mathematics performance tasks · 2020-02-14 · mathematics performance tasks! 1"...

29
Mathematics Performance Tasks 1 CREATING AND SOLVING WORD PROBLEMS Overview At a Glance In this activity, students observe a situation in a picture, make comments about whatever they notice, and then pose mathematical questions about the situation. Then individuals answer the questions posed by the class. Grade Level Grade 1 Task Format Small group or whole class and partner work Three parts of increasing challenge to be used when students are ready for each part (i.e., they do not need to be done on consecutive days) Materials Needed For each student 1 pencil a writing surface, such as a table or clipboard 3 copies of the Problem Solving Template (provided) counters, cubes, buttons, or base10 blocks, if needed by students For the teacher Part 1: 1 large copy of Picture A: Strawberries and Cherries; counters, cubes, or buttons Part 2: 1 large copy of Picture B: 9 cupcakes; 1 large copy of Picture C: 7 cupcakes; counters, cubes, or buttons Part 3: story visible on a board or chart paper; counters, cubes, buttons, or base10 blocks (1 ten and 10 ones) Observation Checklist Prerequisite Concepts/Skills Counting to 100 by ones and by tens Reading and writing numbers 0–20 Experience in representing addition and subtraction situations with objects, fingers, drawings, or acting out situations Familiarity with combining collections to find totals 5 ≤ n ≤ 10 Experience with composing and decomposing n ≤ 5 into pairs Content Standards Addressed in This Task 1.OA.A.1 Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.

Upload: others

Post on 19-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

 Mathematics Performance Tasks

 

1  

CREATING  AND  SOLVING  WORD  PROBLEMS  

Overview  

At  a  Glance   In  this  activity,  students  observe  a  situation  in  a  picture,  make  comments  about  whatever  they  notice,  and  then  pose  mathematical  questions  about  the  situation.  Then  individuals  answer  the  questions  posed  by  the  class.  

Grade  Level   Grade  1    

Task  Format   • Small  group  or  whole  class  and  partner  work  • Three  parts  of  increasing  challenge  to  be  used  when  students  are  

ready  for  each  part  (i.e.,  they  do  not  need  to  be  done  on  consecutive  days)  

Materials  Needed   For  each  student  • 1  pencil  • a  writing  surface,  such  as  a  table  or  clipboard  • 3  copies  of  the  Problem  Solving  Template  (provided)  • counters,  cubes,  buttons,  or  base-­‐10  blocks,  if  needed  by  students  For  the  teacher  • Part  1:  1  large  copy  of  Picture  A:  Strawberries  and  Cherries;  counters,  

cubes,  or  buttons  • Part  2:  1  large  copy  of  Picture  B:  9  cupcakes;  1  large  copy  of    

Picture  C:  7  cupcakes;  counters,  cubes,  or  buttons  • Part  3:  story  visible  on  a  board  or  chart  paper;  counters,  cubes,  

buttons,  or  base-­‐10  blocks  (1  ten  and  10  ones)  • Observation  Checklist  

Prerequisite  Concepts/Skills  

• Counting  to  100  by  ones  and  by  tens  • Reading  and  writing  numbers  0–20  • Experience  in  representing  addition  and  subtraction  situations  with  

objects,  fingers,  drawings,  or  acting  out  situations  • Familiarity  with  combining  collections  to  find  totals  5  ≤  n  ≤  10  • Experience  with  composing  and  decomposing  n  ≤  5  into  pairs  

Content  Standards  Addressed  in  This  Task  

1.OA.A.1        

Use  addition  and  subtraction  within  20  to  solve  word  problems  involving  situations  of  adding  to,  taking  from,  putting  together,  taking  apart,  and  comparing,  with  unknowns  in  all  positions,  e.g.,  by  using  objects,  drawings,  and  equations  with  a  symbol  for  the  unknown  number  to  represent  the  problem.  

Page 2: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

 

 2  

Extensions  and  Elaborations  

1.OA.A.2        

Solve  word  problems  that  call  for  addition  of  three  whole  numbers  whose  sum  is  less  than  or  equal  to  20,  e.g.,  by  using  objects  drawings,  and  equations  with  a  symbol  for  the  unknown  number  to  represent  the  problem.  

Standards  for  Mathematical  Practice  Embedded  in  This  Task  

MP1   Make  sense  of  problems  and  persevere  in  solving  them.  

MP4   Model  with  mathematics.  

GET  READY:  Familiarize  Yourself  with  the  Mathematics  This  task  assesses  students’  understanding  of  how  to  solve  various  addition  and  subtraction  situations  involving  totals  ≤  20.  The  task  is  presented  in  three  parts,  broken  into  types  of  addition  and  subtraction  situations  (detailed  below)  of  increasing  difficulty.  

Part  1:  Students  work  with  addition  and  subtraction  situations  in  which  all  numbers  are  ≤10.  Part  1  focuses  on  problems  in  which  the  result  is  known,  but  one  of  the  addends  is  not.  As  you  use  this  activity  with  your  students,  you  might  find  that  some  need  review  of  the  Result  Unknown  type  problems,  which  are  a  major  focus  of  kindergarten  instruction.  

Part  2:  In  this  part,  students  are  working  with  Compare  type  problems  in  which  the  difference  between  two  quantities  is  the  focus.  More  information  is  detailed  below,  but  these  are  typically  more  difficult  for  students.    

Part  3:  Students  solve  problems  similar  in  type  to  Parts  1  and  2,  but  now  with  numbers  ≤  20.    

Each  part  is  its  own  task.  You  may  choose  to  begin  all  students  on  Part  1  and,  depending  upon  your  observations,  move  some  students  to  Part  2  and  Part  3;  or  you  may  implement  Parts  2  and  3  at  a  later  date,  entirely  at  your  discretion.  Also,  depending  on  your  mathematics  program,  you  might  do  Part  3  before  Part  2.

Question-­‐less  Word  Problems  Traditional  word  problems  typically  end  with  a  question  that  students  need  to  answer.  In  this  task,  students  look  at  a  picture  and  describe  what  they  see.  Then  they  come  up  with  the  question(s)  to  be  answered.  This  type  of  presentation  engages  students  and  gives  them  an  entry  point  to  the  problem—any  observation  is  valid.  It  also  gives  you,  the  teacher,  insight  into  the  type  of  thinking  coming  from  your  students.  They  might  suggest  many  non-­‐mathematical  observations  or  even  stories  about  their  experience  with  the  objects  portrayed.  As  the  activity  continues,  you  will  want  to  move  them  to  the  mathematical  observations—quantities,  categories,  patterns,  etc.—by  sorting  the  students’  comments  into  two  lists.  From  here,  it  might  be  a  natural  transition,  or  it  might  need  some  prompting,  to  move  students  to  posing  the  mathematical  questions  that  can  be  answered  through  the  information  in  the  picture.  This  gives  them  ownership  of  the  solution  process  and  the  result.  When  they  are  outside  of  the  classroom,  they  will  begin  to  see  the  world  around  them  through  a  more  mathematical  eye.  Beyond  engagement,  this  presentation  method  gives  students  experience  with  making  sense  of  a  situation  and  helps  them  learn  to  distinguish  important  information  from  the  irrelevant.    

