math 757 homology theoryhomology theory lecture 1 - 1/3/2011 category theory eilenberg-steenrod...

59
Homology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg- Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular simplicial homology Lecture 3 - 1/5/2011 Axiom A5 (Dimension) Homology as a functor Lecture 4 - 1/6/2011 Homology for pairs Axiom A2 (Exactness) Math 757 Homology theory January 6, 2011

Upload: others

Post on 11-Mar-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Math 757Homology theory

January 6, 2011

Page 2: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Category Theory

Definition 1 (Category)

A category C consists of

1 objects Ob(C) of C.

2 For all X ,Y ∈ Ob(C) a set Mor(X ,Y ) called morphisms fromX to Y

3 For all X ,Y ,Z ∈ Ob(C) a “composition”◦ : Mor(X ,Y )×Mor(Y ,Z )→ Mor(X ,Z )

Satisfying

1 For all X ∈ Ob(C) there is distinguished 1 = 1X ∈ Mor(X ,X )s.t. f ◦ 1 = 1 ◦ f = f for all morphisms f .

2 For all morphisms f , g , h we have f ◦ (g ◦ h) = (f ◦ g) ◦ h

Page 3: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Categories

Example 2 (PTop)

C = PTop

• Ob(PTop) pointed topological spaces (X , x0)

• Mor((X , x0), (Y , y0)) (continuous) maps f : X → Y withf (x0) = y0

• 1 ∈ Mor((X , x0), (X , x0)) is identity function (1(x) = x).

Example 3 (Group)

C = Group

• Ob(Group) is all groups

• Mor(X ,Y ) homomorphisms from X to Y with composition.

• 1 ∈ Mor(X ,X ) is identity function (1(x) = x).

Page 4: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Categories

Example 4 (Paths in X )

X a topological space.

• Ob(C) points of X

• Mor(x , y) = {[f ]|f a path from x to y} with concatenation

• 1x ∈ Mor(x , x) is class of constant path [cx ]

Page 5: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Functors

Definition 5 (Functor)

A functor F from a category C to a category D consists of

1 For each object X ∈ Ob(C) an object F (X ) ∈ Ob(D)

2 For each morphism f : X → Y in Mor(C) a morphismF (f ) : F (X )→ F (Y ) in Mor(D)

Satisfying

1 For all X ∈ Ob(C) we have F (1X ) = 1F (X )

2 F (f ◦ g) = F (f ) ◦ F (g)

Page 6: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Functors

Example 6 (Fundamental Group)

π1 : PTop→ Group is a functor. (Easy proof)

Example 7

f : X → Y continuous

• C is points of X with morphisms classes of paths in X

• D is points of Y with morphisms classes of paths in Y

• F (x) = f (x) and F ([γ]) = [f γ]

F : C → D is a functor.

Page 7: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Definition 8 (Abelian Groups)

Ab is category with

• Ob(Ab) is all abelian groups

• Mor(A,B) all homomorphisms h : A→ B

Definition 9 (Topological pairs)

TopPair category with

• (X ,A) ∈ Ob(TopPair) if X a space and A ⊂ X a subspace.

• Mor((X ,A), (Y ,B)) is set of continuous f : X → Y s.t.f (A) ⊂ B

Abusing notation X means (X ,∅)

Page 8: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Definition 10 (homotopy)

f , g : (X ,A)→ (Y ,B) are homotopic if there is continuous

F : (X × I ,A× I )→ (Y ,B)

with F (x , 0) = f (x) and F (x , 1) = g(x)

Definition 11 (relative homotopy)

X ′ ⊂ X then f , g : (X ,A)→ (Y ,B) are homotopic rel X ′ if there iscontinuous

F : (X × I ,A× I )→ (Y ,B)

with F (x , 0) = f (x) and F (x , 1) = g(x) and F (x ′, t) = f (x ′) for allx ′ ∈ X ′, t ∈ I

