matlab-simulink model three-phase voltage source inverter

5
8/20/2019 Matlab-Simulink Model Three-Phase Voltage Source Inverter http://slidepdf.com/reader/full/matlab-simulink-model-three-phase-voltage-source-inverter 1/5 MATLAB/SIMULINK MODEL OF SPACE VECTOR PWM FOR THREE-PHASE VOLTAGE SOURCE INVERTER Atif Iqbal(') Adoum Lamine(2) Imtiaz AshraP') Mohibullah(l) (1) Aligarh Muslim University, India (2)  iverpool John Moores University, UK ABSTRACT Variable voltage and frequency supply to ac drives is invariably obtained from a three-phase voltage source inverter (VSI). A number of Pulse width modulation (PWM) scheme is used to obtain variable voltage and frequency supply. The most widely used PWM schemes for three-phase VSI are carrier-based sinusoidal PWM and space vector PWM (SVPWM). There is an increasing trend of using space vector PWM (SVPWM) because of their easier digital realisation and better dc bus utilisation. This paper focuses on step by step development of MATLAB/SIMULINK model of SVPWM. Firstly model of a three-phase VSI is discussed based on space vector representation. Next simulation model of SVPWM is obtained using NIATLAB/SIMULINK. Simulation results are also provided. 1. INTRODUCTION diode for protection. Leg voltage waveforms is shown in Fig. 2 for 180° conduction mode. Variable voltage and frequency supply for as drives is invariably obtained from a three-phase VSI. A number i of PWM techniques have been presented to obtain K3 variable voltage and frequency supply [1]. The most _ 5 popular among those are carrier-based sinusoidal PWM A and SVPWM. The major disadvantage of this scheme is Va b Vca lower dc bus utilisation. The maximum output voltage Vd B nVb from VSI utilising this scheme is limited to 0.5Vd, C (peak) or 0.353 rms. Space vector modulation improves 2 4 6 dc bus utilisation by 15.15 , further digital implementation of this scheme is easier [1,2]. The SVPWM is identified as an alternative method of _ _ determination of switching pulse width and their N position. The major advantage of SVWPM stem from the factthat there is a degree offreedomof space vector Figure 1. Power circuit of a three-phase VSI. placement in a switching cycle. This improves the harmonic performance of this method. VA The main focus of this paper is to develop a simple MATLAB/SIMULINK model. The reason for choice of T 73 2;T3 Z 4;T3 5;T3 2X MATLAB/SIMULINK as a development tool is VB because it is the most important and widely used VB simulation software and is an integral part of taught programme in most of the universities in Electrical/Electronics Engineering courses. Firstly VC model of a three-phase inverter in presented on the basis l of space vector representation. This is followed by the Figure 2. Leg voltage waveform of a three-phase basic principle of SVPWM. Finally a VSI. MATLAB/SIMULINK model for the SVPWM is presented. Various simulation results are also included. It is observed from Fig. 2. that one inverter leg's state changes after an interval of 60° and their state remains 2. THREE-PHASE VSI MODELLING REVIEW constant for 60° interval. Thus it follows that the leg voltages will have six distinct and discrete values in one A mathematical model of three-phase is presented here cycle (36O°). based on space vector representation. The power circuit Space vector representation of the three-phase inverter topology of athree-phase VSI is shown in Fig. 1 output voltages is introduced next. Space vector is Each switch in the inverter leg is composed of two defined as; back-to-back connected semiconductor devices. One of -* 2 - these two is a controllable device and other one is a v,=j Va +aVb +a VC) (1) 1 096

Upload: duong-tan-tai

Post on 07-Aug-2018

237 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Matlab-Simulink Model Three-Phase Voltage Source Inverter

8/20/2019 Matlab-Simulink Model Three-Phase Voltage Source Inverter

http://slidepdf.com/reader/full/matlab-simulink-model-three-phase-voltage-source-inverter 1/5

MATLAB/SIMULINK MODEL OF SPACE VECTOR

PWM

FOR THREE-PHASE

VOLTAGE SOURCE INVERTER

A t i f

I q b a l ( ' ) Adoum L a m i n e ( 2 ) I m t i a z A s h r a P ' )

M o h i b u l l a h ( l )

( 1 )

A l i g a r h M u s l i m

U n i v e r s i t y ,

I n d i a

( 2 )

  i v e r p o o l

J o h n M o o r e s

U n i v e r s i t y ,

UK

ABSTRACT

V a r i a b l e v o l t a g e a n d f r e q u e n c y

s u p p l y

t o a c d r i v e s i s

i n v a r i a b l y

o b t a i n e d f r o m a

t h r e e - p h a s e v o l t a g e

s o u r c e i n v e r t e r

( V S I ) .

A n u m b e r o f P u l s e w i d t h m o d u l a t i o n

(PWM) s c h e m e

i s

u s e d t o

o b t a i n v a r i a b l e v o l t a g e

a n d

f r e q u e n c y s u p p l y .

T h e m o s t w i d e l y u s e d PWM s c h e m e s

f o r t h r e e - p h a s e

V S I

a r e c a r r i e r - b a s e d s i n u s o i d a l

PWM a n d

s p a c e

v e c t o r PWM

( S V P W M ) .

