math3063 lecture notes - studentvip

25
University of Sydney MATH3063 LECTURE NOTES Shane Leviton 6-7-2016

Upload: others

Post on 22-Apr-2022

7 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: MATH3063 LECTURE NOTES - StudentVIP

University of Sydney

MATH3063 LECTURE NOTES

Shane Leviton 6-7-2016

Page 2: MATH3063 LECTURE NOTES - StudentVIP

Contents Introduction: ........................................................................................................................................... 6

Order of ODE: ...................................................................................................................................... 6

Explicit ODEs ....................................................................................................................................... 6

Notation: ............................................................................................................................................. 7

Example: .......................................................................................................................................... 7

Systems of ODEs ..................................................................................................................................... 7

Example 0: 𝑓𝑥 = 0 .......................................................................................................................... 8

Eg 2: 𝑓𝑥 = 𝑐 (or 𝑓𝑥 = 𝑓(𝑡) ............................................................................................................ 8

But what when 𝑓(𝑥) is a standard function ....................................................................................... 8

Matrix ODEs (lecture 2) ........................................................................................................................... 9

Linear equation of 𝑥: ....................................................................................................................... 9

Solveing: FINDING THE EIGENVALUES/EIGENVECTORS‌! .............................................................. 9

Why do we care about eigenvectors/values? ............................................................................... 10

Matrix exponentials .............................................................................................................................. 12

When does 𝑒𝐎 exist? ........................................................................................................................ 12

exp(𝐎) first class: full set of linearly independent eigenvectors ................................................. 12

Diagonalizable or semi-simple matrix ........................................................................................... 13

How big of a restriction is a full set of LI eigenvectors? ............................................................... 13

Matrix and other term exponentials:............................................................................................ 16

Complex numbers and matricies: ................................................................................................. 16

Real normal form of matricies ...................................................................................................... 18

Repeated eigenvalues ....................................................................................................................... 20

Generalized eigenspace: ............................................................................................................... 20

Primary decomposition theorym .................................................................................................. 20

Theorems: ..................................................................................................................................... 21

General algorithm for finding 𝑒𝐎 .................................................................................................. 21

Derivative of 𝑒𝐎𝑡 ........................................................................................................................... 24

Phase Plots ............................................................................................................................................ 28

Example: ........................................................................................................................................ 28

Phase Plot/Phase line ........................................................................................................................ 30

Remarks: ....................................................................................................................................... 31

Constant solution: ......................................................................................................................... 31

Spectrum: .......................................................................................................................................... 32

Definition of spectrum: ................................................................................................................. 32

Spectrally stable definition ........................................................................................................... 32

Page 3: MATH3063 LECTURE NOTES - StudentVIP

Stable/unstable/centre sub spaces: ................................................................................................. 33

Primary decomposition theorem: ................................................................................................. 33

Generally: ...................................................................................................................................... 34

Hyperbolic: .................................................................................................................................... 34

Bounded for forward time: Definition .......................................................................................... 35

Linearly stable definition: ............................................................................................................. 35

Asymptotically linearly stable Definition ...................................................................................... 36

Restricted dynamics: ......................................................................................................................... 36

Generally: ...................................................................................................................................... 37

The theory: .................................................................................................................................... 37

Classification of 2D linear systems: ................................................................................................... 41

Our approach: ............................................................................................................................... 42

Discriminant: ................................................................................................................................. 42

Overall picture: ............................................................................................................................. 62

Linear ODEs with non constant coeffiencts ...................................................................................... 64

Principle fundamental solution matric. ........................................................................................ 65

Liouville’s/ Abel’s Formula: (Theorem) ......................................................................................... 65

PART 2: METRIC SPACES ....................................................................................................................... 66

Start of thinking: ............................................................................................................................... 66

Key idea: ........................................................................................................................................ 66

Formal definition of metric spaces: .................................................................................................. 66

Metric (distance function): ........................................................................................................... 66

Metric space .................................................................................................................................. 66

Topology of metric spaces: ............................................................................................................... 68

Open ball ....................................................................................................................................... 68

Examples: ...................................................................................................................................... 68

Open subset of metric space ........................................................................................................ 69

Closed subset of metric space ...................................................................................................... 69

Interior: ......................................................................................................................................... 69

Closure: ......................................................................................................................................... 70

Boundary: ...................................................................................................................................... 70

Limit point/accumulation point .................................................................................................... 70

Sequences and Completeness .......................................................................................................... 71

Definition: complete sequence ..................................................................................................... 72

Contraction Mapping Principle: ........................................................................................................ 73

A contraction is a map: ................................................................................................................. 73

Page 4: MATH3063 LECTURE NOTES - StudentVIP

Definition: Lipshitz function .......................................................................................................... 76

Defintion: Locally Liphschitz .......................................................................................................... 77

Existence and Uniqueness of solutions of ODEs: .............................................................................. 77

Equation * ..................................................................................................................................... 77

Solution ......................................................................................................................................... 77

Dependence on initial conditions and parameters ........................................................................... 81

Theorem (P-L again) ...................................................................................................................... 82

Theorem : Families of solutions .................................................................................................... 82

Maximal intervals of existence ......................................................................................................... 84

Definition: Maximal interval of existence ..................................................................................... 84

PART 3: NON LINEAR PLANAR AUTONOMOUS ODES ........................................................................... 86

Terminology: ..................................................................................................................................... 87

Function vector: ............................................................................................................................ 87

Talking about what solutions are: ..................................................................................................... 89

Eg: pendulum equation ................................................................................................................. 89

Phase portraits: ............................................................................................................................. 91

Isoclines ......................................................................................................................................... 92

Linearisation: ..................................................................................................................................... 93

Generally for linearlisation: .......................................................................................................... 93

Hyperbolic good, non-hyperbolic = bad ........................................................................................ 94

More Qualitative results ................................................................................................................... 99

Theorem: uniqun phase curves .................................................................................................... 99

Closed phase curves/periodic solutoins ....................................................................................... 99

Hamiltonian Systems: ................................................................................................................. 104

Lotka-Volterra/ Predator-Prey system ............................................................................................ 105

Definition of predator prey: ........................................................................................................ 105

Analysis of system: ...................................................................................................................... 106

Modifications to equations: ........................................................................................................ 108

Epidemics: ....................................................................................................................................... 109

SIR model .................................................................................................................................... 110

Abstraction, Global existsnece and Reparametrisation .................................................................. 116

