md pv asme v0.1

34
Program User Guide Doc. No. PUG - MDPV - 000 Date 2005. 8. 15. Revision 0 1 1. Introduction Sheet No. 1 of 1 2. References The program is based on the following, which shall be referred to for further understand Design ASME Sec. VIII, Div. 1 Materials ASME Sec. II - D Technicals Process Vessel Design Manual, Dennis R. Moss Design of Process Equipment, 3rd Ed., K. K. Mahajan Catalogues for Flanges 3. Future Development Description Date Version Remarks Nozzle 05. 8. 15. 0.1 Conical Section 05. 8. 15. 0.1 Shell Flange 05. 8. 15. 0.1 Header, Box Type Support Saddle Leg Lug Skirt Lifting Lug Nozzle External Load External Pressure Tall Tower Davit 4. Program Architecture Inside the Program Input and Summary Sheet Calculation SheetShell Calculation SheetHead Calculation Sheetconical Section Calculation SheetShell Flange Calculation SheetTube Calculation SheetHeader Calculation SheetCover for Header Calculation SheetNozzle Data Files Material Index, Flange Data, Modulus of Elasticity, …... 5. General Information NTES Narai Thermal Engineering Services Mechanical Design of P / V in acc. with ASME This guide is intended to outline a program for mechnical design of pressure vessels in ASME. " IS " " shell " " head " " consec " " s.flg " " tube " " HD " " cv " " Nx " " materials ASTM " Stress Values of ASTM / ASME materials " materials common " " materials JIS " Stress Values of JIS materials " materials KS " Stress Values of KS materials Data are inputed via cells with blue words / numbers and comboboxes. Attention shall be paid to cells with red words / numbers. 각 Sheet 각 각각각 각각각각 각각각각 각각각각 각각각 각각 푸푸푸 각각각각 각각각각 각각 각각.

Upload: rizalrama

Post on 01-Dec-2015

129 views

Category:

Documents


21 download

DESCRIPTION

about calculation pressure vessel

TRANSCRIPT

Page 1: MD PV ASME v0.1

Program User Guide :

Doc. No. PUG - MDPV - 000Date 2005. 8. 15.Revision 0 1

1. Introduction Sheet No. 1 of 1

2. References

The program is based on the following, which shall be referred to for further understanding.Design ASME Sec. VIII, Div. 1Materials ASME Sec. II - DTechnicals Process Vessel Design Manual, Dennis R. Moss

Design of Process Equipment, 3rd Ed., K. K. MahajanCatalogues for Flanges

3. Future Development

Description Date Version RemarksNozzle 05. 8. 15. 0.1Conical Section 05. 8. 15. 0.1Shell Flange 05. 8. 15. 0.1Header, Box TypeSupport Saddle

LegLugSkirt

Lifting LugNozzle External LoadExternal PressureTall TowerDavit

4. Program Architecture

Inside the ProgramInput and Summary SheetCalculation Sheet for ShellCalculation Sheet for HeadCalculation Sheet for conical SectionCalculation Sheet for Shell FlangeCalculation Sheet for TubeCalculation Sheet for HeaderCalculation Sheet for Cover for HeaderCalculation Sheet for Nozzle

Data Files

Material Index, Flange Data, Modulus of Elasticity, …...

5. General Information

NTES Narai Thermal Engineering Services

Mechanical Design of P / V in acc. with ASME

This guide is intended to outline a program for mechnical design of pressure vessels in accordance withASME.

" IS "" shell "" head "" consec "" s.flg "" tube "" HD "" cv "" Nx "

" materials ASTM " Stress Values of ASTM / ASME materials" materials common "" materials JIS " Stress Values of JIS materials" materials KS " Stress Values of KS materials

Data are inputed via cells with blue words / numbers and comboboxes.Attention shall be paid to cells with red words / numbers.각 Sheet 의 하단에 나타나는 회사명을 바꾸려면 아래에 있는 푸른색 회사명을 바꾸기만 하면 된다.

Page 2: MD PV ASME v0.1

PUG - MDPV - 0002005. 8. 15.

Narai Thermal Engineering Services

Page 3: MD PV ASME v0.1

Design Notes :

Mechanical Design of P / V in acc. with ASMEDoc. No. DN - MDPV - 000Date 2005. 7. 28.Revision 0

1. Introduction Sheet No. 1 of 1

These notes are intended to help designers follow normal design practices, and further reach an optimumdesign.

2. Notes

Flange

The procedures are from Taylor Forge Bulletin No. 502, 7th Ed., " Modern Flange Design ".

In general, bolts should be used in multiples of four(4).

For large diameter flanges, many smaller bolts on a tight bolt circle are recommended to reduce the flangethickness.

NTES Narai Thermal Engineering Services

Page 4: MD PV ASME v0.1

Mechanical Design of P / V in acc. with ASMEDN - MDPV - 000

2005. 7. 28.

Narai Thermal Engineering Services

Page 5: MD PV ASME v0.1

Doc. No. MD - IS - 000

Date 2005. 8. 15.

Job No. 0 - 3100 - 25 Item No. F - 3704 Revision 0

Project Sohar Refinery Project Service Incinerator Chamber Sheet No. 1 of 1 D E S I G N D A T A UG - 16 ( b ) Code ASME Sec. VIII Div. 1 Minimum Thickness of Press. Retaining Parts

Service acc. to UG-16 (b) General t,min-CA Service PartI N T E R N A L E X T E R N A L 1.6 General P. R. Parts

Design Pressure 300 kPa.g kg/cm2.g 6 Unfired Steam Boiler Shell & Head

Design Temperature 340 ℃ 30 ℃ 2.4 Compressed Air Shell & Head

Test Press. / Test Method kPa.g / Hydrostatic 2.4 Steam Shell & Head

2.4 Water Shell & Head

S H E L L H E A D N O Z Z L E T U B E * Excluding corrosion allowance, Corrosion Allowance mm 3 3 3 0 after forming, C O N S T R U C T I O N D A T A regardless of material.

Description TypeMaterials

Joint Eff. I.D., mmThickness, mm Pipe Size

Code Spec. No. t, min. t, req. t, used Judge OD t ID

Shell plate ASTM A 516-70 0.85 2500 4.6 ### 14 #VALUE! 24" Sch.40 ### ### ###Head plate 2:1 Ellipsoidal ASTM A 516-70 1 5.4 ### 14 #VALUE! Thick Reduction after Forming 15 %Shell #2 plate ASTM A 516-70 0.85 1450 4.6 ### 14 #VALUE!

Conical Sec. plate Conical ASTM A 516-70 0.85 5.4 ### 14 #VALUE! Length > 920 Concentric BSA BSP GW Bolt

Flat Head forging Flanged ASTM A 105 Nozzle ID> 1450 M. Input > ### 50 #VALUE! Bolt > ASTM A 193-B7,<=2.5" Thk Redu ### ### ### 1" 48

Shell Flange forging AWWA Ring ASTM A 105 150 lb Z.t > 14 M. Input > ### 95 #VALUE! Gasket> Confined Spiral W.,SUS 15 % ### ### ### 1" 48

std size> #VALUE! * t std > #VALUE!

Tubetube U-tube KS STS 304 TB E 1 19.4 ### 3 #VALUE! 15 A Sch.10S ### ### ###

Triangular Pitch, Trans. 50.8 Long. 70.5Header, Inlet pipe Circular KS STS 304 TP E 1 ### ### ### #VALUE! 125 A Sch.80 C.A. 0 ### ### ###Blind Flg, Inlet plate Welded KS STS 304 1 ### 15 #VALUE! Bolt > BSA GW

Flange > - N/A - Gasket>

Header, Outletpipe Circular KS STS 304 TP E 1 ### ### ### #VALUE! 80 A Sch.80 C.A. 0 ### ### ###Blind Flg, Outl plate Flanged JIS SUS 304 1 ### ### #VALUE! Bolt > ASTM A 193-B8, <=3/4" BSA GW

Flange > ANSI Slip-on 150 lb std size> ### * t std > ### - N/A - Gasket> Confined Spiral W.,SUS ### ###

N O Z Z L E S

A1, Manhole plate Inserted ASTM A 516-70 1 585.6 ### 12.0 #VALUE! 24" Sch.160 Location > Shell ### ### ###Pad > plate ASTM A 516-70 Pad OD > 1160 Pad Th'k > 14 Ar ### Sr ### Access or Inspection Opening > Yes

K1 & K2 pipe Inserted ASTM A 106-B 1 ### ### ### #VALUE! 1 1/2" XX-STR Location > Shell ### ### ###Pad > Pad OD > Pad Th'k > Ar ### Sr ### Access or Inspection Opening > No

Notes : 1. - N/R - : Not Required. Ar Area Requirement BSA Requirement for Bolt Sectional Area

2. - N/A - : Not Applicable Sr Strength Requirement BSP Requirement for Bolt Spacing

3. GW Requirement for Gasket Width

4. Bolt Bolt Detail, Size / Q'ty

NTES Narai Thermal Engineering Services

I N P U T & S U M M A R Y S H E E T f o r P / V M E C H . D E S I G N

Page 6: MD PV ASME v0.1

MD - IS - 000

2005. 8. 15.

Minimum Thickness of Press. Retaining Parts

Pipe SizeID

###

Wt

###

###

###

###

###

Narai Thermal Engineering Services

Page 7: MD PV ASME v0.1

Doc. No. MD - PV - 000

P R E S S U R E V E S S E L

M E C H A N I C A L D E S I G N

Job No. : 0 - 3100 - 25

Project : Sohar Refinery Project

Client : JGC

Contractor : HCEI

Item No. : F - 3704

Service Incinerator Chamber

543210 05. 8. 15. Issued for approval. S. J. Lee LTG

Rev. Date Description Prepared Reviewed

Narai Thermal Engineering Services

Tel.Homepage Fax.E-mail

NTES Narai Thermal Engineering Services

Page 8: MD PV ASME v0.1

MD - PV - 000

Lee

Approved

Narai Thermal Engineering Services

Narai Thermal Engineering Services

Page 9: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No. MD - PV - 000

M E C H A N I C A L D E S I G N Date 05. 8. 15. Rev. 0 Sheet No. 1 of 1

T a b l e of C o n t e n t s

1. Design Data and Summary

2. Shell

3.

4.

5.

6.

7.

8.

9.

10.

NTES Narai Thermal Engineering Services

Page 10: MD PV ASME v0.1

MD - PV - 00005. 8. 15.

Narai Thermal Engineering Services

Page 11: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No. MD - PV - 000

M E C H A N I C A L D E S I G NDate 05. 8. 15.

