masstransfer fundamentals

Upload: marco-silva

Post on 03-Apr-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Masstransfer Fundamentals

    1/49

    Tutorial

    Tutorial #7

    WWWR# 24.1, 24.12, 24.13,24.15(d), 24.22.

  • 7/28/2019 Masstransfer Fundamentals

    2/49

    Molecular Mass Transfer

    Molecular diffusion

    Mass transfer law components:

    Molecular concentration:

    Mole fraction:

    (liquids,solids) , (gases)

    c

    cy

    c

    cx AA

    AA

    RT

    p

    V

    n

    Mc AA

    A

    AA

  • 7/28/2019 Masstransfer Fundamentals

    3/49

    For gases,

    Velocity:mass average velocity,

    molar average velocity,

    velocity of a particular species relative to mass/molar average is

    the diffusion velocity.

    P

    p

    RTP

    RTpy AAA

    n

    i

    ii

    n

    i

    i

    n

    i

    ii

    1

    1

    1

    vv

    v

    c

    cn

    i

    ii 1

    v

    V

  • 7/28/2019 Masstransfer Fundamentals

    4/49

    mol

  • 7/28/2019 Masstransfer Fundamentals

    5/49

  • 7/28/2019 Masstransfer Fundamentals

    6/49

  • 7/28/2019 Masstransfer Fundamentals

    7/49

    Flux:A vector quantity denoting amount of a particular species that

    passes per given time through a unit area normal to the vector,

    given by Ficks First Law, for basic molecular diffusion

    or, in the z-direction,

    For a general relation in a non-isothermal, isobaric system,

    AABA cD J

    dz

    dcDJ AABzA ,

    dz

    dycDJ AABzA ,

  • 7/28/2019 Masstransfer Fundamentals

    8/49

    Since mass is transferred by two means:

    concentration differences

    and convection differences from density differences

    For binary system with constant Vz,

    Thus,

    Rearranging to

    )( ,, zzAAzA VvcJ

    dz

    dycDVvcJ AABzzAAzA )( ,,

    zAA

    ABzAA Vcdz

    dycDvc ,

  • 7/28/2019 Masstransfer Fundamentals

    9/49

    As the total velocity,

    Or

    Which substituted, becomes

    )(1 ,, zBBzAAz vcvcc

    V

    )( ,, zBBzAAAzA vcvcyVc

    )( ,,, zBBzAAAA

    ABzAA vcvcydz

    dycDvc

  • 7/28/2019 Masstransfer Fundamentals

    10/49

    Defining molar flux, N as flux relative to a fixed z,

    And finally,

    Or generalized,

    AAA c vN

    )( ,,, zBzAAA

    ABzA NNydz

    dycDN

    )( BAAAABA yycD NNN

  • 7/28/2019 Masstransfer Fundamentals

    11/49

  • 7/28/2019 Masstransfer Fundamentals

    12/49

    Related molecular mass transferDefined in terms of chemical potential:

    Nernst-Einstein relation dz

    d

    RT

    D

    dz

    duVv cABcAzzA

    ,

    dz

    d

    RT

    D

    cVvcJ

    cAB

    AzzAAzA

    )( ,,

  • 7/28/2019 Masstransfer Fundamentals

    13/49

    Diffusion Coefficient

    Ficks law proportionality/constant

    Similar to kinematic viscosity, , and

    thermal diffusivity, a

    t

    L

    LLMtL

    M

    dzdc

    J

    D A

    zA

    AB

    2

    32

    ,

    )1

    1

    )((

  • 7/28/2019 Masstransfer Fundamentals

    14/49

    Gas mass diffusivity

    Based on Kinetic Gas Theory

    = mean free path length, u = mean speed

    Hirschfelders equation:

    uDAA 3

    1*

    2/13

    22/3

    2/3

    * )(3

    2

    AA

    AAM

    N

    P

    TD

    DAB

    BA

    ABP

    MMT

    D

    2

    2/1

    2/3 11001858.0

  • 7/28/2019 Masstransfer Fundamentals

    15/49

    Lennard-Jones parameters and e from tables,

    or from empirical relations

    for binary systems, (non-polar,non-reacting)

    Extrapolation of diffusivity up to 25

    atmospheres

    2

    BAAB

    BAAB eee

    2

    1

    1,12,2

    2/3

    1

    2

    2

    1

    TD

    TD

    ABABT

    T

    P

    PDD

    PTPT

  • 7/28/2019 Masstransfer Fundamentals

    16/49

    Binary gas-phase Lennard-Jones

    collisional integral

  • 7/28/2019 Masstransfer Fundamentals

    17/49

  • 7/28/2019 Masstransfer Fundamentals

    18/49

  • 7/28/2019 Masstransfer Fundamentals

    19/49

    With no reliable ore, we can use the Fuller

    correlation,

    For binary gas with polar compounds, we

    calculate by

    23/13/1

    2/1

    75.1311

    10

    BA

    BA

    AB

    vvP

    MMT

    D

    *

    2

    196.00 T

    ABD

  • 7/28/2019 Masstransfer Fundamentals

    20/49

    where

    bb

    PBAAB

    TV

    232/1 1094.1,

    ABTT e /*

    2/1

    e

    e

    e BAAB

    bT23.1118.1/ e

    )exp()exp()exp( ****0 HTG

    FT

    E

    DT

    C

    T

    ABD

  • 7/28/2019 Masstransfer Fundamentals

    21/49

    and

    For gas mixtures with several components,

    with

    2/1BAAB 3/1

    23.11585.1

    bV

    nn DyDyDyD

    1

    '

    31

    '

    321

    '

    2

    mixture1/...//

    1

    nyyy

    yy

    ...32

    2'

    2

  • 7/28/2019 Masstransfer Fundamentals

    22/49

    2

  • 7/28/2019 Masstransfer Fundamentals

    23/49

    Liquid mass diffusivity

    No rigorous theoriesDiffusion as molecules or ions

    Eyring theory

    Hydrodynamic theory Stokes-Einstein equation

    Equating both theories, we get Wilke-Chang eq.B

    ABr

    TD

    6

    6.0

    2/18104.7

    A

    BBBAB

    V

    M

    T

    D

  • 7/28/2019 Masstransfer Fundamentals

    24/49

  • 7/28/2019 Masstransfer Fundamentals

    25/49

  • 7/28/2019 Masstransfer Fundamentals

    26/49

    For infinite dilution of non-electrolytes in

    water, W-C is simplified to Hayduk-Laudie eq.

