mathematical physics unit i legendre’s equation

52
MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION DR. RAJESH MATHPAL ACADEMIC CONSULTANT SCHOOL OF SCIENCES U.O.U. HALDWANI UTTRAKHAND MOB:9758417736,7983713112

Upload: others

Post on 27-Oct-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

MATHEMATICAL PHYSICS UNIT – I

LEGENDRE’S EQUATION

DR. RAJESH MATHPAL ACADEMIC CONSULTANT

SCHOOL OF SCIENCESU.O.U. HALDWANI

UTTRAKHANDMOB:9758417736,7983713112

Page 2: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

CONTENTS

1. LEGENDRE’S EQUATION

1.1. LEGENDRE’S POLYNOMIAL Pn(x)

1.2. LEGENDRE’S FUNCTION OF THE SECOND KIND i.e. Qn(x)

1.3 GENERAL SOLUTION OF LEGENDRE’S EQUATION

2. RODRIGUE’S FORMULA

3. A GENERATING FUNCTION OF LEGENDRE’S POLYNOMIAL

4. ORTHOGONALITY OF LEGENDRE POLYNOMIALS

5. RECURRENCE FORMULAE

6. NUMERICAL PROBLEMS

7. LEGENDRE’S POLYNOMIALS APPLICATIONS

8. NUMERICAL PROBLEMS

Page 3: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

1. LEGENDRE’S EQUATION

Page 4: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

Now,

1 2

0 1 2

0

0

2

2

( ...) ...(2)

dyso that ( )

dx

d y (

dx

m

m r

r

r

m r l

r

r

r

y x a a x a x

y a x

a m r

and a m

2

0

)( ) m r

r

r m r l x

Substituting these values in (1), we have

Page 5: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

2 2

0 0 0

2

0

(1- ) ( )( ) 2 ( ) ( 1) 0

( )( ) ( 1) 2( ) ( )( ) 0

( )(

m r m r l m r

r r r

r r r

m r m r

r

r

x a m r m r l x x a m r x n n a x

m r m r l x n n m r m r m r l x a

m r

2

0

) ( 1) ( ) ( ) 0 ...(3)m r m r

r

r

m r l x n n m r m r l x a

The equation (3) is an identity and therefore coefficients of various powers of x

must variable. Now equating to zero the coefficient of xm i.e. by substituting r = 0

in the second summation we get,

a0 {n(n + 1) – m (m + 1)} = 0

But a0 ≠ 0, as it is the coefficient of the very first term in the series

Page 6: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

Here, n(n + 1) – m (m + 1) = 0 …(4)

n2 + n – m2 – m = 0 ⇒ (n2 – m2) + (n – m) = 0

i.e., (n – m)(n + m + 1) = 0, This is the indicial equation.

⇒ which gives m = n or m = - n – 1 …(5)

Next equating to zero the coefficient of xm – 1 by putting r = 1, in the second

summation a1[n(n + 1) – (m – 1)m] = 0

⇒ a1(n2 + n – m2 + m) = 0 ⇒ a1[(n2 – m2) + n + m] = 0

⇒ a1((m + n) (m – n – l)] = 0

which gives a1 = 0 …(6)

Page 7: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

Since (m + n)(m – n – l) ≠ 0, by (5)

Again to find a relation in successive coefficients ar, etc., equating the

coefficient of xm – r - 2 to zero, we get

(m – r)(m – r – l) ar + [n(n + 1) – (m – r – 2)(m – r – l)] ar + 2 = 0 …(7)

Now, n(n + 1) – (m – r – 2)(m – r – l) = n2 + n – (m – r – l – l)(m – r – l)

= − 𝑚 − 𝑟 − 𝑙 2 − 𝑚 − 𝑟 − 𝑙 − 𝑛2 − 𝑛

= − 𝑚 − 𝑟 − 𝑙 + 𝑛 𝑚 − 𝑟 − ! − 𝑛 − (𝑚 − 𝑟 − 𝑙 + 𝑛)

= − 𝑚 − 𝑟 − 𝑙 + 𝑛 𝑚 − 𝑟 − 𝑙 − 𝑛 − 𝑙

= − 𝑚 − 𝑟 + 𝑛 − 𝑙 𝑚 − 𝑟 − 𝑛 − 2

On simplification (7) becomes

⇒ (m – r)(m – r – l) ar – (m – r + n – l)(m – r – n – 2) ar + 2 = 0

⇒ 𝑎𝑟+2 = 𝑚−𝑟 𝑚−𝑟−𝑙

𝑚−𝑟+𝑛−𝑙 𝑚−𝑟−𝑛−2 𝑎𝑟 …(8)

Now since a1 = a3 = a5 = a1 = … = 0

For the two values given by (5) there arises following two cases.

