mathematical modeling of convective heat

6
Journal ofEngineeringPhysics and Thermophysics, Vol. 6Z No. 1-2, 1994 MATHEMATICAL MODELING OF CONVECTIVE HEAT PARTICLES IN A BED A. I. Nakorchevskii, A. N. Vylegzhanin, anti 1. V. Gaskevich UDC 664.8.047 A closed system of equations is proposed for calculating convective heat and mass transfer in the drying of solid particles by a gaseous heat transfer agent in a moving bed. As an exam ple, the operation of a belt-type dryer with crossed interaction of a drying agent and a bed of fruit cut into circular slices is considered. Results of a numerical solution of the problem are presented in figures. The drying of solid particles in a bed by a gaseous heat transfer agent is widely used commercially. Interacting flows are most often arranged in a counterflow (column dryers) or a crossed-flow (belt conveyers with transverse blowing) scheme. The bed to be dried is a two-phase system of the type of moist solid-humid gas, where aerodynamic and heat and mass transfer processes must be described within the mechanics of heterogeneous systems. Substantial difficulties in the mathematical description are caused by the great diversity of the possible geometrical structure of the bed. Consequently, schematization of the structure of the bed and orientation to some averaged characteristics are inevitable. The choice of averaging principles is an important step in the development of methods of the mechanics of heterogeneous media. Concepts of methods for space and time averaging are given in [1 ] and [2 ], respectively. The latter approach, which is more rigorous mathematically [3 ], will be used here. It is assumed in the description that the interacting media are nonviscous but they experience resistance in relative motion of the phases and the action of Archimedean forces (the hydraulic approach). Transfer of momentum and the kinetic component of the energy and dissipation are neglected. Only averaged parameters without the fluctuations are used. With these assumptions the equations of motion and energy have the form B/+Bj= 1, 0 O--t (Pi Be Wi) = - V'(Pi Bi We Ui) - Mij + Mji, 0 0" --/ [P i B i (1 - (1 - ( 1 ) 0 0--t (Pi Bi Ui) = - (V 'U i) Pi Bi Ui + Pi Bi Gi - V" (Bi P2) + Fji, 0 O--t(Pi Bi El) = - V'(Pi Bi Ui El) - Miy Ei + Myi E] + Qyi - Bi Qi, i, j = 1, 2. According to the second and third equations of system (1) the relation Bi) = - v-(p i Be ui) - Mq + , ( 2 ) Institute of Engineering Thermophysics, Academy of Sciences of Ukraine, Kiev. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 67, Nos. 1-2, pp. 48-53, July-August, 1994. Original article submitted December 16, 1992. 1062-0125/94/6712-0721 $12.50 9 1995 Plenum Publishing Corporation 721

Upload: afsoon-qnet

Post on 06-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

8/3/2019 Mathematical Modeling of Convective Heat

http://slidepdf.com/reader/full/mathematical-modeling-of-convective-heat 1/6

Journal ofEngineeringPhysics and Thermophysics, Vol. 6Z No. 1-2, 1994

M A T H E M A T I C A L M O D E L I N G O F C O N V E C T I V E H E A T

A N D M A S S T R A N S F E R I N T H E D R Y I N G O F S O L I D

P A R T I C L E S I N A B E D

A . I . N ak o r ch ev s k i i , A . N . V y l eg zh an i n , an t i

1. V . G as k ev i chU D C 6 6 4 . 8 . 0 4 7

A c lose d s y s t e m o f e qua t ions i s p ropose d fo r c a l c u la t ing c onv e c t iv e he a t and ma ss t rans f e r i n t he d rying o f

sol id par t ic les by a gaseous heat t rans fer agent in a mov in g bed. A s a n exam ple , the operat ion o f a be l t - type

dryer wi th crossed in terac t ion o f a dry ing agent and a bed o f f ru i t cu t in to c ircular s l ices i s cons idered.

Re su l t s o f a nu me r ic a l so lu t ion o f t he p rob le m are p re se n te d in f i gure s .

T h e d r y i n g o f s o l id p a r ti c le s i n a b e d b y a g a s e o u s h e a t t r a n s f e r a g e n t i s w i d e l y u s e d c o m m e r c i a l ly .