Page 9: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Eilenberg-Steenrod Axioms

Axiomatic approach:

1 List axioms satisfied by homology theory

2 Assume such a theory exists

3 Compute homology groups using axioms

4 Define singular homology theory

5 Show it satisfies the axioms (very technical)

Page 10: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Analog

Axiomatic approach to reals R:

1 F is a field.(F ,+, ·, 0, 1) a setwith elements 0, 1 ∈ Fand binary functions +, · : F × F → F

1 associativity of + (∀a, b, c ∈ F a+ (b + c) = (a+ b) + c.)2 associativity of ·3 etc.

2 F is an ordered field

1 trichotomy (∀a, b ∈ F either a = b, a < b, or a > b.)2 0 < 13 etc.

3 KEY: LUB axiomEvery nonempty bounded subset of F has a sup

Page 11: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Analog

Example 12 (Ordered fields)

Q, Q(r1, · · · , rn), R, ∗R (the hyperreals)

Whereas

Theorem 13

There is an ordered field R satisfying LUB.

Proof.

Construct (R,+, ·, <) using Cauchy sequences.

Theorem 14

Any ordered field satisfying LUB is isomorphic to R.

Page 12: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Eilenberg-Steenrod Axioms

Definition 15 (Homology theory)

A homology theory (h∗, ∂) is a series of functorshn : TopPair→ Ab and for each pair (X ,A) natural transformations

∂n(X ,A) : hn(X ,A)→ hn−1(A)

called “boundary maps” satisfying

A1. Homotopy Axiom

A2. Exactness Axiom

A3. Excision Axiom

A4. Additivity Axiom

We will also assume

A5. Dimension Axiom

Page 13: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Eilenberg-Steenrod Axioms

Axiom A1. Homotopy

If f , g : (X ,A)→ (Y ,B) are homotopic maps

then homorphisms

hn(f ) : hn(X ,A)→ hn(Y ,B)

andhn(g) : hn(X ,A)→ hn(Y ,B)

are equal.

In other words modifying f : (X ,A)→ (Y ,B) by a homotopypreserves hn(f ).

Page 14: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Eilenberg-Steenrod Axioms

Axiom A2. Exactness

For any pair (X ,A) let

i : A→ X

j : X → (X ,A)

be the inclusion maps.

The sequence

· · · ∂n+1(X ,A)−−−−−−→ hn(A)hn(i)−−−→ hn(X )

hn(j)−−−→ hn(X ,A)

∂n(X ,A)−−−−−→ hn−1(A)hn−1(i)−−−−→ hn−1(X )

hn−1(j)−−−−→ · · ·

is exact.

Page 15: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Eilenberg-Steenrod Axioms

Axiom A3. Excision

For any pair (X ,A) if U ⊂ A is open with U ⊂ int A then theinclusion

i : (X − U,A− U)→ (X ,A)

induces an isomorphism

hn(i) : hn(X − U,A− U) ∼= hn(X ,A)

Allows us to “excise” U from homology calculations

Page 16: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Eilenberg-Steenrod Axioms

Axiom A4. Additivity

Xα disjoint spaces. Then

hn

(∐Xα)

=⊕α

hn(Xα)

Page 17: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Eilenberg-Steenrod Axioms

Axiom A5. Dimension (not required for a homology theory)

For the one point space {∗}

hn({∗}) =

{Z, n = 00, n 6= 0

Later we will relax Axiom A5 slightly to allow:

Axiom A5′

For the one point space {∗}

hn({∗}) =

{A, n = 00, n 6= 0

For some abelian group A.

Page 18: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Existence of homology theories

In this course we show:

Theorem 16

Singular simplicial homology theory (H∗, ∂) satisfies 1-5.

