material growth & characterization for conventional

64
Material Growth & Characterization for Conventional & Nanoelectronic Devices Applications: An Innovative Prospective Technology of Next Level driven through innovation -AK2021 MOS-AK202 MOS-AK2021 MOS-AK

Upload: others

Post on 18-Jul-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Material Growth & Characterization for Conventional

Material Growth & Characterization for Conventional & Nanoelectronic Devices Applications: An Innovative Prospective

Technology of Next Level driven through innovation

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 2: Material Growth & Characterization for Conventional

COMPANY OVERVIEW

Use relevant image4 to tell

the problem you are solving

Atomistic TCAD Full Flow

Radiation Monitoring System

Night Vision & Border Surveillance

Medical Radiation Dosimetry

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 3: Material Growth & Characterization for Conventional

Enter photo here

Enter photo here

Enter photo here

Enter photo here

Enter photo here

Enter photo here

Praveen SaxenaPh.D,. IIT BHU

Pankaj SrivastavaPh.D,. IBHU

AnshuSaxenaMCA. IGNOU

Anshika SrivastavaM.Tech, France

Founder & CEO CPO Co-founder & Director Engg. Manager

CORE TEAM MEMBERS

TCAD Expert Experience 15 

years

TCAD Expert Experience 15 

years

Material Scientist Experience 10+ 

years

Material Scientist Experience 10+ 

years

Software Engineering 7+ years

Software Engineering 7+ years

Nuclear Scientist 3+ years

Nuclear Scientist 3+ years

Enter photo here

Enter photo here

FanishGuptaM.Tech, IIIT G

Engg. Manager

Device Expert3+ years

Device Expert3+ years

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 4: Material Growth & Characterization for Conventional

ATOMISTIC TCAD TOOLS

Material Epitaxial Growth based on MBE/MOCVD Software

Electronic Band Structure Software 

ElecMobSoftware

Particle Device Simulator Software

THz Spectroscopy Software

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 5: Material Growth & Characterization for Conventional

CRYSTAL GROWTH

Epitaxial Growth of Group IV, III‐V & II‐VI Semiconductors

Based on MBE, MOCVD and CVD

Reactors

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 6: Material Growth & Characterization for Conventional

CRYSTAL GROWTH

1. Bulk Crystal Growth 

State of the art device technologies depends on:Purity & Perfection of the crystalsLimited to Si, GaAs and 

upto some extent for InP

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 7: Material Growth & Characterization for Conventional

EPITAXIAL GROWTH CHALLENGES

Development of psuedo‐ AlNmonolayers over Si

*E.T. Yu, J.O. McCaldin, T.C. McGill, Band offsets in semiconductor heterojunctions, in:  E. Henry, T. David (Eds.), Solid State Physics, Academic Press, 1992, pp. 1–146

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 8: Material Growth & Characterization for Conventional

CRYSTAL GROWTH

(MOMBE)(MOCVD)

Techniques can grow far from equilibrium systems reliably

Atomically abrupt interfaces

High quality material

Expensive growth technology ????

LPE

high quality material

growth Near eqb growth precise 

compositions

pRelatively inexpensive

Difficult to grow abrupt 

heterostructures

Unable to grow immiscible alloys

VPE

Extremely high purity material

Not suited for heterostructures

(MBE)

2. Epitaxial Growth Semiconductor technologies  dependent on non ideal substrates Lot of Technological Challenges and issues

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 9: Material Growth & Characterization for Conventional

EPITAXIAL GROWTH CHALLENGES

Group IV, III‐V, II‐VI epi‐growth with multi components Point defects, e.g. vacancies, interstitial atoms Extended defects within the film, generally dislocations and stacking faults Dislocations: reduce or relax strain through lattice mismatch or thermal expansion differences.