I n t e r ac t i n g f l o w s a r e m o s t o f t en a r r an g ed i n a co u n t e r f l o w ( co l u m n d r y e r s ) o r a c r o s s ed - f l o w ( b e l t co n v ey e r s w i t h

t r a n s v e r s e b l o w i ng ) s c h e m e . T h e b e d t o b e d r ie d i s a tw o - p h a s e s y s t e m o f t h e t y p e o f m o i s t s o l i d - h u m i d g a s , w h e r e

a e r o d y n a m i c a n d h e a t a n d m a s s t r a n s f e r p r o c e s s e s m u s t b e d e s c r i b e d w i th i n t h e m e c h a n i c s o f h e t e r o g e n e o u s

s y s t em s . Su b s t an t i a l d i f f i cu lt i e s i n th e m a t h e m a t i ca l d e s c r i p t i o n a r e cau s ed b y t h e g r ea t d i v e r s i t y o f t h e p o s s i b l eg e o m e t r ic a l s t r u c t u r e o f t h e b e d . C o n s e q u e n t l y , s c h e m a t i z a ti o n o f t h e s t r u c t u re o f t h e b e d a n d o r i e n t a t i o n t o s o m e

av e r ag ed ch a r ac t e r i s t i c s a r e i n ev i t ab l e .

T h e ch o i ce o f av e r ag i n g p r i n c i p l e s is an i m p o r t an t s t ep i n th e d ev e l o p m en t o f m e t h o d s o f t h e m ech an i c s o f

h e t e r o g en eo u s m ed i a . C o n c ep t s o f m e t h o d s f o r s p ace an d t i m e av e r ag i n g a r e g i v en i n [ 1 ] an d [ 2 ] , r e s p ec t i v e l y .

T h e l a t t e r ap p r o ach , w h i ch i s m o r e r i g o r o u s m a t h em a t i ca l l y [ 3 ] , w i l l b e u s ed h e r e . I t is a s s u m ed i n t h e d e s c r i p t i o n

t h a t t h e i n t e r a c t in g m e d i a a r e n o n v i s c o u s b u t t h e y e x p e r i e n c e r e s i s ta n c e i n r e la t i ve m o t i o n o f t h e p h a s e s a n d t h e

a c t io n o f A r c h i m e d e a n f o r c es ( t h e h y d r a u l i c a p p r o a c h ) . T r a n s f e r o f m o m e n t u m a n d t h e k i n e ti c c o m p o n e n t o f t h e

e n e r g y a n d d i s s i p a t i o n a r e n e g l e c t e d . O n l y a v e r a g e d p a r a m e t e r s w i t h o u t t h e f l u c t u a t i o n s a r e u s e d . W i t h t h e s e

a s s u m p t i o n s t h e e q u a t i o n s o f m o t i o n a n d e n e r g y h a v e t h e f o r m

B / + B j = 1 ,

0O--t (Pi Be Wi) = - V '( P i Bi We Ui) - M i j + M j i ,

00"--/ [P i B i (1 - Wi) 1 = - V" [Pi Bi Ui (1 - Wi) l , ( 1 )

00--t (Pi Bi Ui) = - (V 'U i) Pi Bi Ui + Pi Bi Gi - V" (Bi P2) + F j i ,

0O--t (Pi Bi El) = - V '(P i Bi Ui El) - Miy Ei + Myi E] + Qyi - Bi Qi, i , j = 1, 2 .

A cco r d i n g t o t h e s ec o n d an d t h i r d e q u a t i o n s o f s y s t e m ( 1 ) t h e r e l a t i o n

B i ) = - v - ( p i B e u i ) - M q + ,( 2 )

I n s t i t u t e o f E n g i n e e r i n g T h e r m o p h y s i c s , A c a d e m y o f S c i e n c e s o f U k r a i n e , K i e v. T r a n s l a t e d f r o m

I n z h e n e r n o - F i z i c h e s k i i Z h u r n a l , V o l . 6 7 , N o s . 1 - 2, p p . 4 8 - 5 3 , J u l y - A u g u s t , 1 9 9 4. O r ig i n a l a r ti c l e s u b m i t t e d

D ecem b er 1 6 , 1 9 9 2 .