T h e r e i s

a n i n c r e a s i n g t r e n d

o f

u s i n g s p a c e v e c t o r

PWM

(SVPWM)

b e c a u s e

o f

t h e i r e a s i e r

d i g i t a l

r e a l i s a t i o n a n d b e t t e r d c b u s u t i l i s a t i o n . T h i s

p a p e r

f o c u s e s o n

s t e p

b y

s t e p

d e v e l o p m e n t o f MATLAB/SIMULINK

m o d e l o f SVPWM.

F i r s t l y

m o d e l o f a

t h r e e - p h a s e

V S I i s d i s c u s s e d b a se d o n s p a c e v e c t o r r e p r e s e n t a t i o n . N e x t

s i m u l a t i o n

m o d e l o f

SVPWM

i s o b t a i n e d

u s i n g

N I A T L A B / S I M U L I N K . S i m u l a t i o n r e s u l t s a r e a l s o p r o v i d e d .

1 .

INTRODUCTION d i o d e

f o r

p r o t e c t i o n .

L e g

v o l t a g e

w a v e f o r m s

i s

s h o w n

i n

F i g .

2

f o r 1 8 0 ° c o n d u c t i o n

m o d e .

V a r i a b l e v o l t a g e a n d f r e q u e n c y

s u p p l y

f o r

a s d r i v e s

i s

i n v a r i a b l y

o b t a i n e d f r o m a

t h r e e - p h a s e

V S I .

A

n u m b e r

i

o f PWM t e c h n i q u e s h a v e

b e e n

p r e s e n t e d t o o b t a i n

K3

v a r i a b l e

v o l t a g e

a n d

f r e q u e n c y s u p p l y [ 1 ] .

T h e m o s t

_

5

p o p u l a r a m o n g

t h o s e a r e c a r r i e r - b a s e d s i n u s o i d a l

PWM

A

a n d SVPWM. T h e m a j o r

d i s a d v a n t a g e

o f t h i s s c h e m e i s

Vab

V c a

l o w e r

d c b u s

u t i l i s a t i o n . T h e

maximum

o u t p u t v o l t a g e

V d

B

nVb

f r o m V S I

u t i l i s i n g t h i s

s c h e m e

i s l i m i t e d

t o

0 . 5 V d ,

C

( p e a k )

o r 0 . 3 5 3 r m s .

S p a c e

v e c t o r

m o d u l a t i o n

i m p r o v e s 2

4

6

d c b u s

u t i l i s a t i o n

b y 1 5 . 1 5 ,

f u r t h e r

d i g i t a l

i m p l e m e n t a t i o n o f

t h i s

s c h e m e i s e a s i e r [ 1 , 2 ] . T h e

SVPWM i s

i d e n t i f i e d

a s an

a l t e r n a t i v e

m e t h o d

o f

_ _

d e t e r m i n a t i o n o f

s w i t c h i n g p u l s e

w i d t h

a n d t h e i r

N

p o s i t i o n .

T h e

m a j o r

a d v a n t a g e

o f SVWPM

s t e m

f r o m

t h e

f a c t t h a t

t h e r e i s a

d e g r e e

o f f r e e d o m o f

s p a c e

v e c t o r

F i g u r e 1 .

P o w e r

c i r c u i t o f

a t h r e e - p h a s e

V S I .

p l a c e m e n t

i n a

s w i t c h i n g c y c l e .

T h i s

i m p r o v e s

t h e

h a r m o n i c p e r f o r m a n c e o f t h i s m e t h o d .

V A

T h e m a i n

f o c u s

o f t h i s

p a p e r

i s t o

d e v e l o p

a

s i m p l e

MATLAB/SIMULINK m o d e l .

T h e r e a s o n f o r c h o i c e o f

T

7 3

2 ; T 3

Z

4 ; T 3 5 ; T 3

2 X

MATLAB/SIMULINK a s a

d e v e l o p m e n t

t o o l

i s

V B

b e c a u s e

i t

i s t h e m o s t

i m p o r t a n t

a n d

w i d e l y

u s e d

V B

s i m u l a t i o n

s o f t w a r e a n d i s a n

i n t e g r a l p a r t

o f

t a u g h t

p r o g r a m m e

i n

m o s t

o f

t h e

u n i v e r s i t i e s i n

E l e c t r i c a l / E l e c t r o n i c s

E n g i n e e r i n g

c o u r s e s .

F i r s t l y

V C

m o d e l o f

a

t h r e e - p h a s e

i n v e r t e r

i n

p r e s e n t e d

o n

t h e

b a s i s l

o f

s p a c e

v e c t o r

r e p r e s e n t a t i o n .

T h i s i s

f o l l o w e d

b y

t h e

F i g u r e

2 .

L e g v o l t a g e

w a v e f o r m o f

a

t h r e e - p h a s e

b a s i c

p r i n c i p l e

o f SVPWM.

F i n a l l y

a

V S I .

MATLAB/SIMULINK m o d e l f o r t h e

SVPWM

i s

p r e s e n t e d .

V a r i o u s

s i m u l a t i o n

r e s u l t s a r e a l s o

i n c l u d e d .

I t i s o b s e r v e d f r o m

F i g .

