mean binary activity coefficients

42
Presentation Slides for Chapter 17, Part 1 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson partment of Civil & Environmental Engineerin Stanford University Stanford, CA 94305-4020 [email protected] March 31, 2005

Upload: dotram

Post on 02-Jan-2017

223 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Mean Binary Activity Coefficients

Presentation Slides for

Chapter 17, Part 1of

Fundamentals of Atmospheric Modeling 2nd Edition

Mark Z. JacobsonDepartment of Civil & Environmental Engineering

Stanford UniversityStanford, CA [email protected]

March 31, 2005

Page 2: Mean Binary Activity Coefficients

Types of Equilibrium EquationsReversible chemical reaction (17.1)

Mass conservation (17.3)

Divide each dni by smallest value of dni (17.2)

dnDD +dnEE +... dnAA +dnBB +...

νDD+νEE +... νAA +νBB+...

ki dni( )mii∑ =0

Page 3: Mean Binary Activity Coefficients

Types of Equilibrium EquationsSolvent

Substance in which species dissolve in (e.g., water)

SoluteThe dissolving species

SolutionCombination of solute and solvent

SolidsSuspended material not in solution

Page 4: Mean Binary Activity Coefficients

Gas-Particle EquilibriumGas-particle reversible reaction (17.4)

Gas in equilibrium with solution at gas-solution interface

Sulfuric acid (17.5)Examples

AB (g) AB (aq)

H2

SO4

(g) H2

SO4

(aq)

Nitric acid HNO3

(g) HNO3

(aq)

Hydrochloric acid

Carbon dioxide

Ammonia

HCl (g) HCl (aq)

CO2

(g) CO2

(aq)

NH3

(g) NH3

(aq)

Page 5: Mean Binary Activity Coefficients

Electrolytes, Ions, and AcidsElectrolyte

Substance that undergoes partial or complete dissociation into ions in solutionIon

Charged atom or moleculeDissociation

Molecule breaks into simpler components, namely ions. Degree of dissociation depends on acidity.Acidity

Measure of concentration of hydrogen ions (H+, protons) in solution

Page 6: Mean Binary Activity Coefficients

Electrolytes, Ions, and AcidsAcidity measured in terms of pH (17.6)

Protons in solution donated by acids

pH = -log10[H+]

[H+] = molarity of H+ (mol-H+ L-1-solution)

Strong acids (dissociate readily at low pH)HCl = hydrochloric acidHNO3 = nitric acidH2SO4 = sulfuric acid

Weak acids (dissociate readily at higher pH)H2CO3 = carbonic acid

Page 7: Mean Binary Activity Coefficients

pH Scale

Fig. 10.3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Naturalrainwater

(5-5.6)

Distilledwater(7.0)

Seawater

(7.8-8.3)

Batteryacid(1.0)

Acidrain, fog(2-5.6)

More acidic More basic or alkaline

Lemonjuice(2.2)

VinegarCH3COOH(aq)

(2.8)

Apples(3.1)

Milk(6.6)

Bakingsoda

NaHCO3(aq)(8.2)

Ammoniumhydroxide

NH4OH(aq)(11.1)

LyeNaOH(aq)

(13.0)

Slaked limeCa(OH)2(aq)

(12.4)

pH

Page 8: Mean Binary Activity Coefficients

Electrolytes, Ions, and AcidsSulfuric acid dissociation (pH above -3) (17.7)

Nitric acid dissociation (pH above -1) (17.8)

Bisulfate dissociation (pH above 2) (17.7)

H2

SO4

(aq) H+

+ HSO4

HSO4

H+

+ SO2-

4

HNO3

(aq) H+

+ NO3

Page 9: Mean Binary Activity Coefficients

Electrolytes, Ions, and AcidsHydrochloric acid dissociation (pH above -6) (17.9)

Bicarbonate dissociation (pH above 10) (17.10)

Carbon dioxide dissociation (pH above 6) (17.10)