1 0 6 2 - 0 1 2 5 / 9 4 / 6 7 1 2 - 0 7 2 1 $ 1 2 .5 0 9 1 9 9 5 P l en u m Pu b l i s h i n g C o r p o r a t i o n 7 2 1

8/3/2019 Mathematical Modeling of Convective Heat

http://slidepdf.com/reader/full/mathematical-modeling-of-convective-heat 2/6

Y =lq, I I=,l => 0 0

, , 0 = , o O o 0 O oFig. 1. Structural scheme of a bed of a filling.

is obtained, which is used to simplify the equations of motion and energy (the two last equations of system (1)):

O UP i B i O t = - Pi Bi Ui 'VUi + Pi Bi Gi - V (B P2) q- F f i ,

O EP i B i O t = - P i B i ' V E i + M / i ( E l - E i ) + Q f i - B i Q i "

( 3 )

It should be noted that for "adequate" drying M21 = 0. The above equations are expressed in a specific form for

each particular case.

Let us consider the case of stea dy-stat e drying of fruit in dryers with multirow transportation of the material

by belt conveyers. The material is loaded onto the belt in a bed of thickness h, and in the transportation process

it is blown from above by a heat transfer agent, which is conditioned air in this case. The technological scheme of

drying requires that the equations be composed for the plane problem (x, y), where the x axis corresponds to the

direction of movement of the conveyer belt and t he y axis corresponds to that of motion of the heat transf er agent.

For this scheme the system of basic equations (1)-(3) has the form

0 0

B 1 + B2 = 1, ~xx (/91 B1 U l x ) = - M12, 0y (P2 B2 U2y) = M12,

0 0

0x [Pl B1 (1 - W1) U l x ] = 0, ~y [,02 B2 (1 - W2) U 2y ] = 0,

OU2y OP2 0B 2P2B2U2y Oy = - B2 ~- F21'y -p2 0y '

(4 )

O E 1 O E2Pl B1 U l x O x - Q21 , P2 B2 U2y Oy - M12 (E2 - El) - Q21 9

Since the material to be dried is carried by the conveyer with the velocity U l x with the aid of a mechanical drive,

the equation of motion for the first phase is eliminated. Commercial operation of this type of drye r has shown thatthe aer odynamic resistance of the bed of material is low. Therefore, the equation of motion for the second phase

is not important. Nevertheles, the structure of the bed should be well known, since it affects substantially the heat

and mass transfer characteristics.

Before drying, fruits are cut into circular slices. In loading the cut material onto the conveyer belt, the

stable position of an individual element in the filling will most likely be arbit rary. Therefore, a ny spatial o rientation

of this individual element is possible. The structure of the bed must include two limiting cases of orientation -

vertical and horizontal, bo th of which are equiprobable. If the bed is composed of units located only in these limiting

positions, the accounting for their equiprobability will result in the scheme shown in the left-hand side of Fig. 1.

722

8/3/2019 Mathematical Modeling of Convective Heat

http://slidepdf.com/reader/full/mathematical-modeling-of-convective-heat 3/6

I t i s c l e a r f r o m F i g . 1 t h a t t h e s c h e m e i s i n v a r i a n t r e l a t iv e t o t h e x a n d y a x e s a n d r e f l e c ts a z i g z a g fl o w o f t h e h e a t

t r a n s f e r a g e n t p a s t t h e u n i t s . I n t h i s c a s e t h e s t r e a m l i n e s a r e c l o se t o t h o s e o f a fl o w in a s p h e r i c a l f i ll i n g , w h i c h

i s s t u d i e d m o s t t h o r o u g h l y . I f a l l u n i t s o f t h e b e d a r e a s s u m e d t o b e o f t h e s a m e ( r e p r e s e n t a t i v e ) s i z e, c i r c u l a r a n d

s p h e r i c a l f i ll i n g s w i l l b e t h e s a m e , i n t h e s e n s e o f e q u i v a le n c e , c o n c e r n i n g :

a ) a r e a o f c o n t a c t b e t w e e n t h e f i l l i n g a n d t h e h e a t t r a n s f e r a g e n t , i f t h e a r e a s S~ 1) = 4n R s a n d