2 . t h a t one i n v e r t e r

l e g ' s

s t a t e

c h a n g e s

a f t e r a n

i n t e r v a l o f

6 0 °

a n d

t h e i r s t a t e

r e m a i n s

2 . THREE-PHASE

V S I

MODELLING REVIEW c o n s t a n t f o r

6 0 °

i n t e r v a l . T h u s i t f o l l o w s

t h a t

t h e

l e g

v o l t a g e s w i l l h a v e s i x d i s t i n c t a n d d i s c r e t e

v a l u e s

i n

o n e

A

m a t h e m a t i c a l

m o d e l o f

t h r e e - p h a s e i s p r e s e n t e d

h e r e

c y c l e

( 3 6 O ° ) .

b a s e d

o n s p a c e v e c t o r

r e p r e s e n t a t i o n . T h e p o w e r c i r c u i t

S p a c e

v e c t o r

r e p r e s e n t a t i o n

o f t h e t h r e e - p h a s e

i n v e r t e r

t o p o l o g y o f

a t h r e e - p h a s e

V S I i s

s h o w n

i n

F i g .

1 o u t p u t v o l t a g e s i s i n t r o d u c e d n e x t . S p a c e v e c t o r i s

E a c h

s w i t c h

i n t h e

i n v e r t e r

l e g

i s

c o m p o s e d

o f

t w o

d e f i n e d

a s ;

b a c k - t o - b a c k

c o n n e c t e d s em i c o n d u c t o r

d e v i c e s . O n e o f - * 2

-

t h e s e

t w o

i s

a c o n t r o l l a b l e

d e v i c e

a n d

o t h e r

o n e i s

a

v , = j

V a

+ a V b +a

V C )

( 1 )

1 0 9 6

Page 2: Matlab-Simulink Model Three-Phase Voltage Source Inverter

8/20/2019 Matlab-Simulink Model Three-Phase Voltage Source Inverter

http://slidepdf.com/reader/full/matlab-simulink-model-three-phase-voltage-source-inverter 2/5

w h e r e a = e x p ( j 2 U T / 3 ) . T h e s p a c e v e c t o r i s a

A L

I m g .

( 0 1 0 )

( 1 1 0 )

s i m u l t a n e o u s r e p r e s e n t a t i o n

o f

a l l t h e t h r e e - p h a s e

  I

- -

q u a n t i t i e s . I t i s a c o m p l e x

v a r i a b l e

a n d

i s

f u n c t i o n

o f

t i m e

i n c o n t r a s t

t o

t h e p h a s o r s .

P h a s e - t o - n e u t r a l

v o l t a g e s o f

a s t a r - c o n n e c t e d

l o a d a r e

m o s t e a s i l y f o u n d b y d e f i n i n g a v o l t a g e d i f f e r e n c e

b e t w e e n

t h e

s t a r

p o i n t

n o f

t h e

l o a d

a n d

t h e

n e g a t i v e

r a i l

7 , 8

o f t h e

d c

b u s

N . T h e

f o l l o w i n g

c o r r e l a t i o n

t h e n

h o l d s

( 0 1 1 )

X

' ( 1 0 0 ) R e a l

. 4

t r u e :

V A V a

+

V n N

V B V b

+

V n N

( 2 )

V C

=

V c

+

V n N

S i n c e

t h e p h a s e v o l t a g e s

i n a

s t a r t c o n n e c t e d l o a d s u m

 

/

t o z e r o , s u m m a t i o n

o f

e q u a t i o n ( 2 )

y i e l d s

( 0 0 1 )

( 1 0 1 )

v n N

=

( 1

/

3 ) ( V A

+

V B

+

V C )

( 3 ) F i g u r e

3 . P h a s e

v o l t a g e

s p a c e

v e c t o r s .

S u b s t i t u t i o n o f ( 3 ) i n t o ( 2 )

y i e l d s

p h a s e - t o - n e u t r a l

T h e

b i n a r y

n u m b e r s

on t h e

f i g u r e

i n d i c a t e

t h e s w i t c h

v o l t a g e s

o f t h e

l o a d

i n t h e

f o l l o w i n g

f o r m :

s t a t e

o f

i n v e r t e r l e g s . H e r e

1

i m p l i e s

u p p e r s w i t c h

b e i n g

V a

= ( 2 / 3 ) V A

- ( I / 3 ) ( V B

+ V C )

o n

a n d

0

r e f e r s

t o

t h e

l o w e r

s w i t c h

o f

t h e

l e g

b e i n g

o n .

V b

=

( 2

/

3 )

V B

- ( 1 /

3 )

( V A

 

V C )

( 4 )

T h e most

s i g n i f i c a n t

b i t

i s

f o r

l e g

A ,

t h e

l e a s t

s i g n i f i c a n t

V c

=

( 2 / 3 )

v C

-

( 1

/ 3 ) ( V B + V A )

b i t i s r e l a t e d t o

l e g

C a n d

t h e

m i d d l e i s f o r

l e g

B .

P h a s e

v o l t a g e s

a r e s u m m a r i s e d i n

T a b l e

1

a n d t h e i r

3 .

SPACE VECTORPWM

c o r r e s p o n d i n g s p a c e

v e c t o r s

a r e

l i s t e d i n T a b l e

2 .