Page 3: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

 

 3  

Types  of  Addition  and  Subtraction  Situations  Problem  solving  in  grade  1  helps  students  learn  to  mathematize  and  model  addition  and  subtraction  situations  using  objects,  drawings,  and  equations.  This  becomes  a  foundation  for  later  algebraic  problem  solving  (NCTM,  2009).  When  presented  with  a  story  problem,  students  must  first  make  meaning  of  the  situation.  From  this  understanding,  they  can  build  a  representation  of  the  problem  that  helps  them  choose  or  develop  a  strategy  for  finding  a  solution.  The  representation  may  take  the  form  of  objects,  drawings,  or  written  equations.    Standard  1.OA.A.1  calls  for  students  to  become  proficient  in  solving  three  different  types  of  addition  and  subtraction  situations:  Add  To/Take  From,  Put  Together/Take  Apart,  and  Compare.  In  grade  1,  each  of  these  situations  involves  three  quantities  and  students  need  experience  with  problems  that  have  unknowns  in  all  positions.  For  each  of  these,  students  should  use  the  representation  that  best  suits  where  they  are:  one  student  may  be  ready  to  solve  a  problem  with  a  written  equation;  another  student  may  be  just  as  capable  of  solving  the  problem,  but  does  it  using  objects  for  representation.  Variations  among  students  are  certainly  expected  and  the  type  of  representation  used  is  worth  noting.  Finally,  keep  in  mind  that  grade-­‐1  students  should  be  able  to  represent  these  situations  using  equations,  so  it  is  important  to  help  students  move  towards  that  goal.      Add  To/Take  From.  Standard  1.OA.A.1  uses  the  term  Add  To/Take  From  for  situations  that  have  also  been  called  Change  Plus/Change  Minus  (Cross,  Woods,  &  Schweingruber,  2009;  NCTM,  2009).  Such  problems  involve  three  quantities  A  +  B  =  C  or  A  –  B  =  C,  in  which  A  is  the  starting  quantity,  B  is  the  amount  by  which  this  quantity  changes,  and  C  is  the  result.  This  problem  type  is  probably  most  familiar:    

Miriam  has  7  crayons  and  Joshua  gives  her  4  more.  How  many  crayons  does  Miriam  have  now?  or  

Miriam  had  7  crayons  but  gave  4  to  Joshua.  How  many  crayons  does  Miriam  have  now?    

It  is  called  Result  Unknown,  because  A  and  B,  the  start  and  the  change,  are  known  and  the  student  must  determine  C,  the  resulting  sum  or  difference.  This  is  how  the  facts  are  typically  taught—e.g.,  7  +  4  =  ☐,  or  7  –  4  =  ☐.  Because  of  this,  A  +  B  =  ☐  or  A  –  B  =  ☐ become  the  most  familiar  and,  generally,  the  easiest  forms  for  children  to  solve.  Reversing  the  action  results  in  Start  Unknown  ☐ +  B  =  C  or  Change  Unknown  A  +  ☐ =  C.  More  experience  with  these  increases  children’s  familiarity  and  proficiency  with  them.      Table  1,  from  the  Common  Core  State  Standards  for  Mathematics  (NGA  &  CCSSO,  2010,  p.  88),  gives  examples  of  all  these  types.  Because  standard  1.OA.A.1  calls  for  unknowns  in  all  positions  and  because  kindergarten  students  solved  situation  types  with  an  unknown  result  and  unknown  total,  your  grade-­‐1  students  may  be  ready  to  focus  more  on  Change  Unknown  and  Start  Unknown  situations.        

Page 4: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

 

 4  

Table  1.  “Add  To”  and  “Take  From”  Story  Problem  Type     Result  Unknown   Change  Unknown   Start  Unknown  

Add  to  

A  bunnies  sat  on  the  grass.  B  more  bunnies  hopped  there.  How  many  bunnies  are  on  the  grass  now?  

 A  +  B  =  !  

(e.g.,  Two  bunnies  sat  on  the  grass.  Three  more  bunnies  hopped  there.  How  many  bunnies  are  on  the  grass  now?  2  +  3  =  !)  

   

A  bunnies  were  sitting  on  the  grass.  Some  more  bunnies  hopped  there.  Then  there  were  C  bunnies.  How  many  bunnies  hopped  over  to  the  A  bunnies?  

A  +  !  =  C  (e.g.,  Two  bunnies  were  sitting  on  the  grass.  Some  more  bunnies  hopped  there.  Then  there  were  five  bunnies.  How  many  bunnies  hopped  over  to  the  first  two?  2  +  !  =  5)  

Some  bunnies  were  sitting  on  the  grass.  B  more  bunnies  hopped  there.  Then  there  were  C  bunnies.  How  many  bunnies  were  on  the  grass  before?  

!  +  B  =  C  (e.g.,  Some  bunnies  were  sitting  on  the  grass.  Three  more  bunnies  hopped  there.  Then  there  were  five  bunnies.  How  many  bunnies  were  on  the  grass  before?      !  +  3  =  5)  

Take  from  

C  apples  were  on  the  table.  I  ate  B  apples.  How  many  apples  are  on  the  table  now?  

C  –  B  =  !  (e.g.,  Five  apples  were  on  the  table.  I  ate  two  apples.  How  many  apples  are  on  the  table  now?  5  –  2  =  !)  

 

C  apples  were  on  the  table.  I  ate  some  apples.  Then  there  were  A  apples.  How  many  apples  did  I  eat?  

C  –  !  =  A  (e.g.,  Five  apples  were  on  the  table.  I  ate  some  apples.  Then  there  were  three  apples.  How  many  apples  did  I  eat?  5  –  !  =  3)  

Some  apples  were  on  the  table.  I  ate  B  apples.  Then  there  were  A  apples.  How  many  apples  were  on  the  table  before?  

 !  –  B  =  A  (e.g.,  Some  apples  were  on  the  table.  I  ate  two  apples.  Then  there  were  three  apples.  How  many  apples  were  on  the  table  before?  !  –  2  =  3)  

 Put  Together/Take  Apart.  In  Put  Together  situations,  there  are  two  separate  parts  (A)  and  (B)—e.g.,  red  and  green  apples—which,  combined,  make  a  total  amount  (C)  (Cross,  Woods,  &  Schweingruber,  2009).  Again,  students  may  be  solving  to  find  any  of  these  numbers.  However,  in  all  cases,  students  are  using  the  addition  equation  A  +  B  =  C  as  the  foundation  and  making  appropriate  changes  to  the  equation  according  to  the  context  of  the  word  problem  (e.g.,  A  +  ☐ =  C;  ☐  +  B  =  C;  or  C  –  ☐ = B  or  A).  Take-­‐Apart  situations  work  in  the  reverse.  In  these  problems,  the  total  (C)  is  known,  but  one  or  both  of  the  parts  (A)  or  (B)  are  not.  Here  students  determine  an  unknown  part  or  find  all  of  the  ways  to  break  the  sum  into  two  parts  when  both  are  unknown.  Table  2  below  (NGA  &  CCSSO,  2010,  p.  88)  shows  examples.      

Page 5: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

 

 5  

Table  2.  “Put  Together”  and  “Take  Apart”  Story  Problem  Type  

  Total  Unknown   Addend  Unknown   Both  Addends  Unknown    

Put  Together/  Take  Apart  

A  red  apples  and  B  green  apples  are  on  the  table.  How  many  apples  are  on  the  table?  

A  +  B  =  !  (e.g.,  Three  red  apples  and  2  green  apples  are  on  the  table.  How  many  apples  are  on  the  table?  3  +  2  =  !)  

 

C  apples  are  on  the  table.  A  are  red  and  the  rest  are  green.  How  many  apples  are  green?  

A  +  !  =  C  C  –  A  =  !  

(e.g.,  Five  apples  are  on  the  table.  Three  are  red  and  the  rest  are  green.  How  many  apples  are  green?  3  +  !  =  5  or  5  –  3  =  !)  

 

Grandma  has  C  flowers.  How  many  can  she  put  in  her  red  vase  and  how  many  in  her  blue  vase?  