2S (1) = 4J rRc a r e equ a l , w h ic h i s poss ib l e a t Rs = Re ;

b ) v o l u m e o f f il l in g , i f t h e v o l u m e s ~ 1 ) = 4 / 3 ~ g a s and 2 I / ( c1) = 2 ~ g 2 d c a r e e q u a l , w h i c h i s p o s s i b l e w h e n

c o n d i t i o n ( a) i s s a ti s f i e d a n d t h e t h i c k n e s s o f a c ir c u l a r s li c e 6 c = 2 / 3 R o H e r e R i s t h e r a d i u s o f a u n i t .

E q u a t i o n s ( 4) a r e n o t c l o s ed . T h e r e f o r e , a d d i t i o n a l r e la t i o n s , d e t e r m i n i n g t h e p r o b l e m s t a t e d , a r e r e q u i r e d .

T h e k i n e t i c e q u a t i o n o f d r y i n g t h a t i s u s u a l l y s e t u p o n t h e b a s i s o f e x p e r i m e n t a l d a t a i n t h e f o l l o w i n g f o r m i s t h e

m a i n o n e :

d W 1a t = F 1 ( W I ' T1 . . . . ) ' ( 5)

w h e r e T i s t h e t e m p e r a t u r e . I n o u r c a s e f o r t h e s t e a d y - s t a t e p r o c e s s t h e l e f t - h a n d s i d e o f (5 ) i s U ] x ( O W 1 / O x ) . W i t h

t h e u s e o f t h e s e c o n d a n d f o u r t h e q u a t i o ns o f s y s t e m ( 1 ), t h e r e l at i o n b e t w e e n t h e v o l u m e d e n s i t y o f t h e i n t e r p h a s e

m a s s t r a n s f e r M 1 2 a n d t h e k i n e t i c e q u a t i o n o f d r y i n g is f o u n d a s

M12 - -

P l B 1

f - - W 1 F 1 ( W I ' T1 . . . . )"(6 )

T h e d e n s i t y o f t h e i n t e r p h a s e h e a t f l u x Q 2 1 i s c a l c u l a t e d a s

Q21 = Cr (Z2 - T1) S~ 1) nlk2 1 , (7 )

w h e r e t h e h e a t t r a n s f e r c o e f f i c i en t a 21 f o r a s p h e r i c a l fi l li n g c a n b e d e t e r m i n e d b y D r a k e ' s f o r m u l a a s

. . . . 0 .55 , -, 0 .33, U 2 y 2 R 1 P 2 /~2c22 2 ( 2 + u / c o K e 2 r r 2 ) , R e 2 = p r 2 . ( 8 )

a21 = 2R1 f12 ' = - - ~ -2

H e r e S ~ 1 ) = 4 z~ R 2; n l i s t h e v o l u m e d e n s i t y o f p a r t i c l e s i n t h e s p h e r i c a l f i l li n g :

B1 (9)

n l = 4 / 3 ~ r R ~ ;

k21 is a c o r r e c t i o n f a c t o r f o r d e v i a t i o n o f t h e a c t u a l c o n d i t i o n s o f t h e f l o w f r o m t h o s e a s s u m e d i n s e t t i n g u p f o r m u l a

( 8 ). T o c a l c u l a t e n 1 , t h e c o n d i t i o n o f c o n s e r v a t i o n o f t h e n u m b e r o f p a rt i c le s i n t h e s o l i d p h a s e c a n b e u s e d . T h e

e q u a t i o n f o r t h e f l o w r a t e i n t e r m s o f t h e n u m b e r o f p a r t ic l e s vl h a s t h e f o r m

v 1 = n l S x U l x = c o n s t , (10 )

w h e r e S x i s t h e c r o s s - s e c t i o n a l a r e a o f t h e b e d p e r p e n d i c u l a r t o t h e x d i r e c t i o n . O n t h e o t h e r h a n d , t h e c o n d i t i o n

4 3B 1 U l x S x = v I -~ ~ R 1 . ( 1 1 )

m u s t b e s a t i s f ie d . C o m b i n i n g E q s . ( 9 ) , ( 1 0 ), a n d ( 1 1 ), w e w i ll f i n d t w o e q u i v a le n t fo r m s o f t h e e q u a t i o n f o r

c a l c u l a t i n g t h e c o n v e n t i o n a l r a d i u s o f a s o l i d f i ll i n g :