T h i s

s e c t i o n b r i e f l y d i s c u s s e s t h e

s p a c e

v e c t o r PWM

T a b l e

1

P h a s e

v o l t a g e v a l u e s f o r

d i f f e r e n t

s w i t c h i n g p r i n c i p l e . T h i s PWM m e t h o d

i s

f r e q u e n t l y

u s e d

i n

s t a t e s .

v e c t o r c o n t r o l l e d

a n d

d i r e c t t o r q u e c o n t r o l l e d d r i v e s . I n

S t a t e S w i t c h

V A

V B V C

v e c t o r c o n t r o l l e d d r i v e

t h i s

t e c h n i q u e

i s u s e d f o r

On

r e f e r e n c e v o l t a g e

g e n e r a t i o n

w h e n c u r r e n t

c o n t r o l i s

1

1 , 4 , 6

( 2 / 3 )

V d c

- ( 1 / 3 ) V d c - ( 1 / 3 ) V d c

e x e r c i s e d i n

r o t a t i n g r e f e r e n c e

f r a m e .

I t

i s

s e e n

i n t h e p r e v i o u s

s e c t i o n

t h a t

a t h r e e - p h a s e V S I

2 1 , 3

6

g e n e r a t e s

e i g h t

s w i t c h i n g

s t a t e s

w h i c h i n c l u d e

s i x

a c t i v e

,

, |

( 1 / 3 )

V d c

( 1 / 3 )

V d c

- ( 2 / 3 )

V d C

a n d t w o z e r o s t a t e s . T h e s e v e c t o r s f o r m a

h e x a g o n ( F i g .

3 )

w h i c h

c a n

b e s e e n

a s

c o n s i s t i n g

o f s i x

s e c t o r s

3

2 , 3 , 6

- ( 1 / 3 ) V d C

( 2 / 3 ) V d c

- ( 1 / 3 ) V d C

s p a n n i n g

6 0 °

e a c h . T h e r e f e r e n c e v e c t o r w h i c h

r e p r e s e n t s t h r e e - p h a s e s i n u s o i d a l v o l t a g e

i s

g e n e r a t e d

4

| 2 ) 3 5

- ( 2 / 3 ) V c

( I

3 )

V c

( I

3 ) V d c

u s i n g

SVPWM

b y s w i t c h i n g

b e t w e e n t w o

n e a r e s t a c t i v e

, ,

Z / d ) ) V ~ , f c ~ l / . ) ) v d c

~ l / . ) ) v d c

v e c t o r s a n d z e r o v ec t o r . T o c a l c u l a t e t h e

t i m e

o f

5 2 , 4 , 5

- ( 1 / 3 ) V d C

- ( 1 / 3 ) V d C

( 2 / 3 ) v d c

a p p l i c a t i o n

o f d i f f e r e n t

v e c t o r s ,

c o n s i d e r

F i g . 4 ,

d e p i c t i n g

t h e

p o s i t i o n

o f d i f f e r e n t a v a i l a b l e

s p a c e

v e c t o r s

a n d t h e r e f e r e n c e

v e c t o r i n

t h e

f i r s t

s e c t o r .

6 1 , 4 , 5

( 1 / 3 ) v d C - ( 2 / 3 ) v d C ( 1 / 3 ) v d C

* m g .

7  

1 , 3 , 5

0

0 0

 

8

2 , 4 , 6

V b

T a b l e

2 P h a s e

v o l t a g e

s p a c e

v e c t o r s

S t a t e P h a s e

v o l t a g e s p a c e

v e c t o r s

.b

1 2

/

3 )

V d c

b

- - - - - - - - - - - - - - - - - - - - -

v

2

( 2

/

3 )

V d c

e x p

( I j T

1 3 )

6 ( 2 / 3 )

V d c

e x p ( 1 5 w / 3 )

F i g u r e

4 .

P r i n c i p l e o f s p a c e

v e c t o r

t i m e c a l c u l a t i o n .

7

a n d

8

0

T h e

t i m e

o f

a p p l i c a t i o n

o f

a c t i v e

s p a c e

v o l t a g e

v e c t o r s

T h e d i s c r e t e p h a s e v o l t a g e s p a c e v e c t o r p o s i t i o n s

a r e i s f o u n d

f r o m

F i g . 4

a s

s h o w n

i n

F i g .

3 .

1 0 9 7

Page 3: Matlab-Simulink Model Three-Phase Voltage Source Inverter

8/20/2019 Matlab-Simulink Model Three-Phase Voltage Source Inverter

http://slidepdf.com/reader/full/matlab-simulink-model-three-phase-voltage-source-inverter 3/5

I v

T h r e e - p h a s e

s i n u s o i d a l

v o l t a g e

i s

g e n e r a t e d u s i n g

V s

s i n ( U T I 3 - a )

' f u n c t i o n '

b l o c k f r o m

' F u n c t i o n s

  T a b l e s '

s u b - l i b r a r y

V a

s i n

( 2 U f

/

3 )

o f S i m u l i n k .

T h i s

i s t h e n

c o n v e r t e d

i n t o

t w o - p h a s e

( 5 )

e q u i v a l e n t

u s i n g

C l a r k ' s

t r a n s f o r m a t i o n e q u a t i o n s [ 1 ] .

v

s i n

( a )

T h i s i s o n c e

a g a i n

i m p l e m e n t e d

u s i n g

t h e

' f u n c t i o n '

t b

= -

sin ( 2 ; T / 3 ) b l o c k s .