Page 19: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Stable homotopy theory

Supension gives

πn(X ,A)S−→ πn+1(SX ,SA)

S−→ πn+2(S2X ,S2A)S−→ · · ·

Definition 17 (Stable homotopy group)

The stable homotopy group is

πSn (X ,A) = lim−→

k

πn+k(SkX ,SkA)

Theorem 18

(Relative) stable homotopy groups (πS∗ , ∂

S) satisfy 1-4.

Page 20: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Construction of singular simplicialhomology

Outline

1 Define chain complexes (easy)

2 Give chain complex for singular simplicial homology (easy)

3 Define homology of a chain complex (easy)

4 Show homology of this chain complex satisfies axioms (hard)

Page 21: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Exactness

Definition 19 (Exact)

A,B,C groups

g : A→ B, h : B → C homomorphisms.

Ag−→ B

h−→ C

is exact at B if Im(g) = ker(h)

Definition 20 (Exact Sequence)

A (possibly bi-infinite) sequence of homomorphisms

· · · ϕi+3−−→ Ai+2ϕi+2−−→ Ai+1

ϕi+1−−→ Aiϕi−1−−−→ · · ·

is exact if Im(ϕi+1) = ker(ϕi )

Page 22: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Chain Complexes

Definition 21 (Chain Complex)

A chain complex is a pair (C , ∂) of abelian groups Cn andhomomophisms ∂n+1 : Cn+1 → Cn

· · · ∂3−→ C2∂2−→ C1

∂1−→ C0∂0−→ C−1

∂−1−−→ · · ·

satisfying∂i ◦ ∂i+1 = 0.

Often suppress ∂ and call C a chain complex.

Note: All chain complexes we consider will have Cn = 0 for n ≤ −2(and almost always C−1 = 0 too)

Page 23: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Chain Complexes

Definition 22 (Chain Complex (alt. def.))

A chain complex is a pair (C , ∂) where

C =⊕n∈Z

Cn

is a Z-graded abelian group with degree -1 homomorphism

∂ : C → C

satisfying∂2 = 0.

Page 24: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Chain Complex for SingularSimplicial Homology

Goal: Given a top. space X give a chain complex C (X )

Definition 23 (n-simplex)

The n-simplex is

∆n =

{(x0, x1, · · · , xn) ∈ Rn+1

∣∣∣∣xi ≥ 0, and∑i=1

xi = 1

}.

Given vectors v0, v1, · · · , vn ∈ Rm we have a map

[v0, v1, · · · , vn] : ∆n → Rm

where [v0, v1, · · · , vn](x0, x1, · · · , xn) =∑n

i=1 xivi

Page 25: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Chain Complex for SingularSimplicial Homology

Definition 24 (singular n-simplices of X )

The singular n-simplices of the top. space X is the set

Sn(X ) = {σ : ∆n → X}

Definition 25 (singular simplicial n-chains of X )

The singular simplicial n-chains of the space X is the free abeliangroup on Sn(X )

Cn(X ) =

{Z[Sn(X )], n ≥ 00, n < 0

Formal Z-linear combinations of maps σ : ∆n → X .

Page 26: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Chain Complex for SingularSimplicial Homology

What about ∂ for C (X )?

Definition 26 (Face of a singular simplex)

Given a singular simplex σ : ∆n → X the ith face of σ is

∂ iσ : ∆n−1 → X

where

(∂ iσ)(x0, x1, · · · , xn−1) = σ(x0, x1, · · · , xi−1, 0, xi , · · · , xn−1)

Page 27: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Chain Complex for SingularSimplicial Homology

Definition 27 (Boundary map)

Define ∂n : Sn(X )→ Cn−1(X ) as follows:

For a 0-simplex σ : ∆0 → X set ∂0σ = 0.

For n ≥ 1, given a singular simplex σ : ∆n → X let

∂nσ =n∑

i=0

(−1)i∂ iσ

Extend Z-linearly to get a homomorphism

∂n : Cn(X )→ Cn−1(X )

(Recall Cn(X ) = Z[Sn(X )]).

Page 28: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Recall

X a space.