( )U l x S x 1/'3 B11/3 o r R 1 : B ~R 1 = 4n:v1 ~ "

( 12 )

7 2 3

8/3/2019 Mathematical Modeling of Convective Heat

http://slidepdf.com/reader/full/mathematical-modeling-of-convective-heat 4/6

305~

.t07 -

2 9 7 9

29J0

a B1 b

0 .q0

0 . 3 9

0 . 3 8

, ' 0 .37 ,

a03s y o 0 . 0 3 ;

G{ ,

SC

z~t

3t

s1

7

F i g . 2. C h an g es i n t h e t em p er a t u r e T 1 ( a ) an d v o l u m e co n cen t r a t i o n B I ( b )

o f t h e f i l li n g o v e r t h e b e d t h i c k n e s s i n c r o s s s e c t io n s l o c a t e d a t v a r i o u s

d is ta nce s f rom the beg inn in g o f the be l t : x -- 0 (1 ) , x -- 3 .52 m (2 ) ; x ~ 7 .04

(3) ; x = 10.56 m (4) ; x - 14.08 m (5) ; x - - 17.60 m (6 ) . T1, K; y , m.

17

2t

3t

5t{

3"{

G{

!

y

As ap p l i ed to the s y s t e m o f e q u a t i o n s ( 4 ) , t h e p r e s e t functi ons are: P l = P 1 (W1) ,/9 2 = t92 (W2, T2), c i = c i ( V t l i, T i ) ,

H i = H i ( W i , T i ) , P 2 = p2(W 2, T2) , 22 •Az(W2, T2) , Ulx f f i con st , v l ffi con st , S x f fi S x ( x ) , W 1 = W l ( x / U x x , T1) , Q21

= Q21(OC21, T1, T2, BI , R1).

T h e n u m b er o f f u n c t i o n s B 1 , B 2, M 1 2 , U2y, Y / 2, E l , E 2 t o b e f o u n d c o r r e s p o n d s t o t h e n u m b e r o f e q u a t io n s

i n s y s t em ( 4) ( a s w as m e n t i o n ed ea r l i e r , an eq u a t i o n o f m o t i o n h as b een e l i m i n a t ed ) . N a t u r a l l y , i n t h i s ca s e t h e

r e l a t i o n

d E i .= c i d T i , i = 1 , 2 . ( 1 3 )

i s t ak en i n t o co n s i d e r a t i o n .

S y s t em o f eq u a t i o n s ( 4 ) an d ( 5 ) i s s u p p l e m e n t ed b y i n i t i a l - b o u n d a r y co n d i t i o n s ch a r ac t e r i z i n g p h y s i ca l

p a r a m e t e r s o f t h e m a t e r i a l t o b e d r i e d w h e n l o a d e d o n t o t h e c o n v e y e r b e l t a n d t h e h e a t t r a n s f e r a g e n t w h e n e n t e r i n g

t h e b e d o f m a t e r i a l

I/V (0 , y ) = W10 (y ) , T 1 (0 , y ) = T I0 (y ) , B 1 (0 , y ) = BlO (y ) ,

0 _< y _< h , T 2 (x , 0) = T20 (x ) , W 2 (x , 0) - - 14/20 (x ) ,(14)

U z y ( x , O ) = U 2 o ( X ) , O <_ x <_ l ,

w h er e W l o , T 1 0, B 1 0 , T 20 , W 2 0 , U 2 0 a r e f u n c t i o n s s p ec i f y i n g t h e i n i ti a l d i s t r i b u t i o n o f t h e p h y s i ca l p a r am e t e r s ; h

i s t h e h e i g h t o f t h e b ed o f fi ll in g ; l i s t h e l en g t h o f t h e co n v ey e r b e l t .