Definition: 1 parameter family.................................................................................................... 117

Definition: Orbit/trajectory ......................................................................................................... 117

Existence of complete flow: ........................................................................................................ 117

Flows on ℝ ...................................................................................................................................... 118

Thereom: types of flows in ℝ...................................................................................................... 120

Page 5: MATH3063 LECTURE NOTES - StudentVIP

𝛌alpha and 𝜔 omega limit sets: .................................................................................................... 122

Asymptotic limit point ................................................................................................................. 122

Non- Linear stability (of critical points) ........................................................................................... 129

Lyapunov stable definition: ......................................................................................................... 129

Asymptotically stable: defininition ............................................................................................. 129

Lyapunov functions ..................................................................................................................... 131

LaSalle’s Invariance principle: ..................................................................................................... 133

Hilbert’s 16th problem and Poincare- Bendixon theorem ............................................................... 134

Questino: hilbert’s 16th problem ................................................................................................. 134

Poincare Bendixson theorem Proof: ............................................................................................... 136

Proof:........................................................................................................................................... 136

Definitions of sets: disconnected ................................................................................................ 136

Proof of Poincare Bendixson theorem: ....................................................................................... 139

Bendixsons Negative Criterion .................................................................................................... 139

INDEX THEORY (Bonus) ....................................................................................................................... 142

Set up: ............................................................................................................................................. 142

Theta: .......................................................................................................................................... 142

Index: definition .............................................................................................................................. 142

Theorem: on Index ...................................................................................................................... 144

Poincare Index: ........................................................................................................................... 145

Index at infinity: .............................................................................................................................. 148

Computing the index at infinity .................................................................................................. 148

Theorem: Poincare Hopf Index theorem .................................................................................... 150

Part 4 Bifurcation theory .................................................................................................................... 151

Lets start with an example in 1D: ................................................................................................... 152

Bifurcations: .................................................................................................................................... 153

Bifurcation diagram: ................................................................................................................... 153

Bifurcation: .................................................................................................................................. 153

Example 2 (in 2D) (Saddle node) bifurcation .............................................................................. 153

Transcritical bifurcation .................................................................................................................. 156

1D example: ................................................................................................................................ 156

Supercritical Pitchfork bifurcation .................................................................................................. 158

Example ....................................................................................................................................... 158

Logistic growth with harvesting ...................................................................................................... 160

Hopf Bifurcation .............................................................................................................................. 161

Definition of Hopf: ...................................................................................................................... 161

Page 6: MATH3063 LECTURE NOTES - StudentVIP

Some more examples of bifurcations ............................................................................................. 165

FIREFLIES AND FLOWS ON A CIRCLE ............................................................................................... 167

Non uniform oscillator ................................................................................................................ 167

Glycolysis ......................................................................................................................................... 170

Model: Sel’kov 1968 .................................................................................................................... 170

Catastrophe:.................................................................................................................................... 180

Eg 1: fold bifurcation: .................................................................................................................. 181

Eg 2: swallowtail catastrophe ..................................................................................................... 185

Hysteresis and van der pol oscillator .............................................................................................. 186

Van der poll oscillator example: ................................................................................................. 188

Page 7: MATH3063 LECTURE NOTES - StudentVIP

MATH3963 NON LINEAR DIFFERENTIAL EQUATIONS WITH APPLICATIONS (biomaths) NOTES

- Robert Marangell [email protected]

Assessment:

- Midterm (Thursday April 21) 25%

- 2 assignments 10% each (due 4/4 and 30/5)

- 55% exam

Assignments are typed (eg LaTex)

PART 1: LINEAR SYSTEMS Introduction:

- What is an ODE; how to understand them

a DE is a function relationship between a function and its derivatives

An ODE is when the function has only 1 variable independent variable.

Eg; 𝑡 independant (𝑥(𝑡); 𝑊(𝑡)dependant

Not just scalar, but also vector valued functions (Systems of ODES)

ᅵᅵ(𝑡) ∈ ℝ𝑑

ᅵᅵ(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡),
 𝑥𝑑(𝑡))

𝑥𝑗: ℝ → ℝ

Order of ODE: - Highest derivative appearing in equation

If you can isolate the highest derivative (eg 𝐹 (𝑡, ᅵᅵ(𝑡),𝑑𝑊(𝑡)

𝑑𝑡, 


𝑑(𝑛)ᅵᅵ(𝑡)

𝑑𝑡(𝑛)) = 0

Explicit ODEs If you can isolate highet derivative: it is an explicit ODE

Page 8: MATH3063 LECTURE NOTES - StudentVIP

𝑑(𝑛)ᅵᅵ(𝑡)

𝑑𝑡(𝑛)= 𝐺 (𝑡, ᅵᅵ(𝑡),

𝑑𝑊(𝑡)

𝑑𝑡,  𝑑(𝑛−1)ᅵᅵ(𝑡)

𝑑𝑡(𝑛−1))

(explicit is easier; implicit is very hard)

Notation: Use dot

𝑑

𝑑𝑡=

Example: 𝑊 + 2ᅵᅵ𝑊 + 3(ᅵᅵ)2 + 𝑊 = 0

You can reduce the order of an ODE (to 1), in exchange for making it a system of ODEs

- Introduce new variables into system

𝑊0 = 𝑊

𝑊1 = 𝑊0 = ᅵᅵ

𝑊2 = 𝑊1 = ᅵᅵ

∎ 𝑊0 = 𝑊1

𝑊1 = 𝑊2

𝑊2 = −2𝑊2𝑊0 − 3𝑊12 − 𝑊0

Which is a first order system in 3 variables, equivalent to the original 3rd order ODE

Systems of ODEs - We can play the same game for systems of ODEs

ᅵᅵ + 𝐎ᅵᅵ = 0 (𝑀𝑖𝑡ℎᅵᅵ ∈ ℝ2; 𝐎 = (𝑎 𝑏𝑐 𝑑

))

∎ (𝑊1𝑊2) + (

𝑎 𝑏𝑐 𝑑

)(𝑊1𝑊2) = 0

∎ 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒:

𝑊1 = 𝑊3

𝑊2 = 𝑊4 𝑊3 = 𝑊1 = −𝑎𝑊1 − 𝑏𝑊2

𝑊4 = 𝑊2 = −𝑐𝑊1 − 𝑑𝑊2

∎ (

𝑊1𝑊2𝑊3𝑊4

) = (

0 0 1 00 0 0 1−𝑎 −𝑏 0 0−𝑐 −𝑑 0 0

)(

𝑊1𝑊2𝑊3𝑊4

)