• Sn(X ) = {σ|σ : ∆n → X} singular simplices of X

• Cn(X ) = Z[Sn(X )] n-chains of X for n ≥ 0

• ∂n : Cn(X )→ Cn−1(X ) is

∂nσ =n∑

i=0

(−1)i∂ iσ

for n ≥ 1

Page 29: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Lemma 28

Let σ ∈ Sn(X ).If j ≤ i then ∂ i∂jσ = ∂j∂ i+1σ.

Proof.

Given σ : ∆n → X . If j ≤ i then

(∂ i∂jσ)(x0, x1, · · · , xn−2)

= (∂jσ)(x0, x1, · · · , xi−1, 0, xi , · · · , xn−2)

= σ(x0, x1, · · · , xj−1, 0, xj , · · · , xi−1, 0, xi , · · · , xn−2)

= (∂ i+1σ)(x0, x1, · · · , xj−1, 0, xj , · · · , xi−1, xi , · · · , xn−2)

= (∂j∂ i+1σ)(x0, x1, · · · , xj−1, xj , · · · , xi−1, xi , · · · , xn−2)

Page 30: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Lemma 29 (Boundary map)

If X is a space then (C (X ), ∂) is a chain complex.

Example 30 (3-simplex)

Proof.

Given σ : ∆n → X

∂n−1∂nσ = ∂n−1

n∑j=0

(−1)j∂jσ

=n−1∑i=0

(−1)i∂ in∑

j=0

(−1)j∂jσ

=n−1∑i=0

n∑j=0

(−1)i+j∂ i∂jσ

Page 31: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Lemma 29 (Boundary map)

If X is a space then (C (X ), ∂) is a chain complex.

Proof (continued).

=n−1∑i=0

i∑j=0

(−1)i+j∂ i∂jσ +n∑

j=i+1

(−1)i+j∂ i∂jσ

=

n−1∑i=0

i∑j=0

(−1)i+j∂ i∂jσ

+

n−1∑i=0

n∑j=i+1

(−1)i+j∂ i∂jσ

=

n−1∑i=0

i∑j=0

(−1)i+j∂j∂ i+1σ

+

n−1∑i=0

n∑j=i+1

(−1)i+j∂ i∂jσ

Page 32: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Lemma 29 (Boundary map)

If X is a space then (C (X ), ∂) is a chain complex.

Proof (continued).

=

∑0≤j≤i≤n−1

(−1)i+j∂j∂ i+1σ

+

∑0≤i<j≤n

(−1)i+j∂ i∂jσ

=

∑0≤i≤j≤n−1

(−1)i+j∂ i∂j+1σ

+

∑0≤i<j≤n

(−1)i+j∂ i∂jσ

=

∑0≤i<j≤n

(−1)i+j−1∂ i∂jσ

+

∑0≤i<j≤n

(−1)i+j∂ i∂jσ

Page 33: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Homology of Chain Complexes

Definition 30 (cycles and boundaries)

Let (C , ∂) be a chain complex.The n-cycles of C is the subgroup

Zn(C ) = ker ∂n ⊂ Cn

The n-boundaries of C is the subgroup

Bn(C ) = Im ∂n+1 ⊂ Cn

Note: ∂n∂n+1 = 0 so Bn(C ) ⊂ Zn(C ).

Page 34: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Homology of Chain Complexes

Definition 31 (homology of a chain complex)

Let (C , ∂) be a chain complex. The nth homology group of C isthe group

Hn(C ) := Zn(C )/Bn(C ) = ker ∂n/ Im ∂n+1

Lemma 32

Let (C , ∂) be a chain complex. The chain complex is exact at Cn ifand only if

Hn(C ) = 0

Page 35: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Homology of a space

Definition 33 (homology of a space)

Let X be a space and (C (X ), ∂) its chain complex of singularsimplicial chains.