1 Revision 02 Sheet No. 1 of34 Project Sohar Refinery Project5 Item No. F - 37046 Service Incinerator Chamber78

D E S I G N D A T A910 Code ASME Sec. VIII Div. 111 I N T E R N A L E X T E R N A L12

Design Pressure 300 kPa.g

13 Temperature 340 ℃14

Pressure Test Method Hydrostatic

15 Pressure 0 kPa.g16 Ambient Temperature 30 ℃17 Corrosion Allowance Joint Efficiency Radiography18 Shell 3 mm 0.85 Spot19 Head 3 mm 1 No or Full20 Nozzle 3 mm *** ***21 Tube 0 mm *** ***22

D E S I G N S U M M A R Y2324

Description Type MaterialID

Thickness

Remarks25 Min. Req. Used

26 mm27 Shell A 516-70 2500 4.6 ### 14

28 Head 2:1 Ellipsoidal A 516-70 5.4 ### 14

29 Shell #2 A 516-70 1450 4.6 ### 14

30 Conical Sec. Conical Concentric A 516-70 2500 1450 5.4 ### 14 L = 920 mm

31 Flat Head Flanged A 105 Nz ID. 1450 ### 50 Bolt = A 193-B7,<=2.5"

32 Shell Flange AWWA / Ring A 105 Nz Thk 14 ### 95 Gasket = Spiral W.,SUS

33T U B E & H E A D E R34

35

Description Type MaterialID OD

Thickness

Remarks36 Req. Used.

37 mm38 Tube U-tube STS 304 TB E 19.4 25.4 ### 3

39 Header, Inlet Circular STS 304 TP E ### ### ### ### 125 A / Sch.80

40 Blind Flg, Inlet Welded STS 304 ### 15

41 Header, Outlet Circular STS 304 TP E ### ### ### ### 80 A / Sch.80

42 Blind Flg, Outlet Flanged SUS 304 ### ### ANSI / Slip-on / 150 lb

43N O Z Z L E S44

45

Description Material LocationID OD

Thickness Pad

Remark46 Req. Used. Material OD t47 mm mm48 A1, Manhole A 516-70 Shell 585.6 609.6 ### 12.0 A 516-70 1160 1449 K1 & K2 A 106-B Shell ### ### ### ###5051525354 Remarks :555657585960

NTES Narai Thermal Engineering Services

Page 12: MD PV ASME v0.1

MD - PV - 00005. 8. 15.

x

D E S I G N D A T A

E X T E R N A L

RadiographySpot

No or Full******

D E S I G N S U M M A R Y

Remarks

Bolt = A 193-B7,<=2.5"

Gasket = Spiral W.,SUS

T U B E & H E A D E R

Remarks

ANSI / Slip-on / 150 lb

N O Z Z L E S

Remark

Narai Thermal Engineering Services

Page 13: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No. MD - PV - 000

M E C H A N I C A L D E S I G N Date 05. 8. 15. Revision 0 Sheet No. 0 of x

Part Shell

Code

ASME Sec. VIII, Div. 1UG - 27 Thickness of Shells under Internal Pressure * Circumferential stress governs.( c ) ( 1 ) Circumferential Stress in the Longitudinal Joint So, calculation for long. stress is omitted.

D E S I G N D A T A

Material Code ASTM

Material A 516-70

Internal design pressure P 300 kPa.g

Design temperature 340 ℃

Inside diameter of the shell course under consideration Uncorroded 2,500 mm

Inside diameter of the shell course under consideration Corroded D 2,506 mm

Inside radius Corroded R 1,253 mm

Maximum allowable stress value S #VALUE! ###

Joint efficiency for, or the efficiency of, appropriate joint E 0.85

Corrosion allowance α 3 mm

C A L C U L A T I O N

Minimum Required Thickness of Shell

Checks : t = ### ### 0.5 R = 626.5 -> ###

P = 300 ### 0.385 S E = #VALUE! -> ###

t =P R

+ α =300.0 1,253

+ 3.0 S E - 0.6 P #VALUE! 0.85 - 0.6 300.0

= ### mm ### 14 mm used. -> #VALUE!

NTES Narai Thermal Engineering Services

Page 14: MD PV ASME v0.1

MD - PV - 00005. 8. 15.

Shell

D E S I G N D A T A

C A L C U L A T I O N

Narai Thermal Engineering Services

Page 15: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No. MD - PV - 000

M E C H A N I C A L D E S I G N Date 05. 8. 15. Revision 0 Sheet No. 0 of x

Part Head

Code

ASME Sec. VIII, Div. 1UG - 32 Formed Heads, and Sections, Pressure on Concave Side( d ), ( e ) or ( f )

D E S I G N D A T AMaterial Code ASTMMaterial A 516-70Internal design pressure P 300 kPa.gDesign temperature 340 ℃Inside diameter of the head Uncorroded 2,500 mmInside diameter of the head Corroded D 2,506 mmInside radius Corroded R 1,253 mmMaximum allowable stress value S #VALUE! ###Joint efficiency E 1Corrosion allowance α 3 mmThickness reduction rate after forming rt 15 %Inside spherical or crown radius = 0.9045 D L 2,267 mm

C A L C U L A T I O N

2:1 Ellipsoidal * UG - 32 ( d )

Check : t / L = ### ### 0.002 -> ###

t = (P D

+ α )100

= (300.0 2,506

+ 3.0 )100

2 S E - 0.2 P 100 - rt 2 #VALUE! 1 - 0.2 300.0 100 - 15

= ### mm ### 14 mm used. -> #VALUE!

10% Dished * UG - 32 ( e )

Check : t / L = ### ### 0.002 -> ###

t = (0.885 P L

+ α )100

= (0.885 300.0 2,267

+ 3.0 )100

S E - 0.1 P 100 - rt #VALUE! 1 - 0.1 300.0 100 - 15

= ### mm ### 14 mm used. -> #VALUE!

Hemi-spherical * UG - 32 ( f )

Checks : t = ### ### 0.356 L = 806.9 -> ###

P = 300 ### 0.665 S E = #VALUE! -> ###

t = (P L

+ α )100

= (300.0 2,267

+ 3.0 )100

2 S E - 0.2 P 100 - rt 2 #VALUE! 1 - 0.2 300.0 100 - 15

= ### mm ### 14 mm used. -> #VALUE!

NTES Narai Thermal Engineering Services

Minimum Required Thickness of Head before Forming

Page 16: MD PV ASME v0.1

MD - PV - 00005. 8. 15.

Head

D E S I G N D A T A

C A L C U L A T I O N

Narai Thermal Engineering Services

Page 17: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No. MD - PV - 000

M E C H A N I C A L D E S I G N Date 05. 8. 15. Revision 0 Sheet No. 0 of x

Part Shell #2

Code

ASME Sec. VIII, Div. 1UG - 27 Thickness of Shells under Internal Pressure * Circumferential stress governs.( c ) ( 1 ) Circumferential Stress in the Longitudinal Joint So, calculation for long. stress is omitted.

D E S I G N D A T A

Material Code ASTM

Material A 516-70

Internal design pressure P 300 kPa.g

Design temperature 340 ℃

Inside diameter of the shell course under consideration Uncorroded 1,450 mm

Inside diameter of the shell course under consideration Corroded D 1,456 mm

Inside radius Corroded R 728 mm

Maximum allowable stress value S #VALUE! ###

Joint efficiency for, or the efficiency of, appropriate joint E 0.85

Corrosion allowance α 3 mm

C A L C U L A T I O N

Minimum Required Thickness of Shell

Checks : t = ### ### 0.5 R = 364 -> ###

P = 300 ### 0.385 S E = #VALUE! -> ###

t =P R

+ α =300.0 728

+ 3.0 S E - 0.6 P #VALUE! 0.85 - 0.6 300.0

= ### mm ### 14 mm used. -> #VALUE!

NTES Narai Thermal Engineering Services

Page 18: MD PV ASME v0.1

MD - PV - 00005. 8. 15.

Shell #2

D E S I G N D A T A

C A L C U L A T I O N

Narai Thermal Engineering Services

Page 19: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No. MD - PV - 000

M E C H A N I C A L D E S I G N Date 05. 8. 15. Revision 0 Sheet No. 0 of x

Part Conical Sec.

Code

ASME Sec. VIII, Div. 1UG - 32 Formed Heads, and Sections, Pressure on Concave Side( g ) Conical Sections ( Without Transition Knuckle )

D E S I G N D A T AMaterial Code ASTMMaterial A 516-70Configuration ConcentricInternal design pressure P 300 kPa.gDesign temperature 340 ℃

Uncorroded 2,500 mmInside diameter of the shell, larger Corroded D 2,506 mmInside radius Corroded R 1,253 mm

Uncorroded 1,450 mmInside diameter of the shell, smaller Corroded 1,456 mmInside radius Corroded 728 mmAxial length of conical section L 920 mmOne half apex angle Θ 29.7 degMaximum allowable stress value S #VALUE! ###Joint efficiency for, or the efficiency of, appropriate joint E 0.85Corrosion allowance α 3 mm

C A L C U L A T I O N

Checks : 29.7 < 30 deg -> OK !

t =P D

+ α =300.0 x 2,506

+ 3.0 2 cos Θ ( S E - 0.6 P ) 2 cos ( 29.7 ) ( #VALUE! 0.85 - 0.6 300.0 )

= ### mm ### 14 mm used. -> #VALUE!

NTES Narai Thermal Engineering Services

Inside diameter of the shell, larger

Inside diameter of the shell, smaller

Minimum Required Thickness of Conical Shell

Θ = Θmax =

Page 20: MD PV ASME v0.1

MD - PV - 00005. 8. 15.

Conical Sec.

D E S I G N D A T A

C A L C U L A T I O N

Narai Thermal Engineering Services

Page 21: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No. MD - PV - 000

M E C H A N I C A L D E S I G N Date 05. 8. 15. Revision 0 Sheet No. 0 of x

Part Flat Head

Code

ASME Sec. VIII, Div. 1UG - 34 Unstayed Flat Heads and Covers( c ) ( 2 ) Sketch ( j )

D E S I G N D A T AMaterial Code ASTMMaterial A 105Internal design pressure P 300 kPa.gDesign temperature 340 ℃Diameter measured as indicated in Fig. UG-34 d 1,505 mmMaximum allowable stress value S #VALUE! ###Joint efficiency for, or the efficiency of, appropriate joint E 1Factor depending upon the method of attachment of head, shell dimensions C 0.3Total Bolt load W *** ###Gasket moment arm, radial distance from bolt center to line of gasket reaction #VALUE! mmCorrosion allowance α 3 mm

C A L C U L A T I O N

Minimum Required Thickness of Flat Head

t = d + α

* Operating Conditionto = 1,505 0.30 300.0 / ### 1 + 1.9 #VALUE! ### / ### 1 1,505 + 3.0

= ### mm

* Gasket Seatingtg = 1,505 0.30 0.0 / ### 1 + 1.9 #VALUE! ### / ### 1 1,505 + 3.0

= ### mm

t = Larger of to or tg= ### mm ### 50 mm used. -> ###

Flange Data

Diameter at location of gasket load reaction d 1,505 mm t = 50 *Std ###

30Basic gasket seating width b0 10.0 mm **Effective gasket seating width b 8.0 mmGasket Spiral W.,SUS ###

36 m ### 20.0

#VA

LUE

!

Gasket unit seating load y ### ### Gasket d

#VA

LUE

!

#VA

LUE

!