!  +  !  =  C  (e.g.,  Grandma  has  five  flowers.  How  many  can  she  put  in  her  red  vase  and  how  many  in  her  blue  vase?)  

5  =  0  +  5,  5  =  5  +  0  

5  =  1  +  4,  5  =  4  +  1  

5  =  2  +  3,  5  =  3  +  2  

Compare.  These  situations  involve  finding  the  exact  amount  by  which  two  quantities  differ.  Students  may  see  this  difference  as  either  the  “extra  leftovers  in  the  bigger  quantity  or  the  amount  the  smaller  quantity  needs  to  gain  to  be  the  same  as  the  bigger  quantity”  (NCTM,  2009,  p.  41).  Table  3  below  (NGA  &  CCSSO,  2010,  p.  88)  shows  examples  of  these  three  sub-­‐types.    Table  3.  “Compare”  Story  Problem  Type  

  Difference  Unknown   Bigger  Unknown   Smaller  Unknown  

Compare  

“How  many  more?”  version:  Lucy  has  A  apples.  Julie  has  C  apples.  How  many  more  apples  does  Julie  have  than  Lucy?    

A  +  !  =  C  (e.g.,  Lucy  has  2  apples.  Julie  has  5  apples.  How  many  more  apples  does  Julie  have  than  Lucy?  2  +  !  =  5)  

“More”  version:  Julie  has  B  more  apples  than  Lucy.  Lucy  has  A  apples.  How  many  apples  does  Julie  have?    

A  +  B  =  !    (e.g.,  Julie  has  3  more  apples  than  Lucy.  Lucy  has  2  apples.  How  many  apples  does  Julie  have?  2  +  3  =  !)  

“Fewer”  version:  Lucy  has  B  fewer  apples  than  Julie.  Julie  has  C  apples.  How  many  apples  does  Lucy  have?  

C  -­‐  B  =  !    (e.g.,  Lucy  has  3  fewer  apples  than  Julie.  Julie  has  5  apples.  How  many  apples  does  Lucy  have?  5  –  3  =  !  )  

“How  many  fewer?”  version:  Lucy  has  A  apples.  Julie  has  C  apples.  How  many  fewer  apples  does  Lucy  have  than  Julie?  

C  –  A  =  !  (e.g.,  Lucy  has  two  apples.  Julie  has  five  apples.  How  many  fewer  apples  does  Lucy  have  than  Julie?  5  –  2  =  !)  

 “Fewer”  version  with  misleading  language:  Lucy  has  B  fewer  apples  than  Julie.  Lucy  has  A  apples.  How  many  apples  does  Julie  have?  

B  +  A  =  !  (e.g.,  Lucy  has  3  fewer  apples  than  Julie.  Lucy  has  two  apples.  How  many  apples  does  Julie  have?  3  +  2  =  !)  

“More”  version  with  misleading  language:  Julie  has  B  more  apples  than  Lucy.  Julie  has  C  apples.  How  many  apples  does  Lucy  have?  

!  +  B  =  C  (e.g.,  Julie  has  three  more  apples  than  Lucy.  Julie  has  five  apples.  How  many  apples  does  Lucy  have?  !  +  3  =  5)  

 

Page 6: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

 

 6  

In  the  Difference  Unknown  situation,  a  student  may  think  of  Lucy’s  and  Julie’s  apples  using  this  type  of  representation:    

 A  student  may  then  use  either  addition  or  subtraction  correctly  to  solve  this  problem.  For  example,  a  student  may  think,  “I  know  that  Julie  has  5  apples,  so  if  I  subtract  Lucy’s  2  apples,  I  will  know  how  many  more  apples  Julie  has  than  Lucy  (or  how  many  fewer  apples  Lucy  has  than  Julie).”  Or,  a  student  may  think,  “If  Lucy  has  2  apples  and  Julie  has  5  apples,  then  2  +  !  =  5.”  Either  of  these  ways  of  thinking  makes  sense  given  the  situation.    Generally,  Compare  situations  have  been  treated  as  if  only  a  subtraction  equation  was  legitimate  to  use.  This  understanding  of  Compare  situations  is  too  narrow.  Remain  aware  of  this  as  you  observe  your  students,  because  students  think  about  these  situations  differently.    

Standards  for  Mathematical  Practice  The  main  purpose  of  word  problems  in  a  mathematics  classroom  is  to  prepare  students  for  making  sense  and  solving  problems  that  arise  in  later  classes  or  outside  of  the  classroom.  Even  young  students  need  opportunities  to  gather  information,  make  sense  of  a  problem,  consider  various  approaches,  be  flexible  and  have  stamina,  and  solve  and  check  the  reasonableness  of  their  thinking.  This  is  the  essence  of  the  Standards  for  Mathematical  Practice,  especially  MP1.  In  school,  word  problems  are  often  the  mechanism  to  give  students  this  experience,  but  recall  that  word  problems  are  not  a  goal  in  themselves;  their  real  purpose  is  to  let  students  mathematize  contexts  that  arise.    This  task  exercises  and  builds  habits  of  mind  underlying  two  Standards  for  Mathematical  Practice:  MP1:  Make  sense  of  problems  and  persevere  in  solving  them  and  MP4:  Model  with  mathematics.  Students  get  many  chances  to  think  about  a  situation,  describe  “the  meaning  of  a  problem,”  and  “look  for  entry  points”  to  its  solution.  In  doing  so,  students  ask  themselves,  “Does  this  make  sense?”  given  the  context.  They  evaluate  whether  their  approaches  and  solution  are  reasonable.  Through  these  experiences,  students  develop  an  “I-­‐can-­‐puzzle-­‐it-­‐out  disposition”  (Goldenberg,  2015).  This  is  all  key  to  MP1.    Students  engage  in  MP4  as  they  apply  the  mathematics  they  know  to  solving  problems  that  arise  at  home,  with  friends,  or  on  the  playground.  In  early  grades,  this  might  be  as  simple  as  writing  an  addition  or  subtraction  equation  to  describe  a  situation,  as  in  this  task.  Mathematically  proficient  students  routinely  interpret  their  mathematical  results  in  the  context  of  the  situation  and  reflect  on  whether  the  results  make  sense,  possibly  improving  the  model  if  it  has  not  served  its  purpose.  

For  More  Information  Cross,  C.  T.,  Woods,  T.  A.,  &  Schweingruber,  H.  (Eds).  (2009).  Committee  on  Earth  Childhood  

Mathematics,  Center  for  Education,  Division  of  Behavioral  and  Social  Science  and  Education  &  National  Research  Council.  (2009).  Mathematics  learning  in  early  childhood:  Paths  toward  excellence  and  equity.  Washington,  DC:  National  Academies  Press.  

Goldenberg,  E.  P.  Mark,  J.,  Kang,  J.,  Fries,  M.,  Carter,  C.,  and  T.  Cordner.  (2015).  Making  sense  of  algebra:  Developing  students’  mathematical  habits  of  mind.  Portsmouth,  NH:  Heinemann.  

5

2

Julie

Lucy

Difference Unknown

Page 7: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

 

 7  

National  Council  of  Teachers  of  Mathematics  (NCTM).  (2009).  Focus  in  grade  1:  Teaching  with  curriculum  focal  points.  Reston,  VA:  Author.  

Richardson,  K.  (2012).  How  children  learn  number  concepts:  A  guide  to  the  critical  learning  phases.  Bellingham,  WA:  Math  Perspectives  Teacher  Development  Center.    

GET  SET:  Prepare  to  Introduce  the  Task  1.     Gather  the  materials  listed  on  page  1.  For  all  parts  of  the  task,  make  3  copies  of  the  Problem  Solving  

Template  for  each  student.  Have  counters,  cubes,  or  base-­‐10  blocks  available  for  students  who  might  benefit  from  them.    