· · · ∂3−→ C2(X )∂2−→ C1(X )

∂1−→ C0(X )∂0−→ 0

∂−1−−→ 0∂−2−−→ · · ·

The nth (singular simplicial) homology group of X is the group

Hn(X ) := Hn(C (X ))

= Zn(C (X ))/Bn(C (X ))

= ker ∂n/ Im ∂n+1

Page 36: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Axiom A5 (Dimension)

Exercise 34 (HW 1 - Problem 1)

Prove Axiom A5 (Dimension) for singular simplicial homology. Thatis, show that if X = {∗} is the one-point space then

Hn(X ) =

{Z, n = 00, n 6= 0

.

Page 37: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Homology and maps

Theorem 35

f : X → Y a homeomorphism. Then Hn(X ) ∼= Hn(Y )

Proof?

Our guide will be functoriality.

Observation

Given a map f : X → Y we have graded group homomorphism

f] : C (X )→ C (Y )

where a singular simplex σ : ∆n → X is sent to

f]σ = f ◦ σ (extend linearly)

Page 38: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Homology as a functor

Question

(C , ∂C ) and (D, ∂D) chain complexes and

γ : C → D

a graded group homomorphism. What property of γ ensures that weget induced

γ∗ : Hn(C )→ Hn(D)?

Page 39: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Category of Chain Complexes

Definition 36 (chain map)

(C , ∂C ) and (D, ∂D) chain complexes. A chain map is a gradedgroup homomorphism (of degree 0)

τ : C → D

satisfyingτ ◦ ∂C = ∂D ◦ τ.

That is the following diagram commutes:

· · ·∂Cn+2−−−−→ Cn+1

∂Cn+1−−−−→ Cn

∂Cn−−−−→ Cn−1

∂Cn−1−−−−→ · · ·yτn+1

yτn yτn−1

· · ·∂Dn+2−−−−→ Dn+1

∂Dn+1−−−−→ Dn

∂Dn−−−−→ Dn−1

∂Dn−1−−−−→ · · ·

Page 40: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Category of Chain Complexes

Definition 37 (Category Chain)

The category Chain has chain complexes as objects and chain mapsas morphisms.

Proposition 38

Taking singular simplicial chains

C : Top→ Chain

is a functor where f : X → Y induces the chain map

C (f ) : C (X )→ C (Y )

given byC (f )(σ) = f](σ) = f ◦ σ

Page 41: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Category of Chain Complexes

Exercise 39 (HW 1 - Problem 2)

Show that iff : X → Y

is a map thenC (f ) : C (X )→ C (Y )

is a chain map.

Page 42: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Proposition 40

Taking nth homology

Hn : Chain→ Ab

is a functor where the chain map

τ : C → D

induces a well-defined homorphism

Hn(τ) : Hn(C )→ Hn(D)

Exercise 41 (HW 1 - Problem 3)

Prove Proposition 40

Page 43: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Exercise 42 (HW 1 - Problem 4)

Prove Theorem 35 (Homology groups are topological invariants).

Page 44: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Homology for pairs

Note: in order to satisfy homology theory axioms (Definition 15) weneed homology for pairs.

Note: If A ⊂ X is a subspace then inclusion induces an inclusionC (A) ⊂ C (X ).

Definition 43 (Chain complex for a pair)

If (X ,A) is a topological pair (A ⊂ X ) then the singular simplicialn-chains of (X ,A) is the free abelian group

Cn(X ,A) = Cn(X )/Cn(A)

where if q : Cn(X )→ Cn(X ,A) is the quotient map and ∂X is theboundary map for C (X ) then the boundary map∂ : Cn(X ,A)→ Cn−1(X ,A) is given by

∂(q(σ)) = q(∂Xσ)

Page 45: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Exercise 44 (HW 1 - Problem 5)

For any pair of spaces (X ,A)

∂n : Cn(X ,A)→ Cn−1(X ,A)

is well-defined and ∂n ◦ ∂n+1 = 0

Note: By definition (and Exercise 44) the quotient mapq : C (X )→ C (X ,A) is a chain map.