𝑙𝑒𝑡ᅵᅵ = (𝑊1, 𝑊2, 𝑊3, 𝑊4)

The system of equations is now:

ᅵᅵ = 𝐵ᅵᅵ

Where ᅵᅵ = 𝑓(ᅵᅵ)

Page 9: MATH3063 LECTURE NOTES - StudentVIP

Example 0: 𝑓(𝑥) = 0 ∎ ᅵᅵ = 0

→ 𝑥ᅵᅵ = 0∀𝑖 ᅵᅵ = 𝑐𝑓𝑜𝑟𝑥, 𝑐 ∈ ℝ𝑛

This is all the solutions to ᅵᅵ = 0; and the solutions form an 𝑛 dimensional vector space

Eg 2: 𝑓(𝑥) = 𝑐 (or 𝑓(𝑥) = 𝑓(𝑡) ∎ ᅵᅵ = 𝑐

→ ᅵᅵ(𝑡) = 𝑐𝑡 + 𝑑

But what when 𝑓(𝑥) is a standard function - If 𝑓(𝑥) is linear in 𝑥

Remember: “linear” if:

𝑓(𝑐𝑥 + 𝑊) = 𝑐𝑓(𝑥) + 𝑓(𝑊)

Recall any linear map can be represented by a matrix, by choosing a basis

∎ ᅵᅵ = 𝐎(𝑡)𝑥

If 𝐎(𝑡) = 𝐎(independent of 𝑡), it is called a constant coefficient system

ᅵᅵ = 𝐎𝑥

Eg:

𝐎 = (

0 1 0 01 0 1 00 1 0 10 0 1 0

)

→(

𝑥1𝑥2𝑥3𝑥4

)

= (

0 1 0 01 0 1 00 1 0 10 0 1 0

)(

𝑥1𝑥2𝑥3𝑥4

)

∎ 𝑥1 = 𝑥2

𝑥2 = 𝑥1 + 𝑥3

𝑥3 = 𝑥2 + 𝑥4

𝑥4 = 𝑥3

Is the system of ODEs which we now have to solve

Page 10: MATH3063 LECTURE NOTES - StudentVIP

Matrix ODEs (lecture 2)

ᅵᅵ = 𝑓(𝑥)

Linear equation of 𝑥:

ᅵᅵ = 𝐎𝑥(𝑥 ∈ ℝ𝑛; 𝑎𝑛𝑑𝐎 ∈ 𝑀𝑛(ℝ))

Eg:

𝑒𝑔: 𝐎 =0 1 01 0 10 1 0

ᅵᅵ = 𝐎𝑥; 𝑥 = (𝑥1, 𝑥2, 𝑥3)

(𝑥1𝑥2𝑥3

) = (0 1 01 0 10 1 0

)(

𝑥!𝑥2𝑥3)

∎ 𝑥1 = 𝑥2;

𝑥2 = 𝑥1 + 𝑥3

𝑥3 = 𝑥2

So a solution is a triple vector which solves this equation

Solveing: FINDING THE EIGENVALUES/EIGENVECTORS‌!

Recall:

A value

𝜆 ∈ ℂ

Is an eigenvalue of an 𝑛 × 𝑛 matrix 𝐎 if a non zero vector ᅵᅵ ∈ ℝ𝑛 such that

𝐎𝑣 = 𝜆𝑣

𝑣 is the corresponding eigenvector

→ (A − λI)𝑣 = 0 → 𝑣 ∈ ker(𝐎 − 𝜆𝐌)

→ 𝐎 − 𝜆𝐌𝑖𝑠𝑛𝑜𝑡𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒

→ det(𝐎 − 𝜆𝐌) = 0

det(𝐎 − 𝜆𝐌) is a polynomial in 𝜆 of degree 𝑛 called the characteristic polynomial of 𝐎

𝜌𝐎(𝜆)

Eigenvalues are roots of 𝜌𝐎(𝜆) = 0

Fundamental theorem of algebra:

𝜌𝐎(𝜆) has exactly 𝑛 (possibly complex) roots counted according to algebraic multiplicity.

Page 11: MATH3063 LECTURE NOTES - StudentVIP

Algebraic multiplicity:

The algebraic multiplicity of a root 𝑟 of 𝜌𝐎(𝜆) = 0 is the largest 𝑘 such that 𝜌𝐎(𝜆) = (𝜆 − 𝑟)𝑘𝑞(𝜆)

and 𝑞(𝑟) ≠ 0

The algebraic multiplicity of an eigenvalue 𝜆 of 𝐎 is its algebraic multiplicity as a root of 𝜌𝐎(𝜆)

Geometric multiplicity:

The geometric multiplicity of an eigenvalue is the maximum number of linearly independent

eigenvectors

Alg multiplicity and geometric

𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑊 ≥ 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑊

Returning to example:

(

𝑥1𝑥2𝑥3

) = (0 1 01 0 10 1 0

)(

𝑥!𝑥2𝑥3)

𝐎 = (0 1 01 0 10 1 0

)

det(𝐎 − 𝜆𝐌) = |−𝜆 1 01 −𝜆 10 1 −𝜆

| = −𝜆(𝜆2 − 2) = 0

→ 𝜆 = 0;±√2

Eigenvectors are found by finding the kernel of ker(𝐎 − 𝜆𝐌) for an eigenvalue:

Giving eigenvectors:

𝜆1 = 0 →𝑣1 = (10−1)

𝜆2 = √2 → 𝑣2 = (1

√21

)

𝜆3 = −√2 → 𝑣3 = (−1

√21

)

Why do we care about eigenvectors/values?

ᅵᅵ = 𝐎ᅵᅵ

Suppose that 𝑣 is an eigenvector of 𝐎 ∈ 𝑀𝑛(ℂ), with eigenvalues of 𝜆.