Page 8: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

Case I: When m = n

𝑎𝑟+2 = − 𝑛−𝑟 𝑛−𝑟−𝑙

2𝑛−𝑟−𝑙 𝑟+2 𝑎𝑟 [From(8)]

If r = 0 𝑎2 = −𝑛 𝑛−𝑙

2𝑛−𝑙 2𝑎0

If r = 2, 𝑎4 = − 𝑛−2 𝑛−3

2𝑛−3 ×4𝑎2 =

𝑛 𝑛−1 𝑛−2 𝑛−3

2𝑛−1 2𝑛−3 2.4𝑎0

and so on and a1 = a3 = a5 = … = 0

Hence the series (2) becomes

𝑦 = 𝑎0 𝑥𝑛 𝑛 𝑛−1

2𝑛−1 .2𝑥𝑛−2 +

𝑛 𝑛−1 𝑛−2 (𝑛−3)

2𝑛−1 2𝑛−3 2.4. 𝑥𝑛−2 − ⋯

Which is a solution of (1).

Page 9: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

Case II: When m = − (n + 1), we have

𝑎𝑟+2 = − 𝑛+𝑟+1 𝑛+𝑟+2

𝑟+2 2𝑛+𝑟+3 𝑎𝑟 [From(8)]

If r = 0, 𝑎2 = − 𝑛+1 𝑛+2

2 2𝑛+3 𝑎0;

If r = 2, 𝑎4 = − 𝑛+3 𝑛+4

4. 2𝑛+5 𝑎2 =

𝑛+1 𝑛+2 𝑛+3 𝑛+4

2.4 2𝑛+3 2𝑛+5 𝑎0 and so on.

Hence the series (2) in this case becomes

𝑦 = 𝑎0 𝑥−𝑛−1 + 𝑛+1 𝑛+2

2. 2𝑛+3 𝑥−𝑛−3 +

𝑛+1 𝑛+2 𝑛+3 𝑛+4

2.4 2𝑛+3 2𝑛+5 . 𝑥−𝑛−5 + + ⋯ …(9)

This gives another solution of (1) in a series of descending powers of x.

Note. If we want to integrate the Legendre’s equation in a series of ascending

powers of x, we any proceed by taking

4 1 1 2

0 1 2

0

...k k r

r

r

y a x a x a x a x

But integration in descending powers of x is more important than that in ascending

powers of x.

Page 10: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

1.1. LEGENDRE’S POLYNOMIAL Pn(x)

Page 11: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION
Page 12: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

1.2. LEGENDRE’S FUNCTION OF THE SECOND KIND i.e. Qn(x)

Page 13: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

1.3 GENERAL SOLUTION OF LEGENDRE’S EQUATION

Since Pn(x) and Qn(x) are two independent solution of Legendre’s equation,

Therefore the most general solution of Legendre’s equation is

y = APn(x) + Qn(x)

Where A and B are two arbitrary constants

Page 14: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

2. RODRIGUE’S FORMULA

𝑃𝑛 𝑥 = 1

2𝑛 .𝑛 !

𝑑𝑛

𝑑𝑥 𝑛 𝑥2 − 1 𝜋

Proof. Let v = (x2 – 1)n …(1)

Then 𝑑𝑣

𝑑𝑥= 𝑛 𝑥2 − 1 𝑛−1 2𝑥

Multiplying both sides by (x2 – 1), we get

𝑥2 − 1 𝑑𝑣

𝑑𝑥= 2𝑛 𝑥2 − 1 𝑛𝑥.