HCl (aq)H

+

+ Cl-

CO2

(aq) + H2

O(aq) H2

CO3

(aq) H+

+ HCO3

HCO3

H+

+ CO2-

3

Page 10: Mean Binary Activity Coefficients

BasesBase

Donates OH- (hydroxide ion)

Ammonia complexes with water and dissociates (17.12)

Hydroxide ion combine with hydrogen ion to form liquid water, increasing pH of solution (17.11)

H2

O(aq) H+

+ OH-

NH3

(aq) + H2

O(aq) NH4

+ OH-

Page 11: Mean Binary Activity Coefficients

Solid ElectrolytesSuspended electrolytes not in solution

Precipitation / crystallizationFormation of solid electrolytes from ions

DissociationSeparation of solid electrolytes into ions

Page 12: Mean Binary Activity Coefficients

Solid ElectrolytesAmmonium-containing solid reactions (17.15)

NH4

Cl(s) NH4

+ Cl-

NH4

NO3

(s) NH4

+ NO3

(NH4

)2

SO4

(s)2NH

4 + SO

2-

4

Page 13: Mean Binary Activity Coefficients

Solid ElectrolytesSodium-containing solid reactions (17.16)

NaCl(s)Na

+

+ Cl-

NaNO3

(s) Na+

+ NO3

Na2

SO4

(s)2Na

+

+ SO2-

4

NH4

Cl(s) NH3

(g) + HCl(g)

NH4

NO3

(s) NH3

(g) + HNO3

(g)

Solid formation from the gas phase on surfaces (17.17)

Page 14: Mean Binary Activity Coefficients

Equilibrium Relation and ConstantEquilibrium coefficient relation (17.18)

{}... = Activity Effective concentration or intensity of substance

(gas) (17.19)

(ion) (17.20)

(dissolved molecule) (17.20)

(liquid water) (17.21)

(solid) (17.22)

ai{ }kiνii∏ = A{ }νA B{ }νB ...

D{ }νD E{ }νE ...=KeqT( )

A g( ){ }=pA,s

A+{ }=mA +γA+

A aq( ){ }=mAγA

H2O aq( ){ } =aw = pvpv,s

= fr

A s( ){ }=1

Page 15: Mean Binary Activity Coefficients

Equilibrium Coefficient RelationGibbs free energy (17.23)

Enthalpy

Change in Gibbs free energyMeasure of maximum amount of useful work obtained from a change in enthalpy or entropy of the system (17.24)

G* =H* −TS* =U* +paV−TS*

H* =U* +paV

dG* =d H* −TS*( ) =dU* +padV+Vdpa−TdS* −S*dT

Page 16: Mean Binary Activity Coefficients

Equilibrium Coefficient RelationChange in entropy

Change in internal energy in presence of reversible reactions (17.26)

Change in internal energy (17.25)

dS* =dQ* T

dU* =dQ* −padV=TdS* −padV

dU* =TdS* −padV+ ki dni( )μii∑

Page 17: Mean Binary Activity Coefficients

Equilibrium Coefficient RelationSubstitute (17.26) into (17.24) (17.27)

Hold temperature and pressure constant (17.28)

dG* =Vdpa −S*dT+ ki dni( )μii∑

dG* = ki dni( )μii∑

Page 18: Mean Binary Activity Coefficients

Equilibrium Coefficient RelationChemical potential (i )

Measure of intensity of a substance or the measure of the change in free energy per change in moles of a substance = partial molar free energy(17.29)

Equilibrium occurs when dG* = 0 in (17.28) (17.30)

μi = ∂Gi*∂ni

⎛ ⎝ ⎜

⎞ ⎠ ⎟ T,pa

=μio T( )+R*T ln ai{ }

kiνiμii∑ =0

Page 19: Mean Binary Activity Coefficients

Equilibrium Coefficient RelationSubstitute (17.29) into (17.30) (17.31)

where

Standard molal Gibbs free energy of formation

kiνiμio T0( )i∑ +R*T0 kiνi ln ai{ }

i∑ = kiνiΔ fGi

oi∑ +R*T0 ln ai{ }kiνi

i∏ =0

kiνi ln ai{ }i∑ =ln ai{ }kiνii∏

Δ fGio =μio T0( )