Substrate Si Al2O3 SiC Bulk GaN

AlN

Lattice Mismatch (%) 17 16 3.4 ‐ 2.5 

Thermal Conductivity (W/mm‐k) 150 35 490 260 319

Resistivity       (ohm‐cm) 104 1014 ~1012 ‐ >1014

E.g. GaN growth over various substrates: Defects

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 10: Material Growth & Characterization for Conventional

GROWTH SOLUTION

Inbuilt ReactorsMBEMOCVD CVD

Innovative Atomistic Reactor Simulation

Thick / Thin Film

Growth

Users Growth Condi-tions

Surface Profile

(Rough, Smooth)

Surface Profile

(Rough, Smooth)

Defects (Points, Clusters, voids)

Defects (Points, Clusters, voids)

Strain/ Stress Profile

TNL Frame work

OptimizerAtomistic

EpiGrowth

Simulator

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 11: Material Growth & Characterization for Conventional

GROWTH SOLUTION

Schwoebel barrier: The atom diffusesfrom the site exactly above the edge atom tothe site immediately next to the edge atom, Incorporation barrier: The atomincorporates into the edge on the samesurface level.

Strain: (a – a0) / a0 Sticking coefficient:

Total Rates: RT = Rads + Rhop + RdesHere ads ~ adsorption Rate on substrate , Hop ~ hopping rate on substrateDes ~ desorption rate  Side view for the case of Schwoebel barrier (a) and that of incorporation barrier (b),

where the white atom is the diffusing one.

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 12: Material Growth & Characterization for Conventional

CVD/MOCVD EPIGROWTH

Gas‐phase Mechanisms: 

Surface phase Mechanisms:

Surface phase Mechanisms: PATH 2

Surface phase Mechanisms: PATH 3

Chemical Composition of compound on the surface

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 13: Material Growth & Characterization for Conventional

Controlled Epitaxial Growth of GaAs in real MOCVD Reactor Environment*

*P. K. Saxena, P. Srivastava, R. Trigunayat, An innovative approach for controlled epitaxial growth of GaAs in real MOCVD reactor environment, Journal of Alloys and Compounds 809 (2019) 151752.

CASE STUDY

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 14: Material Growth & Characterization for Conventional

MOCVD GaAs over GaAs

* Journal of Alloys and Compounds 809 (2019) 151752.

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 15: Material Growth & Characterization for Conventional

MOCVD GaAs over GaAs

* Journal of Alloys and Compounds 809 (2019) 151752.

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 16: Material Growth & Characterization for Conventional

Material Characterization of thin/thick Film

Electronic Band Structure & Electronic Transport

Praveen K Saxena at. el., An Innovative Model for Electronic Band Structure Analysis of doped and un‐doped ZnO, Journal of Electronic Materials vol. 50 (4), pp. 2417‐2424, 2021.

Anshika Srivastava, Anshu Saxena, Praveen K. Saxena, F. K.Gupta, Priyanka Shakya, at. el., An innovative technique for electronic transport model of group‐III nitrides, Scientific Reports nature research (2020) 10:18706.

Praveen K Saxena at. el., Full Electronic Band Structure Aanalysis of Cd Doped ZnO Thin Film Deposited by SOL‐GEL Spin Coating Method , proceedings of 2019 US Workshop on II‐VI Materials, 2019.

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 17: Material Growth & Characterization for Conventional

Full Band Structure

IV, III‐V and II‐VI alloysVCA for ternary alloysDisorder contributionParabolicity effectsMain valleys energiesEffective masses, carrier group 

velocity, DOS etc.