⇒ 𝑥2 − 1 𝑑𝑣

𝑑𝑥= 2𝑛𝑣𝑥 [Using (1)] …(2)

Now differentiating (2), (n + 1) times Leibnitz’s theorem, we have

𝑥2 − 1 𝑑𝑛+2𝑣

𝑑𝑥 𝑛+2+ 𝑛+1 𝐶1 2𝑥

𝑑𝑛+1𝑣

𝑑𝑥 𝑛+1+ 𝑛+1 𝐶2 2

𝑑𝑛𝑣

𝑑𝑥 𝑛= 2𝑛 𝑥

𝑑𝑛+1𝑣

𝑑𝑥 𝑛+1+ 𝑛+1 𝐶1 𝑙

𝑑𝑛𝑣

𝑑𝑥 𝑛

⇒ 𝑥2 − 1 𝑑𝑛+2𝑣

𝑑𝑥 𝑛+2+ 2𝑥 𝐶1 − 𝑛

𝑛+1

𝑑𝑛+1𝑣

𝑑𝑥 𝑛+1+ 2 𝐶2 − 𝑛. 𝑛+1 𝑛+1

𝐶1 𝑑𝑛𝑣

𝑑𝑥 𝑛= 0

⇒ 𝑥2 − 1 𝑑𝑛+2𝑣

𝑑𝑥 𝑛+2+ 2𝑥

𝑑𝑛+1𝑣

𝑑𝑥 𝑛+1− 𝑛 𝑛 + 1

𝑑𝑛𝑣

𝑑𝑥 𝑛= 0 …(3)

Page 15: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

If we put 𝑑𝑛𝑣

𝑑𝑥 𝑛= 𝑦, (3) becomes

𝑥2 − 1 𝑑2𝑦

𝑑𝑥 2+ 2𝑥

𝑑𝑦

𝑑𝑥− 𝑛 𝑛 + 1 𝑦 = 0

⇒ 1 − 𝑥2 𝑑2𝑦

𝑑𝑥 2− 2𝑥

𝑑𝑦

𝑑𝑥+ 𝑛 𝑛 + 1 𝑦 = 0

This shows that 𝑦 =𝑑𝑛𝑣

𝑑𝑥 𝑛 is a solution of Legendre’s equation.

∴ 𝐶𝑑𝑛𝑣

𝑑𝑥 𝑛= 𝑃𝑛 𝑥 …(4)

Where C is a constant.

But v = (x2 – 1)n = (x + 1)n (x – 1)n

so that 𝑑𝑛𝑣

𝑑𝑥 𝑛= 𝑥 + 1 𝑛 𝑑𝑛

𝑑𝑥 𝑛 𝑥 − 1 𝑛 + 𝐶1. 𝑛 𝑥 + 1 𝑛 𝑛−1 𝑑𝑛−1

𝑑𝑥 𝑛−1 𝑥 − 1 𝑛 + ⋯ +

𝑥 − 1 𝑛 𝑑𝑛

𝑑𝑥 𝑛 𝑥 + 1 𝑛 = 0

when x = 1, then 𝑑𝑛𝑣

𝑑𝑥 𝑛= 2𝑛 . 𝑛!

All the other terms disappear as (x – 1) is a factor in every term except first.

Page 16: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

Therefore when x = 1, (4) gives

C.2n.n! = Pn(1) = 1 [Pn(1) = 1]

𝐶 =1

2𝑛 .𝑛 ! …(5)

Substituting the value of C from (5) in (4), we have

𝑃𝑛 𝑥 =1

2𝑛 .𝑛 ! 𝑑𝑛𝑣

𝑑𝑥 𝑛

𝑃𝑛 𝑥 =1

2𝑛 .𝑛 !

𝑑𝑛

𝑑𝑥 𝑛 𝑥2 − 1 𝑛 ∵ 𝑣 = 𝑥2 − 1 𝑛

Page 17: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

3. A GENERATING FUNCTION OF LEGENDRE’S POLYNOMIAL

Page 18: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION
Page 19: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION
Page 20: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

Thus coefficient of zn in the expansion of (1) is sum of (2), (3) and (4) etc.