Page 20: Mean Binary Activity Coefficients

Equilibrium Coefficient RelationRearrange (17.31) (17.32)

The right side of (17.32) is the equilibrium coefficient (17.33)

ai{ }kiνii∏ =exp − 1

R*T0kiνiΔ fGi

oi∑⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

Keq T0( ) =exp− 1R*T0

kiνiΔ fGioi∑⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

Page 21: Mean Binary Activity Coefficients

Temperature Dependence of Equilibrium Coefficient

Van't Hoff equation (similar to Arrhenius equation) (17.34)

Molal enthalpy of formation (J mol-1) of a substance (17.35)

= Standard molal heat capacity at constant pressure = standard molal enthalpy of formation

dlnKeqT( )dT = 1

R*T2 kiνiΔ fHii∑

Δ fHi ≈Δ fHio +cp,io T −T0( )

cp,ioΔ fHi

o

Page 22: Mean Binary Activity Coefficients

Temperature Dependence of Equil ConstCombine (17.34) and (17.35) and write integral (17.36)

Integrate (17.37)

dlnKeqT( )T0

T∫ = 1R*T2 kiνi Δ fHi

o +cp,io T−T0( )[ ]i∑ dTT0

T∫

Keq T( ) =KeqT0( )exp − kiνiΔ fHi

o

R*T0T0T −1⎛

⎝ ⎜ ⎞ ⎠ ⎟ +

cp,io

R* 1−T0T +ln T0T⎛ ⎝ ⎜ ⎞

⎠ ⎟ ⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥ i

∑⎧ ⎨ ⎪ ⎩ ⎪

⎫ ⎬ ⎪ ⎭ ⎪

Page 23: Mean Binary Activity Coefficients

Forms of Equilibrium EquationHenry's law

In a dilute solution, the pressure exerted by a gas at the gas-liquid interface is proportional to the molality of the dissolved gas in solution

Equilibrium coefficient relationship (17.38)

Henry's law relationship

HNO3 g( ) HNO3 aq( )

HNO3 aq( ){ }HNO3 g( ){ }

=mHNO3 aq( )γHNO3 aq( )

pHNO3 g( ),s=KeqT( ) mol

kg atm

Page 24: Mean Binary Activity Coefficients

Activity Coefficients ()Account for deviation from ideal behavior of a solution.

Infinitely dilute solution, no deviations, = 1

Relatively dilute solutions, deviations from Coulombic (electric) forces of attraction and repulsion < 1

Concentrated solutions, deviations caused by ionic interactions, < 1 or > 1

Page 25: Mean Binary Activity Coefficients

Activity CoefficientsGeometric mean binary activity coefficient (17.40)

Rewrite (17.41)

γ±= γ+ν+γ-ν−( )

1 ν++ν−( )