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 18: Material Growth & Characterization for Conventional

ZnO: Full Band Simulator

DFT Methods

LDA PBE HSE06 LDA+U Experimental This Work

a (Å) 3.2103 3.2844.5 3.2624.5 3.1976 3.25319-21 3.254

c (Å) 5.1363 5.2964.5 5.2124.5 5.1546 5.20519-21 5.21

u 0.380 0.378 0.381 0.378 0.380 0.380P* 0.000 0.002 -0.001 0.002 0.000 0.000

Eg (eV) 0.79413 3.4134.5 2.4644.5 1.15416 3.443-5 3.428

Different DFT based calculated energy band gap of ZnO materials within the conventional DFT (LDA and PBEfunctional), LDA + U functional, and hybrid functional (HSE06) along with the lattice parameters, structuralinternal parameters (u) and disorder constants (P). The calibrated energy gap of ZnO materials using FullBandsimulator and Experimental band gap are also included for comparison.

* Journal of Electronic Materials

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 19: Material Growth & Characterization for Conventional

ZnO: Full Band Simulator

ZnO SamplestDS (nm)

tWH

(nm)Strain

Lattice Constant

Internal Parameter

Bond Length (Å)

Optical Band gap (eV)

Simulated Band gap

(eV)(100) (002) (101) a (Å) c (Å)u(P)

Undoped 11 18 10 26 6.5×10-3 3.246 5.238 0.398 2.013 3.22 3.220.45at.% Cd 16 20 17 13 -8.0 ×10-3 3.328 5.190 0.4023 2.009 3.20 3.190.51at.% Cd 19 21 19 26 1.5 ×10-3 3.332 5.161 0.4025 2.007 3.19 3.220.56at.% Cd 11 18 10 31 10.0 ×10-3 3.313 5.225 0.4040 2.006 3.15 3.15

1at.% Sr 14 10 17 7.48 -1.64×10-2 3.256 5.194 0.389 1.978 3.25 3.272at.% Sr 21 9 16 10.27 4.27×10-2 3.251 5.194 0.389 1.976 3.26 3.263at.% Sr 9 6 6 4.14 9.95×10-2 3.271 5.223 0.389 1.988 3.28 3.331at.% Fe 5 8 9 1.43 -14.8×10-2 3.236 5.194 0.380 1.967 3.24 3.262at.% Fe 3 5 7 0.65 -34.5×10-2 3.231 5.194 0.380 1.968 3.26 3.253at.% Fe 8 5 7 9.06 6.6×10-2 3.231 5.186 0.380 1.970 3.29 3.25

Undoped, Cd, Sr and Fe doped ZnO thin films (Sol gel) along with optical and simulated energy band gaps

* Journal of Electronic Materials

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 20: Material Growth & Characterization for Conventional

Group‐III Nitrides

Material Reported values of Eg

ELDA ELDA-1/2 DFTPBE DFTHSE Experiments EThis work

AlN 6.547, 6.2310 4.505,7 6.065 4.137, 4.0220 6.427, 6.2920

6.235, 6.02617, 6.1-6.27,2

6.20

GaN 3.57, 3.50710 2.025, 2.117 3.525 1.697,20 3.557, 3.5520 3.5075, 3.3522, 3.5120 3.47

InN 0.7–1.07,8, 0.7-1.910 -0.035, -0.247 0.955 − 0.427,20 0.867,0.8620 0.7-1.95, 0.6-0.720 0.7

Al0.2Ga0.8N 3.99* 2.3535 3.9515 4.57012 4.56912 3.96224 3.94

In0.2Ga0.8N 2.72-2.78* 1.525 2.765 2.2725 1.92512 2.62523 2.66

In0.2Al0.8N 4.7 - 4.76* 3.4315 4.4095 3.44512 2.97612 4.51525 4.71

Energy difference obtained using FullBand simulator based on the proposed model compared withthose reported earlier, with those computed from reported various density functional theory (DFT)techniques and with experimental results

* Scientific Reports, Nature Journal

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 21: Material Growth & Characterization for Conventional

ELECTRONIC TRANSPORT

Free Electrons For free particles, the electron wave function is the solution to the time‐independent Schrödinger equation:

The solutions form the basis of plane waves:

The velocity, v, of a particle represented by a wave packet centered around the crystal momentum, k,  obtained from the dispersion relation between k and the energy E as

with 

and

The Boltzmann  Transport Equation (BTE) is

Here f is the distribution function, E is the electric field,  F is the external electromagnetic force.