E q u a t i o n s ( 4) i s a s y s t em o f p a r t i a l d i f f e r en t i a l eq u a t i o n s o f t h e f i r s t o r d e r , w h i ch can b e ex p r e s s e d a s a

s y s t em t h a t i s s o l v ab l e f o r t h e d e r i v a t i v e s . T o g e t h e r w i t h co n d i t io n s ( 1 4 ) , t h is s y s t e m co n s t i t u t e s a C a u ch y p r o b l em .

D u e t o t h e s p e c if i c p r o p e r t i e s o f th e p h y s i c a l s t a t e m e n t o f t h e p r o b l e m t h e d i r e c t io n s o f m o v e m e n t o f th e c o m p o n e n t s

i n t h e t w o - p h a s e s y s t e m a r e c o n n e c t e d r i g i d l y w i t h t h e c o o r d i n a t e a x e s , a n d b o u n d a r y c o n d i t i o n s ( 1 4) a r e

s i m u l t a n eo u s l y i n it i a l co n d i t i o n s f o r s y s t e m ( 4 ). C o n s e q u en t l y , t h e s p a t i a l v a r i ab l e s x an d y a r e t r an s f o r m ed i n t o

" t i m e l i k e" o n e - s i d ed co o r d i n a t e s .

T h i s d e t e r m i n es t h e s t r u c t u r e o f t h e a l g o r it h m f o r n u m e r i ca l s o l u t i o n o f p r o b l em ( 4 ) , ( 5 ) , an d ( 1 4 ) . T h e

a l g o r i t h m i s b a s e d o n t h e p o s s i b i l i t y of t r e a t i n g t h e t r a n s f o r m e d s y s t e m o f e q u a t i o n s ( 4) a s a s y s t e m t h a t

d e c o m p o s e s l o c a ll y in t o a s y s t e m o f o r d i n a r y d i f fe r e n t ia l e q u a t i o ns i n t h e i n d e p e n d e n t v a r i a b l e s x a n d y t h a t d e p e n d

o n t h e p a r a m e t e r s y a n d x . F o r e a c h o f t h e e q u a t i o n s a C a u c h y p r o b l e m i s fo r m u l a t e d i n t h e c o r r e s p o n d i n g v a r i ab l e .

S o l u t i o n o f t h i s p r o b l em w i t h i n t h e d es c r e t i za t i o n s t ep i s n o t d i f fi cu l t an d can b e p e r f o r m ed w i t h E u l e r ' s , A d am s ' s ,

7 24

8/3/2019 Mathematical Modeling of Convective Heat

http://slidepdf.com/reader/full/mathematical-modeling-of-convective-heat 5/6

7 - z l a 1 W z373 0 . 0 1 I

372 0 . 0 1 0

371 O.O0~

370 O200

5 6 ~ I i 0 .0070 0.035 9 O

b

Y @

. 2

O.O35 g

F i g . 3 . C h a n g es i n t h e t em p er a t u r e T 2 o f t h e h ea t t r an s f e r ag en t ( a ) an d i t s

m o i s t u r e co n t e n t W 2 (b ) o v e r t h e b e d t h i ck n es s i n c r o s s s ec t i o n s l o ca t ed a t

var iou s d i s ta nce s f rom the beg inn ing o f the be l t : x = 0 (1 ) , x - - 3 .52 m (2 ) ; x

= 10 .56 m (3 ) , x = 17 .60 m (4 ) .

o r R u n g e - K u t t a ' s m e t h o d . T h e w h o l e a l g o ri t hm c o n s is t s in s u c c e s s iv e c a l c u la t i on o f u n k n o w n f u n c t i o n s a t n o d e s o f

d r y i n g l o ca t ed a l o n g s t r a i g h t l i n e s p a r a ll e l t o an ax i s co r r e s p o n d i n g t o a p a r t i cu l a r u n k n o w n f u n c t i o n .