Consider the vector of functions:

Page 12: MATH3063 LECTURE NOTES - StudentVIP

ᅵᅵ(𝑡) = 𝑐(𝑡)ᅵᅵ

𝑐 is some unkown function 𝑐: ℂ → ℂ

If ᅵᅵ solves ᅵᅵ = 𝐎𝑥, then

ᅵᅵ(𝑡)ᅵᅵ = 𝐎𝑐(𝑡)ᅵᅵ = 𝑐(𝑡)𝐎ᅵᅵ = 𝜆𝑐(𝑡)ᅵᅵ(𝑎𝑠𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟)

As ᅵᅵ ≠ 0,

→ ᅵᅵ(𝑡) = 𝜆𝑐(𝑡)

Which is a differential equation of one variable

∎ 𝑐(𝑡) = 𝑒𝜆𝑡

SO:

𝑥(𝑡) = 𝑒𝜆𝑡ᅵᅵ

is a solution vector to

ᅵᅵ = 𝐎𝑥

So- we have a 1D subspace of solutions 𝑥(𝑡) = 𝑐0𝑒𝜆𝑡ᅵᅵ

Notes:

1. Solutions to ᅵᅵ = 𝐎𝑥 are of the form 𝑥 = 𝑐0𝑒𝜆𝑡ᅵᅵ where 𝜆 is a constant eigenvalue of 𝐎 of ᅵᅵ is

the corresponding eigenvectors are called EIGENSOLUTIONS

2. What we just did has a name “ansatz” (guess what the solution could be, and see if it is

correct)

Back to example:

∎ 𝑥(𝑡) = 𝑒0𝑡 (10−1) ; 𝑊(𝑡) = 𝑒√2𝑡 (

1

√21

) ; 𝑧(𝑡) = 𝑒−√2 (1

−√21

)

So, as linear- any linear combination of these is the solution:

So:

𝑋(𝑡) = 𝑐1𝑒0𝑡 (

10−1) + 𝑐2𝑒

√2𝑡 (1

√21

) + 𝑐3𝑒−√2 (

1

−√21

)

IS OUR SOLUTION‌‌!

𝑋(𝑡) is actually a 3D vector space.

Page 13: MATH3063 LECTURE NOTES - StudentVIP

Matrix exponentials 𝐎 ∈ 𝑀𝑛×𝑛 ; what is:

𝑒𝐎

(exp(𝐎))

For a matrix: DEFINE

𝑒𝐎 = exp(𝐎) = ∑1

𝑘!𝐎𝑘

∞

(𝑘=0)

= 𝐌 + 𝐎 +1

2𝐎2 +

1

3!𝐎3 +⋯

If the entries converge, then: 𝑒𝐎 IS an 𝑛 × 𝑛 matrix

When does 𝑒𝐎 exist?

exp(𝐎) first class: full set of linearly independent eigenvectors - Hypothesis: Suppose 𝐎 has a full set of linearly independent eigenvectors

- Assume that hypothesis for the rest of today(we’ll look at if it’s not later)

Let 𝑣1, 
 𝑣𝑛 be the eigenvectors; with 𝜆1, 
 , 𝜆𝑛 eigenvalues

Form the following matrix:

𝑃 = (𝑣1, 𝑣2, 
 𝑣𝑛)

(whose columes are the eigenvectors)

∎ 𝐎𝑃 = (𝐎𝑣1, 𝐎𝑣2,  𝐎𝑣𝑛) = (𝜆1𝑣1, 
 𝜆𝑛𝑣𝑛)(𝑏𝑊𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛)

= 𝑃𝑑𝑖𝑎𝑔(𝜆1, 
 , 𝜆𝑛)

≔ 𝑃Λ

∎ 𝑃−1𝐎𝑃 = Λ(= diag(λ1, 
 λn))

∎ 𝑒Λ = 𝐌 + Λ +1

2Λ2 +⋯

= 𝑑𝑖𝑎𝑔(𝑒𝜆1 , 
 . , 𝑒𝜆𝑛)

LHS:

𝑒𝑃−1𝐎𝑃

Lemma:

(𝑃−1𝐎𝑃)𝑛 = 𝑃−1𝐎𝑛𝑃

So:

∎ 𝑒𝐎 = 𝑃𝑒Λ𝑃−1 (𝑒Λ = 𝑑𝑖𝑎𝑔(𝑒𝜆1 , 
 , 𝑒𝜆𝑛))

AND: the eigenvectors of 𝑒𝐎 = 𝑒𝜆𝑗, where 𝜆𝑗 is eigenvalues of 𝐎,

Page 14: MATH3063 LECTURE NOTES - StudentVIP

Example:

𝐎 = (0 1 01 0 10 1 0

) ;

∎ 𝑥 (10−1) ;(

1

√21

) ;(1

−√21

)

𝑃 = (10−1

1

√21

1

−√21

)

Λ = (000

0

√20

00

−√2

)

∎ 𝑒𝐎 = 𝑃𝑒Λ𝑃−1

= (10−1

1

√21

1

−√21

)(000

0

𝑒√2

0

00

𝑒−√2)(

10−1

1

√21

1

−√21

)

−1

= (𝑢𝑔𝑙𝑊𝑎𝑛𝑠𝑀𝑒𝑟)

Diagonalizable or semi-simple matrix A matrix 𝐎 for which there exists an invertible matrix 𝑃 such that

𝑃−1𝐎𝑃 = Λ

(where Λ is diagonal is called diagonalizable or semisimple

This says, if 𝐎 is semisimple, then 𝑒𝐎 exists, and we can compute it

How big of a restriction is a full set of LI eigenvectors?

Defective matricies

If 𝐎 does not have a full set of linearly independent eigenvectors, it is called defective

- How big of a restriction is being semisimple?

- Are there many semi simple matrices?

Proposition:

Suppose 𝜆1 ≠ 𝜆2 are eigenvalues of a matrix 𝐎 with eigenvectors 𝑣1𝑎𝑛𝑑𝑣2. Then 𝑣1 and 𝑣2 are

linearly independent

Page 15: MATH3063 LECTURE NOTES - StudentVIP

Proof:

If ∃ a dependence relation, then ∃𝑘1𝑎𝑛𝑑𝑘2 scalars such that

𝑘1𝑣1 + 𝑘2𝑣2 = 0(𝑘1, 𝑘2 ≠ 0)

Applying 𝐎:

𝐎(𝑘1𝑣1 + 𝑘2𝑣2) = 0

𝐎𝑘1𝑣1 + 𝐎𝑘2𝑣2 = 0 ∎ 𝑘1𝜆𝑣1 + 𝑘2𝜆2𝑣2 = 0(𝑎𝑠𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠)

→ 𝑡𝑎𝑘𝑒 − 𝜆1𝑘1𝑣1 − 𝜆1𝑘2𝑣2 = 0

\∎ (𝜆2 − 𝜆1)𝑘2𝑣2 = 0

→ 𝑘2 = 0(∎ 𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛)