=1.3.5.. 2𝑛−1

𝑛 ! 𝑥𝑛 −

𝑛 𝑛−1

2 2𝑛−1 . 𝑥𝑛−2 +

𝑛 𝑛+1 𝑛−2 𝑛−3

2.4 2𝑛−1 2𝑛−3 𝑥𝑛−4 − ⋯ = 𝑃𝑛(𝑥)

Thus coefficient of z, z2, z3 … etc. in (1) are P1(x), P2(x), P3(x) …

Hence

(1 – 2xz + z2)-1/2 = P0(x) + zP1(x) + z2P2(x) + z3P3(x) + … + zn Pn(x) + …

i.e.,

1/ 22

0

1 2 ( ). Proved.n

n

n

n

xz z P x z

Page 21: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION
Page 22: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION
Page 23: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

5. RECURRENCE FORMULAE

Page 24: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

6. NUMERICAL PROBLEMS

Page 25: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION
Page 26: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION
Page 27: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

7. LEGENDRE’S POLYNOMIALS APPLICATIONS

Page 28: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

Similarly 𝑃3 𝑥 =1

2 5𝑥3 − 3𝑥

𝑃4 𝑥 =1

8 35𝑥4 − 30𝑥4 + 3

𝑃5 𝑥 =1

8 63𝑥5 − 70𝑥3 + 15𝑥

……………………………………………….

2

0

( 1) (2 2 )!( )

2 . !( )!( 2 )!

rnn r

n nr

n rP x x

r n r n r

where 𝑁 =𝑛

2 if n is even

𝑁 =1

2 𝑛 − 1 if n is odd

Page 29: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

Note. We can evaluate Pn(x) by differentiating (x2 – 1)n, n times.

2 2 2 2

0 0

2 2 2

0

2

0

!( 1) ( ) ( 1) ( 1)

!( )!

1 1 !( ) ( 1) ( 1)

2 . ! 2 . ! !( )!

( 1) (2 2 )!

!( )!( 2 )!

n r n r nn n n r r r n r

rnr r

n r nn n n r

n n n nr

rNn r

r

d nx C x x

dx r n r

d nP x x x

n dx n r n r

n rx

r n r n r

Either x0 or x1 is in the last term.

∴ n – 2r = 0 or 𝑟 =𝑛

2 (n is even)

N – 2r = 1 or 𝑟 =1

2 𝑛 − 1 (n is odd)

Page 30: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

8. NUMERICAL PROBLEMS

Page 31: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION
Page 32: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION
Page 33: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION
Page 34: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

Example 6. Prove that Pn(1) = 1.

Solution. We know that

(1 – 2xz + z2)-1/2 = 1 + zP1(x) + z2 P2(x) + z3 P3(x) + … + zn Pn(x) + …

Substituting 1 for x in the above equation, we get

(1 – 2 z + z2)-1/2 = 1 + zP1(1) + z2 P2(1) + z3 P3(1) + … + zn Pn(1) + …

1/ 2 12

0

1 2 3

(1 ) (1) 1 (1)

(1) 1 1 ... ...

n n

n n

n

n n

n

z z P z z P

z P z z z z z

Equating the coefficient of zn on both sides, we get

Pn(1) = 1

Page 35: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

Example 7. Prove that

0

1( ) .

2 2n

n

P xx

Solution. We know that

1

2 2

0

(1 2 ) ( ) ...(1)n

n

n

xz z z P x

Putting z = 1 in (1), we get

1

2

0

0

1 2 1 ( )

1( ) Proved.

2 2

n

n

n

n

x P x

P xx

Page 36: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

Example 8. Prove that:

1

0

1 1( ) log

1 2 1

n

n

n

x xP x

n x

Solution. We know that

1/ 22

0

( ) 1 2n

n

n

h P x xh h

Integrating both sides w.r.t. h from 0 to h, we get

1

2 2 20 0 0

( ) ; 1 Here x is constant h is variable.1 1 2 1

h hn

n

n

h dh dhP x if x

n hx h h x x

= log ℎ−𝑥 + ℎ2−2ℎ𝑥+1

1−𝑥

𝑑ℎ

ℎ2+𝑎2= log

ℎ+ ℎ2+𝑎2

𝑎

Putting h = x in the expression, we get

1 2

0

1 1 1( ) log log Proved.

1 1 2 1

n

n

n

x x xP x

n x x

Page 37: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

Example 9. Show that

Pn(-x) = (-1)n Pn (x) and Pn(-1) = (-1)n.