1,52

1

1,45

0

Nominal bolt size 1" Width 1,505 *Actual bolt diameter ### mmRoot diameter d2 ### mmNo. of bolts n 48 Shell IDBolt spacing ### mm -> ###" ", TEMA min. / max. ### / ### mm

Total Bolt Load

* Operating ConditionW = Wm1 = H + Hp =

= 0.785 1,505 300 + ( 2 8.0 3.14 1,505 ### 300.0 ) = #VALUE!* Gasket SeatingWm2 = 3.14 b d y = 3.14 8.0 1,505 ### = #VALUE!Sb = ### ### * Allowable bolt stress at design temp.Sa = ### ### * Allowable bolt stress at atmospheric temp.Am1 = Wm1 / Sb = #VALUE! / ### = ###Am2 = Wm2 / Sa = #VALUE! / ### = ###Am = Larger of Am1 or Am2 = ### * total required cross-sectional area of boltsAb = = ### * cross-sectional area of the bolts using the root diameter

* Ab ### Am -> ###* Required gasket width = Ab Sa / 2 y π d = ### ### Gasket width, used = 20.0 -> ###

W = ( Am + Ab ) Sa / 2 = #VALUE!

NTES Narai Thermal Engineering Services

Bolted with a confined gasket Flange to Shell

hG

C P / S E + 1.9 W hG / S E d3

^3

^3

hG

Gasket factor, Table 2-5.1

0.785 d2 P + ( 2 b 3.14 d m P )^2

π / 4 d22 n

Page 22: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No. MD - PV - 000

M E C H A N I C A L D E S I G N Date 05. 8. 15. Revision 0 Sheet No. 0 of x

Part Flat Head

Code

ASME Sec. VIII, Div. 1UG - 34 Unstayed Flat Heads and Covers( c ) ( 2 ) Sketch ( p )

D E S I G N D A T A

Material Code ASTM

Material A 105

Internal design pressure P 300 kPa.g

Design temperature 340 ℃

Diameter measured as indicated in Fig. UG-34 d #VALUE! mm

Maximum allowable stress value S #VALUE! ###

Joint efficiency for, or the efficiency of, appropriate joint E 1

Factor depending upon the method of attachment of head, shell dimensions C 0.25

Corrosion allowance α 3 mm

C A L C U L A T I O N

Minimum Required Thickness of Flat Headt

t = d C P / S E + α *

#VA

LUE

!

#VA

LUE

!

= ### 0.25 300.0 / #VALUE! 1 + 3.0

1,45

0

d =

= ### mm ### 50 mm used. -> ###Shell ID

NTES Narai Thermal Engineering Services

Bolted with a full-face gasket to Shell

Page 23: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No. MD - PV - 000

M E C H A N I C A L D E S I G N Date 05. 8. 15. Revision 0 Sheet No. 0 of x

Part Flat Head

Code

ASME Sec. VIII, Div. 1UG - 34 Unstayed Flat Heads and Covers( c ) ( 2 ) Sketch ( e ) or ( f ) Welded to Shell

D E S I G N D A T A

Material Code ASTM

Material A 105

Internal design pressure P 300 kPa.g

Design temperature 340 ℃

Diameter measured as indicated in Fig. UG-34 Uncorroded 1450 mm

Diameter measured as indicated in Fig. UG-34 Corroded d 1456 mm

Maximum allowable stress value S #VALUE! ###

Joint efficiency for, or the efficiency of, appropriate joint E 1

Factor depending upon the method of attachment of head, shell dimensions C ***

Corrosion allowance α 3 mm

C A L C U L A T I O N

Minimum Required Thickness of Flat Head

m = the ratio, tr / ts = ### / 14 = ###

Where, tr Required thickness of seamless shellts Nominal thickness of shell

C = 0.33 m = 0.33 x ### = ### * min. 0.2

t = d C P / S E + α = 1,456 ### 300.0 / #VALUE! 1 + 3.0

= ### mm ### 50 mm used. -> ###

NTES Narai Thermal Engineering Services

ts

dt

ts

dt

Sketch (e) Sketch (f)

Page 24: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No. MD - PV - 000

M E C H A N I C A L D E S I G N Date 05. 8. 15. Revision 0 Sheet No. 0 of x

Part Flat Head

Code

ASME Sec. VIII, Div. 1UG - 34 Unstayed Flat Heads and Covers( c ) ( 2 ) Sketch ( a ) Formed & Welded to Shell

D E S I G N D A T A

Material Code ASTM

Material A 105

Internal design pressure P 300 kPa.g

Design temperature 340 ℃

Diameter measured as indicated in Fig. UG-34 Uncorroded 1450 mm

Diameter measured as indicated in Fig. UG-34 Corroded d 1456 mm

Maximum allowable stress value S #VALUE! ###

Joint efficiency for, or the efficiency of, appropriate joint E 1

Factor depending upon the method of attachment of head, shell dimensions C 0.17

Corrosion allowance α 3 mm

Thickness reduction rate after forming rt 15 %

C A L C U L A T I O N

Minimum Required Thickness of Flat Head

t = ( d C P / S E + α )100

= ( 1,456 0.17 300.0 / #VALUE! 1 + 3.0 )100

100 - r 100 - 15

= ### mm ### 50 mm used. -> ###

NTES Narai Thermal Engineering Services

ts

dt

Sketch (a)

r = 3 t min.

W.L. T.L.

Page 25: MD PV ASME v0.1

MD - PV - 00005. 8. 15.

Flat Head

D E S I G N D A T A

C A L C U L A T I O N

3.0

3.0

Narai Thermal Engineering Services

Page 26: MD PV ASME v0.1

MD - PV - 00005. 8. 15.

Flat Head

D E S I G N D A T A

C A L C U L A T I O N

Narai Thermal Engineering Services

Page 27: MD PV ASME v0.1

MD - PV - 00005. 8. 15.

Flat Head

D E S I G N D A T A

C A L C U L A T I O N

Narai Thermal Engineering Services

Page 28: MD PV ASME v0.1

MD - PV - 00005. 8. 15.

Flat Head

D E S I G N D A T A

C A L C U L A T I O N

Narai Thermal Engineering Services

Page 29: MD PV ASME v0.1

1 Project Sohar Refinery Project Doc. No. DF - WNFLG - 1002 Item No. F - 3704 Serivice Incinerator Chamber Sheet No. 1 of 13 Description Shell Flange * Design result ### Revision 0

1 D E S I G N C O N D I T I O N

4 Design Pressure kPa.g 300 Allowable Stresses5 Design Temperature ℃ 340 Flange Bolting6 Atm. Temp. ℃ #VALUE! Material ASTM A 105 Material ASTM A 193-B7,<=2.5"7 Corrosion Allowance mm 3 at Design Temp. ### #VALUE! at Design Temp. ### #VALUE!8 at Atm. Temp. ### #VALUE! at Atm. Temp. ### #VALUE!

2 G A S K E T & B O L T D E T A I L S 3 L O A D & B O L T C A L C U L A T I O N S

9 Gasket Material Spiral W.,SUS ### #VALUE!mm2 #VALUE!10 Gasket Width, N mm #VALUE! ### #VALUE!

11 m #VALUE! ### #VALUE! mm2 #VALUE!12 y ### #VALUE! ### #VALUE! #VALUE!

13 / b mm ### ### ### #VALUE!14 G mm #VALUE!15 Bolt Size / Q'ty, n ### ### Required Gasket Width

mm ### ###16 mm ### ###17 Bolt Spacing mm ### ### <- * Min. / Max., TEMA ### / ###

4 M O M E N T C A L C U L A T I O N S

#VALUE! x Lever Arm, mm = #VALUE!Operating Condition

18 499,498,152 #VALUE! #VALUE!19 #VALUE! #VALUE! #VALUE!20 #VALUE! #VALUE! #VALUE!21 #VALUE!

Gasket Seating22 #VALUE! #VALUE! #VALUE!23

5 S H A P E F A C T O R S S K E T C H

24 K = A / B #VALUE! #VALUE!25 T #VALUE! F #VALUE!26 Z #VALUE! V #VALUE!27 Y #VALUE! f #VALUE! t = 95 h = ###28 U #VALUE! #VALUE! * STD ###29 #VALUE!

d =U

#VALUE!30 #VALUE! V31 E = ###

6 S T R E S S F O R M U L A F A C T O R S

#VA

LUE

!

W

#V

AL

UE

!

#VA

LUE

!

32 t 95.000 R = ###33 #VALUE!34 #VALUE!

*

#VA

LUE

!

35 #VALUE!###36 #VALUE!

37 #VALUE!

#V

AL

UE

!

#V

AL

UE

!

#V

AL

UE

!

38 #VALUE! ###39 #VALUE! tn = 1440

A =

C =

G =

B = 1,456 41 multiplied by Bolt Spacing ID, uncorroded 1,450 42 : Nominal Bolt Dia. Unit : mm

7 #VALUE!

Allowable Stress Operating Condition Allowable Stress Gasket Seating

43 #VALUE!### Longitudinal Hub,

#VALUE! #VALUE!### Longitudinal Hub,

#VALUE!#VALUE! #VALUE!

44 #VALUE!### Radial Flange

#VALUE! #VALUE!### Radial Flange

#VALUE!#VALUE! #VALUE!

45 #VALUE!### Tangential Flange

#VALUE! #VALUE!### Tangential Flange

#VALUE!#VALUE! #VALUE!

46 #VALUE!###

#VALUE! #VALUE!###

#VALUE!#VALUE! #VALUE!

NTES Narai Thermal Engineering Services

W E L D I N G N E C K F L A N G E D E S I G N

Sfo Sb

Sfa Sa

Wm2 = b π G y Am = greater of Wm2/Sa

HP = 2 b π G m P or Wm1/Sb

H = G2 π P / 4 Ab = π / 4 d22

n Wm1 = HP + H Check Ab > Am

b0 W = 0.5 ( Am + Ab ) Sa

Bolt Dia. / Root Dia., d2 Nr = Ab Sa / 2 y π G < N

HD = π B2 P / 4 hD = R + 0.5 g1 MD = HD hD

HG = Wm1 - H hG = 0.5 ( C - G ) MG = HG hG

HT = H - HD hT = 0.5 ( R + g1 + hG ) MT = HT hT

Mo = MD + MG + MT

HG = W hG = 0.5 ( C - G ) Mo' = HG hG

h / h0

e = F / h0

g1 / g0h0 g0

2

h0 = Bg0

hG

α = t e + 1 hTHG

hD

β = 4/3 t e + 1 γ = α / T

HT HD g1= δ = t3 / d λ = γ + δ mo = Mo / B g0= mG = Mo' / B If bolt spacing exceeds 2 dB + t, mo and mG in above equations are

2 dB + t dB

1.5 Sfo 1.5 Sfa SH = f mo / λ g12 SH = f mG / λ g1

2

Sfo Sfa SR = β mo / λ t2 SR = β mG / λ t2

Sfo Sfa ST = mo Y / t2 - Z SR ST = mG Y / t2 - Z SR

Sfo

Greater of 0.5( SH + SR )Sfa

Greater of 0.5( SH + SR ) or 0.5( SH + ST ) or 0.5( SH + ST )

Page 30: MD PV ASME v0.1

1 Project Sohar Refinery Project Doc. No. DF - SOFLG - 1002 Item No. F - 3704 Serivice Incinerator Chamber * Type Loose Sheet No. 1 of 13 Description Shell Flange * Design result ### Revision 0

1 D E S I G N C O N D I T I O N

4 Design Pressure kPa.g 300 Allowable Stresses5 Design Temperature ℃ 340 Flange Bolting6 Atm. Temp. ℃ #VALUE! Material ASTM A 105 Material ASTM A 193-B7,<=2.5"7 Corrosion Allowance mm 3 at Design Temp. ### #VALUE! at Design Temp. ### #VALUE!8 at Atm. Temp. ### #VALUE! at Atm. Temp. ### #VALUE!