F u r t h e r t h e

t w o - p h a s e

e q u i v a l e n t

i s t r a n s f o r m e d

V b

s i n ( 2 2 T / 3 )

t o

p o l a r

f o r m

u s i n g

' C a r t e s i a n

t o

p o l a r '

b l o c k

f r o m

to

 

t a

-

t b ( 6 )

' S i m u l i n k

e x t r a s '

s u b - l i b r a r y .

T h e

o u t p u t

o f

t h i s

b l o c k

i s

t o

s

t h e m a g n i t u d e

o f

t h e r e f e r e n c e

a s

t h e f i r s t o u t p u t

a n d

t h e

w h e r e

V a

=

v b

= ( 2 / 3 )

V , .

i n

o r d e r t o o b t a i n

f i x e d c o r r e s p o n d i n g a n g l e

o f

t h e

r e f e r e n c e

a s

t h e

s e c o n d

s w i t c h i n g f r e q u e n c y

a n d

o p t i m u m

h a r m o n i c

o u t p u t .

p e r f o r m a n c e

f r o m

SVPWM,

e a c h l e g s h o u l d c h a n g e

i t s

4 . 2

S w i t c h i n g

T i m e C a l c u l a t i o n

s a t e

o n l y

o n c e

i n

o n e

s w i t c h i n g

p e r i o d .

T h i s i s

a c h i e v e d

T h e

s w i t c h i n g

t i m e a n d c o r r e s p o n d i n g s w i t c h s t a t e

f o r

b y

a p p l y i n g

z e r o s t a t e v e c t o r

f o l l o w e d

b y t w o

a d j a c e n t

a c t i v e s t a t e

v e c t o r i n

h a l f s w i t c h i n g p e r i o d .

T h e

n e x t

b l c k

' s f

s i n g

i s

( 5 ) u a n d ( )

t h e

M a t i a b

h a l f

o f

t h e

s w i t c h i n g p e r i o d

i s t h e

m i r r o r

i m a g e

o f t h e

b l o c k

  s f r

u s i n g e x p r e s s i o n s

( 5 )

a n d

( 6 ) .

T h e M a t l a b

f i r s t

h a l f . T h e

t o t a l

s w i t c h i n g p e r i o d

i s d i v i d e d i n t r o 7

t h e r e f e r e n c e a n d t i m e r s i g n a l f o r

c o m p a r i s o n .

T h e

p a r t s , t h e

z e r o v e c t o r

i s

a p p l i e d

f o r

1 / 4 t h

o f

t h e t o t a l

z e r o

v e c t o r t i m e f i r s t f o l l o w e d

b y

t h e

a p p l i c a t i o n

o f

a c t i v e

a n g l e

o f

t h e

r e f e r e n c e

v o l t a g e

i s

h o l d f o r e a c h

s w i t c h i n g

v e c t o r s f o r

h a l f

o f

t h e i r

a p p l i c a t i o n

t i m e

a n d

t h e n

a g a i n

p e r i o d

s o

t h a t

i t s

v a l u e

d o e s

n o t

c h a n g e

d u r i n g

t i m e

z e r o v e c t o r i s

a p p l i e d

f o r

1 / 4 t h

o f

t h e

z e r o v e c t o r t i m e .

c a l c u l a t i o n .

T h e

a n g l e

i n f o r m a t i o n i s

u s e d

f o r s e c t o r

.. . - - . . ,

.

. . . . . . . . i d e n t i f i c a t i o n

i n M a t l a b c o d e

' a a a ' .

F u r t h e r ,

a

r a m p i n g

T h i s i s

t h e n

r e p e a t e d

i n t h e n e x t h a l f o f t h e

s w i t c h i n g

t i m e

s i g n a l

S g e n e r a t e d

t o

b e u s e d n M a t l a b c o d e .

T h i s

p e r i o d .

T h i s i s

how

s y m m e t r i c a l SVPWM

i s

o b t a i n e d .

T h e

l e g v o l t a g e

i n o n e

s w i t c h i n g p e r i o d

i s

d e p i c t e d

i n

r a m p

i s

g e n e r a t e d

u s i n g ' r e p e a t i n g

s e q u e n c e '

f r o m t h e

F i g .

5 f o r

s e c t o r

1 .

s o u r c e

s u b - l i b r a r y .

F l g .

5

I o r s e c t o

1 .

t s

T h e M a t l a b c o d e f i r s t l y i d e n t i f i e s t h e s e c t o r o f t h e

P

s

r e f e r e n c e

v o l t a g e .

T h e t i m e

o f

a p p l i c a t i o n

o f

a c t i v e

a n d

t

4

t a

/ 2

: t b / 2

t o / 2

t b / 2

:

t a

/ 2

t o

/ 4 z e r o

v e c t o r s a r e t h e n

c a l c u l a t e d . T h e t i m e s

a r e

t h e n

a r r a n g e d

a c c o r d i n g

t o

F i g .

5 .

T h i s

t i m e

i s

t h e n

c o m p a r e d

w i t h

t h e

r a m p

t i m e r

s i g n a l .