Example:

𝐎 = (𝑎 𝑏𝑐 𝑑

)

𝜌𝐎(𝜆) = 𝜆2 − (𝑎 + 𝑑)𝜆 + 𝑎𝑑 − 𝑏𝑐

= 𝜆2 − 𝜏𝜆 + 𝛿(𝑡𝑎𝑘𝑖𝑛𝑔𝜏 = 𝑎 + 𝑑; 𝛿 = 𝑎𝑑 − 𝑏𝑐)

(𝜏 = 𝑇𝑟𝑎𝑐𝑒(𝐎) =∑𝑎𝑗𝑗

𝑛

𝑗=1

(𝑠𝑢𝑚𝑜𝑓𝑡ℎ𝑒𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑠))

∎ 𝜆 =𝜏 ± √𝜏2 − 4𝛿

2𝑎𝑟𝑒𝑟𝑜𝑜𝑡𝑠

∎ 𝜆+ ≠ 𝜆−𝑖𝑓𝜏2 − 4𝛿 = 0

∎ 𝜏2 − 4𝛿 = 0

→ 𝛿 =𝜏2

4

Therefore: any matrix which does not lie on this parabola in 𝜏, 𝛿 space will be diagonalizable

𝜏2 − 4𝛿 = (𝑎 − 𝑑)2 + 4𝑏𝑐

The set of matricies with repeated eigenvalues, is the locus of points with

(𝑎 − 𝑑)2 + 4𝑏𝑐 = 0

A 3D hypersurface, in 4D space

So what if 𝐎 is defective? Can we compute 𝑒𝐎

- Yes

Two 𝑛 × 𝑛 matricies 𝐎, 𝐵 are commutative, if

𝐎𝐵 = 𝐵𝐎

Page 16: MATH3063 LECTURE NOTES - StudentVIP

Commutator

A commutator we will define as:

[𝐎, 𝐵] ≔ 𝐎𝐵 − 𝐵𝐎 = 0(𝑖𝑓𝑓𝐎𝐵𝑐𝑜𝑚𝑚𝑢𝑡𝑒)

Proposition

If 𝐎 and 𝐵 commute, then

𝑒𝐎+𝐵 = 𝑒𝐎 + 𝑒𝐵

- Aside: if 𝑒𝐎+𝐵 = 𝑒𝐎𝑒𝐵, and 𝐎 and 𝐵 satisfy symmetric → 𝐎𝐵 = 𝐵𝐎

Proof

𝑒𝐎+𝐵 = 𝐌 + (𝐎 + 𝐵) +1

2(𝐎 + 𝐵)2

= 𝐌 + 𝐎 + 𝐵 +1

2(𝐎2 + 𝐎𝐵 + 𝐵𝐎 + 𝐵2) + ⋯

= 𝐌 + 𝐎 + 𝐵 +1

2𝐎2 + 𝐎𝐵 +

1

2𝐵2(𝑎𝑠𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑒)

And:

𝑒𝐎𝑒𝐵 = (𝐌 + 𝐎 +1

2𝐎2
) (𝐌 + 𝐵 +

1

2𝐵2
)

= 𝐌 + (𝐎 + 𝐵) +1

2𝐎2 + 𝐎𝐵 +

1

2𝐵2 +⋯

Example:

𝐎 = (𝑎 00 𝑏

)(𝑎 ≠ 𝑏); 𝐵 = (0 10 0

)

∎ 𝑒𝐎 = (𝑒𝑎 00 𝑒𝑏

) ; 𝑒𝐵 =(1 10 1

)

𝑒𝐎+𝐵 = (𝑒𝑎𝑒𝑎 − 𝑒𝑏

𝑎 − 𝑏0 𝑒𝑏

)

𝑒𝐎𝑒𝐵 = 𝑒𝐎+𝐵 → (𝑎 − 𝑏)𝑒𝑎 = 𝑒𝑎 − 𝑒𝑏

If 𝑥 = 𝑎 − 𝑏

∎ 𝑥 = 1 − 𝑒−𝑥

One example of a solution: is

𝑥 ≈ −6.6022 − 736.693𝑖

Nilpotent matrix:

Definition:

A matrix 𝑁 is nilpotent if some power of it is = 0 (𝑁𝑇 = 0for some 𝑇)

Eg; 𝑁 =0 1 00 0 10 0 0

→ 𝑁3 = 0(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒)

This means that the power series terminates for 𝑒𝑁 :

Page 17: MATH3063 LECTURE NOTES - StudentVIP

𝑒𝑁 = 𝐌 + 𝑁 +1

2𝑁2 + 0 + 0 +⋯

So- how do we compute the exponential?

Jordan Canonical Form:

Let 𝐎 be an 𝑛 × 𝑛 matrix, with complex entries ∃ a basis of ℂ𝑛 and an invertible matrix 𝐵 (of basis

vectors) such that

𝐵−1𝐎𝐵 = 𝑆 + 𝑁

Where 𝑆 is diagonal (semisimple); and 𝑁 is nilpotent; and 𝑆 and 𝑁 commute (𝑆𝑁 − 𝑁𝑆 = 0)

So; this means that 𝑒𝐎 exists for all matricies:

𝐵−1𝐎𝐵 = 𝑆 + 𝑁

→ 𝐵−1𝑒𝐎𝐵 = 𝑒𝑆𝑒𝑁

𝑒𝐎 = 𝐵𝑒𝑆𝑒𝑁𝐵−1

This is cool.

Matrix and other term exponentials:

So now: consider the follow 𝐎𝑡; where 𝐎 ∈ 𝑀𝑛(ℝ) and 𝑡 ∈ ℝ

So:

𝑒𝐎𝑡 =∑(𝑡𝑘

𝑘!)𝐎𝑘

∞

𝑘=0

For a fixed 𝐎; the exponential is a function map between real numbers and matricies

𝑒𝐎𝑡: ℝ → 𝑀𝑛(ℝ)

exp𝐎(𝑡) : 𝑡 → 𝑒𝐎𝑡

exp𝐎(𝑡 + 𝑠) = 𝑒𝐎(𝑡+𝑠) = 𝑒𝐎𝑡𝑒𝐎𝑠 = exp𝐎(𝑡) exp𝐎(𝑠)

𝑒𝐎𝑡 is invertible! Inverse is 𝑒−𝐎𝑡

So- what is the derivative between the map of the real numbers to the matricies?