2 G A S K E T & B O L T D E T A I L S 3 L O A D & B O L T C A L C U L A T I O N S

9 Gasket Material Spiral W.,SUS ### #VALUE!mm2 #VALUE!10 Gasket Width, N mm #VALUE! ### #VALUE!

11 m #VALUE! ### #VALUE! mm2 #VALUE!12 y ### #VALUE! ### #VALUE! #VALUE!

13 / b mm ### ### ### #VALUE!14 G mm #VALUE!15 Bolt Size / Q'ty, n ### ### Required Gasket Width

mm ### ###16 mm ### ###17 Bolt Spacing mm ### ### <- * Min. / Max., TEMA ### / ###

4 M O M E N T C A L C U L A T I O N S

#VALUE! x Lever Arm, mm = #VALUE!Operating Condition

18 514,706,916 #VALUE! #VALUE!19 #VALUE! #VALUE! #VALUE!20 #VALUE! #VALUE! #VALUE!21 #VALUE!

Gasket Seating22 #VALUE! #VALUE! #VALUE!23

5 S H A P E F A C T O R S S K E T C H

24 K = A / B #VALUE! #VALUE!25 T #VALUE! #VALUE!26 Z #VALUE! #VALUE!27 Y #VALUE! f #VALUE! t = 95 h = ###28 U #VALUE! #VALUE! * STD ###29 #VALUE!

d =U

#VALUE!30 #VALUE!31 E = ###

6 S T R E S S F O R M U L A F A C T O R S

#VA

LUE

!

W

#V

AL

UE

!

#VA

LUE

!

32 t 95.000 R = ###33 #VALUE!34 #VALUE!

*

#VA

LUE

!

35 #VALUE!###36 #VALUE!

37 #VALUE!

#V

AL

UE

!

#V

AL

UE

!

#V

AL

UE

!

###38 #VALUE! tn = 1439 #VALUE!40

A =

C =

G =

B = 1,478 41 multiplied by Bolt Spacing ID, uncorroded 1,450 42 : Nominal Bolt Dia. Unit : mm

7 #VALUE!

Allowable Stress Operating Condition Allowable Stress Gasket Seating

43 #VALUE!### Longitudinal Hub,

#VALUE! #VALUE!### Longitudinal Hub,

#VALUE!#VALUE! #VALUE!

44 #VALUE!### Radial Flange

#VALUE! #VALUE!### Radial Flange

#VALUE!#VALUE! #VALUE!

45 #VALUE!### Tangential Flange

#VALUE! #VALUE!### Tangential Flange

#VALUE!#VALUE! #VALUE!

46 #VALUE!###

#VALUE! #VALUE!###

#VALUE!#VALUE! #VALUE!

NTES Narai Thermal Engineering Services

S L I P - O N F L A N G E D E S I G N

Sfo Sb

Sfa Sa

Wm2 = b π G y Am = greater of Wm2/Sa

HP = 2 b π G m P or Wm1/Sb

H = G2 π P / 4 Ab = π / 4 d22

n Wm1 = HP + H Check Ab > Am

b0 W = 0.5 ( Am + Ab ) Sa

Bolt Dia. / Root Dia., d2 Nr = Ab Sa / 2 y π G < N

HD = π B2 P / 4 hD = 0.5 ( C - B ) MD = HD hD

HG = Wm1 - H hG = 0.5 ( C - G ) MG = HG hG

HT = H - HD hT = 0.5 ( hD + hG ) MT = HT hT

Mo = MD + MG + MT

HG = W hG = 0.5 ( C - G ) Mo' = HG hG

h / h0

FL

VL

e = FL / h0

g1 / g0h0 g0

2

h0 = Bg0 VL

hG

α = t e + 1 hTHG β = 4/3 t e + 1 hD

γ = α / THT g1= δ = t3 / d HD

λ = γ + δ g0 = mo = Mo / B mG = Mo' / B If bolt spacing exceeds 2 dB + t, mo and mG in above equations are

2 dB + t dB

1.5 Sfo 1.5 Sfa SH = mo / λ g12 SH = mG / λ g1

2

Sfo Sfa SR = β mo / λ t2 SR = β mG / λ t2

Sfo Sfa ST = mo Y / t2 - Z SR ST = mG Y / t2 - Z SR

Sfo

Greater of 0.5( SH + SR )Sfa

Greater of 0.5( SH + SR ) or 0.5( SH + ST ) or 0.5( SH + ST )

Page 31: MD PV ASME v0.1

1 Project Sohar Refinery Project Doc. No. DF - SOFFG - 1002 Item No. F - 3704 Serivice Incinerator Chamber * Type Loose Sheet No. 1 of 13 Description Shell Flange * Design result ### Revision 0

1 D E S I G N C O N D I T I O N

4 Design Pressure kPa.g 300 Allowable Stresses5 Design Temperature ℃ 340 Flange Bolting6 Atm. Temp. ℃ #VALUE! Material ASTM A 105 Material ASTM A 193-B7,<=2.5"7 Corrosion Allowance mm 3 at Design Temp. ### #VALUE! at Design Temp. ### #VALUE!8 at Atm. Temp. ### #VALUE! at Atm. Temp. ### #VALUE!

2 G A S K E T & B O L T D E T A I L S 3 L O A D & B O L T C A L C U L A T I O N S

9 Gasket Material Spiral W.,SUS ### #VALUE!mm2 #VALUE!10 ### #VALUE!

11 m #VALUE! #VALUE! mm2 #VALUE!12 y ### #VALUE! ### #VALUE! #VALUE!

13 mm #VALUE! ### #VALUE! ### #VALUE!14 mm #VALUE! #VALUE!15 Bolt Size / Q'ty, n ### ###16 mm ### ### Bolt Hole Dia., dh ### mm17 Bolt Spacing mm ### ### <- * Min. / Max., TEMA ### / ###

4 M O M E N T C A L C U L A T I O N S

#VALUE! x Lever Arm, mm = #VALUE!Operating Condition

18 514,706,916 #VALUE! #VALUE!19 #VALUE! #VALUE! #VALUE!20 #VALUE!

Lever Arm, mm

21 =( C - B ) ( 2 B + C )

#VALUE! =( A - C ) ( 2 A + C )

#VALUE!6 ( B + C ) 6 ( C + A )#VALUE!

22 = W - H #VALUE! = #VALUE! = #VALUE!

5 S H A P E F A C T O R S S K E T C H

23 K = A / B #VALUE! #VALUE!24 T #VALUE! #VALUE! t = 95 h = ###25 Z #VALUE! #VALUE! * STD ###26 Y #VALUE! f #VALUE!27 U #VALUE! #VALUE!28 #VALUE!

d =U

#VALUE!E = ###

29 #VALUE! ###

#VA

LUE

!

W30

#V

AL

UE

!

6 S T R E S S F O R M U L A F A C T O R SR = ###

31 t 95.000 #VALUE!*

#VA

LUE

!

32 #VALUE!###33 #VALUE!

34 #VALUE!

#V

AL

UE

!

#V

AL

UE

!

#V

AL

UE

!

###35 #VALUE! tn = 1436 #VALUE!37

A =

C =

G =

B = 1,478 38 multiplied by Bolt Spacing ID, uncorroded 1,450 39 : Nominal Bolt Dia. Unit : mm

7 #VALUE!

Allowable Stress Operating Condition

40 #VALUE!### Longitudinal Hub,

#VALUE!#VALUE!

41 #VALUE!### Radial Flange

#VALUE!#VALUE!

42 #VALUE!### Tangential Flange

#VALUE!#VALUE!

43 #VALUE!###

#VALUE!#VALUE!

44 #VALUE!

Radial Stress at Bolt Circle

#VALUE!####VALUE!

NTES Narai Thermal Engineering Services

S L I P - O N, F U L L F A C E G A S K E T F L A N G E D E S I G N

Sfo Sb

Sfa Sa

Wm2 = b π G y + H'GY Am = greater of Wm2/Sa

HP = 2 b π G m P or Wm1/Sb

H'P = ( hG / h'

G ) HP Ab = π / 4 d22

n H = G2 π P / 4 Check Ab > Am

b = ( C - B ) / 4 Wm1 = HP + H'P + H W = 0.5 ( Am + Ab ) Sa

G = C - 2 hG H'GY = ( hG / h'

G ) b π G y

Bolt Dia. / Root Dia., d2

HD = π B2 P / 4 hD = 0.5 ( C - B ) MD = HD hD

HT = H - HD hT = 0.5 ( hD + hG ) MT = HT hT

Mo = MD + MT

hG h'G

HG h"G

hG h'G

MG HG h"GhG + h'

G

h / h0

FL

VL

e = FL / h0

g1 / g0h0 g0

2H'

G

h0 = Bg0 VL h'G

hG

hTHG mo = Mo / B hD

α = t e + 1HT g1= β = 4/3 t e + 1 HD

γ = α / T g0 = δ = t3 / d λ = γ + δ If bolt spacing exceeds 2 dB + t, mo and mG in above equations are

2 dB + t dB

1.5 Sfo SH = mo / λ g12

Sfo SR = β mo / λ t2

Sfo ST = mo Y / t2 - Z SR

Sfo

Greater of 0.5( SH + SR ) or 0.5( SH + ST )

Sfo SRAD =

6 MG

t2 ( π C - n dh )

Page 32: MD PV ASME v0.1

1 Project Sohar Refinery Project Doc. No. DF - RFLG - 1002 Item No. F - 3704 Serivice Incinerator Chamber * Type Loose Sheet No. 1 of 13 Description Shell Flange * Design result ### Revision 0

1 D E S I G N C O N D I T I O N

4 Design Pressure kPa.g 300 Allowable Stresses5 Design Temperature ℃ 340 Flange Bolting6 Atm. Temp. ℃ #VALUE! Material ASTM A 105 Material ASTM A 193-B7,<=2.5"7 Corrosion Allowance mm 3 at Design Temp. ### #VALUE! at Design Temp. ### #VALUE!8 at Atm. Temp. ### #VALUE! at Atm. Temp. ### #VALUE!

2 G A S K E T & B O L T D E T A I L S 3 L O A D & B O L T C A L C U L A T I O N S

9 Gasket Material Spiral W.,SUS ### #VALUE!mm2 #VALUE!10 Gasket Width, N mm 20.00 ### #VALUE!

11 m #VALUE! ### ### mm2 #VALUE!12 y ### #VALUE! ### #VALUE! #VALUE!