    Scheibels equation eliminates B,

    589.014.151026.13 ABAB VD

    3/1

    A

    BAB

    V

    K

    T

    D

    3/2

    8 31)102.8(A

    B

    VVK

  • 7/28/2019 Masstransfer Fundamentals

    27/49

    As diffusivity changes with temperature,

    extrapolation of DAB

    is by

    For diffusion of univalent salt in dilute solution,

    we use the Nernst equation

    n

    c

    c

    ABT

    ABT

    TT

    TT

    D

    D

    1

    2

    )(

    )(

    2

    1

    F

    RTDAB )/1/1(

    200

  • 7/28/2019 Masstransfer Fundamentals

    28/49

    Pore diffusivity

    Diffusion of molecules within pores of poroussolids

    Knudsen diffusion for gases in cylindrical pores

    Pore diameter smaller than mean free path, and

    density of gas is low

    Knudsen number

    From Kinetic Theory of Gases,

    poredKn

    AAA M

    NTuD

    8

    33*

  • 7/28/2019 Masstransfer Fundamentals

    29/49

    But if Kn >1, then

    If both Knudsen and molecular diffusion exist, then

    with

    For non-cylindrical pores, we estimate

    A

    pore

    A

    porepore

    KAM

    TdMNTdudD 48508

    33

    KAAB

    A

    Ae DDy

    D111 a

    A

    B

    N

    N1a

    AeAe DD2' e

  • 7/28/2019 Masstransfer Fundamentals

    30/49

    Example 6

  • 7/28/2019 Masstransfer Fundamentals

    31/49

  • 7/28/2019 Masstransfer Fundamentals

    32/49

  • 7/28/2019 Masstransfer Fundamentals

    33/49

  • 7/28/2019 Masstransfer Fundamentals

    34/49

    Types of porous diffusion. Shaded areas represent nonporous solids

  • 7/28/2019 Masstransfer Fundamentals

    35/49

    Hindered diffusion for solute in solvent-filled

    pores

    A general model is

    F1 and F2 are correction factors, function of porediameter,

    F1 is the stearic partition coefficient

    )()( 21 FFDDo

    ABAe

    pore

    s

    d

    d

    2

    2

    1 2

    ( )( ) (1 )

    pore s

    pore

    d dF

    d

  • 7/28/2019 Masstransfer Fundamentals

    36/49

    F2 is the hydrodynamic hindrance factor, one

    equation is by Renkin,

    53

    2 95.009.2104.21)( F

  • 7/28/2019 Masstransfer Fundamentals

    37/49

    Example 7

  • 7/28/2019 Masstransfer Fundamentals

    38/49

  • 7/28/2019 Masstransfer Fundamentals

    39/49

  • 7/28/2019 Masstransfer Fundamentals

    40/49

  • 7/28/2019 Masstransfer Fundamentals

    41/49

    Convective Mass Transfer

    Mass transfer between moving fluid with

    surface or another fluid

    Forced convection

    Free/natural convection

    Rate equation analogy to Newtons cooling

    equation

    AcA ckN

  • 7/28/2019 Masstransfer Fundamentals

    42/49

    Example 8

  • 7/28/2019 Masstransfer Fundamentals

    43/49

  • 7/28/2019 Masstransfer Fundamentals

    44/49

    Differential Equations

    Conservation of mass in a control volume:

    Or,

    inout + accumulationreaction = 0

    .... 0vcsc dVtdA nv

  • 7/28/2019 Masstransfer Fundamentals

    45/49

    For inout,

    in x-dir,

    in y-dir,

    in z-dir,

    For accumulation,

    xxAxxxAzynzyn

    ,,

    yyAyyyA zxnzxn ,,

    zzAzzzA yxnyxn ,,

    zyxt

    A

  • 7/28/2019 Masstransfer Fundamentals

    46/49

    For reaction at rate rA

    ,

    Summing the terms and divide by xyz,

    with control volume approaching 0,

    zyxrA

    , , , , , , 0A x x x A x x A y y y A y y A z z z A z z A An n n n n n

    rx y z t

    , , ,0AA x A y A z An n n r

    x y z t

  • 7/28/2019 Masstransfer Fundamentals

    47/49

    We have the continuity equation for

    component A, written as general form:

    For binary system,

    but and

    0

    A

    AA r

    t

    n

    n n 0A BA B A Br rt

    vvvnn BBAABA

    BA rr

  • 7/28/2019 Masstransfer Fundamentals

    48/49

    So by conservation of mass,

    Written as substantial derivative,

    For species A,

    0

    t

    v

    0 vDtD

    0 AAA r

    Dt

    D j

  • 7/28/2019 Masstransfer Fundamentals

    49/49

    In molar terms,

    For the mixture,

    And for stoichiometric reaction,

    0

    A

    AA Rt

    cN

    0)( BABA

    BA RRt

    ccNN

    0)( BA RR

    t

    ccV