Complex numbers and matricies:

Let 𝐜 = (0 −11 0

)

→ 𝐜2 = −𝐌;𝐜2 = −𝐜; 𝐜4 = 𝐌

𝑒𝐜𝑡 = 𝐌 + 𝐜𝑡 +1

2𝐜2𝑡2 +⋯

Page 18: MATH3063 LECTURE NOTES - StudentVIP

= 𝐌 + 𝐜𝑡 −1

2𝑡2𝐌 −

1

3!𝑡3𝐜

= 𝐌 −𝑡2

2𝐌 +

𝑡4

4!+ ⋯+ 𝐜 (𝑡 −

𝑡3

3!+ ⋯)

= cos 𝑡 𝐌 + sin 𝑡 𝐜

= (cos 𝑡 − sin 𝑡sin 𝑡 cos 𝑡

)

Which is the rotation matrix;

So: the matrix 𝐜 is the complex number 𝑖; and we wrote Euler’s formula

𝑒𝑖𝑡 = cos 𝑡 + 𝑖 sin 𝑡

- We can actually take any complex number 𝑧 = 𝑥 + 𝑖𝑊; and find its corresponding matrix

𝑀𝑧 ≔ 𝑥𝐌 + 𝑊𝐜 = (𝑥 −𝑊𝑊 𝑥 )

(the technical term is a field isomorphism)

Complex number algebra:

𝑀𝑧1+𝑧2 = 𝑀𝑧1 +𝑀𝑧2

𝑀𝑧1𝑧2 = 𝑀𝑧1𝑀𝑧2 = 𝑀𝑧2𝑀𝑧1 = 𝑀𝑧2𝑧1

Complex exponentials:

𝑀𝑒𝑧 = 𝑒𝑀𝑡

𝑧 = 𝑥 + 𝑖𝑊:

𝑒𝑧 = 𝑒𝑥 cos 𝑊 + 𝑖𝑒𝑥 sin𝑊 = 𝑒𝑥 (cos𝑊 − sin𝑊sin𝑊 cos𝑊

)

= 𝑒𝑥𝐌 + 𝑒𝑊𝐜

Complex number things:

det(𝑀𝑧) = 𝑥2 + 𝑊2 = |𝑧|2

𝑀ᅵᅵ = (𝑥 𝑊−𝑊 𝑥) = 𝑀𝑧

𝑇

𝑀𝑟 = 𝑟𝐌(𝑖𝑓𝑟 ∈ ℝ)

𝑀ᅵᅵ𝑀𝑍 = 𝑀|𝑧|2 = |𝑧|2𝐌

𝑖𝑓𝑧 ≠ 0;𝑀𝑧𝑖𝑠𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒; 𝑎𝑛𝑑

𝑀𝑧−1 =

1

|𝑧|2𝑀𝑧

𝑇 =1

det(𝑀𝑧)𝑀𝑍𝑇

So lets compute 𝑒𝐜𝑡 = (cos 𝑡 − sin 𝑡sin 𝑡 cos 𝑡

):

Eigenvalues of 𝐜𝑡 are ±𝑖𝑡

𝑒 −vectors are (±𝑖1)

Page 19: MATH3063 LECTURE NOTES - StudentVIP

𝑃 = (𝑖 −𝑖1 1

) ;𝑃−1 =1

2𝑖(1 𝑖−1 𝑖

)

Λ = (𝑖𝑡 00 −𝑖𝑡

)

→ 𝑒𝐜𝑡 =1

2𝑖(𝑖 −𝑖1 1

) (𝑒𝑖𝑡 00 𝑒−𝑖𝑡

) (1 𝑖−1 𝑖

)

= (cos 𝑡 − sin 𝑡sin 𝑡 cos 𝑡

)

So we got what we started with! (which is good)

Real normal form of matricies Moving towards a real “normal” form for matricesl with real entries but complex eigenvalues

Fact: if 𝐎 ∈ 𝑀𝑛(ℝ) then if 𝜆 is an eigenvalue; so ᅵᅵ is an e-value. (complex conjugate theorem). Also-

eigenvectors come in conjugate pairs as well

𝐎𝑣 = 𝜆𝑣 → 𝐎ᅵᅵ = ᅵᅵᅵᅵ

- If 𝜆 is an eigenvalue 𝜆 = 𝑎 + 𝑖𝑏; then ᅵᅵ = 𝑎 − 𝑖𝑏 is also an e-value

- If ᅵᅵ = ᅵᅵ + 𝑖ᅵᅵ;(𝑢, 𝑀 ∈ ℝ𝑛) → ᅵᅵ = ᅵᅵ − 𝑖ᅵᅵ

So:

2𝑢 = 𝑣 + ᅵᅵ

𝐎(2𝑢) = 𝜆𝑣 + 𝜆ᅵᅵ = 2(𝑎ᅵᅵ − 𝑏ᅵᅵ)

→ 𝐎ᅵᅵ = (𝑎ᅵᅵ − 𝑏ᅵᅵ)

Similarly;

𝐎ᅵᅵ = (𝑎ᅵᅵ + 𝑏ᅵᅵ)

So; if 𝑃 is the 𝑛 × 2 matrix

𝑃 = (𝑢 𝑀)

→ 𝐎𝑃 = 𝑃 (𝑎 −𝑏𝑏 𝑎

)

(we are close to finding the algorithm for computing the matrix exponential of any matrix)

Eg:

𝐎 =

0 1 0 0−1 0 1 00 −1 0 10 0 −1 0

Characteristic polynomial is:

𝑥4 + 3𝑥2 + 1

e-values of 𝐎 are ±𝑖𝜙𝑎𝑛𝑑 ±𝑖

𝜙 (with 𝜙 =

1+√5

2 the golden ratio)

Page 20: MATH3063 LECTURE NOTES - StudentVIP

so eigenvectors:

𝑣1 = (

𝑖−𝜙−𝑖𝜙1

) = (

0−𝜙01

) + 𝑖(

10−𝜙1

)= 𝑢1 + 𝑖𝑀𝑖

; 𝑣2 = (

𝑖𝜙−1𝑖−𝜙

)

→

So

𝐎𝑃1 = 𝑃1 (0 −𝜙𝜙 0

)

𝑃 = (𝑢1𝑀1𝑢2𝑀2)𝑃−1𝐎𝑃 =

(

0 −𝜙 0 0𝜙 0 0 0

0 0 0 −1

𝜙

0 01

𝜙0)

this is called a block diagonal matrix (has blocks of diagonal matricies; and 0s everywhere else)