13 / b mm 10.00 7.97 ### #VALUE!14 G mm 1505.115 Bolt Size / Q'ty, n 1" 48 Required Gasket Width

mm ### ###16 mm ### ###17 Bolt Spacing mm ### ### <- * Min. / Max., TEMA ### / ###

4 M O M E N T C A L C U L A T I O N S

#VALUE! x Lever Arm, mm = #VALUE!Operating Condition

18 514,706,916 #VALUE! #VALUE!19 #VALUE! #VALUE! #VALUE!20 19,021,440 #VALUE! #VALUE!21 #VALUE!

Gasket Seating22 #VALUE! #VALUE! #VALUE!23

5 S H A P E F A C T O R S S K E T C H

24 K = A / B #VALUE!252627 Y #VALUE! t = 9528 * STD ###293031 E = 30.0

6 S T R E S S F O R M U L A F A C T O R S

#VA

LUE

!

W

#V

AL

UE

!

#VA

LUE

!

32 t 95.000 R = ###3334

* 21.5 h = ###

3536 26.0 37

#V

AL

UE

!

#V

AL

UE

!

1,5

05

38 #VALUE!39 #VALUE! ###40

A =

C =

G =

B = 1,478 tn = 1441 multiplied by Bolt Spacing ID, uncorroded 1,450 42 : Nominal Bolt Dia. Unit : mm

7 R E Q U I R E D T H I C K N E S S, unit - mm

Formula Operating Condition Allowable Stress Gasket Seating

43 t = ### t = ###

44

NTES Narai Thermal Engineering Services

R I N G F L A N G E D E S I G N

Sfo Sb

Sfa Sa

Wm2 = b π G y Am = greater of Wm2/Sa

HP = 2 b π G m P or Wm1/Sb

H = G2 π P / 4 Ab = π / 4 d22

n Wm1 = HP + H Check Ab > Am

b0 W = 0.5 ( Am + Ab ) Sa

Bolt Dia. / Root Dia., d2 Nr = Ab Sa / 2 y π G < N

HD = π B2 P / 4 hD = 0.5 ( C - B ) MD = HD hD

HG = Wm1 - H hG = 0.5 ( C - G ) MG = HG hG

HT = H - HD hT = 0.5 ( hD + hG ) MT = HT hT

Mo = MD + MG + MT

HG = W hG = 0.5 ( C - G ) Mo' = HG hG

hG

hTHG hD

HT g1=HD

mo = Mo / B mG = Mo' / B g0 = If bolt spacing exceeds 2 dB + t, mo and mG in above equations are

2 dB + t dB

mO Y mG YSfo Sfa

Page 33: MD PV ASME v0.1

1 Project Sohar Refinery Project Doc. No. DF - RFFG - 1002 Item No. F - 3704 Serivice Incinerator Chamber * Type Loose Sheet No. 1 of 13 Description Shell Flange * Design result ### Revision 0

1 D E S I G N C O N D I T I O N

4 Design Pressure kPa.g 300 Allowable Stresses5 Design Temperature ℃ 340 Flange Bolting6 Atm. Temp. ℃ #VALUE! Material ASTM A 105 Material ASTM A 193-B7,<=2.5"7 Corrosion Allowance mm 3 at Design Temp. ### #VALUE! at Design Temp. ### #VALUE!8 at Atm. Temp. ### #VALUE! at Atm. Temp. ### #VALUE!

2 G A S K E T & B O L T D E T A I L S 3 L O A D & B O L T C A L C U L A T I O N S

9 Gasket Material Spiral W.,SUS ### #VALUE!mm2 #VALUE!10 ### #VALUE!

11 m #VALUE! #VALUE! mm2 #VALUE!12 y ### #VALUE! ### #VALUE! #VALUE!

13 b = ( C - B ) / 4 mm #VALUE! ### #VALUE! ### #VALUE!14 mm #VALUE! #VALUE!15 Bolt Size / Q'ty, n ### ###16 mm ### ### Bolt Hole Dia., dh ### mm17 Bolt Spacing mm ### ### <- * Min. / Max., TEMA ### / ###

4 M O M E N T C A L C U L A T I O N S

#VALUE! x Lever Arm, mm = #VALUE!Operating Condition

18 514,706,916 #VALUE! #VALUE!19 #VALUE! #VALUE! #VALUE!20 #VALUE!

Lever Arm, mm

21 =( C - B ) ( 2 B + C )

#VALUE! =( A - C ) ( 2 A + C )

#VALUE!6 ( B + C ) 6 ( C + A )#VALUE!

22 = W - H #VALUE! = #VALUE! = #VALUE!

5 S H A P E F A C T O R S S K E T C H

23 K = A / B #VALUE!24 t = 9525 * STD ###26 Y #VALUE!2728 E = ###29 ###

#VA

LUE

!

W30

#V

AL

UE

!

6 S T R E S S F O R M U L A F A C T O R SR = ###

31 t 95.000 #VALUE!*

#VA

LUE

!

h = ###32

###3334

#V

AL

UE

!

#V

AL

UE

!

#V

AL

UE

!

3536 ###37

A =

C =

G =

B = 1,478 tn = 1438 multiplied by Bolt Spacing ID, uncorroded 1,450 39 : Nominal Bolt Dia. Unit : mm

7 #VALUE!

Allowable Stress Operating Condition

40

41

42 #VALUE!### Tangential Flange

#VALUE!#VALUE!

43

44 #VALUE!

Radial Stress at Bolt Circle

#VALUE!####VALUE!

NTES Narai Thermal Engineering Services

R I N G, F U L L F A C E G A S K E T F L A N G E D E S I G N

Sfo Sb

Sfa Sa

Wm2 = b π G y + H'GY Am = greater of Wm2/Sa

HP = 2 b π G m P or Wm1/Sb

H'P = ( hG / h'

G ) HP Ab = π / 4 d22

n H = G2 π P / 4 Check Ab > Am

Wm1 = HP + H'P + H W = 0.5 ( Am + Ab ) Sa

G = C - 2 hG H'GY = ( hG / h'

G ) b π G y

Bolt Dia. / Root Dia., d2

HD = π B2 P / 4 hD = 0.5 ( C - B ) MD = HD hD

HT = H - HD hT = 0.5 ( hD + hG ) MT = HT hT

Mo = MD + MT

hG h'G

HG h"G

hG h'G

MG HG h"GhG + h'

G

H'G

h'G

hG

hTHG mo = Mo / B hD

HT g1=HD

g0 = If bolt spacing exceeds 2 dB + t, mo and mG in above equations are

2 dB + t dB

Sfo ST = mo Y / t2

Sfo SRAD =

6 MG

t2 ( π C - n dh )

Page 34: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No. MD - PV - 000

M E C H A N I C A L D E S I G N Date 05. 8. 15. Revision 0 Sheet No. 0 of x

Part Tube

Code

ASME Sec. VIII, Div. 1UG - 27 Thickness of Shells under Internal Pressure * Circumferential stress governs.( c ) ( 1 ) Circumferential Stress in the Longitudinal Joint So, calculation for long. stress is omitted.

D E S I G N D A T AMaterial Code KSMaterial STS 304 TB EInternal design pressure P 300 kPa.gDesign temperature 340 ℃Outside diameter of the tube course under consideration 25.4 mmNominal thickness of the tube 3 mmInside diameter of the tube Uncorroded 19.4 mmInside diameter of the tube Corroded D 19.4 mmInside radius Corroded R 9.7 mmMaximum allowable stress value S #VALUE! ###Joint efficiency for, or the efficiency of, appropriate joint E 1Corrosion allowance α 0 mm

C A L C U L A T I O N

Minimum Required Thickness of Shell

Checks : t = ### ### 0.5 R = 4.85 -> ###

P = 300 ### 0.385 S E = #VALUE! -> ###

t =P R

+ α =300.0 9.7

+ 0.0 S E - 0.6 P ### 1 - 0.6 300.0

= ### mm ### 3 mm used. -> #VALUE!

Minimum Tube Wall Thickness in the Bent Portion before Bending * TEMA RCB - 2. 31 U-bend Requirements

Minimum required thickness, calculated above t #VALUE! mm

Outside tube diameter do 25.4 mm

Mean radius of bend R 37.5 mm

t0 = t [ 1 +do

] = ### [ 1 +25.4

]4 R 4 x 37.5

= ### mm ### 3 mm used. -> #VALUE!

NTES Narai Thermal Engineering Services

Page 35: MD PV ASME v0.1

MD - PV - 00005. 8. 15.

Tube

D E S I G N D A T A

C A L C U L A T I O N

Narai Thermal Engineering Services

Page 36: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No. MD - PV - 000

M E C H A N I C A L D E S I G N Date 05. 8. 15. Revision 0 Sheet No. 0 of x

Part Header, Inlet

Code

ASME Sec. VIII, Div. 1UG - 27 Thickness of Shells under Internal Pressure * Circumferential stress governs.( c ) ( 1 ) Circumferential Stress in the Longitudinal Joint So, calculation for long. stress is omitted.

D E S I G N D A T A

Material Code KS

Material STS 304 TP E 125 A / Sch.80

Internal design pressure P 300 kPa.g

Design temperature 340 ℃

Inside diameter of the shell course under consideration Uncorroded #VALUE! mm

Inside diameter of the shell course under consideration Corroded D #VALUE! mm

Inside radius Corroded R #VALUE! mm

Maximum allowable stress value S #VALUE! ###

Joint efficiency for, or the efficiency of, appropriate joint E 1

Corrosion allowance α 0 mm

C A L C U L A T I O N

Minimum Required Thickness of Shell

Checks : t = ### ### 0.5 R = #VALUE! -> ###

P = 300 ### 0.385 S E = #VALUE! -> ###

t =P R

+ α =300.0 #VALUE!

+ 0.0 S E - 0.6 P ### 1 - 0.6 300.0

= ### mm ### ### mm used. -> #VALUE!

NTES Narai Thermal Engineering Services

Page 37: MD PV ASME v0.1

MD - PV - 00005. 8. 15.