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 22: Material Growth & Characterization for Conventional

SCATTERING MECHANISMS

Scattering Mechanisms

Defect Scattering Carrier-Carrier Scattering Lattice Scattering

CrystalDefects Impurity Alloy

Neutral Ionized

Intravalley Intervalley

Acoustic OpticalAcoustic Optical

Nonpolar PolarDeformationpotential

Piezo-electric

Scattering Mechanisms

Defect Scattering Carrier-Carrier Scattering Lattice Scattering

CrystalDefects Impurity Alloy

Neutral Ionized

Intravalley Intervalley

Acoustic OpticalAcoustic OpticalAcoustic Optical

Nonpolar PolarNonpolar PolarDeformationpotential

Piezo-electric

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 23: Material Growth & Characterization for Conventional

GROUP-III NITRIDES

0 50 100 150 200 250 300 350 400 450 500 550 6000.0

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

3.0x105

3.5x105

4.0x105

4.5x105

5.0x105

5.5x105

Velo

city

(m/S

ec)

Electric Field (kV/m)

AlN (O’Leary et al.) AlN Simulated GaN Experimental GaN Simulated InN (Antanas Reklaitis) InN Simulated

The Comparison of simulated electron driftvelocity as a function of applied electric fieldwith the reported literature. Simulated data displayed as solid lines Experimental results depicted by opencircles, squares and triangles for AlN, GaN andInN

Anshika Srivastava, Anshu Saxena, Praveen K. Saxena, F. K.Gupta, PriyankaShakya, at. el., An innovative technique for electronic transport model of group‐III nitrides, Scientific Reports nature research (2020) 10:18706.

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 24: Material Growth & Characterization for Conventional

0 100 200 300 400 500 6000

1x105

2x105

3x105

4x105

5x105

Drif

t Vel

ocity

(m/s

ec)

Electric Field (kV/m)

Al0.2GaN AlN GaN In0.2Ga0.8N In0.2Al0.8N InN

* Scientific Reports, Nature Journal.

GROUP-III NITRIDES

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 25: Material Growth & Characterization for Conventional

21.0 21.5 22.0 22.5 23.01000

1050

1100

1150

Doping Density (Nd)

Mob

ility(m

2 /kV-

s)

T=600o C

GaN In0.2Ga0.8N In0.4Ga0.6N

21.0 21.5 22.0 22.5 23.01000

1100

1200

1300

1400

1500

1600

T=450o C

Doping Density (Nd)

Mob

ility

(m2 /k

V-s)

GaN In0.2Ga0.8N In0.4Ga0.6N

21.0 21.5 22.0 22.5 23.01200

1300

1400

1500

1600

1700

1800

1900

Mob

ility

(m2 /k

V-se

c)

Doping Density (Nd)

GaN In0.2Ga0.8N In0.4Ga0.6N

T=300o C

TEMP EFFECT ON MOBILITIES

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 26: Material Growth & Characterization for Conventional

MOBILITIES TERNARY COMPOUNDS

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 27: Material Growth & Characterization for Conventional

Material Characterization of thin/thick Film

THz Spectroscopy 

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 28: Material Growth & Characterization for Conventional

Physics

The simulated current is recorded in the time domain and the value of the electric field is known at all thetimes.

To obtain the conductivity as a function of frequency, the current and electric field are converted to thefrequency domain via Fourier transforms

i.e.