2.     Model  the  activity  to  the  whole  class  or  a  small  group.  Pair  students  ahead  of  time  and  have  them  sit  together.  They  will  need  a  writing  surface,  such  as  a  table  or  clipboard.  The  GO  section  “Observations  of  Students”  column  may  help  you  as  you  observe  students’  work.    

Introducing  the  Task    The  introduction  to  each  of  the  three  parts  is  similar  though  the  picture  or  story  changes.  The  basic  structure  of  the  introduction  is  described  below.  Throughout  this  document,  when  specific  language  is  suggested,  it  is  shown  in  italics.    

1. I’ll  show  you  a  picture  (or  read  you  a  short  story  –  Part  3).    

2. Take  a  look  at  the  picture  (or  think  about  the  short  story).  What  do  you  see?  (What  is  possible?  Part  3)  

3. Have  students  volunteer  to  model  the  situation.  

4. Once  the  context  of  the  story  problem  has  been  discussed,  say  

What  questions  can  you  ask  about  the  picture  (or  short  story)?  Keep  a  record  of  the  questions  and  observations,  writing  for  all  the  students  to  see.  

5. Now  that  we’ve  thought  of  some  possible  questions,  let’s  choose  one  to  answer.    

6. Now,  work  on  your  own  to  solve  the  problem.  Solve  it  any  way  you  choose—using  objects,  making  drawings,  or  writing  an  equation.  Use  your  paper  to  show  how  you  solved  the  problem.    

7. When  you  finish,  talk  with  your  partner  about  the  strategies  you  used.  Take  turns  so  each  of  you  has  a  chance  to  explain  your  thinking  and  your  solution  and  also  explain  why  you  agree  or  disagree  with  your  partner’s  thinking.  

8. If  students  are  ready  for  it,  you  could  also  ask  them  to  pose  other  questions  and  give  those  to  a  partner  to  solve.  

Preparing  to  Gather  Observation  Data  and  Determine  Next  Steps  in  Instruction  As  students  engage  in  the  task,  the  notes  in  the  next  section  will  help  you  identify  students’  current  strengths  and  possible  next  steps  for  instruction.  As  you  observe,  use  whichever  form  of  the  Observation  Checklist  that  best  helps  you  record  your  observations  of  students  and  other  relevant  evidence  as  you  see  it:  Individual,  Partner,  or  Class.  These  varied  forms,  available  at  the  end  of  this  document  and  in  a  separate  MS  Excel  file,  are  intended  to  give  you  a  choice  about  how  to  collect  notes  on  your  students  and  determine  possible  next  steps  for  instruction.      

Page 8: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

 

 8  

Addressing  Student  Misconceptions/Errors  As  students  work,  you  may  observe  these  common  challenges:  • Reading  comprehension  is  a  major  factor  in  understanding  both  the  context  of  a  word  problem  and  

the  question  it  poses.  Some  of  your  students  are  still  developing  their  comprehension  strategies  as  well  as  their  mathematical  vocabulary.  Take  notice  of  words,  phrases,  or  problem  situations  that  appear  to  be  particularly  challenging  for  your  students.  

• Keep  in  mind  that  the  language  used  to  ask  questions  in  word  problems  can  vary  but  the  meaning  may  be  the  same.  For  example,  “Maria  has  9  red  marbles  in  her  jar.  Joshua  has  some  white  marbles  in  his  jar.  Together,  they  have  15  marbles.”  Two  questions  that  could  be  asked  “How  many  white  marbles  does  Joshua  have  in  his  jar?”  OR  “How  many  marbles  would  Joshua  need  to  have  in  his  jar  so  that  they  have  15  marbles  in  the  two  jars?”  These  two  questions  have  the  same  answer  and  require  the  same  arithmetic  but  are  very  different  in  syntax  and  sentence  structure  and  even  meaning.  This  may  seem  inconsequential  to  adults  but  can  be  confusing  to  students.  Pay  attention  to  how  your  students  respond.  Are  there  specific  words,  phrases,  or  questions  that  a  student  understands  with  ease?  Are  there  others  that  are  more  challenging?  Identifying  the  answers  to  these  questions  will  help  you  uncover  misconceptions  or  misunderstandings  of  language.  

• When  students’  answers  are  incorrect,  try  to  discover  why.  Was  the  incorrect  total  caused  by  a  counting  error?  A  student’s  misunderstanding  of  the  operation  of  addition  or  subtraction?  A  developing  understanding  of  language?  It  is  valuable  to  pinpoint  why  this  error  took  place.  Asking  students  to  explain  their  work  can  help  you  know  which  strategies  students  used  and  how  they  used  them.    

• Comparison  situations  in  which  the  word  in  the  story  is  the  opposite  of  the  action  needed  for  the  solution  are  confusing  for  students  (NCTM,  2009).  For  example,  let’s  use  the  following  problems  to  illustrate  this  issue:  

Jocelyn  has  8  pears.  She  has  3  fewer  pears  than  Juan.  How  many  pears  does  Juan  have?  

Jacob  has  8  apples.  He  has  3  more  apples  than  Jenny.  How  many  apples  does  Jenny  have?  

For  many  students,  the  word  “fewer,”  if  it  is  understood  at  all,  screams  to  subtract,  and  the  word  “more”  suggests  they  should  add.  However,  to  know  how  many  pears  Juan  has,  they  must  add  3  to  8,  not  subtract  3  as  students  may  think;  and  to  know  about  Jenny’s  apples,  they  must  subtract.  Although  this  kind  of  Compare  situation  is  more  common  in  grade  2,  you  may  have  students  who  are  ready  to  give  it  a  try.  If  so,  be  mindful  of  these  types  of  comparison  situations  and  take  notice  of  how  your  students  interpret  the  language.  

 Extensions  and  Elaborations  This  task  can  be  extended  in  a  variety  of  ways:  • You  might  invite  students  to  ask  other  questions  about  a  particular  picture  (from  Parts  1  or  2)  or  

scenario  (Part  3),  to  choose  one  question,  and  then  solve  that  question.  For  example,  other  questions  that  students  may  be  interested  in  solving  include:  − “How  many  sprinkles  are  there  on  all  the  cupcakes?”  

− “How  many  more  cherries  does  ______  [name  of  Student  A]  have  than  _______  [name  of  Student  B]?”  

• You  might  use  other  pictures  or  other  question-­‐less  word  problems  for  which  students  can  create  a  question,  just  as  they  have  in  this  task.  To  do  this,  you  will  need  a  picture  that  is  rich  enough  for  

Page 9: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

 

 9  

students  to  identify  various  quantities  and  ask  questions.  For  a  question-­‐less  word  problem,  you  can  often  find  a  word  problem  that  you  have  used  in  the  past  and  remove  the  question.  

• To  address  standard  1.OA.A.2,  which  calls  for  students  to  solve  word  problems  that  involve  adding  three  whole  numbers  whose  sum  is  ≤  20,  you  may  decide  to  provide  students  with  other  question-­‐less  word  problems  that  include  three  addends.  For  example:  “Julie  has  8  stickers.  Diego  has  4  stickers.  Sandy  has  5  stickers.”  You  can  follow  this  with  “What  questions  can  you  ask?”  This  will  prompt  students  to  come  up  with  questions  (e.g.,  “How  many  stickers  do  they  have  in  all?”  or  “If  they  shared  as  evenly  as  possible,  how  many  would  each  have?”),  which  they  will  then  solve.  Of  course,  not  all  of  the  questions  will  be  about  adding:  “Who  has  the  most?”  is  a  very  sensible  mathematical  question  even  though  it  does  not  address  this  particular  standard.  

