measuring tape drive performance · 1999. 9. 13. · 8 9 t ape co m p r essi o n r a ti o actual...

25
att.tjohnson.981013 1 Measuring Tape Drive Performance Theodore Johnson AT&T Labs - Research [email protected]

Upload: others

Post on 05-Sep-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Measuring Tape Drive Performance · 1999. 9. 13. · 8 9 t ape co m p r essi o n r a ti o actual write model write actual read model read actual ratio model ratio Sony DTF 0 2 4 6

att.tjohnson.981013 1

Measuring Tape DrivePerformance

Theodore Johnson

AT&T Labs - Research

[email protected]

Page 2: Measuring Tape Drive Performance · 1999. 9. 13. · 8 9 t ape co m p r essi o n r a ti o actual write model write actual read model read actual ratio model ratio Sony DTF 0 2 4 6

att.tjohnson.981013 2

Publications

• Benchmarking Tape System Performance, T. Johnson , E.Miller, Joint IEEE Symposium on Mass Storage Systems /NASA GSFC Conf. On Mass Storage Systems andTechnologies, pg. 95 - 112, 1998

• Performance Measurements of Tertiary Storage Devices,T. Johnson, E. Miller, Proc. 24th Intl. Conf. on Very LargeData Bases, pg. 50-61, 1998

Page 3: Measuring Tape Drive Performance · 1999. 9. 13. · 8 9 t ape co m p r essi o n r a ti o actual write model write actual read model read actual ratio model ratio Sony DTF 0 2 4 6

att.tjohnson.981013 3

Background

• My research at AT&T is on very large data warehouses.– Currently, IP network traffic.

• My research area is databases and performance modeling.

• Databases on tape– Multimedia

– Scientific databases

– Data warehouses

– Write-once, read-never

• Current project– Store terabytes of network traffic data

– Use it for business and scientific analyses

– technical challenges• complex aggregation queries

• use inexpensive tertiary storage

Page 4: Measuring Tape Drive Performance · 1999. 9. 13. · 8 9 t ape co m p r essi o n r a ti o actual write model write actual read model read actual ratio model ratio Sony DTF 0 2 4 6

att.tjohnson.981013 4

Complex Aggregation• Complex aggregation

– More interesting than sum, average, min, max, count

• Observation– Most queries can be computed with sequential scans

• EMF query language

– Sequential aggregates common in network analysis

– Example : computing “IP flows”

longer than εsecondsflow flow

Page 5: Measuring Tape Drive Performance · 1999. 9. 13. · 8 9 t ape co m p r essi o n r a ti o actual write model write actual read model read actual ratio model ratio Sony DTF 0 2 4 6

att.tjohnson.981013 5

Motivation

• Performance Modeling– Develop analytical or simulation models of tertiary

storage system behavior.

• Data Warehouse Architecture Design– Is my approach feasible?

– How should I design the system to obtain the bestperformance?

• Data Storage Optimization– What data do I put on tape?

– How should I partition it?

– Where should I put the partitions?

Page 6: Measuring Tape Drive Performance · 1999. 9. 13. · 8 9 t ape co m p r essi o n r a ti o actual write model write actual read model read actual ratio model ratio Sony DTF 0 2 4 6

att.tjohnson.981013 6

Why Measure Tape Performance?

• Many uses in database systems– Backup, scientific databases, multimedia, data

warehouses

• The performance of tape drives is unusual– Inherently sequential

– Many performance quirks.

• The performance of tape drives (and roboticstorage libraries) has not been systematicallystudied.

• The lack of basic information inhibits my work.

Page 7: Measuring Tape Drive Performance · 1999. 9. 13. · 8 9 t ape co m p r essi o n r a ti o actual write model write actual read model read actual ratio model ratio Sony DTF 0 2 4 6

att.tjohnson.981013 7

Tape drive characteristicsSerpentine layout

data tracks

directory track

The data tracks are written diagonally using a rotating head.A directory track can be used to speed up seeks.