γ±ν++ν− =γ+

ν+γ-ν−

Page 26: Mean Binary Activity Coefficients

Electrolyte DissociationUnivalent electrolyte

Multivalent electrolyte

---> = 1 and = 1---> = +1 and = -1

---> = 2 and = 1---> = +1 and = -2

HNO3 aq( ) H++NO3−

Na2SO4 s( ) 2Na++SO42− ν+

ν+ ν−

ν−

z+

z+

z−

z−

Page 27: Mean Binary Activity Coefficients

Electrolyte DissociationSymmetric electrolyte

Charge balance requirement

ν+=ν−

z+ν++z−ν−=0

Page 28: Mean Binary Activity Coefficients

Equilibrium Rate Expression1. (17.39)HNO3 aq( ) H++NO3−

H+{ } NO3-{ }

HNO3 aq( ){ } =m

H+γH+mNO3

- γNO3

-

mHNO3 aq( )γHNO3 aq( )=

mH+mNO3

- γH+,NO3

-2

mHNO3 aq( )γHNO3 aq( )=Keq T( )mol

kg

2. (17.42)Na2

SO4

(s) 2Na+

+ SO2-

4

Na+{ }2 SO4

2−{ }Na2SO4 s( ){ } =

mNa+2 γNa+

2 mSO42−γSO4

2−

1.0

=mNa+2 m

SO42−γ

2Na+,SO42−

3=Keq T( )mol3

kg3

Page 29: Mean Binary Activity Coefficients

Equilibrium Rate Expression3. (17.43)HSO

4 H+

+ SO2-

4

H+{ }2 SO4

2-{ }H+{ } HSO4-{ }

=mH+

2 γH+2 mSO4

2-γSO42-

mH+γ

H+mHSO4-γ

HSO4-

=mH+mSO4

2-γ2H+,SO42-

3

mHSO4-

γH+,HSO4-2

=Keq T( )molkg

Page 30: Mean Binary Activity Coefficients

Equilibrium Rate Expression4. (17.44)

NH4+{ } NO3-{ }

NH3 g( ){ } HNO3 g( ){ }=mNH4

+γNH4+mNO3-

γNO3-

pNH3 g( ),spHNO3 g( ),s

=m

NH4+mNO3

- γNH4

+,NO3-

2

pNH3 g( ),spHNO3 g( ),s

=Keq T( ) mol2

kg2 atm2

NH3

(g) + HNO3

(g) NH4

+ NO3

Page 31: Mean Binary Activity Coefficients

Equilibrium Rate Expression5. (17.45)NH

3(aq) + H

2O(aq) NH

4 + OH

-

NH4+{ } OH−{ }

NH3 aq( ){ } H2O aq( ){ } =m

NH4+γ

NH4+mOH−γ

OH−

mNH3 aq( )γNH3 aq( ) fr

=m

NH4+mOH−γ

NH4+,OH−

2

mNH3 aq( )γNH3 aq( )fr

=Keq T( )molkg

Page 32: Mean Binary Activity Coefficients

Mean Binary Activity CoefficientsPitzer's method of determining binary activity coefs. (17.46)

(17.47)

lnγ12b0 =Z1Z2f γ +m12

2ν1ν2ν1+ν2

B12γ +m12

2 2 ν1ν2( )3 2

ν1+ν2C12

γ

fγ =−0.392 I12

1+1.2I12 + 21.2ln 1+1.2I12( )

⎡ ⎣ ⎢

⎤ ⎦ ⎥

Page 33: Mean Binary Activity Coefficients

Mean Binary Activity Coefficients(17.48)

’s are Pitzer parameter’s specific to individual electrolytes

Ionic strength of solution (mol kg-1)Measure of the interionic effects resulting from attraction and repulsion among ions (17.49)

B12γ =2β12

1( ) +2β122( )

4I 1−e−2I121+2I12 −2I( )⎡

⎣ ⎢ ⎤ ⎦ ⎥

I =12 m2i−1Z2i−1

2i=1

NC∑ + m2iZ2i2

i=1

NA∑⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

Page 34: Mean Binary Activity Coefficients

Mean Binary Activity CoefficientsAlternatively, fit a polynomial expression to mean binary activity coefficient data (valid to

high molality) (17.51)

lnγ12b0 =B0 +B1m12

12 +B2m12 +B3m123 2+...

Page 35: Mean Binary Activity Coefficients

Mean Binary Activity Coefficients

Fig. 17.2

Comparison of measured (Hammer and Wu) and calculated (Pitzer) activity coefficient data

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5 6

Pitzer

Hammer

and Wu

HNO

3

NH

4

NO

3

HCl

ln(binary activity coefficient)

m

1/2

ln (b

inar

y ac

tivity

coe

ffic

ient

)

Page 36: Mean Binary Activity Coefficients

Mean Binary Activity CoefficientsEquilibrium coefficient expression for hydrochloric acid

(17.50)

Equilibrium coefficient expression for nitric acid

mH+mCl−γH+,Cl−2

pHCl(g),s=1.97×106

mH+mNO3−γH+,NO3

−2

pHNO3 g( ),s=2.51×106

Page 37: Mean Binary Activity Coefficients

Temp Dependence of Mean Binary Activity Coefficient

Temperature dependent equation (17.52)