• Another  option  is  to  have  each  player  explain  his  or  her  partner’s  solution.  In  doing  so,  each  partner  will  have  to  have  a  deep  understanding  of  the  other’s  explanation  and  strategy  to  be  able  to  explain  clearly.  Each  set  of  partners  can  then  pair  up  with  another  set  to  share  their  thinking.

Page 10: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

 

 10  

GO:  Carry  Out  the  Task  Part  1:  Add  To/Take  From  –  Change/Start  Unknown  or  Put  Together/Take  Apart—Addend  Unknown  word  problems  with  totals  ≤  10  

Task  Steps   Keep  in  Mind   Observations  of  Students  

1. Show  either  a  small  group  of  students  or  your  whole  class  Picture  A.  Ask  students  to  describe  what  they  see.  Accept  any  descriptions  that  the  students  provide.  

    SAY  to  STUDENTS:  

Tell  me  what  you  see  in  this  picture.  

Yes,  and  what  else  can  you  say?  

Try  to  elicit  as  many  observations  as  the  students  are  willing  to  provide.  Maybe  include  one  of  your  own.    

Avoid  asking  leading  questions  like  “How  many  ___  do  you  see?”  or  “Are  they  all  the  same  size?”  Let  students  add  those  details  spontaneously  as  they  try  to  find  more  to  say  about  the  picture.  Such  added  detail  builds  toward  proficiency  in  MP6:  Attend  to  precision.  

• This  task  can  give  you  insights  into  your  students’  thinking:  − What  do  students  observe?    − Do  students  count,  add,  subtract?    − Do  students  spontaneously  comment  

on  size  or  quantities  (e.g.,  large  and  small  strawberries,  pairs  of  2  cherries,  the  number  of  fruits  by  category  or  total)?  

• The  design  of  the  art  is  intentional:  multiple  sizes  of  strawberries  with  different  numbers  of  seeds  and  sets  of  cherries.  These  variations  create  the  possibility  for  a  number  of  observations  and  numerical  combinations.    

• At  this  point  in  the  task,  if  students  attach  calculations  to  their  descriptions  (e.g.,  saying  “I  see  3  small  strawberries,  2  large  strawberries  and  8  cherries,  so  that’s  13  pieces  of  fruit”),  accept  it,  but  don’t  push  for  it.  The  goal  in  this  portion  of  the  task  is  descriptions  of  the  picture,  attending  to  increasing  detail;  other  sections  will  address  students’  ability  to  attach  and  perform  calculations.  

A. Student  gives  a  single  qualitative  description,  like  “fruit”  or  “strawberries,”  with  no  further  detail,  such  as  number  or  size.  

B. Student  categorizes  by  only  one  attribute  (fruit  type  or  size)  and  does  not  include  number  as  part  of  the  description  (e.g.,  student  says  “strawberries  and  cherries”  or  “large  fruits  and  small  fruits”).  

C. Student  includes  a  single  quantitative  description,  for  example,  counting  all  objects  together  or  counting  only  one  subset  (by  size  or  kind),  but  does  not  count  more  than  one  subset  (e.g.,  student  says  “I  see  five  strawberries,”  but  does  not  mention  or  count  the  cherries).  

D. Student  is  able  to  categorize  in  several  different  ways  (type  of  fruit,  size,  etc.)  and  names  the  quantities  of  at  least  some  of  these  sets.  

 

2. Next,  call  up  two  students.  Using  no   • Why  use  invisible  objects?  One  reason  is   E. Student  benefits  from  using  physical  

Page 11: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

 

 11  

Task  Steps   Keep  in  Mind   Observations  of  Students  

objects  of  any  kind,  pretend  to  put  3  strawberries  in  Student  A’s  hand.  

SAY  to  ALL  STUDENTS:    

I  have  7  invisible  strawberries  in  my  hand!  I’m  going  to  give  _____  [student’s  name]  3  strawberries.  

Nothing  is  there,  of  course,  but  playfully  ask  the  student  to  “check”  to  make  sure  that  the  right  amount  is  “there.”  If  the  student  does  not  seem  to  realize  that  the  whole  game  is  pretend,  make  that  clear.    

Then  move  to  Student  B.  Pretend  to  put  a  secret  number  of  strawberries  in  his  or  her  hand.  

SAY  to  ALL  STUDENTS:    

Now  I’m  going  to  give  the  rest  of  my  strawberries  to  _____  [student’s  name].  

Note:  While  this  step  uses  “invisible  objects,”  you  should  feel  free  to  model  this  with  physical  objects  (e.g.,  counters,  buttons)  if  you  know  that  this  will  benefit  some  of  your  students.  

that  mathematics  depends  on  many  foundations,  and  one  of  them  is  good  working  memory.  Students  expand  their  capacity  when  they  mentally  visualize  quantities  and  hold  multiple  pieces  of  information  in  their  heads.  By  not  providing  counters  or  a  picture,  we  also  move  students  towards  mental  computation  instead  of  counting  to  come  up  with  the  response.  This  formative  assessment  task  gives  insight  into  students’  progress  in  this  area.  

• Why  go  through  the  extra  step  of  having  the  student  “check”  things  that  don’t  exist?  Students  generally  find  this  step  funny  and  a  nice  invitation  to  dive  into  the  problem  with  all  their  ability  to  pretend.  But  there’s  also  a  serious  mathematical  side.  Asking  the  student  to  “check”  focuses  attention  on  the  number,  because  the  child  has  to  pretend-­‐count,  and  also  helps  the  child  create  a  mental  image  of  the  objects  in  each  hand.  

objects  (e.g.,  counters  or  cubes)  in  place  of  “invisible  objects.”  

F. Student  is  able  to  visualize  the  number  of  “invisible  objects”  by  telling  the  correct  number,  when  prompted.  

Page 12: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

 

 12  

Task  Steps   Keep  in  Mind   Observations  of  Students  

3. Now  that  you  have  set  the  context,    

SAY  to  STUDENTS:    

What  questions  can  you  make  up  about  this  situation?  

Depending  on  the  prior  experiences  of  the  students  in  your  class,  you  might  word  this  question  differently.  Other  options  include:  

• If  you  were  going  to  make  up  a  story  problem,  what  questions  might  you  include  in  your  problem?    

• So  far,  the  story  problem  says  “_____  [Student  A]  has  3  strawberries.  _____  [Student  B]  has  some  strawberries.  What  questions  can  you  ask  to  make  this  into  a  word  problem?”  

  Accept  all  questions  that  your  students  generate,  whether  or  not  they  are  mathematical.  Feel  free  to  point  out  which  are  and  are  not  mathematical  but  don’t  have  your  students  restrict  their  responses  at  this  point.  If  you  get  only  one  question,  prompt  for  others.  

SAY  to  STUDENTS:    

Can  anyone  think  of  any  more  questions?  

At  this  age,  and  especially  the  first  time,  children  may  well  run  out  of  questions  after  only  two  or  three.  Count  in  your  head  

• Depending  on  the  time  of  year,  grade-­‐1  students  may  not  reliably  distinguish  between  questions  and  observations.  Moreover,  they  may  not  differentiate  between  those  that  are  mathematical  (more,  less,  total)  from  ones  that  are  not.    

• The  mathematical  questions  that  students  ask  may  be  restricted  to  types  they  have  become  familiar  with  in  class.  You  may  want  to  add  one  less-­‐conventional  question  of  your  own  to  expand  their  repertoire.  