Header, Inlet

D E S I G N D A T A

C A L C U L A T I O N

Narai Thermal Engineering Services

Page 38: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No. MD - PV - 000

M E C H A N I C A L D E S I G N Date 05. 8. 15. Revision 0 Sheet No. 0 of x

Part Blind Flg, Inlet

Code

ASME Sec. VIII, Div. 1UG - 34 Unstayed Flat Heads and Covers( c ) ( 2 ) Sketch ( e ) or ( f ) Welded to Shell

D E S I G N D A T A

Material Code KS

Material STS 304

Internal design pressure P 300 kPa.g

Design temperature 340 ℃

Diameter measured as indicated in Fig. UG-34 Uncorroded #VALUE! mm

Diameter measured as indicated in Fig. UG-34 Corroded d #VALUE! mm

Maximum allowable stress value S #VALUE! ###

Joint efficiency for, or the efficiency of, appropriate joint E 1

Factor depending upon the method of attachment of head, shell dimensions C ***

Corrosion allowance α 0 mm

C A L C U L A T I O N

Minimum Required Thickness of Flat Head

m = the ratio, tr / ts = ### / ### = ###

Where, tr Required thickness of seamless shellts Nominal thickness of shell

C = 0.33 m = 0.33 x ### = ### * min. 0.2

t = d C P / S E + α = ### ### 300.0 / ### 1 + 0.0

= ### mm ### 15 mm used. -> ###

NTES Narai Thermal Engineering Services

ts

dt

ts

dt

Sketch (e) Sketch (f)

Page 39: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No. MD - PV - 000

M E C H A N I C A L D E S I G N Date 05. 8. 15. Revision 0 Sheet No. 0 of x

Part Blind Flg, Inlet

Code

ASME Sec. VIII, Div. 1UG - 34 Unstayed Flat Heads and Covers( c ) ( 2 ) Sketch ( p )

D E S I G N D A T A

Material Code KS

Material STS 304

Internal design pressure P 300 kPa.g

Design temperature 340 ℃

Diameter measured as indicated in Fig. UG-34 d #VALUE! mm

Maximum allowable stress value S #VALUE! ###

Joint efficiency for, or the efficiency of, appropriate joint E 1

Factor depending upon the method of attachment of head, shell dimensions C 0.25

Corrosion allowance α 0 mm

C A L C U L A T I O N

Minimum Required Thickness of Flat Headt

t = d C P / S E + α

#VA

LUE

!

#VA

LUE

!

= ### 0.25 300.0 / ### 1 + 0.0

#VA

LUE

!

d =

= ### mm ### 15 mm used. -> ###Shell ID

NTES Narai Thermal Engineering Services

Bolted with a full-face gasket to Shell

Page 40: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No. MD - PV - 000

M E C H A N I C A L D E S I G N Date 05. 8. 15. Revision 0 Sheet No. 0 of x

Part Blind Flg, Inlet

Code

ASME Sec. VIII, Div. 1UG - 34 Unstayed Flat Heads and Covers( c ) ( 2 ) Sketch ( j )

D E S I G N D A T AMaterial Code KSMaterial STS 304Internal design pressure P 300 kPa.gDesign temperature 340 ℃Diameter measured as indicated in Fig. UG-34 d #VALUE! mmMaximum allowable stress value S #VALUE! ###Joint efficiency for, or the efficiency of, appropriate joint E 1Factor depending upon the method of attachment of head, shell dimensions C 0.3Total Bolt load W *** ###Gasket moment arm, radial distance from bolt center to line of gasket reaction #VALUE! mmCorrosion allowance α 0 mm

C A L C U L A T I O N

Minimum Required Thickness of Flat Head

t = d + α

* Operating Conditionto = ### 0.30 300.0 / ### 1 + 1.9 #VALUE! ### / ### 1 ### + 0.0

= ### mm

* Gasket Seatingtg = ### 0.30 0.0 / ### 1 + 1.9 #VALUE! ### / ### 1 ### + 0.0

= ### mm

t = Larger of to or tg= ### mm ### 15 mm used. -> ###

Flange Data

Diameter at location of gasket load reaction d ### mm t = 15 *Std ###

#VA

LUE

!

Basic gasket seating width b0 ### mmEffective gasket seating width b ### mmGasket 0 ###

#VA

LUE

!

m ### ###

#VA

LUE

!

Gasket unit seating load y ### ### Gasket d

#VA

LUE

!

#VA

LUE

!

#VA

LUE

!

#VA

LUE

!

Nominal Bolt Size ### Width ###Actual Bolt Dia. ### mmRoot Dia. d2 ### mmNo. of Bolts n ### Shell ID

Total Bolt Load

* Operating ConditionW = Wm1 = H + Hp =

= 0.785 ### 300 + ( 2 ### 3.14 ### ### 300.0 ) = #VALUE!* Gasket SeatingWm2 = 3.14 b d y = 3.14 ### ### ### = #VALUE!Sb = ### ### * Allowable bolt stress at design temp.Sa = ### ### * Allowable bolt stress at atmospheric temp.Am1 = Wm1 / Sb = #VALUE! / ### = ###Am2 = Wm2 / Sa = #VALUE! / ### = ###Am = Larger of Am1 or Am2 = ### * total required cross-sectional area of boltsAb = = ### * cross-sectional area of the bolts using the root diameter

* Ab ### Am -> ###* Required gasket width = Ab Sa / 2 y π G = ### ### Gasket width, used = ### -> ###

W = ( Am + Ab ) Sa / 2 = #VALUE!

NTES Narai Thermal Engineering Services

Bolted with a confined gasket Flanget to Shell

hG

C P / S E + 1.9 W hG / S E d3

^3

^3

hG

Gasket factor, Table 2-5.1

0.785 d2 P + ( 2 b 3.14 d m P )^2

π / 4 d22 n

Page 41: MD PV ASME v0.1

MD - PV - 00005. 8. 15.

Blind Flg, Inlet

D E S I G N D A T A

C A L C U L A T I O N

Narai Thermal Engineering Services

Page 42: MD PV ASME v0.1

MD - PV - 00005. 8. 15.

Blind Flg, Inlet

D E S I G N D A T A

C A L C U L A T I O N

Narai Thermal Engineering Services

Page 43: MD PV ASME v0.1

MD - PV - 00005. 8. 15.

Blind Flg, Inlet

D E S I G N D A T A

C A L C U L A T I O N

0.0

0.0

Narai Thermal Engineering Services

Page 44: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No. MD - PV - 000

M E C H A N I C A L D E S I G N Date 05. 8. 15. Revision 0 Sheet No. 0 of x

Part Header, Outlet

Code

ASME Sec. VIII, Div. 1UG - 27 Thickness of Shells under Internal Pressure * Circumferential stress governs.( c ) ( 1 ) Circumferential Stress in the Longitudinal Joint So, calculation for long. stress is omitted.

D E S I G N D A T A

Material Code KS

Material STS 304 TP E 80 A / Sch.80

Internal design pressure P 300 kPa.g

Design temperature 340 ℃

Inside diameter of the shell course under consideration Uncorroded #VALUE! mm

Inside diameter of the shell course under consideration Corroded D #VALUE! mm

Inside radius Corroded R #VALUE! mm

Maximum allowable stress value S #VALUE! ###

Joint efficiency for, or the efficiency of, appropriate joint E 1

Corrosion allowance α 0 mm

C A L C U L A T I O N

Minimum Required Thickness of Shell

Checks : t = ### ### 0.5 R = #VALUE! -> ###

P = 300 ### 0.385 S E = #VALUE! -> ###

t =P R

+ α =300.0 #VALUE!

+ 0.0 S E - 0.6 P ### 1 - 0.6 300.0

= ### mm ### ### mm used. -> #VALUE!

NTES Narai Thermal Engineering Services

Page 45: MD PV ASME v0.1

MD - PV - 00005. 8. 15.

Header, Outlet

D E S I G N D A T A

C A L C U L A T I O N

Narai Thermal Engineering Services

Page 46: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No. MD - PV - 000

M E C H A N I C A L D E S I G N Date 05. 8. 15. Revision 0 Sheet No. 0 of x

Part Blind Flg, Outlet

Code

ASME Sec. VIII, Div. 1UG - 34 Unstayed Flat Heads and Covers( c ) ( 2 ) Sketch ( e ) or ( f ) Welded to Shell

D E S I G N D A T A

Material Code JIS

Material SUS 304

Internal design pressure P 300 kPa.g

Design temperature 340 ℃

Diameter measured as indicated in Fig. UG-34 Uncorroded #VALUE! mm

Diameter measured as indicated in Fig. UG-34 Corroded d #VALUE! mm

Maximum allowable stress value S #VALUE! ###

Joint efficiency for, or the efficiency of, appropriate joint E 1

Factor depending upon the method of attachment of head, shell dimensions C ***

Corrosion allowance α 0 mm

C A L C U L A T I O N

Minimum Required Thickness of Flat Head

m = the ratio, tr / ts = ### / ### = ###

Where, tr Required thickness of seamless shellts Nominal thickness of shell

C = 0.33 m = 0.33 x ### = ### * min. 0.2

t = d C P / S E + α = ### ### 300.0 / ### 1 + 0.0

= ### mm ### ### mm used. -> ###

NTES Narai Thermal Engineering Services

ts

dt

ts

dt

Sketch (e) Sketch (f)

Page 47: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No. MD - PV - 000

M E C H A N I C A L D E S I G N Date 05. 8. 15. Revision 0 Sheet No. 0 of x

Part Blind Flg, Outlet

Code

ASME Sec. VIII, Div. 1UG - 34 Unstayed Flat Heads and Covers( c ) ( 2 ) Sketch ( p )

D E S I G N D A T A

Material Code JIS

Material SUS 304

Internal design pressure P 300 kPa.g

Design temperature 340 ℃

Diameter measured as indicated in Fig. UG-34 d #VALUE! mm

Maximum allowable stress value S #VALUE! ###

Joint efficiency for, or the efficiency of, appropriate joint E 1

Factor depending upon the method of attachment of head, shell dimensions C 0.25

Corrosion allowance α 0 mm

C A L C U L A T I O N

Minimum Required Thickness of Flat Headt

t = d C P / S E + α

#VA

LUE

!

#VA

LUE

!

= ### 0.25 300.0 / ### 1 + 0.0

#VA

LUE

!

d =

= ### mm ### ### mm used. -> ###Shell ID

NTES Narai Thermal Engineering Services

Bolted with a full-face gasket to Shell

Page 48: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No. MD - PV - 000

M E C H A N I C A L D E S I G N Date 05. 8. 15. Revision 0 Sheet No. 0 of x

Part Blind Flg, Outlet

Code

ASME Sec. VIII, Div. 1UG - 34 Unstayed Flat Heads and Covers( c ) ( 2 ) Sketch ( j )

D E S I G N D A T AMaterial Code JISMaterial SUS 304Internal design pressure P 300 kPa.gDesign temperature 340 ℃Diameter measured as indicated in Fig. UG-34 d #VALUE! mmMaximum allowable stress value S #VALUE! ###Joint efficiency for, or the efficiency of, appropriate joint E 1Factor depending upon the method of attachment of head, shell dimensions C 0.3Total Bolt load W *** ###Gasket moment arm, radial distance from bolt center to line of gasket reaction #VALUE! mmCorrosion allowance α 0 mm

C A L C U L A T I O N

Minimum Required Thickness of Flat Head

t = d + α

* Operating Conditionto = ### 0.30 300.0 / ### 1 + 1.9 #VALUE! ### / ### 1 ### + 0.0

= ### mm

* Gasket Seatingtg = ### 0.30 0.0 / ### 1 + 1.9 #VALUE! ### / ### 1 ### + 0.0

= ### mm

t = Larger of to or tg= ### mm ### ### mm used. -> ###

Flange Data

Diameter at location of gasket load reaction d ### mm t = ### *Std ###

#VA

LUE

!

Basic gasket seating width b0 ### mmEffective gasket seating width b ### mmGasket Spiral W.,SUS ###

#VA

LUE

!

m ### ###

#VA

LUE

!

Gasket unit seating load y ### ### Gasket d

#VA

LUE

!

#VA

LUE

!

#VA

LUE

!

#VA

LUE

!