Definition 45 (Homology of a pair)

If (X ,A) is a topological pair (A ⊂ X ) then the nth singularsimplicial homology group of (X ,A) is the abelian group

Hn(X ,A) := Zn(X ,A)/Bn(X ,A)

= ker ∂n/ Im ∂n+1

Page 46: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Proposition 46

If f : (X ,A)→ (Y ,B) is a map (f : X → Y is a map and f (A) ⊂ B)then f induces a chain map

C (f ) : C (X ,A)→ C (Y ,B)

Exercise 47 (HW 1 - Problem 6)

Prove Proposition 46

Page 47: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Axiom A2 (Exactness)

Definition 48 (Exact sequence of chain complex)

An exact sequence of chain complexes is a sequence of chaincomplexes and chain maps which is exact in the category of abeliangroups.

Example 49

By definition of C (X ,A) the following is an exact sequence of chaincomplexes

0→ C (A)i−→ C (X )

q−→ C (X ,A)→ 0

Page 48: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Snake Lemma

Lemma 50 (Snake Lemma)

A short exact sequence of chain complexes

0→ Ci−→ D

q−→ E → 0

induces a long exact sequence of homology groups

· · · ∂−→ Hn(C )i∗−→ Hn(D)

q∗−→ Hn(E )∂−→ Hn−1(C )

i∗−→ · · ·

where the connecting homomorphism ∂ is defined below.

Page 49: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Proof of A2

Proof of Exactness (A2) for singular simplicial homology.

We have exact sequence of chain complexes

0→ C (A)i−→ C (X )

q−→ C (X ,A)→ 0

By Snake Lemma we get long exact sequence of homology groups

· · · ∂−→ Hn(A)i∗−→ Hn(X )

q∗−→ Hn(X ,A)∂−→ Hn−1(A)

i∗−→ · · ·

where the boundary map

∂n(X ,A) : Hn(X ,A)→ Hn−1(A)

of is defined to be ∂n.

Page 50: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Proof of Snake Lemma.

The short exact sequence of chain complexes

0→ Ci−→ D

q−→ E → 0

Gives commutative diagram

0 −−−−→ Cn+1in+1−−−−→ Dn+1

qn+1−−−−→ En+1 −−−−→ 0y∂Cn+1

y∂Dn+1

y∂En+1

0 −−−−→ Cnin−−−−→ Dn

qn−−−−→ En −−−−→ 0y∂Cn

y∂Dn

y∂En

0 −−−−→ Cn−1in−1−−−−→ Dn−1

qn−1−−−−→ En−1 −−−−→ 0

First we define ∂n+1 : Hn+1(E )→ Hn(C )

Page 51: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Proof of Snake Lemma (continued).

0 −−−−→ Cn+1in+1−−−−→ Dn+1

qn+1−−−−→ En+1 −−−−→ 0y∂Cn+1

y∂Dn+1

y∂En+1

0 −−−−→ Cnin−−−−→ Dn

qn−−−−→ En −−−−→ 0y∂Cn

y∂Dn

y∂En

0 −−−−→ Cn−1in−1−−−−→ Dn−1

qn−1−−−−→ En−1 −−−−→ 0

Each class Hn+1(E ) has n-cycle rep en+1 ∈ ker ∂En+1 ⊂ En+1.

qn+1 surjects so ∃dn+1 ∈ Dn+1 s.t. qn+1(dn+1) = en+1

qn∂Dn+1(dn+1) = ∂En+1qn+1(dn+1) = ∂En+1(en+1) = 0 so

∂Dn+1(dn+1) ∈ ker qn

∃!cn ∈ Cn s.t. in(cn) = ∂Dn+1(dn+1).

Page 52: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Proof of Snake Lemma (continued).