Serpentine (linear) layout

Data tracks are written linearly, in alternating directions.Fast seeks are accomplished by moving the tape head toa new track.

Page 8: Measuring Tape Drive Performance · 1999. 9. 13. · 8 9 t ape co m p r essi o n r a ti o actual write model write actual read model read actual ratio model ratio Sony DTF 0 2 4 6

att.tjohnson.981013 8

Tape drive characteristics (cont.)

• Tape package– cassette

• might not need to rewind before eject

– cartridge• must rewind before eject.

• Compression

• Block sizes– fixed or variable

• Cost, size, reliability, etc.

Page 9: Measuring Tape Drive Performance · 1999. 9. 13. · 8 9 t ape co m p r essi o n r a ti o actual write model write actual read model read actual ratio model ratio Sony DTF 0 2 4 6

att.tjohnson.981013 9

Measurements

• Measure all aspects of a data request response time.– Robot fetch, mount time, seek time, transfer rate, rewind

time, rewind time, unmount, media return time.

• Measure special characteristics– Short seeks, seek positioning hints, unmount without

rewind, compression rates

• Measure factors affecting data transfer rates– block size, compression, delays in I/O requests.

• Be consistent– Use mtio calls.

– Consistency not always possible (esp. when measuringrobot performance and mount/unmount times).

Page 10: Measuring Tape Drive Performance · 1999. 9. 13. · 8 9 t ape co m p r essi o n r a ti o actual write model write actual read model read actual ratio model ratio Sony DTF 0 2 4 6

att.tjohnson.981013 10

Devices measured

• Robotic storage libraries– GRAU ABBA/2 (6000 tapes)

– Storagetek 9710 (404 tape, expandable to 588)

– Ampex 810 (256 tape)

– Sony DMS-B9 (9 tape)

• Tape drives– 4mm (helical scan cassette, low cost, low performance)

– Ampex DST 310 (helical scan cassette, high cost, high performance)

– Sony DTF (helical scan cassette, high cost, high performance)

– DLT 4000 (serpentine cartridge, low cost, low performance)

– DLT 7000 (serpentine cartridge, medium cost, medium performance)

– IBM 3590 (serpentine cartridge, high cost, high performance)• Thanks to Ethan Miller.

Page 11: Measuring Tape Drive Performance · 1999. 9. 13. · 8 9 t ape co m p r essi o n r a ti o actual write model write actual read model read actual ratio model ratio Sony DTF 0 2 4 6

att.tjohnson.981013 11

Robotic storage library performance

Robotname

Avg. fetchtime

Std. Dev.Fetch time

Avg. returntime

Std. Dev.Return

GRAUABBA(6000 tapes)

19.7 Sec. .1 sec 16.4 sec .2

Storagetek9710 (404tapes)

Approx. 9 small Approx. 9 small

Ampex 810(256 tapes)

2.9 .3 3.7 .5

Sony DMS-B9 (9 tapes)

12.8 2.1 17.2 1.9

Page 12: Measuring Tape Drive Performance · 1999. 9. 13. · 8 9 t ape co m p r essi o n r a ti o actual write model write actual read model read actual ratio model ratio Sony DTF 0 2 4 6

att.tjohnson.981013 12

Mount and unmount time

• Mount : 10 to 50 seconds, low variance.

• Unmount : 4 to 20 seconds, low variance.

• Ampex can unmount from mid tape:

0

5

10

15

20

0 10 20 30 40

Tape position in Gbytes

seco

nd

s

Page 13: Measuring Tape Drive Performance · 1999. 9. 13. · 8 9 t ape co m p r essi o n r a ti o actual write model write actual read model read actual ratio model ratio Sony DTF 0 2 4 6

att.tjohnson.981013 13

Seek time from BOT

DLT 4000

0

50

100

150

200

0 0.5 1

Gbytes

seco

nd

s

seek

rewind

0

20

40

60

80

100

120

0 5 10 15 20

Gbytes

Sec

onds

4mm seek

4mm rewind

Ampex seek

Ampex seek/hint

Ampex rewind

Sony seek

Sony rewind

Page 14: Measuring Tape Drive Performance · 1999. 9. 13. · 8 9 t ape co m p r essi o n r a ti o actual write model write actual read model read actual ratio model ratio Sony DTF 0 2 4 6

att.tjohnson.981013 14

Seek time from BOT (cont.)