Suppose an oscillating electric field with frequency f is applied in the y‐direction and each particle's velocity is recalculated at each time step, where the y‐component of the velocity at time step n is

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 29: Material Growth & Characterization for Conventional

*Blank Circles are Experimental Results, Solid  line simulated

Ge Room Temp (294K) Absorption (m‐1)  Vs. THz Freq at 10 kV/cm & 441 kV/cm 

0

200

400

600

800

1000

1200

1400

1.00E+11 3.00E+11 5.00E+11 7.00E+11 9.00E+11

系列1

系列2

Absorptio

n coefficient  (m

‐1)

THz Frequency (Hz)

200

250

300

350

400

450

500

550

600

1.00E+11 3.00E+11 5.00E+11 7.00E+11 9.00E+11

系列1

系列2

Absorptio

n coefficient  (m

‐1)

THz Frequency (Hz)

CASE STUDY

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 30: Material Growth & Characterization for Conventional

Ge Characteristics: @10 kV/cm @ 294K

Scattering Rates (s‐1) w.r.t Energy (eV)

Γ ‐ Valley X ‐ ValleyL ‐ Valley

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 31: Material Growth & Characterization for Conventional

Carrier Transitions

Carrier Transitions due to Scattering mechanism at 441 kV/cm

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 32: Material Growth & Characterization for Conventional

Ge Characteristics: @10 kV/cm @ CT

Freq. (Hz)

Absorptio

n (m

‐1)

Material: Ge “n doped”

Temperature: 97K

Different THz fields

Absorption coefficient

*Circles are Experimental Results, Solid line simulated

Absorption (m‐1)  with respect to THz Freq at 10 kV/cm

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1.00E+11 2.00E+11 3.00E+11 4.00E+11 5.00E+11 6.00E+11 7.00E+11 8.00E+11 9.00E+11 1.00E+12

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 33: Material Growth & Characterization for Conventional

Ge Characteristics: @441 kV/cm @ CT

0

100

200

300

400

500

600

700

800

2.00E+11 4.00E+11 6.00E+11 8.00E+11 1.00E+12

系列1

系列2

Freq. (Hz)

Absorptio

n (m

‐1)

Material: Ge “n doped”

Temperature: 97K (CT)

Different THz fields

Absorption coefficient

*Circles are Experimental Results, Solid line simulated

Absorption (m‐1)  with respect to THz Freq at 441 kV/cm

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 34: Material Growth & Characterization for Conventional

Monte Carlo Particle Device Simulator

Technology of Next Level driven through innovation

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 35: Material Growth & Characterization for Conventional

DEVICE MODELING

ElectronicStructure & 

LatticeDynamics

TransportModels

DeviceSimulation

Compact ModelDrift DiffusionHydrodynamic

Boltzmann transport(Monte Carlo)

Quantum Hydrodynamics

Quantum Monte CarloWigner-Boltzmann

Green’s function methodDirect solution of Schrodinger

Approximate Easy, fast

Exact Difficult

Qua

ntum

Sem

i Cla

ssic

al

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 36: Material Growth & Characterization for Conventional

• Transport of Monte Carlo particles (Superparticles)

• Self‐consistent solution of decoupledPoisson's and BTE equation over a smalltime‐step

• The time step typically less than inverseplasma frequency

• Technologies implemented in Particle DeviceSimulator: MOSFET FDSOI Tunneling FET MESFET HEMT GAA FinFET

• The classification of Particle‐mesh (PM) couplingscheme is included as; Carrier charge assign at mesh nodes through

CIC, NGP, NEC schemes Solution of Poisson's equation on node points

through Successive over Relaxation (SOR)method,

Calculation of the mesh defined electric fieldcomponents,

Interpolation of forces at the particlepositions.