0 −−−−→ Cn+1in+1−−−−→ Dn+1

qn+1−−−−→ En+1 −−−−→ 0y∂Cn+1

y∂Dn+1

y∂En+1

0 −−−−→ Cnin−−−−→ Dn

qn−−−−→ En −−−−→ 0y∂Cn

y∂Dn

y∂En

0 −−−−→ Cn−1in−1−−−−→ Dn−1

qn−1−−−−→ En−1 −−−−→ 0

in−1∂Cn (cn) = ∂Dn in(cn) = ∂Dn ∂

Dn+1(dn+1) = 0 so

in−1 injective so ∂Cn (cn) = 0.

Define ∂n+1 : Hn+1(E )→ Hn(C ) by setting

∂n+1([en+1]) = [cn]

Page 53: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Proof of Snake Lemma (continued).

0 −−−−→ Cn+1in+1−−−−→ Dn+1

qn+1−−−−→ En+1 −−−−→ 0y∂Cn+1

y∂Dn+1

y∂En+1

0 −−−−→ Cnin−−−−→ Dn

qn−−−−→ En −−−−→ 0y∂Cn

y∂Dn

y∂En

0 −−−−→ Cn−1in−1−−−−→ Dn−1

qn−1−−−−→ En−1 −−−−→ 0

Claim: ∂n+1 : Hn+1(E )→ Hn(C ) independent of dn+1.

Suppose qn+1(d ′n+1) = en+1 and in(c ′n) = ∂Dn+1(d ′n+1)

qn+1(d ′n+1 − dn+1) = 0 so ∃cn+1 s.t. in+1(cn+1) = d ′n+1 − dn+1

in∂Cn+1(cn+1) = ∂Dn+1in+1(cn+1) = ∂Dn+1d ′n+1 − ∂Dn+1dn+1

in injective so ∂Cn+1(cn+1) = c ′n − cn. Hence [c ′n] = [cn].

Page 54: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Proof of Snake Lemma (continued).

0 −−−−→ Cn+2in+2−−−−→ Dn+2

qn+2−−−−→ En+2 −−−−→ 0y∂Cn+2

y∂Dn+2

y∂En+2

0 −−−−→ Cn+1in+1−−−−→ Dn+1

qn+1−−−−→ En+1 −−−−→ 0y∂Cn+1

y∂Dn+1

y∂En+1

0 −−−−→ Cnin−−−−→ Dn

qn−−−−→ En −−−−→ 0

Claim: ∂n+1 : Hn+1(E )→ Hn(C ) independent of rep en+1.

Suppose [e′n+1] = [en+1]. Then ∃en+2 ∈ En+2 s.t.e′n+1 = en+1 + ∂En+2en+2 and dn+2 s.t. qn+2(dn+2) = en+2.

qn+1(dn+1 + ∂Dn+2dn+2) = en+1 + ∂En+2en+2 = e′n+1

But, ∂Dn+1(dn+1 + ∂Dn+2dn+2) = ∂Dn+1(dn+1) = in(cn).

Page 55: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Proof of Snake Lemma (continued).

Thus ∂n+1 : Hn+1(E )→ Hn(C ) is well-defined.

Claim: ∂n+1 : Hn+1(E )→ Hn(C ) is a homomorphism.

If ∂n+1([e1n+1]) = [c1

n ] and ∂n+1([e2n+1]) = [c2

n ]

Then ∃d1n+1, d

2n+1 s.t. qn+1(d1

n+1) = e1n+1 and qn+1(d2

n+1) = e2n+1

and in(c1n ) = ∂Dn+1d1

n+1 and in(c2n ) = ∂Dn+1d2

n+1

So qn+1(d1n+1 + d2

n+1) = e1n+1 + e2

n+1 andin(c1

n + c2n ) = ∂Dn+1(d1

n+1 + d2n+1)

∂n+1([e1n+1] + [e2

n+1]) = [c1n + c2

n ] = ∂n+1([e1n+1]) + ∂n+1([e2

n+1])

Page 56: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Proof of Snake Lemma (continued).