• While  many  questions  are  possible,  some  of  the  following  are  quite  common  and  others  are  rare.    − How  many  strawberries  do  Students  A  

and  B  have  in  all?  − Who  has  more  strawberries?  − How  many  more  strawberries  does  ___  

[Student  B]  have?  − How  many  fewer  strawberries  does  ___  

[Student  A]  have?  − Student  A  wants  to  have  as  many  as  

Student  B.  How  many  more  does  he  or  she  need?  

− I  ate  strawberries  today  for  snack!  − If  _____  [Student  B]  takes  one  of  ____  

(Student  A’s]  strawberries,  how  many  does  he  or  she  have  now?  

− If  they  combined  them,  and  then  shared  them  equally,  how  many  would  each  have?  

G. Student  makes  an  observation  rather  than  asking  a  question.  

H. Student  requires  support  (teacher  or  peer)  to  generate  a  question.  

I. Student  asks  a  relevant  question,  but  only  about  the  stated  facts  of  the  situation  (“How  many  strawberries  does  ____  have?”),  not  about  unstated  information  that  can  be  derived  from  those  facts  (such  as  who  has  more).    

J. Student  spontaneously  offers  more  than  one  relevant  mathematical  question.  

Page 13: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

 

 13  

Task  Steps   Keep  in  Mind   Observations  of  Students  

to  20  to  leave  wait-­‐time  for  thinking,  but  if  nothing  comes,    

SAY  to  STUDENTS:    

OK,  well  maybe  there  aren’t  any  more  good  ones!  

4. SAY  to  STUDENTS  (for  example,  to  the  students  with  invisible  strawberries  in  their  hands):    

Now,  let’s  solve  a  story  problem.  Remember  _____  [Student  A]  has  3  strawberries  and  _____  [Student  B]  has  the  rest  of  the  7  I  started  with.  How  many  does  [Student  B]  have?  

Solve  this  problem  any  way  you  choose—using  objects,  making  drawings,  or  writing  an  equation.  Use  your  Problem  Solving  Template  to  show  what  you  did.  At  the  end,  you  and  your  partner  will  talk  about  your  strategies.  

5. Allow  students  a  few  minutes  to  work  individually  to  solve  the  problem  and  show  their  work  on  the  Problem  Solving  Template.    Students  may  demonstrate  their  thinking  by  using  physical  objects,  making  drawings  to  represent  the  problem,  or  writing  an  equation.  

Note:  When  students  use  objects,  you  may  want  to  take  a  picture  of  the  

• Do  students  use  physical  objects  (e.g.,  counters  or  base-­‐10  blocks)  to  represent  the  situation?  If  so,  how  do  students  use  them?  

• Do  students  create  a  drawing  to  represent  the  situation?  If  so,  does  the  drawing  accurately  match  the  context  of  the  story?  (The  drawing  does  not  need  to  look  like  strawberries.  It  can  accurately  match  the  context  with  abstractions,  like  tick  marks  or  dots  or  squares.)  

• Do  students  approach  the  problem  by  writing  an  equation?  If  so,  do  the  equations  correctly  match  the  situation?  

• Do  students  use  a  combination  of  physical  objects,  drawings,  or  equations?  

• Do  students  label  the  drawing  or  total?  • Do  students  correctly  represent  one  aspect  

of  the  problem  but  make  an  error  in  finding  the  total?  If  so,  what  is  the  cause  of  the  error?  

K. Student  uses  physical  objects  to  represent  and  solve  the  problem.  

L. Student  makes  drawings  to  represent  and  solve  the  problem.  

M. Student  writes  equations  to  represent  and  solve  the  problem.  

N. Student  labels  his  or  her  drawing  or  total.  O. Student  shows  some  understanding  of  the  

scenario,  but  makes  an  error  in  his  or  her  solution.  

P. Student  calculates  the  solution  to  the  problem  correctly.  

 

Page 14: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

 

 14  

Task  Steps   Keep  in  Mind   Observations  of  Students  

representation  as  a  record  of  the  work.  

6. When  students  have  solved  and  recorded  the  problem  on  their  own,  ask  them  to  share  their  solutions  with  their  partners  and  ask  both  partners  to  decide  whether  they  agree  or  disagree  with  their  partner’s  work  and  to  explain  their  thinking.  

 

• Some  students  will  benefit  from  having  access  to  sentence  starters  to  provide  language  support  to  their  explanation.  It  may  be  helpful  to  have  some  available  to  students,  posted  in  a  visible  location  (e.g.,  white  board,  sentence  strip).  For  example:  

  “I  solved  my  problem  by…”  • How  do  the  students  explain  how  they  

solved  their  word  problem?  • Do  students  provide  an  explanation  for  

each  step  of  the  problem?  • How  do  students  respond  to  each  other?  • Do  students  correct  any  of  their  partner’s  

errors?  If  so,  do  they  explain  their  thinking  in  a  clear  manner,  so  that  their  partners  understand  the  error?  

Q. Student  provides  little  to  no  explanation  of  the  reasoning  used  to  solve  the  problem,  even  with  the  support  of  a  sentence  starter.    

R. Student  attempts  to  explain  the  reasoning.  However,  the  explanation  is  often  incomplete  or  flawed.  

S. Student  is  able  to  explain  the  reasoning.  Student’s  explanation  is  thorough  and  complete.  Student  requires  no  additional  support  (e.g.,  sentence  starters)  when  responding.  

 

7. Create  an  Add  To/Take  From—Start  or  Change  Unknown  situation  using  the  same  picture.    

For  example,  put  some  imaginary  cherries  in  a  student’s  hand.  

SAY  to  ALL  STUDENTS:    

_____  [name  of  student]  has  7  cherries.  But  he  [or  she]  got  hungry  and  ate  some  of  them.  Have  student  eat  some  in  secret,  hiding  the  number  eaten.    He  [or  she]  now  has  2  cherries  left.  What  questions  can  

See  Steps  4–6  above.    

 

See  Steps  4–6  above  

Page 15: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

 

 15  

Task  Steps   Keep  in  Mind   Observations  of  Students  

you  ask?  Collect  a  few  questions  and  then  choose  one  or  two  for  students  to  solve.  

Let  pairs  of  students  solve  the  problem  on  their  Recording  Sheet,  and  then  discuss  their  strategies  with  their  partner.  

8. Create  a  third  problem  that  involves  a  Put  Together/Take  Apart—Both  Addends  Unknown  using  the  same  picture.  Call  up  a  student  to  model  the  situation.  For  example,  using  no  objects  of  any  kind,  put  8  cherries  (in  bunches  of  2)  in  the  student’s  hand.  Then,    

SAY  to  ALL  STUDENTS:    

_____  (name  of  student)  has  8  cherries.  She  wants  to  put  some  into  two  different  containers.  How  many  can  she  put  in  each  container?  

Let  pairs  of  students  solve  this  problem  on  their  Recording  Sheet  and  then  discuss  their  strategies  with  their  partners.  

 

Students  have  completed  Part  1  when  they  have  had  the  opportunity  to  solve  a  variety  of  the  problem-­‐types—Add  To,  Take  From,  Put  Together  and  Take  Apart—with  Start  or  Change  Unknown  and  one  or  both  of  the  Addends  Unknown.  Provide  students  with  as  many  opportunities  as  necessary  in  solving  these  types  of  problems.  Feel  free  to  add  Result  Unknown  or  Total  Unknown  as  well,  but  remember  these  are  the  focus  of  kindergarten.  You  may  continue  to  Part  2  whenever  you  feel  students  are  ready.  (It  need  not  be  the  next  day.)  