Nominal Bolt Size ### Width ###Actual Bolt Dia. ### mmRoot Dia. d2 ### mmNo. of Bolts n ### Shell Id

Total Bolt Load

* Operating ConditionW = Wm1 = H + Hp =

= 0.785 ### 300 + ( 2 ### 3.14 ### ### 300.0 ) = #VALUE!* Gasket SeatingWm2 = 3.14 b d y = 3.14 ### ### ### = #VALUE!Sb = ### ### * Allowable bolt stress at design temp.Sa = ### ### * Allowable bolt stress at atmospheric temp.Am1 = Wm1 / Sb = #VALUE! / ### = ###Am2 = Wm2 / Sa = #VALUE! / ### = ###Am = Larger of Am1 or Am2 = ### * total required cross-sectional area of boltsAb = = ### * cross-sectional area of the bolts using the root diameter

* Ab ### Am -> ###* Required gasket width = Ab Sa / 2 y π G = ### ### Gasket width, used = ### -> ###

W = ( Am + Ab ) Sa / 2 = #VALUE!

NTES Narai Thermal Engineering Services

Bolted with a confined gasket Flanget to Shell

hG

C P / S E + 1.9 W hG / S E d3

^3

^3

hG

Gasket factor, Table 2-5.1

0.785 d2 P + ( 2 b 3.14 d m P )^2

π / 4 d22 n

Page 49: MD PV ASME v0.1

MD - PV - 00005. 8. 15.

Blind Flg, Outlet

D E S I G N D A T A

C A L C U L A T I O N

Narai Thermal Engineering Services

Page 50: MD PV ASME v0.1

MD - PV - 00005. 8. 15.

Blind Flg, Outlet

D E S I G N D A T A

C A L C U L A T I O N

Narai Thermal Engineering Services

Page 51: MD PV ASME v0.1

MD - PV - 00005. 8. 15.

Blind Flg, Outlet

D E S I G N D A T A

C A L C U L A T I O N

0.0

0.0

Narai Thermal Engineering Services

Page 52: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No. MD - PV - 000

M E C H A N I C A L D E S I G N Date 05. 8. 15. Revision 0 Sheet No. 0 of x

Part Nozzle > A1, Manhole

Code

ASME Sec. VIII, Div. 1UG - 45 Nozzle Neck ThicknessUW - 16 Minimum Requirements for Attachment Welds at Openings

D E S I G N D A T AShell N O Z Z L E

Material Code ASTM ASTMMaterial specification A 516-70 A 516-70Internal design pressure P 300 kPa.g 300 kPa.gDesign temperature 340 ℃ 340 ℃Inside diameter Uncorroded 2,500 mm 585.6 mmInside diameter Corroded D 2,506 mm Dn 591.6 mmInside radius Corroded R 1,253 mm Rn 295.8 mmMaximum allowable stress value S #VALUE! ### Sn #VALUE! ###Joint efficiency E 0.85 En 1Corrosion allowance α 3 mm αn 3 mmNominal wall thickness Uncorroded 14 mm 12.00 mmWall thickness Corroded t 11 mm tn 9.00 mm

C A L C U L A T I O N

Minimum Nozzle Wall Thickness * UG - 45

UG - 45 ( a ) & UG - 27 ( c ) ( 1 )

Checks : tr1 = ### ### 0.5 R = 147.9 -> ###P = 300 ### 0.385 S E = #VALUE! -> ###

tr1 =P Rn

+ αn =300.0 295.8

+ 3.0 = ### mmSn En - 0.6 P ### 1 - 0.6 300.0

UG - 45 ( b )

( 1 ) Shell or head thickness ( E = 1 ) tr2 = - N/A - mmUG - 16 ( b ) Minimum thickness tr3 = 4.60 mm( 4 ) Minimum thickness of standard wall pipe tr4 = - N/A - mm

tr5 = 4.60 mmtr6 = = 4.60 mm

-> = ### mm ### 12.00 mm used. -> ###

Size of Weld Required * UW - 16 ( c )

Inner Fillet Weld tmin = Smaller of 19 mm or tn or te = 9.00 tc min = Smaller of 6 mm or 0.7 tmin = 6.00 tc act = 0.7 Leg41 = 7.00 -> OK !

Outer Fillet Weld tmin = Smaller of 19 mm or te or t = 11.00 tw min = 0.5 tmin = 5.50 tw act = 0.7 Leg42 = 6.30 -> OK !

-> The weld is satisfactory.

### ### ###### ###

NTES Narai Thermal Engineering Services

Larger of tr2 or tr3Smaller of tr4 or tr5

Larger of tr1 or tr6

Q50
셀 없애지 말 것 !
F65
셀 없애지 말 것 !
C69
셀 없애지 말 것 !
E69
셀 없애지 말 것 !
T69
셀 없애지 말 것 !
E70
셀 없애지 말 것 !
T70
셀 없애지 말 것 !
Page 53: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No. MD - PV - 000

M E C H A N I C A L D E S I G N Date 05. 8. 15. Revision 0 Sheet No. 1 of x

Part Nozzle > A1, Manhole

Code UG - 37 Reinforcements required for Openings in Shells and Formed Heads

D E S I G N D A T ANozzle Placemenent InsertedFinished diameter of circular opening = Dn d 591.6 mmCorrction factor F 1Required thickness of a seamless shell or head tr ### mmRequired thickness of a seamless nozzle wall trn ### mm

Allowable stress value in tension, Nozzle Sn ### ###Allowable stress value in tension, Vessel Sv ### ###

1.0 = Sn/Sv fr1 ###1.0 = Sn/Sv fr2 ###

E1 1Pad material code ASTMPad material specification A 516-70Pad O.D. 1160 mmPad thickness te 14 mm

Allowable stress value in reinforcing element Sp ### ###1.0 =( lesser of Sn or Sp )/ Sv fr3 ### ###

1.0 = Sp/Sv fr4 ###Size of Weld Required * UW - 16 ( c )

Leg41 10.0 mm * Min. 8.5 Leg42 9.0 mm * Min. 7.8 Leg43 - N/A - mm * Min.

Limit of reinforcement 591.6 mm * Larger of d or Rn + tn + tOutside diameter of reinforcing element Dp 1160.0 mm

C A L C U L A T I O N

= = d tr F + 2 tn tr F ( 1 - fr1 )= #VALUE! mm2

== Larger of d ( E1 t - F tr ) - 2 tn ( E1 t - F tr ) ( 1 - fr1 ) or 2 ( t + tn ) ( E1 t - F tr ) - 2 tn ( E1 t - F tr ) ( 1 - fr1 )= #VALUE! mm2

= = Smaller of 5 ( tn - trn ) fr2 t or 2 ( tn - trn ) ( 2.5 tn + te ) fr2= #VALUE! mm2

= = Smallest of 5 t ti fr2, 5 ti ti fr2 or 2 h ti fr2= - N/A - mm2

= = outward nozzle weld = (leg)^2 fr3= #VALUE! mm2

= = outer element weld = (leg)^2 fr4= #VALUE! mm2

= = inward nozzle weld = (leg)^2 fr2= - N/A - mm2

= = ( Dp - d - 2 tn ) te fr4= #VALUE! mm2

A1 + A2 + A41 + A42 + A5 = #VALUE! ### A = #VALUE! ### ###

NTES Narai Thermal Engineering Services

Strength reduction factor, ≤Strength reduction factor, ≤

Strength reduction factor, ≤Strength reduction factor, ≤

* UG - 40

A, Area required

A1, Area available in shell

A2, Area available in nozzle projecting outward

A3, Aea available in inward nozzle

A41, Area available in outward weld

A42, Area available in outer weld

A43, Area available in inward weld

A5, Area available in element

tn RnDp

trn

tr

c

hti

d

te

t

* 1 : Smaller of 2.5 t or 2.5 tn + te

* 2 : Smallest of h, 2.5 t, or 2.5 ti

Larger of

d or Rn + tn + t

For nozzle wall inserted

Larger of

d or Rn + tn + t

For nozzle wall abutting

the vessel wallthrough the vessel wall

* 1

* 2

P107
Min. x 1.15 up to Integer
Page 54: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No. MD - PV - 000

M E C H A N I C A L D E S I G N Date 05. 8. 15. Revision 0 Sheet No. 2 of x

Part Nozzle > A1, Manhole

Code UG - 41 Strength of Reinforcement

C A L C U L A T I O N

Allowable Unit Stresses * UG - 45 ( c ) & UW - 15 ( c )

Fillet Weld Shear Sfs = 0.49 x #VALUE! = #VALUE! ###Nozzle Wall Shear Sns = 0.7 x #VALUE! = #VALUE! ###Groove Weld Tension Sgt = 0.74 x #VALUE! = #VALUE! ###Groove Weld Shear Sgs = 0.6 x #VALUE! = #VALUE! ###

Strength of Connection Elements * Dimensions are in ###

Inner Fillet Weld Shear(a) = π / 2 x Nozzle OD x Weld Leg x Sfs

= π / 2 x ### x ### x #VALUE! = #VALUE! ### = #VALUE! NNozzle Wall Shear(b) = π / 2 x Mean Nozzle Dia. x tn x Sns

= π / 2 x ### x ### x #VALUE! = #VALUE! ### = #VALUE! NGroove Weld Tension(c) = π / 2 x Nozzle OD x t x Sgt

= π / 2 x ### x ### x #VALUE! = #VALUE! ### = #VALUE! NOuter Fillet Weld Shear(d) = π / 2 x Pad OD x Weld Leg x Sfs

= π / 2 x ### x ### x #VALUE! = #VALUE! ### = #VALUE! NUpper Groove Weld Tension(e) = π / 2 x Nozzle OD x te x Sgt

= π / 2 x ### x ### x #VALUE! = #VALUE! ### = #VALUE! NLower Fillet Weld Shear(f) = π / 2 x Nozzle OD x Weld Leg x Sfs

= π / 2 x ### x - N/A - x #VALUE! = - N/A - ### = - N/A - N

Load to be carried by Welds * UG - 41 ( b ) ( 1 ) & ( 2 )

Weld Load for Strength Path 1 - 1W1-1 = ( A2 + A5 + A41 + A42 ) Sv = #VALUE! ### = #VALUE! NWeld Load for Strength Path 2 - 2W2-2 = ( A2 + A3 + A41 + A43 + 2 tn t fr1 ) Sv = #VALUE! ### = #VALUE! NWeld Load for Strength Path 3 - 3W3-3 = ( A2 + A3 + A5 + A41 + A42 + A43 + 2 tn t fr1 ) Sv = #VALUE! ### = #VALUE! NTotal Weld LoadW = [ A - A1 + 2 tn fr1 ( E1 t - F tr ) ] Sv = #VALUE! ### = #VALUE! N

Check Strength Paths * UG - 41 ( b ) ( 1 ) & ( 2 )

Path 1-1 (d) + (b) = #VALUE! + #VALUE! = #VALUE! N -> ###Load for Path 1-1 = = #VALUE! N

Path 2-2 (a) + (c) + (e) = #VALUE! + #VALUE! + #VALUE! = #VALUE! N -> ###Load for Path 2-2 = = #VALUE! N

Path 3-3 (d) + (c) = #VALUE! + #VALUE! = #VALUE! N -> ###Load for Path 3-3 = = #VALUE! N

-> ### ###

NTES Narai Thermal Engineering Services

Smaller of W1-1 or W

Smaller of W2-2 or W

Smaller of W3-3 or W

Page 55: MD PV ASME v0.1

MD - PV - 00005. 8. 15.