D e p e n d i n g

u p o n

o X

L

t h e l o c a t i o n

o f t h e

t i m e

s i g n a l ,

t h e

s w i t c h s t a t e i s

d e f i n e d .

T h i s s w i t c h s t a t e

i s

t h e n p a s s e d o n t o t h e

i n v e r t e r b l o c k .

T h e

c o d e

i s

g i v e n

i n

A p p e n d i x

1 .

 

~ ~ ~ ~ V d c

 

4 . 3

T h r e e - p h a s e

I n v e r t e r B l o c k

k

8

V

V V

V

, ,

<

T h e i n v e r t e r m o d e l i s b u i l d

u s i n g

' f u n c t i o n '

b l o c k s

V 8

2

V 7

V 2

8

a c c o r d i n g t o t h e e x p r e s s i o n ( 4 ) . T h u s t h e o u t p u t

o f

t h e

F i g u r e 5 .

L e g

v o l t a g e s a n d

s p a c e v e c t o r d i s p o s i t i o n i n v e r t e r

b l o c k

i s

t h e

p h a s e v o l t a g e s .

f o r

o n e

s w i t c h i n g p e r i o d

i n s e c t o r

I .

T h e s i n u s o i d a l

r e f e r e n c e

s p a c e

v e c t o r f o r m a c i r c u l a r

4 . 4

F i l t e r B l o c k s

t r a j e c t o r y

i n s i d e t h e

h e x a g o n .

T h e

l a r g e s t o u t p u t v o l t a g e T h e PWM v o l t a g e s i g n a l i s f i l t e r e d u s i n g f i r s t o r d e r

m a g n i t u d e

t h a t c a n b e

a c h i e v e d u s i n g

SVPWM i s t h e

f i l t e r . T h i s

i s i m p l e m e n t e d

u s i n g ' T r a n s f e r f u n c t i o n '

r a d i u s

o f

t h e

l a r g e s t

c i r c l e

t h a t c a n

b e

i n s c r i b e d

w i t h i n

b l o c k

f r o m ' C o n t i n u o u s ' s u b - l i b r a r y . T h e t i m e c o n s t a n t

t h e

h e x a g o n .

T h i s c i r c l e

i s

t a n g e n t i a l

t o t h e m i d

p o i n t s

o f

t h e f i r s t - o r d e r

f i l t e r

i s

c h o s e n

a s 0 . 8 m s .

o f

t h e l i n e s

j o i n i n g

t h e

e n d s o f

t h e

a c t i v e

s p a c e

v e c t o r .

T h u s

t h e

maximum

o b t a i n a b l e

f u n d a m e n t a l

o u t p u t

4 . 5

V o l t a g e

A c q u i s i t i o n

v o l t a g e

i s T h e

f i l t e r e d p h a s e v o l t a g e s a r e s t o r e d

i n

w o r k s p a c e s

i n

I * 1

2

1

t h i s b l o c k .

v s

= - V , ,

cos

( / T / 6 )

= >

V

( 7 )

S i m u l a t i o n i s

c a r r i e d o u t

u s i n g

t h e

d e v e l o p e d

m o d e l f o r

maximum o b t a i n a b l e r e f e r e n c e v o l t a g e

a n d

t h e

r e s u l t i n g

f i l t e r e d

l e g

a n d p h a s e

v o l t a g e s

a r e s h o w n

i n

F i g s . 8

a n d

9 .

T h i s

s e c t i o n

d e t a i l s

t h e s t e p b y s t e p 5 . CONCLUSIONS

d e v e l o p m e n t o f M a t l a b/ Si m u l i n k m o d e l

f o r

SVPWM.

T h e S i m u l i n k m o d e l

i s

s h o w n i n F i g .

6 .

E a c h b l o c k

i s

Asml

albSmln

o e

speetdt

f u r t h e r e l a b o r a t e d i n F i g .

7 .

T h e M a t l a b

c o d e u s e d

t o

g e n e r a t e t h e

s w i t c h i n g p a t t e r n

i S

a l s o

p r o v i d e d .

E a c h

imlenSVW

fothe asVS.Abefrvw

o f

t h e

V S I

m o d e l i S a l s o r e p o r t e d b a s e d

o n s p a c e v e c t o r

s u b b l o c k s

o f F i g . 6 i S d e s c r i b e d i n t h e f o l l o w i n g

s u b -

reesnai.AMtabSmikbsdmolfr

section.

~

~ ~ ~ ~ ~ ~

e r s e t t o .

alb/lumkbsdmoe

o

4 .

e e e o n c e V l a e G n r t o . l c

i m p l e m e n t a t i o n

o f

SVPWM i s

p r e s e n t e d .

T h e s t e p - b y -

1 0 9 8

Page 4: Matlab-Simulink Model Three-Phase Voltage Source Inverter

8/20/2019 Matlab-Simulink Model Three-Phase Voltage Source Inverter

http://slidepdf.com/reader/full/matlab-simulink-model-three-phase-voltage-source-inverter 4/5

La

vs

MLX

MT

LAB

5 - P h

1 1 1 1 1 1 1 1 - l ~ ~ ~ ~ ~ u x b

S b A

Vl

b

Fh

6

u n I i z nI o n

HptinG

R e p E a t i

n g

S , e q u

e n c D e

F i g u r e 6 .