 

   

Page 16: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

 

 16  

Part  2:  Compare  Problems  with  totals  ≤  10  

Part  2  is  similar  in  structure  to  Part  1  of  this  activity  (detailed  in  the  previous  pages),  but  the  focus  of  the  problems  in  this  part  are  Compare  problems,  still  with  all  numbers  ≤  10.  The  steps  include  presenting  students  with  Picture  B  or  C  (illustrated  here  and  provided  separately  in  this  document)  and  asking  students  to  make  observations  and  pose  questions.  The  information  about  student  understanding  and  strategies  for  solving  problems  is  the  same.  The  difference  in  this  part  is  that  the  questions  you  ask  the  students  to  solve  are  of  a  different  subtype.  These  subtypes,  Compare,  are  typically  more  difficult  for  students  to  understand  and  solve.  Some  examples  based  on  these  pictures  include:  

•    Picture  B  examples  might  include:  How  many  more  vanilla  frosted  cupcakes  are  there  than  chocolate  frosted?  If  Charlie  has  4  fewer  cupcakes  than  are  in  this  picture,  how  many  does  he  have?  

•   Picture  C  examples  might  include:  How  many  more  cupcakes  have  strawberries  than  have  cherries?  How  many  more  sprinkles  are  on  one  cupcake  than  the  other?  Jarron  has  5  fewer  cupcakes  than  Mikala  who  has  12  cupcakes.  How  many  does  Jarron  have?    

 

Of  course,  there  are  many  more  questions  of  all  types  that  can  be  posed  from  these  pictures  (or  you  could  choose  one  of  your  own  pictures  from  a  story  book  or  other  classroom  resource  or  context).  Provide  students  with  as  many  opportunities  as  necessary  in  solving  these  types  of  problems.    

 

 

Picture  C  Picture  B  

Page 17: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

 

 17  

Part  3:  Compare  Word  Problems  and  other  Unknown  Addend  subtypes  with  Totals  ≤  20  

Task  Steps   Keep  in  Mind   Observations  of  Students  

1. Begin  Part  3  by  presenting  students  with  Story  D  –  Problem  1.  You’ll  want  to  have  this  problem  visible  to  students  on  a  board  or  chart  paper.  

SAY  to  STUDENTS:  

Today  we’re  going  to  read  a  story  problem.  You’ll  notice  that  something  important  is  missing  from  the  story.  Let’s  read  the  story  to  find  out…  

Read  the  following  story  aloud  to  students:  

Jessie  has  5  marbles.  Maya  has  more  than  10  marbles,  but  fewer  than  16.  

Pause  for  a  moment  to  let  students  think  about  the  scenario.  Then,  

SAY  to  STUDENTS:  

What  is  possible?  

Accept  student  responses.  Students  will  likely  generate  possible  amounts  of  marbles  that  Maya  may  have—or  also  may  jump  to  finding  a  total  for  Jessie’s  and  Maya’s  marbles.  

For  example,  a  student  may  say,  “It  is  possible  for  Maya  to  have  11  marbles.”  Or,  a  student  may  say,  “If  Maya  has  13  marbles  and  Jessie  has  5,  they  would  have  18  marbles  in  all.”  

• By  asking  a  question-­‐less  word  problem,  you  are  developing  students’  skills  at  using  both  natural  language  and  mathematical  language  to  describe  ideas  and  develop  mathematical  meaning  from  real-­‐world  situations.  

• Are  students  able  to  generate  possibilities?  If  so,  how  do  students  go  about  it?  

A. Student  provides  at  least  one  possibility  for  the  number  of  Maya’s  marbles.  

B. Student  provides  more  than  one  possibility  for  the  number  of  Maya’s  marbles.  

Page 18: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

 

 18  

Task  Steps   Keep  in  Mind   Observations  of  Students  

2. Once  students  have  generated  a  list  of  possibilities  for  the  number  of  marbles  Maya  may  have,  tell  students  that  today  they  are  going  to  solve  a  story  problem  based  on  a  few  of  these  responses.  

SAY  to  STUDENTS:  

Problem  1:  Today  we’re  going  to  solve  a  story  problem  about  Jessie’s  and  Maya’s  marbles.  We  already  know  that  Jessie  has  5  marbles,  right?  Let’s  suppose  Maya  has  ___  marbles.  

Note:  Choose  a  number  from  11  to  15  for  the  number  of  Maya’s  marbles.  

How  many  more  marbles  does  Maya  have  than  Jessie?  

You  should  solve  this  problem  in  any  way  you  choose—using  objects,  making  drawings,  or  writing  an  equation.  You’ll  do  this  on  your  Recording  Sheet.  At  the  end,  you  will  have  the  chance  to  talk  to  your  partners  about  the  strategies  you  used.  

Allow  students  a  few  minutes  to  work  individually  to  solve  the  word  problem  and  show  their  work  on  their  Problem  Solving  Template.  Students  may  demonstrate  their  thinking  by  using  physical  objects,  making  drawings  to  represent  the  problem,  or  writing  an  equation.  

• Do  students  use  physical  objects  (e.g.,  counters  or  base-­‐10  blocks)  to  represent  the  situation?  If  so,  how  do  students  use  them?  

• Do  students  create  a  drawing  to  represent  the  situation?  If  so,  do  the  drawings  accurately  match  the  context  of  the  story?  

• Do  students  attempt  to  solve  the  problem  by  writing  an  equation?  If  so,  does  the  equation  correctly  match  the  situation?  

• Do  students  use  a  combination  of  physical  objects,  drawings,  or  equations  to  solve  the  problem?  

• Do  students  label  their  drawings  or  totals?  • Do  students  correctly  represent  one  aspect  

of  the  problem,  but  make  an  error  in  solving  for  the  total?  If  so,  what  is  the  cause  of  the  error?  

C. Student  uses  physical  objects  to  represent  and  solve  the  problem.  

D. Student  makes  drawings  to  represent  and  solve  the  problem.  

E. Student  writes  equations  to  represent  and  solve  problem.  

F. Student  labels  his  or  her  drawing  or  total.  G. Student  shows  some  understanding  of  the  

scenario,  but  makes  an  error  in  his  or  her  solution.  

H. Student  calculates  the  solution  to  the  problem  correctly.    

3. When  students  have  solved  the  problem   • Some  students  will  benefit  from  having   I. Student  provides  little  to  no  explanation  

Page 19: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

 

 19  

Task  Steps   Keep  in  Mind   Observations  of  Students  

on  their  own,  ask  them  to  share  their  solutions  with  their  partners  and  discuss  whether  they  agree  or  disagree  with  their  partner’s  solution  and  thinking.  

 

access  to  sentence  starters  to  provide  language  support  to  their  explanation.  It  may  be  helpful  to  have  the  following  available  to  students,  posted  in  a  visible  location  (e.g.,  white  board,  sentence  strip):  

“I  solved  my  problem  by…”  • How  do  students  explain  how  they  solved  

their  word  problem?  • Do  students  provide  an  explanation  for  

each  step  of  the  problem?  • How  do  students  respond  to  the  other  

player?  • Do  students  correct  any  of  their  partners’  

errors?  If  so,  do  students  explain  their  thinking  in  a  clear  manner,  so  that  the  other  players  understand  their  errors?  

for  the  reasoning  used  to  solve  his  word  problem,  even  with  the  support  of  a  sentence  frame.    

J. Student  attempts  to  explain  her  reasoning  and  provide  a  justification  for  the  rationale  used.  However,  the  justification  is  often  incomplete  or  flawed.  

K. Student  is  able  to  explain  her  reasoning  and  provide  a  justification  for  the  rationale  used.  Student’s  explanation  is  thorough  and  complete.  Student  requires  no  additional  support  (e.g.,  sentence  starters)  when  responding.  

4. Repeat  Steps  1  to  3  by  posing  different  scenarios  modeled  after  Problem  1  using  the  various  sub-­‐types  of  Compare.  Allow  students  the  opportunity  to  first  solve  each  independently  and  then  turn-­‐and-­‐talk  to  a  partner  about  their  strategies  used.  