A1, Manhole

D E S I G N D A T A

C A L C U L A T I O N

Narai Thermal Engineering Services

Page 56: MD PV ASME v0.1

MD - PV - 00005. 8. 15.

A1, Manhole

D E S I G N D A T A

C A L C U L A T I O N

Narai Thermal Engineering Services

te

For nozzle wall abutting

the vessel wall

Page 57: MD PV ASME v0.1

MD - PV - 00005. 8. 15.

A1, Manhole

C A L C U L A T I O N

Narai Thermal Engineering Services

Page 58: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No. MD - PV - 000

M E C H A N I C A L D E S I G N Date 05. 8. 15. Revision 0 Sheet No. 0 of x

Part Nozzle > K1 & K2

Code

ASME Sec. VIII, Div. 1UG - 45 Nozzle Neck ThicknessUW - 16 Minimum Requirements for Attachment Welds at Openings

D E S I G N D A T AShell N O Z Z L E

Material Code ASTM ASTMMaterial specification A 516-70 A 106-B / 1 1/2" / XX-STRInternal design pressure P 300 kPa.g 300 kPa.gDesign temperature 340 ℃ 340 ℃Inside diameter Uncorroded 2,500 mm #VALUE! mmInside diameter Corroded D 2,506 mm Dn #VALUE! mmInside radius Corroded R 1,253 mm Rn #VALUE! mmMaximum allowable stress value S #VALUE! ### Sn #VALUE! ###Joint efficiency E 0.85 En 1Corrosion allowance α 3 mm αn 3 mmNominal wall thickness Uncorroded 14 mm #VALUE! mmWall thickness Corroded t 11 mm tn #VALUE! mm

C A L C U L A T I O N

Minimum Nozzle Wall Thickness * UG - 45

UG - 45 ( a ) & UG - 27 ( c ) ( 1 )

Checks : tr1 = ### ### 0.5 R = #VALUE! -> ###P = 300 ### 0.385 S E = #VALUE! -> ###

tr1 =P Rn

+ αn =300.0 #VALUE!

+ 3.0 = ### mmSn En - 0.6 P ### 1 - 0.6 300.0

UG - 45 ( b )

( 1 ) Shell or head thickness ( E = 1 ) tr2 = ### mmUG - 16 ( b ) Minimum thickness tr3 = 4.60 mm( 4 ) Minimum thickness of standard wall pipe tr4 = ### mm

tr5 = ### mmtr6 = = ### mm

-> = ### mm ### ### mm used. -> ######

Size of Weld Required * UW - 16 ( c )

Inner Fillet Weld tmin = Smaller of 19 mm or tn or t = ###tc min = Smaller of 6 mm or 0.7 tmin = ###tc act = 0.7 Leg41 = ### -> ###

Outer Fillet Weld tmin = Smaller of 19 mm or te or t = - N/A -tw min = 0.5 tmin = - N/A -tw act = 0.7 Leg42 = - N/A - -> - N/A -

-> ###Strength cal. for welds are NOT required for this detail which conforms to Fig. UW - 16. 1, sketch ( c ) ~ ( e ).

### ### ###### ###

NTES Narai Thermal Engineering Services

Larger of tr2 or tr3Smaller of tr4 or tr5

Larger of tr1 or tr6

Q50
셀 없애지 말 것 !
F65
셀 없애지 말 것 !
C69
셀 없애지 말 것 !
E69
셀 없애지 말 것 !
T69
셀 없애지 말 것 !
E70
셀 없애지 말 것 !
T70
셀 없애지 말 것 !
Page 59: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No. MD - PV - 000

M E C H A N I C A L D E S I G N Date 05. 8. 15. Revision 0 Sheet No. 1 of x

Part Nozzle > K1 & K2

Code UG - 37 Reinforcements required for Openings in Shells and Formed Heads

D E S I G N D A T ANozzle Placemenent InsertedFinished diameter of circular opening = Dn d ### mmCorrction factor F 1Required thickness of a seamless shell or head tr ### mmRequired thickness of a seamless nozzle wall trn ### mm

Allowable stress value in tension, Nozzle Sn ### ###Allowable stress value in tension, Vessel Sv ### ###

1.0 = Sn/Sv fr1 ###1.0 = Sn/Sv fr2 ###

E1 1Pad material code - N/A -Pad material specification - N/A -Pad O.D. - N/A - mmPad thickness te - N/A - mm

Allowable stress value in reinforcing element Sp - N/A - ###1.0 =( lesser of Sn or Sp )/ Sv fr3 - N/A - ###

1.0 = Sp/Sv fr4 - N/A -Size of Weld Required * UW - 16 ( c )

Leg41 ### mm * Min. ###Leg42 - N/A - mm * Min. - N/A -Leg43 - N/A - mm * Min.

Limit of reinforcement ### mm * Larger of d or Rn + tn + tOutside diameter of reinforcing element Dp - N/A - mm

C A L C U L A T I O N

= = d tr F + 2 tn tr F ( 1 - fr1 )= #VALUE! mm2

== Larger of d ( E1 t - F tr ) - 2 tn ( E1 t - F tr ) ( 1 - fr1 ) or 2 ( t + tn ) ( E1 t - F tr ) - 2 tn ( E1 t - F tr ) ( 1 - fr1 )= #VALUE! mm2

= = Smaller of 5 ( tn - trn ) fr2 t or 5 ( tn - trn ) fr2 tn= #VALUE! mm2

= = Smallest of 5 t ti fr2, 5 ti ti fr2 or 2 h ti fr2= - N/A - mm2

= = outward nozzle weld = (leg)^2 fr2= #VALUE! mm2

= = outer element weld = (leg)^2 fr4= - N/A - mm2

= = inward nozzle weld = (leg)^2 fr2= - N/A - mm2

= = ( Dp - d - 2 tn ) te fr4= - N/A - mm2

A1 + A2 + A41 = #VALUE! ### A = #VALUE! ### ###

NTES Narai Thermal Engineering Services

Strength reduction factor, ≤Strength reduction factor, ≤

Strength reduction factor, ≤Strength reduction factor, ≤

* UG - 40

A, Area required

A1, Area available in shell

A2, Area available in nozzle projecting outward

A3, Aea available in inward nozzle

A41, Area available in outward weld

A42, Area available in outer weld

A43, Area available in inward weld

A5, Area available in element

tn RnDp

trn

tr

c

hti

d

te

t

* 1 : Smaller of 2.5 t or 2.5 tn + te

* 2 : Smallest of h, 2.5 t, or 2.5 ti

Larger of

d or Rn + tn + t

For nozzle wall inserted

Larger of

d or Rn + tn + t

For nozzle wall abutting

the vessel wallthrough the vessel wall

* 1

* 2

P107
Min. x 1.15 up to Integer
Page 60: MD PV ASME v0.1

P R E S S U R E V E S S E L : Doc. No. MD - PV - 000

M E C H A N I C A L D E S I G N Date 05. 8. 15. Revision 0 Sheet No. 2 of x

Part Nozzle > K1 & K2

Code UG - 41 Strength of Reinforcement

C A L C U L A T I O N

Allowable Unit Stresses * UG - 45 ( c ) & UW - 15 ( c )

Fillet Weld Shear Sfs = 0.49 x #VALUE! = #VALUE! ###Nozzle Wall Shear Sns = 0.7 x #VALUE! = #VALUE! ###Groove Weld Tension Sgt = 0.74 x #VALUE! = #VALUE! ###Groove Weld Shear Sgs = 0.6 x #VALUE! = #VALUE! ###

Strength of Connection Elements * Dimensions are in ###

Inner Fillet Weld Shear(a) = π / 2 x Nozzle OD x Weld Leg x Sfs

= π / 2 x ### x ### x #VALUE! = #VALUE! ### = #VALUE! NNozzle Wall Shear(b) = π / 2 x Mean Nozzle Dia. x tn x Sns

= π / 2 x ### x ### x #VALUE! = #VALUE! ### = #VALUE! NGroove Weld Tension(c) = π / 2 x Nozzle OD x t x Sgt

= π / 2 x ### x ### x #VALUE! = #VALUE! ### = #VALUE! NOuter Fillet Weld Shear(d) = π / 2 x Pad OD x Weld Leg x Sfs

= π / 2 x - N/A - x - N/A - x #VALUE! = - N/A - ### = - N/A - NUpper Groove Weld Tension(e) = π / 2 x Nozzle OD x te x Sgt

= π / 2 x ### x - N/A - x #VALUE! = - N/A - ### = - N/A - NLower Fillet Weld Shear(f) = π / 2 x Nozzle OD x Weld Leg x Sfs

= π / 2 x ### x - N/A - x #VALUE! = - N/A - ### = - N/A - N

Load to be carried by Welds * UG - 41 ( b ) ( 1 ) & ( 2 )

Weld Load for Strength Path 1 - 1W1-1 = ( A2 + A5 + A41 + A42 ) Sv = #VALUE! ### = #VALUE! NWeld Load for Strength Path 2 - 2W2-2 = ( A2 + A3 + A41 + A43 + 2 tn t fr1 ) Sv = #VALUE! ### = #VALUE! NWeld Load for Strength Path 3 - 3W3-3 = ( A2 + A3 + A5 + A41 + A42 + A43 + 2 tn t fr1 ) Sv = #VALUE! ### = #VALUE! NTotal Weld LoadW = [ A - A1 + 2 tn fr1 ( E1 t - F tr ) ] Sv = #VALUE! ### = #VALUE! N

Check Strength Paths * UG - 41 ( b ) ( 1 ) & ( 2 )

Path 1-1 (d) + (b) = 0 + #VALUE! = #VALUE! N -> ###Load for Path 1-1 = = #VALUE! N

Path 2-2 (a) + (c) + (e) = #VALUE! + #VALUE! + 0 = #VALUE! N -> ###Load for Path 2-2 = = #VALUE! N

Path 3-3 (d) + (c) = 0 + #VALUE! = #VALUE! N -> ###Load for Path 3-3 = = #VALUE! N

-> ### ###

NTES Narai Thermal Engineering Services

Smaller of W1-1 or W

Smaller of W2-2 or W

Smaller of W3-3 or W

Page 61: MD PV ASME v0.1

MD - PV - 00005. 8. 15.

K1 & K2

D E S I G N D A T A

C A L C U L A T I O N

Narai Thermal Engineering Services

Page 62: MD PV ASME v0.1

MD - PV - 00005. 8. 15.

K1 & K2

D E S I G N D A T A

C A L C U L A T I O N

Narai Thermal Engineering Services

te

For nozzle wall abutting

the vessel wall

Page 63: MD PV ASME v0.1

MD - PV - 00005. 8. 15.

K1 & K2

C A L C U L A T I O N

Narai Thermal Engineering Services