= 𝜙𝐜 ⊕−1

𝜙𝐜

Direct sum:

𝐎⊕𝐵 = (𝐎 00 𝐵

)

𝐎 and 𝐵 don’t need to be the same size

Lemma: if

𝐎 = 𝐵⊕𝐶

Then

𝑒𝐎 = 𝑒𝐵⊕𝑒𝐶

Proof:

(𝐎 = (𝐵 00 0

) + (0 00 𝐶

)) 𝑀ℎ𝑖𝑐ℎ𝑐𝑜𝑚𝑚𝑢𝑡𝑒

→ 𝑒𝐎 = 𝑒(𝐵 00 0

)𝑒(0 00 𝐶

)= (𝑒

𝐵 00 𝐌

) (𝐌 00 𝑒𝐶

) = (𝑒𝐵 00 𝑒𝐶

) = 𝑒𝐵⊕𝑒𝐶

Page 21: MATH3063 LECTURE NOTES - StudentVIP

Repeated eigenvalues

So what do we do if we have repeated eigenvalues? How do we calculate the matrix exponential?

Generalized eigenspace: Definition

Suppose 𝜆𝑗 is an eigenvalue of a matrix 𝐎 with algebraic multiplicity 𝑛𝑗. We define the generalized

eigenspace of 𝜆𝑗 as:

𝐞𝑗 ≔ ker[(𝐎 − 𝜆𝑗𝐌)𝑛𝑗]

There are basically two reasons why this definition is important. The first is that these generalized

eigenspaces are INVARIANT UNDER MULTIPLICATION BY 𝐎 (does not change). That is: if 𝒗 ∈ 𝐞𝑗, then

𝐎𝒗 is as well

Proposition: of generalized eigenspace

Suppose that 𝐞𝑗 is a generalized eigenspace of the matrix 𝐎, then if 𝑣 ∈ 𝐞𝑗; so is 𝐎𝑣

Proof of proposition:

- If 𝑣 ∈ 𝐞𝑗 for some generalized eigenspace, for some eigenvector 𝜆; then 𝑣 ∈ ker((𝐎 − 𝜆𝐌)𝑘)

say for some 𝑘. Then we have that (𝐎 − 𝜆𝐌)𝑘ᅵᅵ = (𝐎 − 𝜆𝐌)𝑘(𝐎 − 𝜆𝐌 + 𝜆𝐌)𝑣

= (𝐎 − 𝜆𝐌)𝑘+1 + (𝐎 − 𝜆𝐌)𝑘𝜆𝑣 = 0

The second reason we care about this is that it will give us our set of linearly independent

generalized eigenvectors; which we can use to find 𝑒𝐎

Primary decomposition theorym

Let 𝑇: 𝑉 → 𝑉 be a linear transformation of an 𝑛 dimensional vector space over the complex

numbers. If 𝜆1, 
 𝜆𝑘 are the distinct eigenvalues (not necessarily = 𝑛 ) ; if Ej is the eigenspace for 𝜆𝑗,

then dim(𝐞𝑗) = the algebraic multiplicity of 𝜆𝑗 and the generalized eigenvectors span 𝑉. In terms of

vector spaces, we have:

𝑉 = 𝐞1⊕𝐞2⊕ ⊕𝐞𝑘

Combining this with the previous proposition: 𝑇 will decompose the vector space into the direct sum

of the invariant subspaces.

The next thing to do is explicitly determine the ssemisimple nilpotent decomposition. Before: we

had the diagonal matrix Λ which was

- Block diagonal

- In normal form for complex eigenvalues

Page 22: MATH3063 LECTURE NOTES - StudentVIP

- Diagonal for real eigenvalues

Suppose we have a real matrix 𝐎 with 𝑛 eigenvalues 𝜆1,  𝜆𝑛 with repeated multiplicity, suppose we

break them up into complex ones and real ones, so we have 𝜆1, 𝜆1, 
 , 𝜆𝑘, 𝜆𝑘 complex and

𝜆2𝑘+1, 
 𝜆𝑛 real. Let 𝜆𝑗 = 𝑎𝑗 + 𝑖𝑏 + 𝑗 then:

Λ ≔ (𝑎1 𝑏1−𝑏1 𝑎1

)⊕ 
⊕ (𝑎𝑘 𝑏𝑘−𝑏𝑘 𝑎𝑘

)⊕ 𝑑𝑖𝑎𝑔(𝜆2𝑘+1, 
 𝜆𝑛)

Let 𝑣1, 𝑣1 , 
 𝑣2𝑘+1, 
 , 𝑣𝑛 be a basis of ℝ𝑛 of generalsed eigenvectors, then for complex ones: write

𝑣𝑗 = 𝑢𝑗 + 𝑖𝑀𝑗

Let

𝑃 ≔ (𝑢1𝑀1𝑢2𝑀2 𝑢𝑘 𝑀𝑘𝑣2𝑘+1 𝑣𝑛)

Returning to our construction, the matrix 𝑃 is invertiable (because of the primary decomposition

theorem); so we can write the new matrix as

𝑆 = 𝑃Λ𝑃−1

And a matrix

𝑁 = 𝐎 − 𝑆

We have the following:

Theorems: Let 𝐎, 𝑁 SΛandP be the matricies defined: then

1. 𝐎 = 𝑆 + 𝑁

2. 𝑆 is semisimple

3. 𝑆, 𝑁 and A commute

4. 𝑁 is nilpotent

Proofs of theorems:

1. From definition of 𝑁

2. From construction of 𝑆

3. [𝑆, 𝐎] = 0 suppose that 𝑣 is a generalized eigenvector of 𝐎 associated to eigenvalue 𝜆. By

construction: 𝑣 is a genuine eigenvector of 𝑆. Note that eigenspace is invariant, [𝑆, 𝐎]𝑣 =

𝑆𝐎𝑣 − 𝐎𝑆𝑣 = 𝜆(𝐎𝑣 − 𝐎𝑣) = 0 so N and S commute. A and N commute from the definition

of N and that A commutes with S

4. suppose maximum algebraic multiplicity of an eigenvalue of 𝐎 is 𝑚. Then for any 𝑣 ∈ 𝐞𝑗 a

generalized eigenspace corresponding to the eigenvalue 𝜆𝑗. We have 𝑁𝑚𝑣 = (𝐎 − 𝑆)𝑚𝑣 =