Problem  2:  SAY  to  STUDENTS:  

We  already  know  that  Maya  has  more  than  10  marbles,  but  fewer  than  16,  right?.    

Let’s  suppose  Jessie  has  4  more  marbles  

See  Steps  1–3  above.   See  Steps  1–3  above.  

Page 20: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

 

 20  

Task  Steps   Keep  in  Mind   Observations  of  Students  

than  Maya.    

How  many  marbles  could  Maya  have?  

How  many  marbles  does  Jessie  have?  

Problem  3:    

We  know  that  Maya  has  more  than  10  marbles,  but  fewer  than  16,  right?  

Let’s  suppose  Jessie  has  6  fewer  marbles  than  Maya.    How  many  marbles  could  Maya  have?  How  many  marbles  does  Jessie  have?  

Part  3  is  complete  when  students  have  solved  at  least  3  different  problems.  Provide  students  with  as  many  opportunities  as  necessary  in  solving  these  types  of  problems.        

Page 21: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

 

 21  

OBSERVATION  CHECKLIST  

ASSESSING  STUDENT  UNDERSTANDING:  WORD  PROBLEMS  WITH  TOTALS  ≤  10  –  PARTS    1  &  2  Use  this  page  to  record  individual  student  observations.  Use  the  letters  to  notate  each  event  as  you  see  it  unfold.  This  record  is  intended  to  help  you  plan  next  steps  in  your  instruction  for  your  students.  

Student  Name   Observations  of  Student    Possible  Individual  Student  Observations       MATHEMATICAL  OBSERVATIONS  

A. Student  gives  a  single  qualitative  description,  like  “fruit”  or  “strawberries,”  with  no  further  detail,  such  as  number  or  size.  

B. Student  categorizes  by  only  one  attribute  (fruit  type  or  size)  and  does  not  include  number  as  part  of  the  description  (e.g.,  student  says  “strawberries  and  cherries”  or  “large  fruits  and  small  fruits”).  

C. Student  includes  a  single  quantitative  description,  for  example,  counting  all  objects  together  or  counting  only  one  subset  (by  size  or  kind),  but  does  not  count  more  than  one  subset  (e.g.,  student  says  “I  see  five  strawberries,”  but  does  not  mention  or  count  the  cherries).  

D. Student  is  able  to  categorize  in  several  different  ways  (type  of  fruit,  size,  etc.)  and  names  the  quantities  of  at  least  some  of  these  sets.  

MAKING  MEANING  E. Student  benefits  from  using  physical  objects  

(e.g.,  counters  or  cubes)  in  place  of  “invisible  objects.”  

F. Student  is  able  to  visualize  the  number  of  “invisible”  objects  by  telling  the  correct  number,  when  prompted.  

MATHEMATICAL  QUESTIONS  G. Student  makes  an  observation  rather  than  

asking  a  question.  H. Student  requires  support  (teacher  or  peer)  

to  generate  a  question.  

I. Student  asks  a  relevant  question,  but  only  about  the  stated  facts  of  the  situation  (“How  many  strawberries  does  ____  have?”),  not  about  unstated  information  that  can  be  derived  from  those  facts  (such  as  who  has  more).    

J. Student  spontaneously  offers  more  than  one  relevant  mathematical  question.  

REPRESENTATION  K. Student  uses  physical  objects  to  represent  

and  solve  the  problem.  L. Student  makes  drawings  to  represent  and  

solve  the  problem.  M. Student  writes  equations  to  represent  and  

solve  the  problem.  N. Student  labels  his  or  her  drawing  or  total.  O. Student  shows  some  understanding  of  the  

scenario,  but  makes  an  error  in  his  or  her  solution.  

P. Student  calculates  the  solution  to  the  problem  correctly.  

EXPLAINING  REASONING  Q. Student  provides  little  to  no  explanation  of  

the  reasoning  used  to  solve  the  problem,  even  with  the  support  of  a  sentence  starter.    

R. Student  attempts  to  explain  the  reasoning.  However,  the  explanation  is  often  incomplete  or  flawed.  

S. Student  is  able  to  explain  the  reasoning.  Student’s  explanation  is  thorough  and  complete.  Student  requires  no  additional  support  (e.g.,  sentence  starters)  when  responding.  

   

   

   

   

   

Page 22: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

 

 22  

OBSERVATION  CHECKLIST  

ASSESSING  STUDENT  UNDERSTANDING:  WORD  PROBLEMS  WITH  TOTALS  ≤  20  –  PART  3  Use  this  page  to  record  individual  student  observations.  Use  the  letters  to  notate  each  event  as  you  see  it  unfold.  This  record  is  intended  to  help  you  plan  next  steps  in  your  instruction  for  your  students.  

Student  Name   Observations  of  Student    Possible  Individual  Student  Observations       MAKING  MEANING  

A. Student  provides  at  least  one  possibility  for  the  number  of  Maya’s  marbles.  

B. Student  provides  more  than  one  possibility  for  the  number  of  Maya’s  marbles.  

REPRESENTATION  C. Student  uses  physical  objects  to  

represent  and  solve  the  problem.  D. Student  makes  drawings  to  

represent  and  solve  the  problem.  E. Student  writes  equations  to  

represent  and  solve  problem.  F. Student  labels  her  drawing  or  

total.  G. Student  shows  some  

understanding  of  the  scenario,  but  makes  an  error  in  her  solution.  

H. Student  calculates  the  solution  to  the  problem  correctly.  

•  

EXPLAINING  REASONING  I. Student  provides  little  to  no  

explanation  for  the  reasoning  used  to  solve  his  word  problem,  even  with  the  support  of  a  sentence  frame.    

J. Student  attempts  to  explain  her  reasoning  and  provide  a  justification  for  the  rationale  used.  However,  the  justification  is  often  incomplete  or  flawed.  

K. Student  is  able  to  explain  her  reasoning  and  provide  a  justification  for  the  rationale  used.  Student’s  explanation  is  thorough  and  complete.  Student  requires  no  additional  support  (e.g.,  sentence  starters)  when  responding.      

   

   

   

   

 

Page 23: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

Creating and Solving Word Problems - Part 1: Picture A - Cherries and Strawberries

Page 24: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

Creating and Solving Word Problems - Part 2: Picture B - Cupcakes 1

Page 25: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

Creating and Solving Word Problems - Part 2: Picture C - Cupcakes 2

Page 26: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

Creating and Solving Word Problems - Part 3: Story D - Problem 1

Jessie has 5 marbles.

Maya has more than (>) 10 marbles, but fewer than (<) 16.

Page 27: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

Creating and Solving Word Problems - Part 3: Story D - Problem 2

Jessie has 4 more marbles than Maya.

How many marbles could Maya have?How many marbles does Jessie have?

Maya has more than (>) 10 marbles, but fewer than (<) 16.

Page 28: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

Creating and Solving Word Problems - Part 3: Story D - Problem 3

Jessie has 6 fewer marbles than Maya.

How many marbles could Maya have?How many marbles does Jessie have?

Maya has more than (>) 10 marbles, but fewer than (<) 16.

Page 29: Mathematics Performance Tasks · 2020-02-14 · Mathematics Performance Tasks! 1" CREATING"AND"SOLVING"WORD"PROBLEMS" Overview" At"a"Glance" Inthisactivity,students!observe!asituation!in!a!picture,!make!comments

My SolutionName Date

Solve the story problem in the space below.

Solve the story problem in the space below.

Creating and Solving Word Problems: Problem Solving Template

My Solution

Creating and Solving Word Problems: Problem Solving Template

Name Date