21 2

1

11 sss uuu where

Stability requirement:

2

1

2max2

1

critt

FuMK 2where

Page 29: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

ODE Solver – Newmark’s Scheme

2

12 ,

2

1 Constant-average acceleration method (stable)

3

12 ,

2

1

02 ,2

1

5

82 ,

2

3

22 ,2

3

Linear acceleration method (conditional stable)

Central difference method (conditional stable)

Galerkin method (stable)

Backward difference method (stable)

Page 30: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Fully Discretized Finite Element Equations

2

1

1

2s s s su u t u t u

1 11 1 1s ss s sK u M u F

2 2

1 1 11 1s s ss s sM t K u M b t F

211

2s s s sb u t u t u

2 21 1 11 1

1 1s s ss s s

M K u M b Ft t

One needs: 0 0 0, , u u u

1

0 0 0u M F K u

Element equation

, , s s s

u u u 1 1 1, ,

s s su u u

Page 31: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Transverse Motion of Euler-Bernoulli Beam

04

4

2

2

x

w

t

w10 x

0,0 tw 0,1

tt

w

xxxxw 1sin0,

0,1 tw 0,0

tt

w

00,

xt

w

Element equation of one element:

1 1 12 2 2 2

2 2 2

33 3 3

2 2 2 24 4 4

156 22 54 13 6 3 6 3

22 4 13 3 3 2 32

54 13 156 22 6 3 6 3420

13 3 22 4 3 3 2

u u Qh h h h

u u Qh h h h h h h hhu u Qh h h hh

u u Qh h h h h h h h

Page 32: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Transverse Motion of Euler-Bernoulli BeamSymmetry consider only half the beam 0 0.5x

Boundary conditions: 1 2 4 30, =0, =0, Q =0u u u

Initial conditions: xxxxw 1sin0, 1 2 3 40, =0, =0.2146, =0u u u u

1 2 3 40, =0, =0, =0u u u u

33 3 33 3 33 3 3 4 3 5 31

3 4 3 52

1 1, , 1

s sK a M u M a u a u a u

a a a t at

Imposing bc and ic:

33 3 03 0

33

K uu

M

𝜃 (𝑥 ,0 )=𝜋 cos𝜋 𝑥−𝜋 (1−2 𝑥 )

Page 33: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Transverse Motion of Euler-Bernoulli Beam

Page 34: MECH593 Introduction to Finite Element Methods Eigenvalue Problems and Time-dependent Problems

Transverse Motion of Euler-Bernoulli Beam