DLT 7000

020

4060

80100

120140

160

0 1 2

Gbytes

Se

con

ds

seek

rewind

IBM 3590

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000

seek

rewind

Page 15: Measuring Tape Drive Performance · 1999. 9. 13. · 8 9 t ape co m p r essi o n r a ti o actual write model write actual read model read actual ratio model ratio Sony DTF 0 2 4 6

att.tjohnson.981013 15

Unmount without rewind• Theory : faster seeks to data in mid-tape.

• Practice : slower seeks to data in mid-tape.

First seek after mount

0102030405060

0 20

position (Gbyte)

seco

nd

s no rew indbefore unmount

rew ind beforeunmount

Linear (norew ind beforeunmount)

Page 16: Measuring Tape Drive Performance · 1999. 9. 13. · 8 9 t ape co m p r essi o n r a ti o actual write model write actual read model read actual ratio model ratio Sony DTF 0 2 4 6

att.tjohnson.981013 16

Seeks from mid tape

Sony DTF

0

10

20

30

40

50

60

70

-15 -10 -5 0 5 10 15

Distance (Gbytes)

seco

nd

s

To

From

DLT 7000

0

20

40

60

80

100

-2 -1 0 1 2

Gbytes

seco

nd

s

to

back

Page 17: Measuring Tape Drive Performance · 1999. 9. 13. · 8 9 t ape co m p r essi o n r a ti o actual write model write actual read model read actual ratio model ratio Sony DTF 0 2 4 6

att.tjohnson.981013 17

min

max

start point

min

max

Direction on track

Seek distance

DLT 4000

0

20

40

60

80

100

120

140

160

-0.6 -0.1 0.4

distance (Gbytes)

seco

nd

s

measured

model

Page 18: Measuring Tape Drive Performance · 1999. 9. 13. · 8 9 t ape co m p r essi o n r a ti o actual write model write actual read model read actual ratio model ratio Sony DTF 0 2 4 6

att.tjohnson.981013 18

Short seeks• Is it better to seek or to sequentially read?

DLT 4000

0

20

40

60

80

100

0 50 100

Mbytes

seco

nd

s read all

seek,read 1

Ampex 310

0

5

10

15

20

0 50 100 150 200

Mbytes

seco

nd

s read all

seek thenread 1

Page 19: Measuring Tape Drive Performance · 1999. 9. 13. · 8 9 t ape co m p r essi o n r a ti o actual write model write actual read model read actual ratio model ratio Sony DTF 0 2 4 6

att.tjohnson.981013 19

Short seeks (cont.)

DLT 7000

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300

Mbytes

seco

nd

s

read all

seek, read 1

Sony DTF

0

2

4

6

8

10

12

0 50 100 150

Mbytes

seco

nd

s

read all

seek,read 1

Page 20: Measuring Tape Drive Performance · 1999. 9. 13. · 8 9 t ape co m p r essi o n r a ti o actual write model write actual read model read actual ratio model ratio Sony DTF 0 2 4 6

att.tjohnson.981013 20

Delays in submitting read requests• Little effect for small reads.

• Startup penalty for helical scan with large reads, large delays– Ampex DST 310 : 7 second penalty for 70Mbyte reads, 32 sec. delays

DLT 4000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60 80 100

delay in milliseconds

Mb

ytes

/sec

thro

ug

hp

ut

0

0.005

0.01

0.015

0.02

0.025

0.03

resp

on

se ti

me

in

seco

nd

s

throughput

responsetime

Ampex dst 310

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100

Delay in submitting a read (sec.)