Solution. We know that

12 2

0

1 2 ( ) ...(1)n

n

n

xz z z P x

Putting –x for x in both sides of (1), we get

12 2

0

1 2 ( ) ...(2)n

n

n

xz z z P x

Again putting –z for z in (1), we obtain

12 2

0

1 2 ( 1) ( ) ...(3)n n

n

n

xz z z P x

Page 38: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

From (2) and (3), we have

0 0

( ) ( 1) ( )n n n

n n

n n

z P x z P x

Comparing the coefficients of zn from both sides of (4), we obtain …(4)

Pn(-x) = (-1)n Pn(x)

Pn(-1) = (-1)n Pn(1) = (1)(-1)n …(5)

Putting x = 1 in (5), we get [Pn(1)n1]

(i) If n is even, then from (5)

Pn(-x) = Pn (x),

So, Pn(x), is even function of x.

(ii) If n is odd, then from (5)

Pn(-x) = -Pn(x), so Pn(x) is odd function.

Page 39: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION
Page 40: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION
Page 41: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION
Page 42: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION
Page 43: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

Example 12. Show that

3/ 22

0

1(2 1) .

1 2

in

n

n

zn P z

xz z

Solution. We know that

12 2

0

1 2 ( ) ...(1)n

n

n

xz z z P x

Differentiating both sides of (1) with respect to z, we get

3/ 2

2 1

0

1

2 3/ 20

11 2 ( 2 2 ) . ( )

2

( ) ...(2)(1 2 )

n

n

n

n

n

n

xz z x z nz P x

x znz P x

xz z

Page 44: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

Multiplying both sides of (2) by 2z, we get

21

2 3/ 20

2 22 ( ) ...(3)

(1 2 )

n

n

n

xz znz P x

xz z

2 2

20

2

2 3/ 20

1 2 2 2 (2 1) ( )

(1 2 )

1 (2 1) ' Proved.

(1 2 )

n

n

n

n

n

n

xz z xz zn z P x

xz z

zn z P

xz z

Page 45: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

Example 13. Prove that

12

0

1 1( + )

1 2

n

n n

n

zP P z

zz xz z

Solution.

1 1

0 0 0

. . . ( + ) +n n n

n n n n

n n n

R H S P P z z P z P

1

1

0 0

1 ...(1)n n

n n

n n

z P z Pz

2 3

0 1 2 3

0

1 2 3

1 1 2 3

0

But ...

And ...

n

n

n

n

n

n

z P P zP z P z P

z P zP z P z P

= -P0 + P0 + zP1 + z2P2 + z3P3 + … = -P0 + 𝑧𝑛𝑃𝑛

⇒ log1+sin

𝜃

2

sin𝜃

2

= 1 +1

2𝑃1 cos 𝜃 +

1

3𝑃2 cos 𝜃 +

1

4𝑃3 cos 𝜃 + …

Page 46: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION
Page 47: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION
Page 48: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION
Page 49: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION
Page 50: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

Example 17. Assuming that a polynomial f(x) of degree n can be written as

0

( ) ( ).x

m m

m

f x C P x

show that 𝐶𝑚 =2𝑚+1

2 𝑓 𝑥 𝑃𝑚 𝑥 𝑑𝑥

1

1

Solution. We have,

0

( ) ( )m m

m

f x C P x

= C0P0(x) + C1P1(x) + C2P2(x) + C3P3(x) + C4P4(x) + … + CmPn(x)+…+

Multiplying both sides by Pm(x), we get

Pm(x)f(x)=C0P0(x) Pm(x) + C1P1(x) Pm(x) + C2P2(x) Pm(x) + … + Cm𝑃𝑚2 (x) + …

𝑓(𝑥)+1

−1 Pm(x) dx = [

+1

−1C0P0(x) Pm(x) + C1P1(x) Pm(x) + C2P2(x) Pm(x) + …

Cm𝑃𝑚2 (x) + …]

= 0 + 0 + ⋯ + 𝐶𝑚2

2𝑚+1+ ⋯ =

2𝐶𝑚

2𝑚+1

𝐶𝑚2𝑚+1

2 𝑓 𝑥 𝑃𝑚 𝑥 𝑑𝑥

+1

−1

Page 51: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION
Page 52: MATHEMATICAL PHYSICS UNIT I LEGENDRE’S EQUATION

THANKS