(𝐎 − 𝑆)𝑚−1𝑣(𝐎 − 𝜆𝑗)𝑣 = (𝐎 − 𝜆𝑗)𝑚𝑣 = 0

General algorithm for finding 𝑒𝐎 1. find eigenvalues

Page 23: MATH3063 LECTURE NOTES - StudentVIP

2. find generalized eigenspace for each eigenvalue.; eigenvalues Λ

3. Turn these vectors into 𝑃

4. 𝑆 = 𝑃Λ𝑃−1

5. 𝑁 = 𝐎 − 𝑆

6. 𝑒𝐎𝑡 = 𝑒𝑆𝑡𝑒𝑁𝑡 = 𝑃𝑒Λ𝑃−1𝑒(𝐎−𝑆)𝑡

Example:

(−1 1−4 3

)

Eigenvalues:

det ((−1 − 𝜆 1−4 3 − 𝜆

)) = 0

→ 𝜆 = 1,1

Λ = 𝑑𝑖𝑎𝑔(1,1) = 𝐌

Generalized eigenspace:

ker((𝐎 − 𝜆𝐌)𝑛𝑗) = ker((𝐎 − 𝐌)2) = ker (−2 1−4 2

)2

= ker ((0 00 0

)) = ℝ2

So our vectors must span ℝ 𝑛; choose

(10); (

01)

𝑃 = (1 00 1

) = 𝐌

→ 𝑆 = 𝐌𝐌𝐌−1 = 𝐌

→ 𝑁 = 𝐎 − 𝑆 = 𝐎 − 𝐌 = (−2 1−4 2

)

So then:

𝑒𝐎 = 𝑒𝑆𝑇𝑒𝑁𝑡

Page 24: MATH3063 LECTURE NOTES - StudentVIP

Last time:

Algorithm for computing 𝑒𝐎 and 𝑒𝐎𝑡

Eg: let

𝐎 = (

1 0 0 2−2 −2 3 4−1 −2 3 2−1 −2 1 4

)

Evals ar 𝜆 = 2,2,1,1

Generalized eigenspace for 𝜆 = 2

𝐞2 = ker((𝐎 − 2𝐌)2)

𝐞2 is spanned by:

(

2001

) ;(

−2100

)

𝐞1 = ker((𝐎 − 𝐌)2) spanned by

(

1010

) ;(

−1100

)

Λ = 𝑑𝑖𝑎𝑔(2,2,1,1); 𝑆 = 𝑃Λ𝑃−1

𝑃 = (

2 −2 1 −10 1 0 10 0 1 01 0 0 0

)

𝑃−1 = ⋯

𝑆 = 𝑃Λ𝑃−1

𝑁 = 𝐎𝑆

Note: if not using a computer:

Check that 𝑁 is nilpotent (𝑁𝑎 = 0 for some 𝑎𝑎𝑡𝑚𝑜𝑠𝑡𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑜𝑓𝑡ℎ𝑒𝑚𝑎𝑡𝑟𝑖𝑥, )

check 𝑁𝑆 − 𝑆𝑁 = 0 (that they commute)

∎ 𝐎𝑡 = (𝑆 + 𝑁)𝑡 = 𝑆𝑡 + 𝑁𝑡

→ 𝑒𝐎𝑡 = 𝑒𝑆𝑡𝑒𝑁𝑡 = 𝑃𝑒Λ𝑡𝑃−1𝑒𝑁𝑡

= 𝑃𝑒Λ𝑡𝑃−1(1 + 𝑁𝑡)

Page 25: MATH3063 LECTURE NOTES - StudentVIP

𝑒𝐎𝑡:ℝ → 𝐺𝐿(𝑛,ℝ) = (𝑆𝑝𝑎𝑐𝑒𝑜𝑓𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒𝑛 × 𝑛𝑚𝑎𝑡𝑟𝑖𝑐𝑖𝑒𝑠𝑀𝑖𝑡ℎ𝑟𝑒𝑎𝑙𝑒𝑛𝑡𝑟𝑖𝑒𝑠)

Derivative of 𝑒𝐎𝑡 Proposition: what is

𝑑

𝑑𝑡(𝑒𝐎𝑡) = 𝐎𝑒𝐎𝑡 = 𝑒𝐎𝑡𝐎

(𝐎𝑒𝐎𝑡 = 𝑒𝐎𝑡𝐎𝑓𝑟𝑜𝑚𝑡ℎ𝑎𝑡𝑒𝐎𝑡𝑒𝑥𝑖𝑠𝑡𝑠𝑎𝑛𝑑 = 𝑝𝑜𝑀𝑒𝑟𝑠𝑒𝑟𝑖𝑒𝑠𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛)

Proof 1:

𝑑

𝑑𝑡(𝑒𝐎𝑡) =

𝑑

𝑑𝑡(𝐌 + 𝑡𝐎 +

1

2𝑡2𝐎2 +

𝑡3

3!𝐎3 +⋯)

= 𝐎 + 𝑡𝐎2 +𝑡2

2𝐎3 +

𝑡3

3!𝐎4 +⋯

= 𝐎(1 + 𝑡 +𝑡2

2+𝑡3

3!+ ⋯)

(we will show it converges uniformly, and so we can differentiate it term by term)

= 𝐎𝑒𝐎𝑡

Proof 2:

𝑑

𝑑𝑡(𝑒𝐎𝑡) = lim

ℎ→0(𝑒𝐎(𝑡+ℎ) − 𝑒𝐎𝑡

ℎ)

= limℎ→0

(𝑒𝐎𝑡(𝑒𝐎ℎ − 𝐌)

ℎ)

= 𝑒𝐎𝑡 limℎ→0

((𝐎ℎ +

𝐎2ℎ2

2 +⋯)

ℎ)

= 𝑒𝐎𝑡 limℎ→0

(𝐎 +𝐎2

2ℎ +⋯)

= 𝑒𝐎𝑡𝐎

This proposition implies that 𝑒𝐎𝑡 is a solution to the matrix differential equation:

Ί(𝑡) = 𝐎Ί(𝑡)

(𝑛𝑜𝑡𝑒: 𝐎𝑖𝑠𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)

𝐎 cannot be functions of 𝑡, as the functions may not commute with the integral

Comparing this to the 1x1 differential equation:

ᅵᅵ = 𝑎𝑊

→ 𝑊 = 𝐶𝑒𝑎𝑡