Temperature-dependent parameters (17.53)

lnγ12b T( )=lnγ12b0

+ TLν1+ν2( )R*T0

φL +m∂φL∂m

⎛ ⎝ ⎜ ⎞

⎠ ⎟

+ TCν1+ν2( )R* φcp +m

∂φcp∂m −φcp

o⎛ ⎝ ⎜ ⎜

⎞ ⎠ ⎟ ⎟

TL =T0T −1

TC =1+ln T0T

⎛ ⎝ ⎜ ⎞

⎠ ⎟ −T0T

Page 38: Mean Binary Activity Coefficients

Temp Dep of Mean Binary Activity CoefPolynomial for relative apparent molal enthalpy (17.54)

Polynomial for apparent molal heat capacity

= binary activity coefficient at temperature T

L = relative apparent molal enthalpy (J mol-1)

= apparent molal heat capacity (J mol-1 K-1) = apparent molal heat capacity at infinite dilution

φL =U1m12+U2m+U3m32 +...

φcp =φcpo +V1m12 +V2m+V3m32 +...

γ12b T( )

φcpφcp

o

Page 39: Mean Binary Activity Coefficients

Temp Dep of Mean Binary Activity CoefCombine (17.51) - (17.54) --> (17.55)

Coefficients for equation (17.56-7)

lnγ12b T( )=F0+F1m12 +F2m+F3m32 +...

Fj =Bj +GjTL +HjTC

Gj =0.5 j +2( )U jν1+ν2( )R*T0

Hj =0.5 j +2( )Vjν1+ν2( )R*

F0 = B0 j = 1...

Page 40: Mean Binary Activity Coefficients

Sulfate and Bisulfate

Fig. 17.3

Binary activity coefficients of sulfate and bisulfate, each alone in solution. Results valid for 0 - 40 m.

10

-2

10

-1

10

0

10

1

10

2

10

3

10

4

10

5

10

6

0 1 2 3 4 5 6 7 8

201 K

273 K

298 K

328 K

Binary activity coefficient

m

1/2

H

+

/ HSO

4

-

2H

+

/ SO

4

2-

Bin

ary

activ

ity c

oeff

icie

nt

Page 41: Mean Binary Activity Coefficients

Mean Mixed Activity CoefficientsBromley's method (17.58-61)

Binary activity coefficient of an electrolyte in a mixture of many electrolytes.

log10γ12m T( ) =−AγZ1Z2Im12

1+Im12 + Z1Z2Z1+Z2

W1Z1

+W2Z2

⎛ ⎝ ⎜

⎞ ⎠ ⎟

W1=Y21 log10γ12b T( )+AγZ1Z2Im12

1+Im12⎛ ⎝ ⎜

⎞ ⎠ ⎟ +Y41 log10γ14b T( )+Aγ

Z1Z4Im12

1+Im12⎛ ⎝ ⎜

⎞ ⎠ ⎟ +...

W2 =X12 log10γ12b T( )+AγZ1Z2Im12

1+Im12⎛ ⎝ ⎜

⎞ ⎠ ⎟ +X32 log10γ32b T( )+Aγ

Z3Z2Im12

1+Im12⎛ ⎝ ⎜ ⎜

⎞ ⎠ ⎟ ⎟ +...

Y21= Z1+Z22

⎛ ⎝ ⎜ ⎞

⎠ ⎟ 2 m2,m

ImX12 = Z1+Z2

2⎛ ⎝ ⎜ ⎞

⎠ ⎟ 2 m1,m

Im

Page 42: Mean Binary Activity Coefficients

Mean Mixed Activity CoefficientsMolalities of binary electrolyte found from (17.62)

Molalities of cation, anion alone in solution

Molality of binary electrolyte giving ionic strength of mixture (17.63)

Im=12 m1,bZ1

2 +m2,bZ22( ) =1

2 ν+m12,bZ12+ν−m12,bZ2

2( )

m1,b =ν+m12,b m2,b =ν−m12,b

m12,b = 2Imν+Z1

2+ν−Z22