Th

rou

gh

pu

t (M

byt

e/s

ec.

)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08re

spo

nse

tim

e (

sec.

)

throughput

responsetime

Page 21: Measuring Tape Drive Performance · 1999. 9. 13. · 8 9 t ape co m p r essi o n r a ti o actual write model write actual read model read actual ratio model ratio Sony DTF 0 2 4 6

att.tjohnson.981013 21

Compression• Ctape = a + b * Cgzip

• Throughput = 1/(a + b/Cgzip)– Different constants for reading, writing.

DLT 4000

0

1

2

3

4

5

0 5 10 15

gzip compression ratio

tra

nsf

er

rate

(M

byt

e/s

ec)

0

1

2

3

4

5

6

7

8

9

tap

e c

om

pre

ssio

n r

ati

oactual write

model write

actual read

model read

actual ratio

model ratio

Sony DTF

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20

gzip compression ratio

Th

rou

gh

pu

t (M

byt

e/s

eco

nd

)

0

2

4

6

8

10

12

14

16

tap

e c

om

pre

ss

ion

rat

io

actual w rite

model w rite

actual read

model read

actual ratio

model ratio

Page 22: Measuring Tape Drive Performance · 1999. 9. 13. · 8 9 t ape co m p r essi o n r a ti o actual write model write actual read model read actual ratio model ratio Sony DTF 0 2 4 6

att.tjohnson.981013 22

Conclusions• Performance measurements are necessary for planning.

– Simple example: How big should the file sizes be?

– Cutoff : the minimum file size to get 50% of the tape drivethroughput.

4mm 128 sec. .325MB/sec.

42 MB 2.6 %

AmpexDST 310

35.7 14.2 507 1.2

Sony DTF 143 12.0 1720 4.2

DLT 4000 145 1.27 184 1.0

DLT 7000 121 4.3 520 1.5

IBM 3590 61 8.9 543 5.3

Drivefilelocation

transferrate

min filesize % of tape

Page 23: Measuring Tape Drive Performance · 1999. 9. 13. · 8 9 t ape co m p r essi o n r a ti o actual write model write actual read model read actual ratio model ratio Sony DTF 0 2 4 6

att.tjohnson.981013 23

Understanding Tertiary Storage Performance

• Understanding tape-based tertiary storage is toocomplex.– Evaluating new equipment is a major chore.

• Things would be easier if someone systematicallyevaluated equipment.

• How complete are my measurements?– They work for me.

– But perhaps not for others.• Arie Shoshani et al. of LLNL: building a scientific database using

HPSS. Can only access data in units of a file. They consistently finda significant delay in the time to move from the end of a file to thestart of the next file.

Page 24: Measuring Tape Drive Performance · 1999. 9. 13. · 8 9 t ape co m p r essi o n r a ti o actual write model write actual read model read actual ratio model ratio Sony DTF 0 2 4 6

att.tjohnson.981013 24

Providing Performance Information

• Why can’t the tape device tell the user about theperformance they can expect?– I.e., for the current tape, given the current state of the

drive.

• Precedent : predicting tape failures.

• Examples:– A topology map would allow optimized seeks on

serpentine tape.

– Seek time estimator?

– Is the data rate too high? Too low?

– Estimated remaining space?

Page 25: Measuring Tape Drive Performance · 1999. 9. 13. · 8 9 t ape co m p r essi o n r a ti o actual write model write actual read model read actual ratio model ratio Sony DTF 0 2 4 6

att.tjohnson.981013 25

Thanks to• NASA Goddard Space Flight Center

– EOSDIS / Mass Storage Testing Laboratory

– Jeanne Behnke, P.C. Hariharan, Joel Williams

• Dept. of Defense– Ethan Miller

– Jim Ohler, Jim Finlayson

• AT&T Labs - Research– Gary Sagendorf