SOLUTION

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 37: Material Growth & Characterization for Conventional

CASE STUDIES

GaNFET Simulation

*P. K. Saxena at. el., Atomistic Level Process to Device Simulation of GaNFET Using TNL TCAD Tools, Book Chapter, © Springer Nature (2020) 176, Lecture Notes in Electrical Engineering ISBN 978‐981‐15‐5261‐8 ISBN 978‐981‐15‐5262‐5 (eBook)

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 38: Material Growth & Characterization for Conventional

GaNFET Epitaxial Growth

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 39: Material Growth & Characterization for Conventional

GaNFET

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 40: Material Growth & Characterization for Conventional

GaNFET

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 41: Material Growth & Characterization for Conventional

GaNFET

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 42: Material Growth & Characterization for Conventional

InGaAs/InP Infrared Photodetector

*P. K. Saxena at. el., Numerical simula on of InxGa1−xAs/InP PIN photodetector for optimum performance at 298 K, Optical and Quantum Electronics (2020) 52:374

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 43: Material Growth & Characterization for Conventional

Infrared Detector

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 44: Material Growth & Characterization for Conventional

I – V Characteristics

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 45: Material Growth & Characterization for Conventional

Infrared Detector

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 46: Material Growth & Characterization for Conventional

Quantum Efficiency

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 47: Material Growth & Characterization for Conventional

FDSOI MOSFET

*P. K. Saxena at. el., A Comparative Study for Scaling FDSOI Technology up to 7nm –Based on Particle device Simulation, Jaournal of Nano & Optoelectronics(2021), under Review.

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 48: Material Growth & Characterization for Conventional

FDSOI MOSFET

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 49: Material Growth & Characterization for Conventional

FDSOI MOSFET RESULTSSt

ruct

ure

Para

met

ers Nodes (nm) 14nm 10nm 7nm 14nm 10nm 7nm

Single Gate Double GateLeff (nm) 22 14 10 22 14 10Weff (nm) 10 8 10 8Tox (nm) 1 0.85 0.75 0.75 0.85 0.75

Doping (/cm3) 1×1024 5×1024 2×1025 2×1025 5×1024 2×1025

TSOI (nm) 40 30 20 20 30 20

Dev

ice

Para

met

ers Vth (mV) 0.3 0.22 0.2 0.2 0.4 0.5

SS (/mV/dec) 63.3 67.9 82.9 82.9 87.4 72.2gm (mS/µm) 0.252 0.437 0.499 0.499 0.494 0.449

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 50: Material Growth & Characterization for Conventional

DRIFT VELOCITY

Carrier Drift velocity a) 14nm b) 10nm c) 7nm 

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 51: Material Growth & Characterization for Conventional

CARRIER AVERAGE ENERGY

a) 14nm FDSOI MOSFET b) 10nm FDSOI MOSFET c) 7nm FDSOI MOSFET

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 52: Material Growth & Characterization for Conventional

Transfer Id ‐ Vg Characteristics

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 53: Material Growth & Characterization for Conventional

Single Gate Id ‐ Vd Characteristics

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 54: Material Growth & Characterization for Conventional

Dual Gate Id ‐ Vd Characteristics

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 55: Material Growth & Characterization for Conventional

MOSFET

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 56: Material Growth & Characterization for Conventional

MOSFET

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 57: Material Growth & Characterization for Conventional

MOSFET Transfer Characteristics

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 58: Material Growth & Characterization for Conventional

Tunneling FET

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 59: Material Growth & Characterization for Conventional

Tunneling FET

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 60: Material Growth & Characterization for Conventional

Tunneling FET Transfer Characteristics

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 61: Material Growth & Characterization for Conventional

StructureMESFET 

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 62: Material Growth & Characterization for Conventional

MESFET 

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 63: Material Growth & Characterization for Conventional

ADVANCE LICENSING & PRICE VALUE

TNL’s tools support advanced and unique licensing models tailored for unique customer needs. 

ADVANCED LICENSING OPTIONS: Term‐Based  Perpetual  TCAD Academic Suite  24x7 Technical Support for Academic Institutions 

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21

Page 64: Material Growth & Characterization for Conventional

T h a n k Y o uC o n t a c t u s

+91-983-915-1284

info@technext lab .com

Lucknow 226 003 , INDIA

www.technext lab .com

MOS-AK20

21

MOS-A

K2021

MOS-A

K2021

M

OS-AK20

21