A s an ex am p l e , i n F i g s . 2 an d 3 s o m e ca l cu l a t ed r e s u l t s a r e p r e s e n t ed f o r o p e r a t i o n o f a r ea l d r y e r w i t h

t h r ee - r o w t r an s p o r t a t i o n b y a b e l t co n v ey e r o f f r u i ts t o b e d r i ed cu t i n to c i r cu l a r s l ic e s a t t h e f o l l o w i n g p r o ces s

para m eter s : h = 0 .07 m; l = 17 .6 m; R 10 = 0 .04 m; B10 = 0 .406 ; W10 = 0 .87 ; P l 0 = 9 5 0 k g / m 3 ; T 1 0 = 2 9 3 K ; Ulx =

4 .9 .1 0 - 3 m / s ec ; T 20 = 37 3 K ; U 2 0 = 0 .3 4 m / s e c an d w i t h t h e f o ll o w i n g ap p r o x i m a t i o n o f t h e d r y i n g cu r v es :

r( t , T 1 ) = ~ W 1 0 e x p [ - k t / (a - t ) a ] a t t <_ tp,

W1[ x e x p ( - y t ) a t t > t p ,

w h e r e

w.X .

t = xU l - - , -t "= 6 0 [ 2 7 4 - 1 . 1 7 5 ( T 1 - 2 7 3 ) ] " k = - l n, , WI 0

t p '

ka = t p l n - - ~ p l n ~ ; y -

WpWIO ( a - tp) 2 'tc = exp

a ( a - t p ) '

Wp = 0 .002 -~ ; W p/2= 0 .00 13 1 -~0 + 0 .6 2 .

A s f o l lo w s f r o m t h e d a t a s h o w n i n t h e f i g u r e s f o r t h e u p p e r b e l t , a h i g h i n t en s i t y o f b l o w i n g p r o v i d es f o r an a l m o s t

u n i f o r m ( t en d i n g s o m e w h a t t o w ar d a d ec r ea s e ) d i s t r i b u t i o n o f t h e f r u i t t em p er a t u r e T 1 ( F i g. 2 a ) an d t h e v o l u m e

co n cen t r a t i o n B 1 o f t h e f i ll i n g ( F ig . 2 b ) t h r o u g h o u t t h e t h i ck n es s o f t h e b ed ; a s t h e d i s t a n ce f r o m t h e b eg i n n i n g o f

t h e b e l t in c r e a s e s , T i n c r e a s e s a n d B 1 d e c r e a s e s ; t h e p a r a m e t e r s T 2 a n d W 2 o f t h e d r y i n g a g e n t u s e d o n t h e u p p e r

b e l t a r e p r ac t i ca l l y u n c h an g ed a l o n g t h e l en g t h o f th e i n s t a l l a t i o n ( F ig . 3 ) .

N O T A T I O N

x , y , co o r d i n a t e s ; t , t i m e ; p , g a s p r e s s u r e ; E , i n t e r n a l en e r g y ; F , f o r ce o f i n t e r p h as e i n t e r ac t i o n ; G, v o l u m e

f o r ce ; Q , h ea t f l u x ; M , i n t e r p h as e m as s t r an s f e r ; U , Ux, Uy, v e l o c it y a n d c o m p o n e n t s o f t h e v e l o c it y a l o n g x a n d

y ; W , m o i s t u r e co n t en t ; p , d en s i t y ; 2 , t h e r m a l co n d u c t i v i t y ; /~ , v i s co s i ty ; c, h ea t c ap ac i t y ; B , p h a s e i n d i c a t o r f u n c t i o n

7 2 5

8/3/2019 Mathematical Modeling of Convective Heat

http://slidepdf.com/reader/full/mathematical-modeling-of-convective-heat 6/6

( a n a lo g o f t h e v o l u m e c o n c e n t r a t i o n ) . S u b s c r i pt s : 1 , m a t e ri a l ; 2 , d r y i n g a g e n t ; i j , t he t r a ns i t i on i -~ j ; s , sp he r e ; c ,

c i rc le .

R E F E R E N C E S

~

2.

3.

P . I . N i g m a t u l i n , F u n d a m e n t a l s o f t h e M e c h a n i c s o f H e t e r o g e n e o u s M e d i a [ in R u s s i a n ] , M o s c o w ( 1 9 7 8 ).

A . I. N a k o r c h e v s k i i , H e t e r o g e n e o u s T u r b u l e n t J e t s [ in R u s s i a n ] , K ie v ( 1 9 8 0 ).

A . I. Na kor c h e vsk i i , i n : P hy s i c s o f Ae r od i sp e r se S ys t e m s , I s sue 33 ( 1990) , pp . 114- 118 .

726