Claim:

· · · ∂−→ Hn(C )i∗−→ Hn(D)

q∗−→ Hn(E )∂−→ Hn−1(C )

i∗−→ · · ·

is exact.

I. Im i∗ ⊂ ker q∗

q ◦ i : C → E is 0 so q∗ ◦ i∗ = 0.

II. Im q∗ ⊂ ker ∂

Suppose [dn+1] ∈ Hn+1(D) then dn+1 ∈ ker ∂D so ∂D(dn+1) = 0.in(0) = 0 so ∂q∗[dn+1] = 0.

III. Im ∂ ⊂ ker i∗

Suppose [en+1] ∈ Hn+1(E ) then ∃dn+1 ∈ Dn+1 s.t.qn+1(dn+1) = en+1. i∗∂[en+1] = [∂D(dn+1)] = 0.

Page 57: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Proof of Snake Lemma (continued).

Claim:

· · · ∂−→ Hn(C )i∗−→ Hn(D)

q∗−→ Hn(E )∂−→ Hn−1(C )

i∗−→ · · ·

is exact.

IV. ker q∗ ⊂ Im i∗

Suppose [dn] ∈ ker q∗. Then q(dn) = ∂Een+1. By surjectivity of qthere is dn+1 s.t. q(dn+1) = en+1.

q(dn − ∂Ddn+1) = q(dn)− ∂Eq(dn+1) = q(dn)− ∂Een+1 = 0

∃cn s.t. i(cn) = dn − ∂Ddn+1. cn is a cycle since:

i∂Ccn = ∂D icn = ∂D(dn − ∂Ddn+1) = ∂D(dn) = 0

Hence i∗[cn] = [dn − ∂Ddn+1] = [dn].

Page 58: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Proof of Snake Lemma (continued).

Claim:

· · · ∂−→ Hn(C )i∗−→ Hn(D)

q∗−→ Hn(E )∂−→ Hn−1(C )

i∗−→ · · ·

is exact.

V. ker ∂ ⊂ Im q∗

Suppose [en+1] ∈ ker ∂. Then there is dn+1 ∈ dn+1 and cn ∈ Cn s.t.qdn+1 = en+1 and i(cn) = ∂Ddn+1. Further there is cn+1 ∈ Cn+1 s.t.∂Ccn+1 = cn

∂D(dn+1 − i(cn+1)) = ∂Ddn+1 − ∂Ddn+1 = 0 so dn+1 − i(cn+1) is acycle.

q(dn+1 − i(cn+1)) = en+1 − 0 so q∗[dn+1 − i(cn+1)] = [en+1].

Page 59: Math 757 Homology theoryHomology theory Lecture 1 - 1/3/2011 Category Theory Eilenberg-Steenrod Axioms Lecture 2 - 1/4/2011 Existence of homology theories Construction of singular

Homology theory

Lecture 1 -1/3/2011

Category Theory

Eilenberg-SteenrodAxioms

Lecture 2 -1/4/2011

Existence ofhomologytheories

Construction ofsingularsimplicialhomology

Lecture 3 -1/5/2011

Axiom A5(Dimension)

Homology as afunctor

Lecture 4 -1/6/2011

Homology forpairs

Axiom A2(Exactness)

Proof of Snake Lemma (continued).

Claim:

· · · ∂−→ Hn(C )i∗−→ Hn(D)

q∗−→ Hn(E )∂−→ Hn−1(C )

i∗−→ · · ·

is exact.

VI. ker i∗ ⊂ Im ∂

Suppose [cn] ∈ ker i∗ then ∃dn+1 ∈ Dn+1 s.t. ∂D(dn+1) = i(cn).

∂Eq(dn+1) = q∂D(dn+1) = qi(cn) = 0 so q(dn+1) is a cycle.

∂[q(dn+1)] = [cn].