M a t l a b / S i m u l i n k

Model o f

SVPWM

cosu

[ 1

f 2 '

p

i f 1

1 s q

r ( )

n

Va

r e f

( 2 t 3 ) ( u

[ 1 1 +

u

[ 2 ] f o o s g 2

p

i / 3 ) +

[ S ] f o o s g c V

p

i S 3 ) )

.

( 7 k

M a g n i t u d e

V f d

o c o s g u [ 1 ] 2 - p i ' f 1 - 2 r p i / 3 y s q r b p )

B Mu x

Vb

r e f

|

~ ~ ~ ( 1 3 ) S I u

[ 2 ] : s i

n ( 2 : p i / 3 ) +

u [ B ] : s i n ( 2 : 2 = p

i i 3

 1

W

n G )

____ ____ ____ ____ ____ ____ ____ ____ ____

____A

n g l e

c o s ( u [ 1

] 2

p i : f 1 - 4

p i t 3 ) s q r I ( )

V

q

~~~

~ ~ ~ ~ C a

t e s i a to

V o r e f

P o l a r

( a )

[

|

y ~ ~ ~ ( d c I 3 S p ( 2 : u

[ 1 ] - u [ 2 ] -

u

3 ] )

]

r ef 1

Va

Transfer

F

on

F o n

CD-

d

y c 1 3 X X ( 2 r u 2 ] - u[ ]-up])

0Tm0IIIIIt-*

CII

r e f 2

Vb

In2

|

O.OOOSsl

u t 2

F o n l

Transfer

Fonl

CI -*-

J ( V d 3 ( 2 2 W [ ] - u [ 2 ] - u [ ] J )

CL

r e f S

Vo

InS

O . 0 O O S s + l 1

0

u t 3

F

o n 2

Transfer

Fon2

( b )

( c )

F i g u r e

7 .

S u b - b l o c k s

o f

M a t l a b / S i m u l i n k m o d e l :

( a )

R e f e r e n c e

v o l t a g e

g e n e r a t i o n

( b )

VSI

( c )

F i l t e r s

1

0 . 6

A

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ V a

V b

V c

0 . 9

Vb

Vc

A

Va

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 . 4

0 . 8

0 . 6

- 0 . 2

0 . 3

Page 5: Matlab-Simulink Model Three-Phase Voltage Source Inverter

8/20/2019 Matlab-Simulink Model Three-Phase Voltage Source Inverter

http://slidepdf.com/reader/full/matlab-simulink-model-three-phase-voltage-source-inverter 5/5

s t e p m o d e l

d e v e l o p m e n t i s r e p o r t e d .

T h e

p r e s e n t e d

t O

= ( t s - t a - t b ) ;

m o d e l

g i v e s a n

i n s i g h t

i n t o

t h e SVPWM. By v a r y i n g t h e t l = [ t O / 4

t a / 2 t b / 2

t O / 2 t b / 2

t a / 2

t O / 4 ] ; t l = c u m s u m ( t l ) ;

m a g n i t u d e o f

t h e

i n p u t

r e f e r e n c e

d i f f e r e n t

m o d u l a t i o n v l = [ O

0 0

1

0

0

O ] ; v 2 = [ O

1 1 11 1

O ] ; v 3 = [ O

0 1 1

1

0

0 ] ;

i n d e x c a n b e a c h i e v e d .

f o r j = 1

: 7

i f ( Y < t

( I

) )

6 . REFERENCES b r e a k

e n d

[ 1 ] H o l m e s , G . D . a n d

L i p o ,

T . A . , P u l s e

W i d t h

e n d

M o d u l a t i o n

f o r

P o w e r C o n v e r t e r s

-

P r i n c i p l e s a n d

s a = v l ( ) ; s b = v 2 ( j ) ; s c = v 3 ( j ) ;

P r a c t i c e ,

I E E E P r e s s

S e r i e s o n

P o w e r

E n g . , J o h n

W i l e y e n d

a n d

S o n s ,

P i s c a t a w a y , N J , USA, 2 0 0 3 .

0 o s e c t o r

I V

i f

( x > = - p i )

 

( x < - 2 * p i / 3 )

[ 2 ]

K a z m i e r k o w s k i , M . P . ,

K r i s h n a n ,

R . a n d

a d v

x

+

p i ;

B l a a b j e r g , F . ,

C o n t r o l i n

p o w e r

e l e c t r o n i c s -

s e l e c t e d t b = m a g

*

s i n ( p i / 3

-

a d v ) ; t a = m a g

*

s i n ( a d v ) ;

p r o b l e m s , A c a d e m i c P r e s s ,

C a l i f o r n i a , USA,

2 0 0 2 .

t O

= ( t s - t a - t b ) ;

[ 3 ] I m p l e m e n t i n g SVPWM

w i t h

AMD,

t l = [ t O / 4 t a / 2

t b / 2

t O / 2 t b / 2 t a / 2 t O / 4 ] ; t l = c u m s u m ( t l ) ;

A p p l i c a t i o n

n o t e s , A n a l o g u e

E l e c t r o n i c s

v l = [ O

0 0

1

0 0

0 ] ; v 2 = [ 0

0 1 1 1

0

0 ] ; v 3 = [ 0

11 11 1

0 ] ;

[ 4 ]

M a t a l b / S i m u l i n k r e f e r e n c e g u i d e

f o r =

1 : 7

w w w . m a t h w o r k s . c o . u k .

b r e a k

e n d

APPENDIX

1

e n d

  M a t l a b

C o d e t o

g e n e r a t e

S w i t c h i n g

f u n c t i o n s

s a = v l ( ) ; s b = v 2 ( j ) ; s c = v 3 ( j ) ;

  0 I n p u t s a r e

m a g n i t u d e u 1 ( : ) , a n g l e u 2 ( : )

e n d

0 0

a n d

r a m p t i m e

s i g n a l f o r c o m p a r i s o n u 3 ( : )

0 0

s e c t o r V

f u n c t i o n

[ s f l = a a a ( u )

i f

( x > = - 2 * p i / 3 )

 

( x < - p i / 3 )

t s = 0 . 0 0 0 2 ; v d c =

1

; p e a k _ p h a s e

max=

v d c / s q r t ( 3 ) ;

a d v

=

x + 2 * p i / 3 ;

x = u ( 2 ) ;

y = u ( 3 ) ; m a g = ( u ( l ) / p e a k p h a s e m a x )

*

t s ; t a = m a g * s i n ( p i / 3 - a d v ) ; t b = m a g

s i n ( a d v ) ;

0 sector

ItO ttab

i f

( x > = O )  

( x < p i / 3 )

t l = [ t O / 4

t a / 2 t b / 2 t O / 2 t b / 2 t a / 2 t O / 4 ] ; t l = c u m s u m ( t l ) ;

t a

=

mag

*

s i n ( p i / 3 - x ) ; t b

=

mag

*

s i n ( x ) ;

v l = [ O

0

1 1 1 0

0 ] ; v 2 = [ 0

0 0 1 0 0

0 ] ; v 3 = [ 0 11 11 1

0 ] ;

t O

= ( t s - t a - t b ) ;

f o r

j = 1 : 7

t l = [ t O / 4

t a / 2

t b / 2 t O / 2 t b / 2

t a / 2

t O / 4 ] ; t l = c u m s u m ( t l ) ;

i f ( y < t 1

( j ) )

v l = [ O

11 1 1

0 ] ; v 2 = [ 0

0

1 1 1

0 0 ] ; v 3 = [ 0 00

1

0 0

0 ] ;

b r e a k

f o r j = 1 : 7

e n d

i f ( y < t 1 I ( j ) )

e n d

b r e a k

s a = v

I

( ) ; s b = v 2 ( j ) ; s c = v 3

( ) ;

e n d

e n d

e n d

  S e c t o r V I

s a = v l

) ; s b = v 2 ( j ) ; s c = v 3 ( j ) ;

i f

( x > = - p i / 3 )   ( x < O )

e n d

a d v

=

x + p i / 3 ;

° 0

s e c t o r

I I

t b

=

mag * s i n ( p i / 3 - a d v ) ; t a

=

mag

* s i n ( a d v ) ;

i f

( x > = p i / 3 )

 

( x < 2 * p i / 3 )

t O

= ( t s - t a - t b ) ;

t b

=

mag

*

s i n ( p i / 3 - a d v ) ; t a =

mag

*

s i n ( a d v ) ;

v l = [ O 1 1 1 1 1

0 ] ; v 2 = [ 0

0 0

1 0 0

0 ] ; v 3 = [ 0

0

1 1 1 0

0 ] ;

t O

= ( t s - t a - t b ) ;

f o r j = l 1 : 7

t l = [ t O / 4

t a / 2 t b / 2 t O / 2 t b / 2 t a / 2

t O / 4 ] ; t l = c u m s u m ( t l ) ;

i f ( y < t 1 ( I ) )

v l = [ O

0

1 1 1

0

0 ] ; v 2 = [ 0 1

1 1

1 1

0 ] ; v 3 = [ 0 0 0

1

0

0 0 ] ;

b r e a k

f o r j = 1 : 7

e n d

i f ( y < t l ( j ) )

e n d

b r e a k

s a = v

) ; s b = v 2 ( j ) ; s c = v 3 ( j ) ;

e n d

e n d

e n d

s f = [ s a , s b ,

s c ] ;

s a = v l ( j ) ; s b = v 2 ( j ) ; s c = v 3 ( j ) ;

C o r r e s p o n d i n g A u t h o r :

D r .

A t i f I q b a l ,

R e a d e r ,

e n d

D e p a r t m e n t

o f E l e c t r i c a l

E n g i n e e r i n g , A l i g a r h M u s l i m

° / o s e c t o r

I I I

U n i v e r s i t y ,

A l i g a r h 2 0 2 0 0 2 , I n d i a .

P h o n e : ± 9 1 5 7 1

i f

( x > = 2 * p i / 3 )

  ( x < p i )

2 9 0 1 0 2 9 , M o b . ± 9 1 9 4 1 1 2 1 0 3 7 2 , E m a i l :

a d v = x - 2 * p i / 3 ;

a t i f _ i q b a l l g r e d i f f i n a i l . c o m

t a

=mag

*

s i n ( p i / 3 - a d v ) ; t b

=mag

*

s i n ( a d v ) ;

1 1 0 0